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Tissue elongation is a necessary process in metazoans to implement their body

plans that is not fully understood. Here we propose a mechanism based on the

interplay between cellular mechanics and primordia patterning that results in self-

sustained planar cell intercalations. Thus, we show that a location-dependent modu-

lation of cell mechanics due to positional information leads to robust axis extension.

To illustrate the plausibility of this model, we use different experimentally reported

patterning mechanisms in simulations that implement mechano-signaling feedback.

Our results suggest that robust elongation relies on a trade-off between cellular and

tissue strains that is orchestrated via the cleavage orientation. In the particular con-

text of axis extension in Turing-patterned primordia we report that the combination

of different directional cell activities lead to synergetic effects. Altogether, our find-

ings help to understand how the emerging phenomenon of tissue elongation emerges

from the individual cell dynamics.
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INTRODUCTION

During development, the initial spherical symmetry of the zygote undergoes complex

changes in size and shape to form different tissues/organs and implement the body plan [1].

In that context, axis elongation, or more generically anisotropic growth, is a key morpho-

genetic geometric transformation that relies on the regulation of cellular activities due to

the interplay between signaling and cell mechanical properties [2–8]. During axis elongation,

signaling events establish planar polarity patterns at the tissue level that feed back into the

cellular dynamics, e.g. oriented mechanical responses. A notable example is the convergent-

extension (CE) phenomenon due to cell intercalation events [9–12]. In other cases, a directed

developmental expansion is achieved by translating polarity into differential growth events,

oriented divisions, and/or active migration [13–15]. More recently, this problem has been

addressed from the viewpoint of the changing physical properties of tissues [16]. Recent

relevant examples include evidence that shows that during the vertebrate body axis exten-

sion tissues undergo a jamming transition from a fluid-like behavior to a solid-like behavior

[17]. Yet, open questions remain. On the one hand, it is not clear how instructive signals

arising from primordia patterning are effectively converted into a non-equilibrium cellular

dynamics that robustly sustains tissue extension and modulates their material-like proper-

ties spatiotemporally. On the other hand, further research is needed to understand how

different mechanisms may contribute, cooperatively, to achieve robust anisotropic growth.

Some of these questions are beautifully illustrated during the limb bud outgrowth, a

model system in morphogenesis to understand patterning and the directed developmental

expansion of tissues [18, 19]. In that regard, some models have considered the proliferation

gradient hypothesis [20–23]. These models are supported by the demonstrated existence of

a fibroblast growth factor (FGF) gradient that has its source at the apical ectodermal ridge

(AER) [1]. However, while there is experimental evidence of a spatial modulation of the

cell proliferation rates, it has been shown that this mechanism is not enough to generate a

significant distal limb bud outgrowth [24]. Thus, it has been suggested that limb elongation

must be driven by “other”, or additional, directional cell activities. Following these ideas,

recent models have proposed that limb outgrowth relies on a CE mechanism based on the

existence of an anisotropic filopodial-tension [25]. Notably, this model is able to resolve a

conundrum that is repeatedly found during axis elongation by CE (and observed during the
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Figure 1. A mechanism to translate tissue planar polarity into self-sustained CE. Signal-

ing and communication pattern the tissue (A) and establish positional information domains that

provide cellular identity (B). C: If cell identity implies distinct mechanical properties that promote

cell intermingling, it leads to an auto-catalytic intercalation mechanism (see text). D: Orientation

features of cellular processes, such as elongation or cleavage, indicate that cells elongate along an

axis perpendicular to the domain boundary, but the resulting CE arising for intercalations extends

the tissue along a direction parallel to the domain boundary.

limb bud outgrowth): cells elongate perpendicularly to the direction of the axis extension

[24]. Still, how the pattern of gene expression observed in the limb bud modulates the

cellular mechanics to generate such behavior in a sustained way is not understood.

Here we propose a framework to understand tissue elongation during morphogenesis, in

particular that of the limb bud. Our model relies on the interplay between cellular mechan-

ical properties and the patterning due to signaling that provides positional information to

cells within a primordium. Here we show that such feedback, when combined with cellular

growth and division, leads to auto-catalytic cell intercalations that can sustain tissue elon-

gation robustly. We illustrate our proposal by means of numerical simulations of growing

tissues using a vertex model [26, 27] that allows for mechano-signaling feedback. We show
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the applicability of our proposal to different situations by simulating two distinct devel-

opmental patterning mechanisms: the French Flag model [28] and the Turing instability

[29].

RESULTS

From Cell Signaling to Tissue Elongation: an Auto-Catalytic Cell Intercalation

Mechanism

Here we propose a mechanism that explains how an equilibrium, stationary, pattern of

planar polarity at the tissue level, as determined by the cell signaling activity, is trans-

lated into a non-equilibrium process able to elongate tissues. Our proposal is sketched in

Fig. 1. Gene regulation and long/short-range cell-cell communication lead to a planar polar-

ity pattern (Fig. 1A). Downstream signals further refine the pattern and provide positional

information to cells in terms of distinct domains that determine cellular identities (Fig. 1B).

