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1 Abstract1

A cornerstone of theoretical neuroscience is the circuit model: a system of equations that captures2

a hypothesized neural mechanism. Such models are valuable when they give rise to an experimen-3

tally observed phenomenon – whether behavioral or a pattern of neural activity – and thus can4

offer insights into neural computation. The operation of these circuits, like all models, critically5

depends on the choice of model parameters. A key step is then to identify the model parameters6

consistent with observed phenomena: to solve the inverse problem. In this work, we present a7

novel technique, emergent property inference (EPI), that brings the modern probabilistic modeling8

toolkit to theoretical neuroscience. When theorizing circuit models, theoreticians predominantly9

focus on reproducing computational properties rather than a particular dataset. Our method uses10

deep neural networks to learn parameter distributions with these computational properties. This11

methodology is introduced through a motivational example inferring conductance parameters in a12

circuit model of the stomatogastric ganglion. Then, with recurrent neural networks of increasing13

size, we show that EPI allows precise control over the behavior of inferred parameters, and that14

EPI scales better in parameter dimension than alternative techniques. In the remainder of this15

work, we present novel theoretical findings gained through the examination of complex parametric16

structure captured by EPI. In a model of primary visual cortex, we discovered how connectivity17

with multiple inhibitory subtypes shapes variability in the excitatory population. Finally, in a18

model of superior colliculus, we identified and characterized two distinct regimes of connectivity19
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that facilitate switching between opposite tasks amidst interleaved trials, characterized each regime20

via insights afforded by EPI, and found conditions where these circuit models reproduce results21

from optogenetic silencing experiments. Beyond its scientific contribution, this work illustrates22

the variety of analyses possible once deep learning is harnessed towards solving theoretical inverse23

problems.24

2 Introduction25

The fundamental practice of theoretical neuroscience is to use a mathematical model to understand26

neural computation, whether that computation enables perception, action, or some intermediate27

processing. A neural circuit is systematized with a set of equations – the model – and these28

equations are motivated by biophysics, neurophysiology, and other conceptual considerations [1–5].29

The function of this system is governed by the choice of model parameters, which when configured30

in a particular way, give rise to a measurable signature of a computation. The work of analyzing31

a model then requires solving the inverse problem: given a computation of interest, how can we32

reason about the distribution of parameters that give rise to it? The inverse problem is crucial for33

reasoning about likely parameter values, uniquenesses and degeneracies, and predictions made by34

the model [6–8].35

Ideally, one carefully designs a model and analytically derives how computational properties deter-36

mine model parameters. Seminal examples of this gold standard include our field’s understanding37

of memory capacity in associative neural networks [9], chaos and autocorrelation timescales in ran-38

dom neural networks [10], central pattern generation [11], the paradoxical effect [12], and decision39

making [13]. Unfortunately, as circuit models include more biological realism, theory via analytical40

derivation becomes intractable. Absent this analysis, statistical inference offers a toolkit by which41

to solve the inverse problem by identifying, at least approximately, the distribution of parameters42

that produce computations in a biologically realistic model [14–19].43

Statistical inference, of course, requires quantification of the sometimes vague term computation.44

In neuroscience, two perspectives are dominant. First, often we directly use an exemplar dataset :45

a collection of samples that express the computation of interest, this data being gathered either46

experimentally in the lab or from a computer simulation. Though a natural choice given its con-47

nection to experiment [20], some drawbacks exist: these data are well known to have features48

irrelevant to the computation of interest [21–23], confounding inferences made on such data. Re-49
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lated to this point, use of a conventional dataset encourages conventional data likelihoods or loss50

functions, which focus on some global metric like squared error or marginal evidence, rather than51

the computation itself.52

Alternatively, researchers often quantify an emergent property (EP): a statistic of data that directly53

quantifies the computation of interest, wherein the dataset is implicit. While such a choice may54

seem esoteric, it is not: the above “gold standard” examples [9–13] all quantify and focus on55

some derived feature of the data, rather than the data drawn from the model. An emergent56

property is of course a dataset by another name, but it suggests different approach to solving57

the same inverse problem: here we directly specify the desired emergent property – a statistic58

of data drawn from the model – and the value we wish that property to have, and we set up59

an optimization program to find the distribution of parameters that produce this computation.60

This statistical framework is not new: it is intimately connected to the literature on approximate61

bayesian computation [24–26], parameter sensitivity analyses [27–30], maximum entropy modeling62

[31–33], and approximate bayesian inference [34,35]; we detail these connections in Section 5.1.1.63

The parameter distributions producing a computation may be curved or multimodal along vari-64

ous parameter axes and combinations. It is by quantifying this complex structure that emergent65

property inference offers scientific insight. Traditional approximation families (e.g. mean-field or66

mixture of gaussians) are limited in the distributional structure they may learn. To address such re-67

strictions on expressivity, advances in machine learning have used deep probability distributions as68

flexible approximating families for such complicated distributions [36,37] (see Section 5.1.2). How-69

ever, the adaptation of deep probability distributions to the problem of theoretical circuit analysis70

requires recent developments in deep learning for constrained optimization [38], and architectural71

choices for efficient and expressive deep generative modeling [39,40]. We detail our method, which72

we call emergent property inference (EPI) in Section 3.2.73

Equipped with this method, we demonstrate the capabilities of EPI and present novel theoretical74

findings from its analysis. First, we show EPI’s ability to handle biologically realistic circuit models75

using a five-neuron model of the stomatogastric ganglion [41]: a neural circuit whose parametric76

degeneracy is closely studied [42]. Then, we show EPI’s scalability to high dimensional parameter77

distributions by inferring connectivities of recurrent neural networks that exhibit stable, yet ampli-78

fied responses – a hallmark of neural responses throughout the brain [43–45]. In a model of primary79

visual cortex [46, 47], EPI reveals how the recurrent processing across different neuron-type popu-80

lations shapes excitatory variability: a finding that we show is analytically intractable. Finally, we81
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investigated the possible connectivities of a superior colliculus model that allow execution of differ-82

ent tasks on interleaved trials [48]. EPI discovered a rich distribution containing two connectivity83

regimes with different solution classes. We queried the deep probability distribution learned by84

EPI to produce a mechanistic understanding of neural responses in each regime. Intriguingly, the85

inferred connectivities of each regime reproduced results from optogenetic inactivation experiments86

in markedly different ways. These theoretical insights afforded by EPI illustrate the value of deep87

inference for the interrogation of neural circuit models.88

3 Results89

3.1 Motivating emergent property inference of theoretical models90

Consideration of the typical workflow of theoretical modeling clarifies the need for emergent prop-91

erty inference. First, one designs or chooses an existing circuit model that, it is hypothesized,92

captures the computation of interest. To ground this process in a well-known example, consider93

the stomatogastric ganglion (STG) of crustaceans, a small neural circuit which generates multiple94

rhythmic muscle activation patterns for digestion [49]. Despite full knowledge of STG connectivity95

and a precise characterization of its rhythmic pattern generation, biophysical models of the STG96

have complicated relationships between circuit parameters and computation [15,42].97