If cell identity confers distinct mechanical properties that promote intermingling among cells

from different domains, then cells by domain boundaries intercalate to minimize their energy

(Fig. 1C). As for the cellular division process, cell growth and intercalation-induced stretch-

ing coupled to the Hertwig rule (cleavage orientation perpendicular to the longest cell axis)

set the preferential orientation of cleavage planes parallel to domain boundaries [30, 31]. Such

bias in terms of the elongation and division orientation has been experimentally reported in a

number of developmental processes including limb development [24, 32–34]. Following divi-

sion, identities, and hence mechanical properties, of daughter cells are reassigned depending

on their position within the tissue. Dynamical assignment of cellular identities depending

on their locations in a morphogenetic field is common during development, e.g. [35]. In that

regard, experimental evidence about the dynamic establishment of cellular identities in the

case of the limb bud primordium comes from micromass cultures where it has been shown

that up-regulation, or down-regulation, of the skeletal marker Sox9 depends on the rela-

tive positions of cells within the tissue [36]. This feedback between intercalation, division,

and dynamic identity switching results in an auto-catalytic cell intercalation mechanism at

the domain boundaries that leads to a self-sustained CE process (Fig. 1C). Self-sustained

intercalations cause tissue extension while cells elongate perpendicularly to the extension
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axis as schematically represented by the polar histogram cartoons in Fig. 1D. See Methods

for details about the mathematical formalization and the computational implementation of

this mechanism. We stress that cell intercalations that rely just on the differential adhesion

hypothesis (DAH) cannot generate tissue elongation. It that case, distinct mechanical prop-

erties of cells (canonically promoting phase separation of homotypic populations [37–39]) are

inherited. As a result, a transient CE may occur depending on the initial configuration but,

in the long term as cells grow and divide, it leads to isotropic tissue growth (Fig. S1 and

Movie S1). Here, instead, we propose a modulation of the mechanical properties such that

cellular affinities (i.e., energetic costs) are assigned, dynamically, by positional information

(rather than inherited).

Auto-Catalytic Cell Intercalation Induces Axis Elongation in Morphogen Patterned

Tissues

As a proof of concept about the functionality of the proposed auto-catalytic cell interca-

lation mechanism, we simulated a tissue patterned by a morphogen gradient (Methods) [40].

Our results showed that regardless of the growth and division activity of cells, a stationary

gradient profile is established (Fig. S2 and Movie S2). Positional information was provided

to cells following the French Flag model paradigm that sets domains of dynamic cellular

identities depending on morphogen concentration thresholds (Methods) [28]. We assumed

distinct mechanical properties of cells in terms of adhesion (i.e., line tension in our vertex

model implementation) such that there is an increased affinity between cells from differ-

ent domains that promotes cell intermingling by domain boundaries (Methods). Figure 2A

(Movie S3) shows that a noticeable elongation of the tissue is achieved in contrast to control

simulations where cell adhesion is not modulated by the morphogen signal (Movie S4). For

a precise mathematical definition of the elongation ratio see Methods. In these in silico

experiments, we implemented the Hertwig rule for cell divisions; yet including variability as

experimentally reported [41] (Methods).

Hence, the quantification of the cleavage orientation is as a proxy for the cellular elonga-

tion direction. In that regard, our results indicate that cells preferentially elongated perpen-

dicular to the tissue extension axis due to the intercalation events (Fig. 2A). If cell adhesion

is not modulated by the morphogen signal we observed a randomized cellular elongation as
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Figure 2. Coupling between tissue patterning and cell mechanics leads to robust elon-

gation. A: Elongation ratio as a function the number of cells in tissues patterned by a morphogen

gradient (in silico experiments). Red stands for the case when cell mechanics and patterning are

coupled. Black refers to control simulations (adhesion not modulated by the pattern). Results

from ten simulations: solid lines indicate the average and the shading the standard deviation band.

Values of average elongation, number of cells, and snapshots of representative simulations as in-

dicated by the colored arrows. The cumulative polar histograms of cleavage events (right) reveal

that cells preferentially elongate perpendicular to the extension axis when the auto-catalytic in-

tercalation mechanism applies. B: Cumulative density histograms of divisions (ten simulations).

The green/magenta squares indicate the initial/final bounding boxes that delimit the tissue size.

Intercalation-induced cell stretching (top) promotes cell divisions at the domain boundaries. C:

Cumulative density histograms of T1 transitions (ten simulations). Auto-catalytic intercalation

(top) provides fluidity to the tissue as evidenced by its active remodeling at domain boundaries.
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expected (Fig. 2A). Intercalation induces cell stretching that in turn promotes cell division

as experimentally reported [42]. To test this possibility, we quantified the cumulative density

of division events and found that cells indeed divided more actively at domain boundaries

where intercalation is more operative (Fig. 2B). That is, the material-like additive properties

of the tissue are enhanced by the auto-catalytic mechanism. In contrast, when adhesion is

not modulated by the tissue patterning, cell division locations are not correlated with the

position of the domain boundaries. We also observed that inner cells eventually divided less

often due to the pressure increase [43]. Finally, to evaluate the plasticity (fluidity) of the tis-

sue, we computed the accumulated density of T1 topological transitions (Fig. 2C). In that

regard, we found that auto-catalytic intercalations largely increased the cellular activity,

thus making the tissue more fluid.

Robust Elongation Relies on a Trade-off between Cellular and Tissue Stresses

In order to clarify more precisely the role played by oriented cell divisions during axis

extension, we performed additional in silico experiments where we tested distinct alternatives

to the Hertwig rule: random orientation of the cleavage plane and divisions following the

opposite of the Hertwig rule (cleavage plane parallel to the longest cell axis). As in the

case of the Hertwig rule, we included variability (i.e., noise) in the cleavage orientation. We

found that if the cleavage orientation followed the opposite of the Hertwig rule then, while

the auto-catalytic intercalation mechanism still applies, the magnitude of the axis extension

is lessened and the overall shape of the tissue is very irregular, Fig. 3A-B. Random cleavage

orientation implied an intermediate situation where elongation is achieved, but the tissue

shape developed some irregularities, Fig. 3A-B. Interestingly, in the case of the “opposite”

rule, one would expect a cleavage statistics that would be the opposite to that found in

Hertwig; yet we found that division planes parallel to the extension axis are still predominant

(see polar histograms). To investigate this phenomenon, we examined the cellular dynamics

within the different positional information domains of the tissue. Our results indicate that

auto-catalytic intercalation generates cellular stresses in the domain where this mechanism

is more active (central domain) that contributes to elongate the cells perpendicularly to the

extension axis, Fig. 3C.

As a result of the cellular intercalation the tissue elongates, that in turn generates stresses
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Figure 3. Effect of cleavage orientation. A: Tissue elongation as a function of the number

of cells for different cleavage dynamics (ten simulations): solid lines stand for the average and the

shadings for the standard deviation bands. The polar histograms of cleavage orientations (inset)

are a readout of the cellular geometry when the Hertwig rule (black) or its opposite (red) apply but

not in the case of random cleavage (green). The Hertwig rule leads to a systematic elongation. B:

Final snapshots of representative simulations depending on the cleavage dynamics (color codes as in

A). If cells do not divide perpendicularly to their longest axis, then the tissue develops irregularly.

C: Analysis of the correlation between cellular geometry prior to division (as represented here by

the shortest cell axis, θ) and the cleavage orientation (ϕ) in different tissue domains by means of

cumulative density histograms.

in the cells of the “bulk” domain that promotes their elongation along the extension axis,

Fig. 3C. This orthogonal orientation of cellular geometries in different domains is, in fact,

more clearly revealed when the “opposite” mechanism applies. Altogether, these results

suggest that the interplay between cellular and tissue stresses, when coupled through oriented

cell divisions following the Hertwig rule (even in the presence of noise), is instrumental in

generating a robust axis elongation.
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A. Axis Extension in Turing Patterned Tissues Depends on Synergetic Mechanisms

As shown above, the mechanism introduced here implies an instructive role of signaling

cues to determine the elongation axis: tissues extend along the direction of the boundary

domains determined by planar polarity. In that regard, in primordia patterned following

the French Flag model the elongation axis is set by the signaling center from which the

morphogen is produced and diffuses out. This raises the question of whether the proposed

mechanism applies to more complex patterning situations that need auxiliary mechanisms

to establish planar polarity at the tissue level. To that end, we studied Turing patterned

tissues. Developmental examples of the latter include animal coating [44], tooth primordium

patterning [45], the rugae spacing in the mammalian palate [46], and a case that is particu-

larly relevant in the context of tissue elongation: limb bud outgrowth [36, 47].

Turing instabilities set distinct domains of expression in tissues. However, the patterns

always display some level of rotational symmetry. Different ideas have been suggested to

achieve stripe alignment (i.e., a symmetry-breaking event) in the context of Turing patterns

[48]. While it has been argued that all the proposed mechanisms produce robust stripe

alignment, we found in the in silico experiments that, when tissues are subjected to cellular

growth/division, the diffusivity-modulation mechanism due to the activity of a morphogen

released from a cellular population consistently leads to pattern alignment (Fig. 4, Meth-

ods, Discussion). Yet, we stress that the applicability of the auto-catalytic intercalation

phenomenon is independent of the auxiliary mechanism that promotes stripe alignment. In

the particular context of the limb bud, FGF, released from the AER, would play the role

of the morphogen setting the planar polarity pattern that induces pattern alignment [36].

In addition, there is experimental evidence showing that FGF stimulates outgrowth and

cellular proliferation [49]. Thus, we tested how axis extension in Turing patterned tissues

depends on synergistic interactions between different mechanisms.

Figure 5A (Movie S5) shows that a combination of a spatial modulation of the cellular

proliferation rates (cell cycle speed proportional to the morphogen signal released from the

tip, Methods) and the auto-catalytic intercalation mechanism leads to a robust (less vari-

ability), and fast, axis extension. Motivated by prior studies that showed that a modulation

of proliferation rates is not enough to generate a significant distal limb bud outgrowth [24],

we implemented in our simulations a very “mild” modulation: ∼ 2% increment of the elon-
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Figure 4. Stripe alignment mechanism in growing tissues. A: In tissues where cells actively

grow/divide, if each cell is driven by a regulatory network that just involves an activator, u, and

an inhibitor, v, then the resulting Turing pattern displays rotational symmetry (panel B left). If

an additional species, z, is released from the “tip” (left side of the tissue in this example) and set a

polarity gradient such that the diffusivity of v is spatially modulated, then stripes align following

the gradient directionality (panel B right). B: Final snapshot of simulations without (left) and

with (right) diffusivity modulation (constant cellular adhesion). The black (white) cellular domains

account for regions where u > v (v > u). Since diffusive transport relies on tissue topology

(Methods) we avoided a possible bias in patterning by using in both simulations the same random

sequences that determine the variability of cellular growth/division in order to reproduce the same

cellular growth/division events and cell/tissue topologies.

gation ratio with respect to control simulations that lack auto-catalytic intercalations and

a modulation of proliferation rates (Fig. 5A and Movies S6-S7, see also control Movie S8).