A subcircuit model of the STG [41] is shown schematically in Figure 1A. The fast population (f198

and f2) represents the subnetwork generating the pyloric rhythm and the slow population (s1 and99

s2) represents the subnetwork of the gastric mill rhythm. The two fast neurons mutually inhibit100

one another, and spike at a greater frequency than the mutually inhibiting slow neurons. The101

hub neuron couples with either the fast or slow population, or both depending on modulatory102

conditions. The jagged connections indicate electrical coupling having electrical conductance gel,103

smooth connections in the diagram are inhibitory synaptic projections having strength gsynA onto104

the hub neuron, and gsynB = 5nS for mutual inhibitory connections. Note that the behavior of this105

model will be critically dependent on its parameterization – the choices of conductance parameters106

z = [gel, gsynA].107

Second, once the model is selected, one must specify what the model should produce. In this STG108

model, we are concerned with neural spiking frequency, which emerges from the dynamics of the109

circuit model (Fig. 1B). An emergent property studied by Gutierrez et al. is the hub neuron firing110

at an intermediate frequency between the intrinsic spiking rates of the fast and slow populations.111
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Figure 1: Emergent property inference in the stomatogastric ganglion. A. Conductance-based sub-

circuit model of the STG. B. Spiking frequency ω(x; z) is an emergent property statistic. Simulated

at gel = 4.5nS and gsynA = 3nS. C. The emergent property of intermediate hub frequency. Simu-

lated activity traces are colored by log probability of generating parameters in the EPI distribution

(Panel E). D. For a choice of circuit model and emergent property, EPI learns a deep probabil-

ity distribution of parameters z. E. The EPI distribution producing intermediate hub frequency.

Samples are colored by log probability density. Contours of hub neuron frequency error are shown

at levels of .525, .53, ... .575 Hz (dark to light gray away from mean). Dimension of sensitivity

v1 (solid arrow) and robustness v2 (dashed arrow). F (Top) The predictions of the EPI distribu-

tion. The black and gray dashed lines show the mean and two standard deviations according the

emergent property. (Bottom) Simulations at the starred parameter values.
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This emergent property (EP) is shown in Figure 1C at an average frequency of 0.55Hz. To be112

precise, we define intermediate hub frequency not strictly as 0.55Hz, but frequencies of moderate113

deviation from 0.55Hz between the fast (.35Hz) and slow (.68Hz) frequencies.114

Third, the model parameters producing the emergent property are inferred. By precisely quantify-115

ing the emergent property of interest as a statistical feature of the model, we use emergent property116

inference (EPI) to condition directly on this emergent property. Before presenting technical details117

(in the following section), let us understand emergent property inference schematically. EPI (Fig.118

1D) takes, as input, the model and the specified emergent property, and as its output, returns119

the parameter distribution (Fig. 1E). This distribution – represented for clarity as samples from120

the distribution – is a parameter distribution constrained such that the circuit model produces the121

emergent property. Once EPI is run, the returned distribution can be used to efficiently gener-122

ate additional parameter samples. Most importantly, the inferred distribution can be efficiently123

queried to quantify the parametric structure that it captures. By quantifying the parametric struc-124

ture governing the emergent property, EPI informs the central question of this inverse problem:125

what aspects or combinations of model parameters have the desired emergent property?126

3.2 Emergent property inference via deep generative models127

EPI formalizes the three-step procedure of the previous section with deep probability distributions128

[36, 37]. First, as is typical, we consider the model as a coupled set of noisy differential equations.129

In this STG example, the model activity (or state) x = [xf1, xf2, xhub, xs1, xs2] is the membrane130

potential for each neuron, which evolves according to the biophysical conductance-based equation:131

Cm
dx(t)

dt
= −h(x(t); z) + dB (1)

where Cm=1nF, and h is a sum of the leak, calcium, potassium, hyperpolarization, electrical, and132

synaptic currents, all of which have their own complicated dependence on activity x and parameters133

z = [gel, gsynA], and dB is white gaussian noise [41] (see Section 5.2.1 for more detail).134

Second, we determine that our model should produce the emergent property of “intermediate hub135

frequency” (Figure 1C). We stipulate that the hub neuron’s spiking frequency – denoted by statistic136

ωhub(x) – is close to a frequency of 0.55Hz, between that of the slow and fast frequencies. Mathe-137

matically, we define this emergent property with two constraints: that the mean hub frequency is138

0.55Hz,139

Ez,x

[
ωhub(x; z)

]
= 0.55 (2)
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and that the variance of the hub frequency is moderate140

Varz,x

[
ωhub(x; z)

]
= 0.0252. (3)

In the emergent property of intermediate hub frequency, the statistic of hub neuron frequency is141

an expectation over the distribution of parameters z and the distribution of the data x that those142

parameters produce. We define the emergent property X as the collection of these two constraints.143

In general, an emergent property is a collection of constraints on statistical moments that together144

define the computation of interest.145

Third, we perform emergent property inference: we find a distribution over parameter configura-146

tions z of models that produce the emergent property; in other words, they satisfy the constraints147

introduced in Equations 2 and 3. This distribution will be chosen from a family of probability148

distributions Q = {qθ(z) : θ ∈ Θ}, defined by a deep neural network [36,37] (Figure 1D, EPI box).149

Deep probability distributions map a simple random variable z0 (e.g. an isotropic gaussian) through150

a deep neural network with weights and biases θ to parameters z = gθ(z0) of a suitably compli-151

cated distribution (see Section 5.1.2 for more details). Many distributions in Q will respect the152

emergent property constraints, so we select the most random (highest entropy) distribution, which153

also means this approach is equivalent to bayesian variational inference (see Section 5.1.6). In EPI154

optimization, stochastic gradient steps in θ are taken such that entropy is maximized, and the155

emergent property X is produced (see Section 5.1). We then denote the inferred EPI distribution156

as qθ(z | X ), since the structure of the learned parameter distribution is determined by weights157

and biases θ, and this distribution is conditioned upon emergent property X .158

The structure of the inferred parameter distributions of EPI can be analyzed to reveal key infor-159

mation about how the circuit model produces the emergent property. As probability in the EPI160

distribution decreases away from the mode of qθ(z | X ) (Fig. 1E yellow star), the emergent prop-161

erty deteriorates. Perturbing z along a dimension in which qθ(z | X ) changes little will not disturb162

the emergent property, making this parameter combination robust with respect to the emergent163

property. In contrast, if z is perturbed along a dimension with strongly decreasing qθ(z | X ),164

that parameter combination is deemed sensitive [27, 30]. By querying the second order derivative165

(Hessian) of log qθ(z | X ) at a mode, we can quantitatively identify how sensitive (or robust) each166

eigenvector is by its eigenvalue; the more negative, the more sensitive and the closer to zero, the167

more robust (see Section 5.2.4). Indeed, samples equidistant from the mode along these dimensions168

of sensitivity (v1, smaller eigenvalue) and robustness (v2, greater eigenvalue) (Fig. 1E, arrows)169

agree with error contours (Fig. 1E contours) and have diminished or preserved hub frequency, re-170
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spectively (Fig. 1F activity traces). The directionality of v2 suggests that changes in conductance171

along this parameter combination will most preserve hub neuron firing between the intrinsic rates172

of the pyloric and gastric mill rhythms. Importantly and unlike alternative techniques, once an173

EPI distribution has been learned, the modes and Hessians of the distribution can be measured174

with trivial computation (see Section 5.1.2).175

In the following sections, we demonstrate EPI on three neural circuit models across ranges of176

biological realism, neural system function, and network scale. First, we demonstrate the superior177

scalability of EPI compared to alternative techniques by inferring high-dimensional distributions178

of recurrent neural network connectivities that exhibit amplified, yet stable responses. Next, in a179

model of primary visual cortex [46,47], we show how EPI discovers parametric degeneracy, revealing180

how input variability across neuron types affects the excitatory population. Finally, in a model of181

superior colliculus [48], we used EPI to capture multiple parametric regimes of task switching, and182

queried the dimensions of parameter sensitivity to characterize each regime.183

3.3 Scaling inference of recurrent neural network connectivity with EPI184

To understand how EPI scales in comparison to existing techniques, we consider recurrent neu-185

ral networks (RNNs). Transient amplification is a hallmark of neural activity throughout cortex,186

and is often thought to be intrinsically generated by recurrent connectivity in the responding cor-187

tical area [43–45]. It has been shown that to generate such amplified, yet stabilized responses,188

the connectivity of RNNs must be non-normal [43, 50], and satisfy additional constraints [51]. In189

theoretical neuroscience, RNNs are optimized and then examined to show how dynamical systems190

could execute a given computation [52, 53], but such biologically realistic constraints on connec-191

tivity [43, 50, 51] are ignored for simplicity or because constrained optimization is difficult. In192

general, access to distributions of connectivity that produce theoretical criteria like stable amplifi-193

cation, chaotic fluctuations [10], or low tangling [54] would add scientific value to existing research194

with RNNs. Here, we use EPI to learn RNN connectivities producing stable amplification, and195

demonstrate the superior scalability and efficiency of EPI to alternative approaches.196

We consider a rank-2 RNN with N neurons having connectivity W = UV > and dynamics197

τ ẋ = −x +Wx, (4)

where U =
[
U1 U2

]
+ gχ(U), V =

[
V1 V2

]
+ gχ(V ), U1U2,V1,V2 ∈ [−1, 1]N , and χ

(U)
i,j , χ

(V )
i,j ∼198

N (0, 1). We infer connectivity parameters z = [U1,U2,V1,V2] that produce stable amplification.199
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Two conditions are necessary and sufficient for RNNs to exhibit stable amplification [51]: real(λ1) <200

1 and λs1 > 1, where λ1 is the eigenvalue of W with greatest real part and λs is the maximum201

eigenvalue of W s = W+W>

2 . RNNs with real(λ1) = 0.5± 0.5 and λs1 = 1.5± 0.5 will be stable with202

modest decay rate (real(λ1) close to its upper bound of 1) and exhibit modest amplification (λs1203

close to its lower bound of 1). EPI can naturally condition on this emergent property204

X : Ez,x

real(λ1)

λs1

 =

0.5

1.5


Varz,x

real(λ1)

λs1

 =

0.252

0.252

 .
(5)

Variance constraints predicate that the majority of the distribution (within two standard devia-205

tions) are within the specified ranges.206

For comparison, we infer the parameters z likely to produce stable amplification using two al-207

ternative simulation-based inference approaches. Sequential Monte Carlo approximate bayesian208

computation (SMC-ABC) [26] is a rejection sampling approach that uses SMC techniques to im-209

prove efficiency, and sequential neural posterior estimation (SNPE) [35] approximates posteriors210

with deep probability distributions (see Section 5.1.1). Unlike EPI, these statistical inference tech-211

niques do not constrain the predictions of the inferred distribution, so they were run by conditioning212

on an exemplar dataset x0 = µ, following standard practice with these methods [26, 35]. To com-213

pare the efficiency of these different techniques, we measured the time and number of simulations214

necessary for the distance of the predictive mean to be less than 0.5 from µ = x0 (see Section 5.3).215

As the number of neurons N in the RNN, and thus the dimension of the parameter space z ∈216

[−1, 1]4N , is scaled, we see that EPI converges at greater speed and at greater dimension than217

SMC-ABC and SNPE (Fig. 2A). It also becomes most efficient to use EPI in terms of simulation218

count at N = 50 (Fig. 2B). It is well known that ABC techniques struggle in parameter spaces219

of modest dimension [55], yet we were careful to assess the scalability of SNPE, which is a more220

closely related methodology to EPI. Between EPI and SNPE, we closely controlled the number of221

parameters in deep probability distributions by dimensionality (Fig. S5), and tested more aggressive222

SNPE hyperparameter choices when SNPE failed to converge (Fig. S6). In this analysis, we see that223

deep inference techniques EPI and SNPE are far more amenable to inference of high dimensional224

RNN connectivities than rejection sampling techniques like SMC-ABC, and that EPI outperforms225

SNPE in both wall time (elapsed real time) and simulation count.226

No matter the number of neurons, EPI always produces connectivity distributions with mean and227
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Figure 2: A. Wall time of EPI (blue), SNPE (orange), and SMC-ABC (green) to converge on RNN

connectivities producing stable amplification. Each dot shows convergence time for an individual

random seed. For reference, the mean wall time for EPI to achieve its full constraint convergence

(means and variances) is shown (blue line). B. Simulation count of each algorithm to achieve con-

vergence. Same conventions as A. C. The predictive distributions of connectivities inferred by EPI