Yet, when combined with the auto-catalytic intercalation mechanism, the elongation was

boosted by ∼ 14%. Also, as revealed by Fig. 5B, cells elongated perpendicularity of the

tissue expansion direction as long as the auto-catalytic intercalation mechanism applies.

As in the case of the French Flag model, we observed that division events are promoted

in the intercalation region (Fig. 5C). Yet, we found a less structured (i.e., digitate-less)

distribution in agreement with limb bud outgrowth data [24]. As for the analysis of the

topological remodeling of the tissue (T1 transitions), as a proxy for its fluidity, it revealed a

clear proximal-distal (right-left in the figure) gradient when the auto-catalytic intercalation

mechanism applies such that there is more plasticity in the growing tip. We also observed a

less structured T1 pattern in comparison with the French Flag model simulations. Finally,

as for the effect of the division dynamics we found, in agreement with the French-Flag

model simulations, that either random or “opposite” cleavage dynamics leads to growth
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Figure 5. Elongation in Turing patterned tissues. A: Comparison of tissue elongation as a

function of the number of cells using different mechanisms (ten simulations): solid lines stand for

the average and the shading for the standard deviation band. In all cases, cell cleavage follows

the Hertwig rule. In the control simulation, the mechanical properties of cells are independent of

patterning (Supplementary Methods). The final average tissue elongations are as indicated by the

arrows. B: Representative snapshots of simulations (same number of cells) and cumulative polar

histograms of cleavage orientations (color codes and in A). The black (white) cellular domains

account for regions where u > v (v > u). When auto-catalytic intercalation applies cells elongate

perpendicularly to the direction of axis extension. C: Cumulative density histograms of cell division

events (left) and T1 transitions (right) depending on the elongation mechanism (color codes as in

A). The green/magenta squares indicate the initial/final bounding box delimiting the tissue size.

irregularities in the tissue and large variability, i.e., lack of robustness (Fig. S3).

DISCUSSION

Here we propose a framework to understand how the interplay between patterning and

mechanics leads to axis extension. Our approach provides a simple, plausible, mechanism to

understand how the tissue-level planar polarity patterns that originate from cell signaling and

communication set an original symmetry breaking that feeds back to the cellular mechanics

to produce sustained anisotropic growth elongation via auto-catalytic intercalations. This

mechanism is based on some basic assumptions that have been experimentally observed in

morphogenetic processes. First, cell identities can be dynamically assigned depending on

the locations of cells within a primordium following the positional information paradigm.
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Second, distinct identities imply cell affinities (adhesion) that promote intermingling. Third,

cell cleavage follows the Hertwig rule such that cells divide perpendicular to their longest

axes. Importantly, our results show that these premises lead to a non-equilibrium cellular

dynamics that, without any further assumptions, is able to explain the reported directional

activities of cells during CE: intercalating cells predominantly elongate perpendicular to the

axis extension direction and their divisions are oriented parallel to that axis. Moreover, we

have shown the existence of a trade-off between cellular and tissues strains that contribute

to a robust extension dynamics.

To illustrate the applicability of this mechanism we have used two patterning cases that

are found during development: tissues patterned by either morphogen gradients or by a

Turing instability mechanism. Our simulations are performed using a vertex model approach

that allows feedback between mechanical and signaling cues and, to check the robustness of

our proposal, we have included different sources of variability such as noise in the cleavage

orientation and in the cell cycle length. Our proposal does not aim at explaining in detail the

elongation of a specific primordium but rather to show a generic mechanism. Still, we believe

that our results are particularly applicable, and relevant, to the case of limb bud outgrowth

since our findings are in agreement with the behavior found experimentally in qualitative

terms. Moreover, we have shown, to the best of our knowledge for the first time, how the

digitate pattern develops using in silico experiments with a realistic cellular dynamics. An

important implication of our results in the context of the limb bud is to reconcile data

in terms of the possible mechanisms underlying its outgrowth. Thus, we have shown that

the synergistic interaction between auto-catalytic intercalations and spatially modulated

proliferation rates leads to robust elongation. Our data suggest that the former is the main

driver of elongation and the latter, while not being able to explain tissue extension, boosts

its effect.

Our proposal could also provide insight into the recently reported fluidization during

vertebrate body axis elongation [17]. In that context, it has been shown that there is a

larger tissue remodeling at the extending mesodermal progenitor zone and yet, the analysis

of the orientation neighbor exchanges revealed that no systematic alignment contributes to

the elongation of the body axis. In that regard, here we have shown how patterning can

promote gradients of tissue remodeling during elongation and, in fact, the directionality of

neighbor exchanges is, counterintuitively, opposite to the extension direction. In that sense,
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the framework that we present here could help to understand how primordia patterning

conditions the asymmetry of tissue remodeling activity.