(blue), SNPE (orange), and SMC-ABC (green), with reference to x0 = µ (gray star). D. Simula-

tions of networks inferred by each method (τ = 100ms). Each trace (15 per algorithm) corresponds

to simulation of one z. (Below) Ratio of obtained samples producing stable amplification, stable

monotonic decay, and instability.
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variance of real(λ1) and λs1 according to X (Fig. 2C, blue). For the dimensionalities in which228

SMC-ABC is tractable, the inferred parameters are concentrated and offset from the exemplar229

dataset x0 (Fig. 2C, green). When using SNPE, the predictions of the inferred parameters are230

highly concentrated at some RNN sizes and widely varied in others (Fig. 2C, orange). We see these231

properties reflected in simulations from the inferred distributions: EPI produces a consistent variety232

of stable, amplified activity norms |x(t)|, SMC-ABC produces a limited variety of responses, and the233

changing variety of responses from SNPE emphasizes the control of EPI on parameter predictions234

(Fig. 2D). Even for moderate neuron counts, the predictions of the inferred distribution of SNPE235

are highly dependent on N and g, while EPI maintains the emergent property across choices of236

RNN (see Section 5.3.5).237

To understand these differences, note that EPI outperforms SNPE in high dimensions by using238

gradient information (from ∇z[real(λ1), λs1]>). This choice agrees with recent speculation that such239

gradient information could improve the efficiency of simulation-based inference techniques [56],240

as well as reflecting the classic tradeoff between gradient-based and sampling-based estimators241

(scaling and speed versus generality). Since gradients of the emergent property are necessary242

in EPI optimization, gradient tractability is a key criteria when determining the suitability of a243

simulation-based inference technique. If the emergent property gradient is efficiently calculated,244

EPI is a clear choice for inferring high dimensional parameter distributions. In the next two sections,245

we use EPI for novel scientific insight by examining the structure of inferred distributions.246

3.4 EPI reveals how recurrence with multiple inhibitory subtypes governs ex-247

citatory variability in a V1 model248

Dynamical models of excitatory (E) and inhibitory (I) populations with supralinear input-output249

function have succeeded in explaining a host of experimentally documented phenomena in primary250

visual cortex (V1). In a regime characterized by inhibitory stabilization of strong recurrent excita-251

tion, these models give rise to paradoxical responses [12], selective amplification [43, 50], surround252

suppression [57] and normalization [58]. Recent theoretical work [59] shows that stabilized E-I253

models reproduce the effect of variability suppression [60]. Furthermore, experimental evidence254

shows that inhibition is composed of distinct elements – parvalbumin (P), somatostatin (S), VIP255

(V) – composing 80% of GABAergic interneurons in V1 [61–63], and that these inhibitory cell256

types follow specific connectivity patterns (Fig. 3A) [64]. Here, we use EPI on a model of V1 with257

biologically realistic connectivity to show how the structure of input across neuron types affects258
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the variability of the excitatory population – the population largely responsible for projecting to259

other brain areas [65].260

We considered response variability of a nonlinear dynamical V1 circuit model (Fig. 3A) with a state261

comprised of each neuron-type population’s rate x = [xE , xP , xS , xV ]>. Each population receives262

recurrent input Wx, where W is the effective connectivity matrix (see Section 5.4) and an external263

input with mean h, which determines population rate via supralinear nonlinearity φ(·) = [·]2+. The264

external input has an additive noisy component ε with variance σ2 =
[
σ2
E , σ

2
P , σ

2
S , σ

2
V

]
. This noise265

has a slower dynamical timescale τnoise > τ than the population rate, allowing fluctuations around266

a stimulus-dependent steady-state (Fig. 3B). This model is the stochastic stabilized supralinear267

network (SSSN) [59]268

τ
dx

dt
= −x + φ(Wx + h + ε), (6)

generalized to have multiple inhibitory neuron types. It introduces stochasticity to four neuron-269

type models of V1 [46]. Stochasticity and inhibitory multiplicity introduce substantial complexity270

to the mathematical treatment of this problem (see Section 5.4.5) motivating the analysis of this271

model with EPI. Here, we consider fixed weights W and input h [47], and study the effect of input272

variability z = [σE , σP , σS , σV ]> on excitatory variability.273

We quantify levels of E-population variability by studying two emergent properties274

X (5Hz) : Ez,x

[
sE(x; z)

]
= 5Hz X (10Hz) : Ez,x

[
sE(x; z)

]
= 10Hz

Varz,x

[
sE(x; z)

]
= 1Hz2 Varz,x

[
sE(x; z)

]
= 1Hz2,

(7)

where sE(x; z) is the standard deviation of the stochastic E-population response about its steady275

state (Fig. 3C). In the following analyses, we select 1Hz2 variance such that the two emergent276

properties do not overlap in sE(z; x).277

First, we ran EPI to obtain parameter distribution qθ(z | X (5Hz)) producing E-population vari-278

ability around 5Hz (Fig. 3D). From the marginal distribution of σE and σP (Fig. 3D, top-left),279

we can see that sE(x; z) is sensitive to various combinations of σE and σP . Alternatively, both σS280

and σV are degenerate with respect to sE(x; z) evidenced by the unexpectedly high variability in281

those dimensions (Fig. 3D, bottom-right). Together, these observations imply a curved path with282

respect to sE(x; z) of 5Hz, which is indicated by the modes along σP (Fig. 3E).283

Figure 3E suggests a quadratic relationship in E-population fluctuations and the standard deviation284

of E- and P-population input; as the square of either σE or σP increases, the other compensates by285

decreasing to preserve the level of sE(x; z). This quadratic relationship is preserved at greater level286
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Figure 3: Emergent property inference in the stochastic stabilized supralinear network (SSSN)

A. Four-population model of primary visual cortex with excitatory (black), parvalbumin (blue),

somatostatin (red), and VIP (green) neurons (excitatory and inhibitory projections filled and

unfilled, respectively). Some neuron-types largely do not form synaptic projections to others

(|Wα1,α2)| < 0.025). Each neural population receives a baseline input hb, and the E- and P-

populations also receive a contrast-dependent input hc. Additionally, each neural population re-

ceives a slow noisy input ε. B. Transient network responses of the SSSN model. Traces are

independent trials with varying initialization x(0) and noise ε. C. Mean (solid line) and standard

deviation sE(x; z) (shading) across 100 trials. D. EPI distribution of noise parameters z conditioned

on E-population variability. The EPI predictive distribution of sE(x; z) is show on the bottom-left.