As a matter of discussion, here we have assumed that all the mechanical and biological

interactions of the cells are described adequately by a 2D model in a planar geometry. This

over-simplification is standard in the field and can possibly provide a plausible, yet basic,

understanding of tissue remodeling. However, recent discoveries about the cellular behavior

in 3D environments when tissues are subjected to some level of curvature, point towards an

intriguing and important role of spatial T1 transitions [50]. In that regard, to what extent

the framework presented here depends on the 3D structure of the cells is an interesting

subject for further studies.

In conclusion, we have presented a model based on hypotheses that seemingly connects

the ideas of primordia patterning due to gene activity with oriented cellular activities to

lead to asymmetric tissue growth. Therefore, our study paves the way to better understand

shape regulation during morphogenesis.

METHODS AND MATERIALS

Tissue simulations

Our approach is based on the vertex model originally developed by Nagai et al. [51], and

further adopted to model epithelial tissues by other authors, e.g., [52, 53]. The model takes

into account three energetic contributions for each cell vertex i:

Ei (t) =
∑
α

[
Kα

2

(
Aα − A0

α(t)
)2

+
Γα
2
L2
α

]
+
∑
〈ij〉

Λijlij (1)

index α corresponds to a cell, while i and j represent adjacent vertices sharing a connecting

edge. The first term (r.h.s.) stands for the elastic energy of cells caused by the difference

between the actual cell area Aα and the preferred cell area A0
α (the area that the cell would like

to have due to the cytoskeleton structure in the absence of the stresses associated with the

adhesion and cortical tension). The second term, proportional to the squared cell perimeter,

Lα, describes the mechanical tension related to the elastic contraction of an actomyosin

cortical ring. Finally, the third term describes the adhesion energy: Λij being a line tension

coefficient that weights the interaction between two cells (that can be either positive or
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negative), and where lij represents the length of the edge connecting neighboring vertices, i

and j. Based on this model, the cell packing geometries are determined by minimizing the

total energy of the system which leads to a mechanical force balance where Fi = −∇Ei.

Under the assumption that inertia is negligible, the dynamics of cell vertices satisfies the

equation of motion, η dri
dt

= Fi (η being a drag/viscous coefficient). See [53, 54] for additional

details.

In our simulations we used the following dimensionless parameter values K = 1 and

Γ = 0.02 (all simulations), Λ = ±0.05 (simulations of DAH mechanism, Fig. S1), Λ = 0.05

(simulations of the morphogen gradient profile, Fig. S2, and of Turing stripe alignment

formation, Fig. 4B), for all other simulations, Λ ranges between 0 to 0.1 depending on the

tissue domain see implementation of the signalling-mechanics feedback below (Auto-catalytic

cell intercalation). We imposed a value for the line tension for cell edges facing the tissue

exterior of Λ = 0.2. The latter promotes a circular shape of the tissue and helps to highlight

that elongation or tissue deformation is due to the cellular dynamics and not to other effects.

As for the implementation of the cell cycle and the cellular growth, the cell cycle duration,

τ , is a stochastic variable that satisfies τ = εtdet + (1− ε) tsto where tdet is a deterministic

time scale that accounts for the average cell-cycle duration in the absence of mechanical

stress and tsto is a random variable exponentially distributed with a probability density

ρ (tsto) =
exp

(
− tsto
tdet

)
tdet

. The parameter ε weights the stochasticity of the cell-cycle duration

(0.8 in our simulations). In our simulations 〈τ〉 = 1.5 · 103 (dimensionless). If a proliferation

gradient applies due to signaling (e.g. FGF), we simulated this effect by modulating the

cell cycle duration 〈τ〉 by the morphogen concentration (see details below). Cellular growth

is implemented using a piece-wise dynamics that prescribes the following growth of the

(dimensionless) preferred apical cell area, A0
α (t): cells are quiescent up to the middle of

their cell-cycle and then A0
α (t) grows linearly (towards doubling) (see [53] for details). With

respect to the cleavage orientation, the code evaluates the inertia tensor of cells with respect

to its centre of mass assuming that a proper representation of the former is a polygonal set

of rods, i.e., the cell edges. The principal inertia axes indicate the symmetry axes of the cell:

the longest axis of the cell is orthogonal to the largest principal inertia axis. Cells that divide

following the Hertwig rule set their cleavage plane perpendicular to the longest cell axis. In

simulations where cells divide opposite to Hertwig rule or randomly, the cleavage plane is

respectively parallel to the longest cell axis or random. Once the the putative division angle,
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ϕ, has been set we implement variability by using a normal distribution N (ϕ, σ2). In our

simulations σ = 0.2 and we set bounds to the tails of the normal distribution such that

the actual cell division lies within the interval [ϕ− 0.5, ϕ+ 0.5]. Cleavage is assumed to be

instantaneous in our simulations.

As for the protein dynamics, we assume each cell to be a well-stirred system where spatial

effects are disregarded. Each cell may contain a number of species (proteins) with dynamics

described by a deterministic differential equation (see below). Protein numbers in each cell,

are calculated by a numerical integration using the Euler method and protein concentration

are obtained by using the cell area at any time. Following a division event, proteins are

distributed binomially between daughter cells. As for the diffusion of morphogen molecules,

the diffusion operator is discretized according to the cell topology following [55].

We simulate the tissue dynamics for ∼ 5 cell cycles, yet defining two distinct temporal

stages. First, starting with tissues that contain 102 cells arranged in a regular hexagonal con-

figuration, we “randomize” the topology by cell growth and cleavage events and pre-pattern

the tissue by disregarding any modulation of the mechanical properties due to signaling. This

stage lasts ∼ 1.5 cell cycles until the total number of cells is ∼ 300. After this transient,

a second simulation stage, where modulation of mechanical properties by signaling applies,

is implemented during ∼ 3.5 − 4 cell cycles until the total number of cells is ∼ 2.5 · 103.

All reported properties, e.g., elongation ratio, are calculated taking into account only the

second simulation stage.

French flag patterning model

We implemented the French flag patterning scheme by simulating first a signaling center

from which a morphogen, c, diffuses out. The dynamics of the morphogen concentration for

a cell i, ci, is prescribed following [56]:

∂ci
∂t

= Dc∇2ci − kcci + 2jcH (yi − ya)H (yb − yi) (2)

where yi stands for the vertical coordinate of the geometrical center of cell i, H (z) is the

Heaviside step function, Dc is the diffusion coefficient, kc the degration rate, and jc the

morphogen current: −Dc∂ci∂y = jc in the domain yi ∈ (ya, yb). Thus, the morphogen is

released from all cells with centers in the range (ya, yb). In our simulation the parameter
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values are (dimensionless): Dc = 10−2, kc = 2.54 · 10−3, jc = 398, and (ya, yb) = (3.5, 5).

Taking into account that A0
α ∈∼ (1− 2), the width of the signaling center typically comprises

∼ 1−2 cells. Given the equation (2), if ∆y = yb− ya → 0 then the stationary concentration

of the morphogen in a cell at a location yi reads ci = c0e
− yi
λ with c0 ∼ 105 and λ =

√
D
k
' 2

being the typical decay length of the morphogen [56]. To implement a French flag positional

information mechanism, we set a morphogen threshold ct = 3.5 · 104 molecules/cell and

defined the following rate dynamics of two putative proteins, d1 and d2 for every cell, i,

∂d1,i
∂t

= H (ci − ct)− d1,i (3)

∂d2,i
∂t

= H (ct − ci)− d2,i (4)

Thus, cell identities and tissue domains are characterized by a vectorial tag: central domain

cells (d1, d2) = (1, 0), bulk domain cells (d1, d2) = (0, 1). Taking into account the value of ct

and the parameter used, the central domain has a typical width of 4− 5 cells.

Turing patterning model

In our simulations we used a generic reaction-diffusion model that can be mapped into

an activator-substrate model proposed to describe pigmentation patterns [57] or into an

activator-inhibitor model that accounts for regeneration [58]. More recently the model has

been used to explored the role of the so-called protein granular noise due to discretization

effects during patterning [59]. The model describes the concentration of two proteins, u and

v, in every cell i that can undergo a Turing instability leading to labyrinth-like patterns with

rotational symmetry:

∂ui
∂t

= a [(ui − u0) + (vi − v0)]−
(ui − u0)3

2
+∇2ui (5)

∂vi
∂t

= −2 (ui − u0)− (vi − v0) +Dv∇2vi (6)

In our simulations we used the dimensionless parameters of a = 0.9 for all simulations and

Dv = 9 for the simulations shown in Fig. 4B which lead to patterns around the homogeneous

state u0 = v0 = 2. For details about the Turing instability condition and non-linear effects

in this model see [60].

Stripe alignment was obtained by implementing the anisotropic diffusion of especies v.

To do so, we defined a cell population with identity I = Z at the boundary of the tissue
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(see Fig. 4A) that produces a morphogen, z (see Movies S9-S10),

∂zi
∂t

= Dz∇2zi − kzzi + 2jzδIi,Z (7)

The parameters values (dimensionless) used in our simulations were: Dz = 0.75, kz =

1.25 · 10−2, jz = 5 · 10−2. Under those conditions z takes a value of ∼ 1 at locations where

I = Z. Protein z modulated the diffusivity of protein v linearly such that Dvi = Azi+Bwith

A = 20 (Fig. 4B, right), A = 13 (simulations about tissue elongation), and B = 4 in all

cases.

Similarly to the case of morphogen patterned tissues, we defined additional putative

proteins to provide a identity to cells,

∂d1,i
∂t

= H ((ui − u0)− (vi − v0)−∆)− d1,i (8)

∂d2,i
∂t

= H (∆− (ui − u0)− (vi − v0))− d2,i (9)

where ∆ = 0.2 is a concentration threshold. That is, if (u − u0) − (v − v0) > ∆, cells

are characterized by a vectorial tag (d1, d2) = (1, 0) and if (u − u0) − (v − v0) < ∆ then

(d1, d2) = (1, 0). Since the characteristic domain size as a function of the pattern wavelength,

lc, is lc/2, and taking into account that (see [60]),

lc =
2π
√

2√
a− (1/Dv)

=
2π
√

2√
a− (1/ (Az +B))

(10)

then the domains at locations where I = Z, i.e. zi ' 1, comprise ∼ 5− 6 cells (Fig. 4). The

patterning disappear at locations where Dv =
(
3 + 2

√
2
)
/a [60].