E. (Top) Enlarged visualization of the σE-σP marginal distribution of EPI qθ(z | X (5Hz)) and

qθ(z | X (10Hz)). Each black dot shows the mode at each σP . The arrows show the most sensitive

dimensions of the Hessian evaluated at these modes. F. The predictive distributions of σ2
E + σ2

P of

each inferred distribution qθ(z | X (5Hz)) and qθ(z | X (10Hz)).
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of E-population variability X (10Hz) (Fig. 3E and S8). Indeed, the sum of squares of σE and σP is287

larger in qθ(z | X (10Hz)) than qθ(z | X (5Hz)) (Fig 3F, p < 1× 10−10), while the sum of squares of288

σS and σV are not significantly different in the two EPI distributions (Fig. S10, p = .40), in which289

parameters were bounded from 0 to 0.5. The strong interaction between E- and P-population input290

variability on excitatory variability is intriguing, since this circuit exhibits a paradoxical effect in291

the P-population (and no other inhibitory types) (Fig. S11), meaning that the E-population is292

P-stabilized. Future research may uncover a link between the population of network stabilization293

and compensatory interactions governing excitatory variability.294

EPI revealed the quadratic dependence of excitatory variability on input variability to the E- and295

P-populations, as well as its independence to input from the other two inhibitory populations.296

In a simplified model (τ = τnoise), it can be shown that surfaces of equal variance are ellipsoids297

as a function of σ (see Section 5.4.5). Nevertheless, the sensitive and degenerate parameters are298

intractable to predict mathematically, since the covariance matrix depends on the steady-state299

solution of the network [59,66], and terms in the covariance expression increase quadratically with300

each additional neuron-type population (see also Section 5.4.5). By pointing out this mathematical301

complexity, we emphasize the value of EPI for gaining understanding about theoretical models302

when mathematical analysis becomes onerous or impractical.303

3.5 EPI identifies two regimes of rapid task switching304

It has been shown that rats can learn to switch from one behavioral task to the next on randomly305

interleaved trials [67], and an important question is what neural mechanisms produce this compu-306

tation. In this experimental setup, rats were given an explicit task cue on each trial, either Pro307

or Anti. After a delay period, rats were shown a stimulus, and made a context (task) dependent308

response (Fig. 4A). In the Pro task, rats were required to orient towards the stimulus, while in309

the Anti task, rats were required to orient away from the stimulus. Pharmacological inactivation310

of the SC impaired rat performance, and time-specific optogenetic inactivation revealed a crucial311

role for the SC on the cognitively demanding Anti trials [48]. These results motivated a nonlinear312

dynamical model of the SC containing four functionally-defined neuron-type populations. In Duan313

et al. 2019, a computationally intensive procedure was used to obtain a set of 373 connectivity314

parameters that qualitatively reproduced these optogenetic inactivation results. To build upon315

the insights of this previous work, we use the probabilistic tools afforded by EPI to identify and316

characterize two linked, yet distinct regimes of rapid task switching connectivity.317
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In this SC model, there are Pro- and Anti-populations in each hemisphere (left (L) and right (R))318

with activity variables x = [xLP , xLA, xRP , xRA]> [48]. The connectivity of these populations is319

parameterized by self sW , vertical vW , diagonal dW and horizontal hW connections (Fig. 4B). The320

input h is comprised of a positive cue-dependent signal to the Pro or Anti populations, a positive321

stimulus-dependent input to either the Left or Right populations, and a choice-period input to the322

entire network (see Section 5.5.1). Model responses are bounded from 0 to 1 as a function φ of an323

internal variable u324

τ
du

dt
= −u +Wx + h + dB

x = φ(u).

(8)

The model responds to the side with greater Pro neuron activation; e.g. the response is left if325

xLP > xRP at the end of the trial. Here, we use EPI to determine the network connectivity326

z = [sW, vW, dW, hW ]> that produces rapid task switching.327

Rapid task switching is formalized mathematically as an emergent property with two statistics:328

accuracy in the Pro task pP (x; z) and Anti task pA(x; z). We stipulate that accuracy be on average329

.75 in each task with variance .0752
330

X : Ez

pP (x; z)

pA(x; z)

 =

.75

.75


Varz

pP (x; z)

pA(x; z)

 =

.0752

.0752

 .
(9)

75% accuracy is a realistic level of performance in each task, and with the chosen variance, inferred331

models will not exhibit fully random responses (50%), nor perfect performance (100%).332

The EPI inferred distribution (Fig. 4C) produces Pro and Anti task accuracies (Fig. 4C, bottom-333

left) consistent with rapid task switching (Equation 9). This parameter distribution has rich struc-334

ture that is not captured well by simple linear correlations (Fig. S12). Specifically, the shape335

of the EPI distribution is sharply bent, matching ground truth structure indicated by brute-force336

sampling (Fig. S18). This is most saliently observed in the marginal distribution of sW -hW (Fig.337

4C top-right), where anticorrelation between sW and hW switches to correlation with decreasing338

sW . By identifying the modes of the EPI distribution z∗(sW ) at different values of sW (Fig. 4C339

red/purple dots), we can quantify this change in distributional structure with the sensitivity dimen-340

sion v1(z) (Fig. 4C red/purple arrows). Note that the directionality of these sensitivity dimensions341

at z∗(sW ) changes distinctly with sW , and are perpendicular to the robust dimensions of the EPI342
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Figure 4: A. Rapid task switching behavioral paradigm (see text). B. Model of superior colliculus (SC).

Neurons: LP - Left Pro, RP - Right Pro, LA - Left Anti, RA - Right Anti. Parameters: sW - self, hW -

horizontal, vW -vertical, dW - diagonal weights. C. The EPI inferred distribution of rapid task switching

networks. Red/purple parameters indicate modes z∗(sW ) colored by sW . Sensitivity vectors v1(z∗) are

shown by arrows. (Bottom-left) EPI predictive distribution of task accuracies. D. Mean and standard error

(Ntest = 25, bars not visible) of accuracy in Pro (top) and Anti (bottom) tasks after perturbing connectivity

away from mode along v1(z∗) (left), vtask (middle), and vdiag (right).
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distribution that preserve rapid task switching. These two directionalities of sensitivity motivate343

the distinction of connectivity into two regimes, which produce different types of responses in the344

Pro and Anti tasks (Fig. S13).345

When perturbing connectivity along the sensitivity dimension away from the modes346

z = z∗(sW ) + δv1(z∗(sW )), (10)

Pro accuracy monotonically increases in both regimes (Fig. 4D, top-left). However, there is a stark347

difference between regimes in Anti accuracy. Anti accuracy falls in either direction of v1 in regime 1,348

yet monotonically increases along with Pro accuracy in regime 2 (Fig. 4D, bottom-left). The sharp349

change in local structure of the EPI distribution is therefore explained by distinct sensitivities:350

Anti accuracy diminishes in only one or both directions of the sensitivity perturbation.351

To understand the mechanisms differentiating the two regimes, we can make connectivity pertur-352

bations along dimensions that only modify a single eigenvalue of the connectivity matrix. These353

eigenvalues λall, λside, λtask, and λdiag correspond to connectivity eigenmodes with intuitive roles354

in processing in this task (Fig. S14A). For example, greater λtask will strengthen internal repre-355

sentations of task, while greater λdiag will amplify dominance of Pro and Anti pairs in opposite356

hemispheres (Section 5.5.7). Unlike the sensitivity dimension, the dimensions va that perturb357

isolated connectivity eigenvalues λa for a ∈ {all, side, task,diag} are independent of z∗(sW ) (see358

Section 5.5.7), e.g.359

z = z∗(sW ) + δvtask. (11)

Connectivity perturbation analyses reveal that decreasing λtask has a very similar effect on Anti360

accuracy as perturbations along the sensitivity dimension (Fig. 4D, middle). The similar effects361

of perturbations along the sensitivity dimension v1(z∗) and reduction of task eigenvalue (via per-362

turbations along −vtask) suggest that there is a carefully tuned strength of task representation in363

connectivity regime 1, which if disturbed results in random Anti trial responses. Finally, we rec-364

ognize that increasing λdiag has opposite effects on Anti accuracy in each regime (Fig. 4D, right).365

In the next section, we build on these mechanistic characterizations of each regime by examining366

their resilience to optogenetic inactivation.367
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3.6 EPI inferred SC connectivities reproduce results from optogenetic inacti-368

vation experiments369

During the delay period of this task, the circuit must prepare to execute the correct task according370

to the presented cue. The circuit must then maintain a representation of task throughout the delay371

period, which is important for correct execution of the Anti task. Duan et al. found that bilateral372

optogenetic inactivation of SC during the delay period consistently decreased performance in the373

Anti task, but had no effect on the Pro task (Fig. 5A) [48]. The distribution of connectivities374

inferred by EPI exhibited this same effect in simulation at high optogenetic strengths γ, which375

reduce the network activities x(t) by a factor 1− γ (Fig. 5B) (see Section 5.5.8).376

To examine how connectivity affects response to delay period inactivation, we grouped connectivi-377

ties of the EPI distribution along the continuum linking regimes 1 and 2 of Section 3.5. Z(sW ) is378

the set of EPI samples for which the closest mode was z∗(sW ) (see Section 5.5.4). In the following379

analyses, we examine how error, and the influence of connectivity eigenvalue on Anti error change380

along this continuum of connectivities. Obtaining the parameter samples for these analysis with381

the learned EPI distribution was more than 20,000 times faster than a brute force approach (see382

Section 5.5.5).383

The mean increase in Anti error of the EPI distribution is closest to the experimentally measured384

value of 7% at γ = 0.675 (Fig. 5B, black dot). At this level of optogenetic strength, regime385

1 exhibits an increase in Anti error with delay period silencing (Fig. 5C, left), while regime 2386

does not. In regime 1, greater λtask and λdiag decrease Anti error (Fig. 5C, right). In other words,387

stronger task representations and diagonal amplification make the SC model more resilient to delay388

period silencing in the Anti task. This complements the finding from Duan et al. 2019 [48] that389

λtask and λdiag improve Anti accuracy.390

At roughly γ = 0.85 (Fig. 5B, gray dot), the Anti error saturates, while Pro error remains at391

zero. Following delay period inactivation at this optogenetic strength, there are strong similarities392

in the responses of Pro and Anti trials during the choice period (Fig. 5D, left). We interpreted393

these similarities to suggest that delay period inactivation at this saturated level flips the internal394

representation of task (from Anti to Pro) in the circuit model. A flipped task representation395

would explain why the Anti error saturates at 50%: the average Anti accuracy in EPI inferred396

connectivities is 75%, but is 25% when the internal representation is flipped during delay period397

silencing. This hypothesis prescribes a model of Anti accuracy during delay period silencing of398
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Figure 5: A. Mean and standard error (bars) across recording sessions of task error following delay

period optogenetic inactivation in rats. B. Mean and standard deviation (bars) of task error induced

by delay period inactivation of varying optogenetic strength γ across the EPI distribution. C. (Left)

Mean and standard error of Pro and Anti error from regime 1 to regime 2 at γ = 0.675. (Right)

Correlations of connectivity eigenvalues with Anti error from regime 1 to regime 2 at γ = 0.675.

D. (Left) Mean and standard deviation (shading) of responses of the SC model at the mode of

the EPI distribution to delay period inactivation at γ = 0.85. Accuracy in Pro (top) and Anti

(bottom) task is shown as a percentage. (Right) Anti accuracy following delay period inactivation

at γ = 0.85 versus accuracy in the Pro task across connectivities in the EPI distribution.
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pA,opto = 100%−pP , which is fit closely across both regimes of the EPI inferred connectivities (Fig.399

5D, right). Similarities between Pro and Anti trial responses were not present at the experiment-400

matching level of γ = 0.675 (Fig. S16 left) and neither was anticorrelation in pP and pA,opto (Fig.401

S16 right).402

In summary, the connectivity inferred by EPI to perform rapid task switching replicated results403

from optogenetic silencing experiments. We found that at levels of optogenetic strength matching404

experimental levels of Anti error, only one regime actually exhibited the effect. This connectivity405

regime is less resilient to optogenetic perturbation, and perhaps more biologically realistic. Finally,406

we characterized the pathology in Anti error that occurs in both regimes when optogenetic strength407

is increased to high levels, leading to a mechanistic hypothesis that is experimentally testable.408

The probabilistic tools afforded by EPI yielded this insight: we identified two regimes and the409

continuum of connectivities between them by taking gradients of parameter probabilities in the EPI410

distribution, we identified sensitivity dimensions by measuring the Hessian of the EPI distribution,411

and we obtained many parameter samples at each step along the continuum at an efficient rate.412

4 Discussion413

In neuroscience, machine learning has primarily been used to reveal structure in neural datasets [20].414

Careful inference procedures are developed for these statistical models allowing precise, quantitative415

reasoning, which clarifies the way data informs beliefs about the model parameters. However, these416

statistical models often lack resemblance to the underlying biology, making it unclear how to go417

from the structure revealed by these methods, to the neural mechanisms giving rise to it. In418

contrast, theoretical neuroscience has primarily focused on careful models of neural circuits and419

the production of emergent properties of computation, rather than measuring structure in neural420

datasets. In this work, we improve upon parameter inference techniques in theoretical neuroscience421

with emergent property inference, harnessing deep learning towards parameter inference in neural422

circuit models (see Section 5.1.1).423

Methodology for statistical inference in circuit models has evolved considerably in recent years.424