The morphogen concentration profile is further used to generate a proliferation gradient

in some simulations (see text). In that case the average cell cycle duration a function of z

is 〈τ〉i = Â

Âzi+B̂
· 〈τ〉 with 〈τ〉 = 1.5 · 103, Â = 4, and B̂ = 2. The cells cycle duration varies

from 103 (at locations where z = 1) to 3 · 103 (at locations where where z = 0).

Auto-catalytic cell intercalation

The patterning-mechanics interaction is implemented in our model through the putative

proteins d1 and d2 that characterize dynamically the positional information depending on

the underlying gene regulation that patterns the tissue. Thus, the following matrix describes
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the identity relation between a pair of cells neighboring i and j,

I〈i,j〉 =

d1,i d2,i
d1,j d2,j

 (11)

Consequently, if cells i and j belong to the same positional information domain then∣∣det
(
I〈i,j〉

)∣∣ = 0 and if cells i and j belong to different positional information domain

then
∣∣det

(
I〈i,j〉

)∣∣ = 1. In our simulations we modulated the adhesion energy between two

neighboring cells by implementing the following dependence of the line tension parameter,

Λi,j, as a function of I〈i,j〉, see equation (1): Λij = Λ0 +γ
∣∣det

(
I〈i,j〉

)∣∣ with Λ0 = −γ = 10−1.

As a consequence, cell intercalation is promoted at domain boundaries.

Tissue elongation ratio

The tissue elongation ratio is computed as follows. We first estimate the center of mass

of the tissue using the perimetric cell vertices. Second, we calculate the components of the

inertia tensor with respect the center of mass of the tissue:

Ijk =
∑
i

(
r2i δjk − xi,jxi,k

)
(12)

where the sum runs for all the perimetric vertices, i, with Cartesian coordinates (xi, yi) =

(xi,1, xi,2), ri is their distance to the center of the mass, and δjk is the Kronecker delta.

Finally, we obtained the tissue elongation ratio by calculating the ratio of the two eigenvalues

of the inertia tensor.

Cells division and T1 transitions

The location of cell divisions is computed by collecting the coordinates of mother cell

centers right before cleavage. As for T1 transitions, we registered the coordinates of the

edge associated to neighbor exchanges right before, lbi,j, and after, lai,j, a transition. The

location of a T1 transition is characterized by the intersection point of the edges lbi,j and lai,j.

Supplementaty Information (SI)
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(A)

(B)

A

B

Figure 6. (Figure S1) Starting from the same initial configuration, if the cell adhesion (line tension

parameter) is the same for different cell populations, A, then cell intercalations are not promoted.

If the adhesion between cells promotes cell intermingling, B, cell intercalation is observed. However,

the fact that the cell mechanical properties are inhereted leads to isotropic tissue growth in the

long term.
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Figure 7. (Figure S2) (A) Time evolution of a morphogen concentration gradient in the tissue

where cells actively grow and divide. The profile reaches a stationary state, B.
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Simulation Code: Compilation Instructions

Data and simulation codes for generating each of the figures and movies of the study are

provided within the folder CODE. The SRC folders contain the required C++ source files to

generate an executable code when compiled with a standard C++ compiler. In our case

the code was compiled in a Linux system using g++. The name of the folders indicates

the corresponding figure and/or movie in the main or supplementary text. The executable

file is generate through a Makefile (i.e., invoking the make command within the directory

containing the source code).

Simulation Code: Data Files Output

As a result of a particular simulation different output files are generated. For each simu-

lation, the relevant output files are collected in the DATA folder. The output file dcells.dat

contains the information of all tissue cells for every frame registered in the simulation. The

structure of each frame is as follows:

#cells stageidx

cellID type #vertexes area #proteinspecies #protein1 #protein2 ... #proteinN

centerx centery idxneighbor1

idxneighbor2 ... idxneighborN vertex1x vertex1y vertex2x vertex2y ... vertexNx

vertexNy

cellID type #vertexes area #proteinspecies #protein1 #protein2 ... #proteinN

centerx centery idxneighbor1

idxneighbor2 ... idxneighborN vertex1x vertex1y vertex2x vertex2y ... vertexNx

vertexNy

.

.

.

cellID type #vertexes area #proteinspecies #protein1 #protein2 ... #proteinN

centerx centery idxneighbor1

idxneighbor2 ... idxneighborN vertex1x vertex1y vertex2x vertex2y ... vertexNx

vertexNy
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Figure 8. (Figure S3) Effect of cleavage orientation in Turing patterned system. A: Tissue

elongation as a function of the number of cells for different cleavage dynamics (ten simulations):

solid lines stand for the average and the shadings for the standard deviation bands. Hertwig rule

leads to the smallest variability indicating a more robust elongation and regular shape. B: The

polar histograms of cleavage orientations (inset) are a readout of the cellular geometry when the

Hertwig rule (black) or its opposite (red) apply but not in the case of random cleavage (green).

Final snapshots of representative simulations depending on the cleavage dynamics. Two snapshots

for opposite and random cleavage are shown that corresponds to cases where the elongation ratio

is smaller/larger than average. Deviations from the Hertwig rule leads to irregular tissue shapes.
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That is, each frame starts with a single line that indicated the number of cells in that

frame and the stage index. The former, in turn, indicates the number of lines for each frame.