Early work used rejection sampling techniques [24–26], but EPI and another recently developed425

methodology [35] employ deep learning to improve efficiency and provide flexible approximations.426

SNPE has been used for posterior inference of parameters in circuit models conditioned upon427

exemplar data used to represent computation, but it does not infer parameter distributions that428
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only produce the computation of interest like EPI (see Section 3.3). When strict control over the429

predictions of the inferred parameters is necessary, EPI uses a constrained optimization technique430

[38] (see Section 5.1.4) to make inference conditioned on the emergent property possible.431

A key difference between EPI and SNPE, is that EPI uses gradients of the emergent property432

throughout optimization. In Section 3.3, we showed that such gradients confer beneficial scaling433

properties, but a concern remains that emergent property gradients may be too computationally434

intensive. Even in a case of close biophysical realism with an expensive emergent property gradient,435

EPI was run successfully on intermediate hub frequency in a 5-neuron subcircuit model of the436

STG (Section 3.1). However, conditioning on the pyloric rhythm [68] in a model of the pyloric437

subnetwork model [15] proved to be prohibitive with EPI. The pyloric subnetwork requires many438

time steps for simulation and many key emergent property statistics (e.g. burst duration and439

phase gap) are not calculable or easily approximated with differentiable functions. In such cases,440

SNPE, which does not require differentiability of the emergent property, has proven useful [35].441

In summary, choice of deep inference technique should consider emergent property complexity and442

differentiability, dimensionality of parameter space, and the importance of constraining the model443

behavior predicted by the inferred parameter distribution.444

In this paper, we demonstrate the value of deep inference for parameter sensitivity analyses at445

both the local and global level. With these techniques, flexible deep probability distributions are446

optimized to capture global structure by approximating the full distribution of suitable parame-447

ters. Importantly, the local structure of this deep probability distribution can be quantified at448

any parameter choice, offering instant sensitivity measurements after fitting. For example, the449

global structure captured by EPI revealed two distinct parameter regimes, which had different450

local structure quantified by the deep probability distribution (see Section 5.5). In comparison,451

bayesian MCMC is considered a popular approach for capturing global parameter structure [69],452

but there is no variational approximation (the deep probability distribution in EPI), so sensitiv-453

ity information is not queryable and sampling remains slow after convergence. Local sensitivity454

analyses (e.g. [27]) may be performed independently at individual parameter samples, but these455

methods alone do not capture the full picture in nonlinear, complex distributions. In contrast,456

deep inference yields a probability distribution that produces a wholistic assessment of parameter457

sensitivity at the local and global level, which we used in this study to make novel insights into458

a range of theoretical models. Together, the abilities to condition upon emergent properties, the459

efficient inference algorithm, and the capacity for parameter sensitivity analyses make EPI a useful460
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method for addressing inverse problems in theoretical neuroscience.461
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5 Methods719

5.1 Emergent property inference (EPI)720

Solving inverse problems is an important part of theoretical neuroscience, since we must understand721

how neural circuit models and their parameter choices produce computations. Recently, research on722

machine learning methodology for neuroscience has focused on finding latent structure in large-scale723

neural datasets, while research in theoretical neuroscience generally focuses on developing precise724

neural circuit models that can produce computations of interest. By quantifying computation725

into an emergent property through statistics of the emergent activity of neural circuit models, we726

can adapt the modern technique of deep probabilistic inference towards solving inverse problems727

in theoretical neuroscience. Here, we introduce a novel method for statistical inference, which728

uses deep networks to learn parameter distributions constrained to produce emergent properties of729

computation.730

Consider model parameterization z, which is a collection of scientifically meaningful variables that731

govern the complex simulation of data x. For example (see Section 3.1), z may be the electrical732

conductance parameters of an STG subcircuit, and x the evolving membrane potentials of the five733

neurons. In terms of statistical modeling, this circuit model has an intractable likelihood p(x | z),734

which is predicated by the stochastic differential equations that define the model. From a theoretical735

perspective, we are less concerned about the likelihood of an exemplar dataset x, but rather the736

emergent property of intermediate hub frequency (which implies a consistent dataset x).737

In this work, emergent properties X are defined through the choice of emergent property statistic738

f(x; z) (which is a vector of one or more statistics), and its means µ, and variances σ2:739

X : Ez,x [f(x; z)] = µ, Varz,x [f(x; z)] = σ2. (12)

In general, an emergent property may be a collection of first-, second-, or higher-order moments740

of a group of statistics, but this study focuses on the case written in Equation 12. In the STG741

example, intermediate hub frequency is defined by mean and variance constraints on the statistic742

of hub neuron frequency ωhub(x; z) (Equations 2 and 3). Precisely, the emergent property statistics743

f(x; z) must have means µ and variances σ2 over the EPI distribution of parameters (z ∼ qθ(z)) and744

the data produced by those parameters (x ∼ p(x | z)), where the inferred parameter distribution745

qθ(z) itself is parameterized by deep network weights and biases θ.746

In EPI, a deep probability distribution qθ(z) is optimized to approximate the parameter distribution747
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producing the emergent property X . In contrast to simpler classes of distributions like the gaussian748

or mixture of gaussians, deep probability distributions are far more flexible and capable of fitting749

rich structure [36,37]. In deep probability distributions, a simple random variable z0 ∼ q0(z0) (we750

choose an isotropic gaussian) is mapped deterministically via a sequence of deep neural network751

layers (g1, .. gl) parameterized by weights and biases θ to the support of the distribution of interest:752

z = gθ(z0) = gl(..g1(z0)) ∼ qθ(z). (13)

Such deep probability distributions embed the inferred distribution in a deep network. Once op-753

timized, this deep network representation of a distribution has remarkably useful properties: fast754

sampling and probability evaluations. Importantly, fast probability evaluations confer fast gradient755

and Hessian calculations as well.756

Given this choice of circuit model and emergent property X , qθ(z) is optimized via the neural757

network parameters θ to find a maximally entropic distribution q∗θ within the deep variational758

family Q = {qθ(z) : θ ∈ Θ} that produces the emergent property X :759

qθ(z | X ) = q∗θ(z) = argmax
qθ∈Q

H(qθ(z))

s.t. X : Ez,x [f(x; z)] = µ,Varz,x [f(x; z)] = σ2,

(14)

where H(qθ(z)) = Ez [− log qθ(z)] is entropy. By maximizing the entropy of the inferred distribution760

qθ, we select the most random distribution in family Q that satisfies the constraints of the emergent761

property. Since entropy is maximized in Equation 14, EPI is equivalent to bayesian variational762

inference (see Section 5.1.6), which is why we specify the inferred distribution of EPI as conditioned763

upon emergent property X with the notation qθ(z | X ). To run this constrained optimization, we764

use an augmented lagrangian objective, which is the standard approach for constrained optimization765