Each of those lines contains information of a cell in the following order: the ID of the cell

(0, 1, 2...), the type of the cell (1, 2, 3, ...), the number of vertexes, the cell area, the number

of protein species, their values (number of proteins), the coordinates of the cell center, the

indexes of its neighbors, and the coordinates of the cell vertexes (clockwise orientation). For

information about the number of protein species and their order for each simulation, see the

protein_order.dat file that is generated when running the code.

The ID of the cell (cellID) is a unique string that is maintained up to a division event:

following a division each daughter cell receives a new ID that is the result of joining (by

hyphens) the ID of the mother plus and an additional number. Thus, the cell ID allows

to reconstruct its lineage: e.g. the cell 405-345-33-67 is a third generation cell (number

of hyphens) originating from cell 405 of the initial tissue (its grand-grandmother) and its

mother and grandmother are cells 405-345-33 and 405-345 respectively. We point out that

the index of a neighbor (e.g. idxneighbor1) does not correspond to a real ID of the cell

(a string such as 405-345-33-67) but to a number that is the internal ID of the cell in the

code. The latter corresponds to the ordinal index of the line within the frame minus 1 (i.e.

cell identities counting starts with 0). For example an index of the neighbor 564 corresponds

to the cell that is the line 565 in the listing of cells in that frame. The code generates also

the output file divisions.dat that accounts for the information about cell divisions. Each

line of the file reads:

stageidx idxduration idxintermediate idxmothercell IDdaughter1 IDdaughter2

type divisionangle

divisionanglehertwig divisionangleplanned centerx centery area #cells #vertexes

vertex1x vertex1y vertex2x

vertex2y ... vertexNx vertexNy

Each line indicates the stage index and those of an external loop (duration) and

an internal loop (intermediate) that account for the time evolution of the simulation:

each duration step contains a given number of intermediate steps such that the to-

tal (dimensionless) time of a simulation reads (duration×intermediate×∆t (where ∆t

is the time step used in the Euler algorithm). Other information provided is the inter-

nal ID of the mother cell, the real IDs of daughter cells, their type, the actual division
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angle, divisionangle, the division angle assuming no deviation from the Hertwig rule,

divisionanglehertwig, the planned division angle, divisionangleplanned, the coordi-

nates of the cell center (mother cell), the actual cell area at division time (mother cell),

the updated number of cells in the tissue, the number of vertexes (mother cell), and the

coordinates of those.

Finally, the code generates a log file, tifosi.log, where the processes that change the

topology of the tissue (e.g., a T1 transition) are stored. The file keeps the time of the

event by indicating the stageidx, the idxduration, and idxintermediate and additional

information of the process. In the case of a T1 transition, it is provided the internal ID of

the edge that disappears, its coordinates (i.e., those of the vertexes that define the edge),

the real IDs of the cells that shared the edge prior to the T1 transition, the coordinates of

the new edges after the transition, and the real IDs of the cells that become connected after

the transition takes place. This is an example of how a T1 transition is captured in the log

file:

1 0 3733: t1 process on edge 738 (21.219, 12.1942)-(21.2691, 12.2308) that

divides cells 245 and 225.

Coordinates after transtition: (21.2623, 12.1874)-(21.2257, 12.2375) and divides

cells 224 and 246.

In the case of a T2 transition (disappearing triangular cell), besides registering the timing

of the event, the log keeps a record of the real ID of the triangular cell, the internal ID of

the edge that disappears the first (and its coordinates prior to the transition), and also the

real IDs of the cell that shared that edge. For example,

1 2 7452: t2 process on cell 224 triggering edge 736 (19.3435, 14.0312)-(19.2848,14.0112)

that divides cells 225 and 224.

In the case of a T3 transition (two neighboring triangular cells that simultaneously dis-

appear) the information is similar to that of a T2 transition and the log file reads:

1 23 45632: t3 process on cell 45-345-12 and cell 34 triggering edge 7 (1.3367,

20.4561)-(19.3490, 0.6511)

that divides cells 45-345-12 and 73-465.

Finally, in the case of a division, the timing and real IDs of the daughter cells are provided,

for example,

1 74 8724: cell division. Daughter cells: 252-401 and 252-400
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SI Movies

Movie S1: The DAH mechanism cannot generate axis extension.

Movie S2: Time evolution of a morphogen concentration gradient in the tissue where

cells are actively growing and dividing.

Movie S3: Simulation of the auto-catalytic intercalation mechanism in a tissue patterned

by a morphogen gradient.

Movie S4: Simulation of tissue growth if adhesion is not modulated by the morphogen

signal.

Movie S5: Simulation of tissue growth in the presence of a spatial modulation of the cel-

lular proliferation rates and the auto-catalytic intercalation mechanism in a tissue patterned

by stripe alignment of Turing system (Turing patterned tissue).

Movie S6: Simulation of tissue growth with spatial modulation of the cellular prolifer-

ation rates (Turing patterned tissue).

Movie S7: Simulation of tissue growth: control simulations (Turing patterned tissue)

without auto-catalytic intercalations or modulation of cellular proliferation.

Movie S8: Simulation of tissue growth with auto-catalytic intercalations but without

modulation of cellular proliferation (Turing patterned tissue).

Movie S9: Cells producing the morphogen responsible of stripe alignment and the

modulation of cellular proliferation (Turing patterned tissue).

Movie S10: Morphogen concentration profile responsible of stripe alignment and the

modulation of cellular proliferation (Turing patterned tissue).
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