[70], and the approach taken to fit Maximum Entropy Flow Networks (MEFNs) [38]. This procedure766

is detailed in Section 5.1.4 and the pseudocode in Algorithm 1.767

In the remainder of Section 5.1, we will explain the finer details and motivation of the EPI method.768

First, we explain related approaches and what EPI introduces to this domain (Section 5.1.1). Sec-769

ond, we describe the special class of deep probability distributions used in EPI called normalizing770

flows (Section 5.1.2). Then, we establish the known relationship between maximum entropy dis-771

tributions and exponential families (Section 5.1.3). Next, we explain the constrained optimization772

technique used to solve Equation 14 (Section 5.1.4). Then, we demonstrate the details of this opti-773

mization in a toy example (Section 5.1.5). Finally, we explain how EPI is equivalent to variational774

inference (Section 5.1.6).775
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5.1.1 Related approaches776

When bayesian inference problems lack conjugacy, scientists use approximate inference methods like777

variational inference (VI) [71] and Markov chain Monte Carlo (MCMC) [72,73]. After optimization,778

variational methods return a parameterized posterior distribution, which we can analyze. Also, the779

variational approximation is often chosen such that it permits fast sampling. In contrast MCMC780

methods only produce samples from the approximated posterior distribution. No parameterized781

distribution is estimated, and additional samples are always generated with the same sampling782

complexity. Inference in models defined by systems of differential has been demonstrated with783

MCMC [69], although this approach requires tractable likelihoods. Advancements have introduced784

sampling [74], likelihood approximation [75], and uncertainty quantification techniques [76] to make785

MCMC approaches more efficient and expand the class of applicable models.786

Simulation-based inference [56] is model parameter inference in the absence of a tractable likeli-787

hood function. The most prevalent approach to simulation-based inference is approximate bayesian788

computation (ABC) [24], in which satisfactory parameter samples are kept from random prior sam-789

pling according to a rejection heuristic. The obtained set of parameters do not have a probabilities,790

and further insight about the model must be gained from examination of the parameter set and791

their generated activity. Methodological advances to ABC methods have come through the use of792

Markov chain Monte Carlo (MCMC-ABC) [25] and sequential Monte Carlo (SMC-ABC) [26] sam-793

pling techniques. SMC-ABC is considered state-of-the-art ABC, yet this approach still struggles794

to scale in dimensionality [55] (cf. Fig. 2). Still, this method has enjoyed much success in systems795

biology [77]. Furthermore, once a parameter set has been obtained by SMC-ABC from a finite set796

of particles, the SMC-ABC algorithm must be run again from scratch with a new population of797

initialized particles to obtain additional samples.798

For scientific model analysis, we seek a parameter distribution represented by an approximating799

distribution as in variational inference [71]: a variational approximation that once optimized yields800

fast analytic calculations and samples. For the reasons described above, ABC and MCMC tech-801

niques are not suitable, since they only produce a set of parameter samples lacking probabilities802

and have unchanging sampling rate. EPI infers parameters in circuit models using the MEFN [38]803

algorithm with a deep variational approximation. The deep neural network of EPI (Fig. 1E) de-804

fines the parametric form (with weights and biases as variational parameters θ) of the variational805

approximation of the inferred parameter distribution qθ(z | x). The EPI optimization is enabled806

using stochastic gradient techniques in the spirit of likelihood-free variational inference [34]. The807
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analytic relationship between EPI and variational inference is explained in Section 5.1.6.808

We note that, during our preparation and early presentation of this work [78, 79], another work809

has arisen with broadly similar goals: bringing statistical inference to mechanistic models of neural810

circuits [35, 80, 81]. We are encouraged by this general problem being recognized by others in the811

community, and we emphasize that these works offer complementary neuroscientific contributions812

(different theoretical models of focus) and use different technical methodologies (ours is built on813

our prior work [38], theirs similarly [82]).814

The method EPI differs from SNPE in some key ways. SNPE belongs to a “sequential” class815

of recently developed simulation-based inference methods in which two neural networks are used816

for posterior inference. This first neural network is a deep probability distribution (normalizing817

flow) used to estimate the posterior p(z | x) (SNPE) or the likelihood p(x | z) (sequential neural818

likelihood (SNL) [83]). A recent approach uses an unconstrained neural network to estimate the819

likelihood ratio (sequential neural ratio estimation (SNRE) [84]). In SNL and SNRE, MCMC820

sampling techniques are used to obtain samples from the approximated posterior. This contrasts821

with EPI and SNPE, which use deep probability distributions to model parameters, which facilitates822

immediate measurements of sample probability, gradient, or Hessian for system analysis. The823

second neural network in this sequential class of methods is the amortizer. This unconstrained824

deep network maps data x (or statistics f(x; z) or model parameters z) to the weights and biases of825

the first neural network. These methods are optimized on a conditional density (or ratio) estimation826

objective. The data used to optimize this objective are generated via an adaptive procedure, in827

which training data pairs (xi, zi) become sequentially closer to the true data and posterior.828

The approximating fidelity of the deep probability distribution in sequential approaches is opti-829

mized to generalize across the training distribution of the conditioning variable. This generalization830

property of the sequential methods can reduce the accuracy at the singular posterior of interest.831

Whereas in EPI, the entire expressivity of the deep probability distribution is dedicated to learning832

a single distribution as well as possible. The well-known inverse mapping problem of exponential833

families [85] prohibits an amortization-based approach in EPI, since EPI learns an exponential fam-834

ily distribution parameterized by its mean (in contrast to its natural parameter, see Section 5.1.3).835

However, we have shown that the same two-network architecture of the sequential simulation-based836

inference methods can be used for amortized inference in intractable exponential family posteriors837

when using their natural parameterization [86].838

Finally, one important differentiating factor between EPI and sequential simulation-based infer-839
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ence methods is that EPI leverages gradients ∇zf(x; z) during optimization. These gradients can840

improve convergence time and scalability, as we have shown on an example conditioning low-rank841

RNN connectivity on the property of stable amplification (see Section 3.3). With EPI, we prove out842

the suggestion that a deep inference technique can improve efficiency by leveraging these emergent843

property gradients when they are tractable. Sequential simulation-based inference techniques may844

be better suited for scientific problems where ∇zf(x; z) is intractable or unavailable, like when845

there is a nondifferentiable emergent property. However, the sequential simulation-based inference846

techniques cannot constrain the predictions of the inferred distribution in the manner of EPI.847

Structural identifiability analysis involves the measurement of sensitivity and unidentifiabilities in848

scientific models. Around a single parameter choice, one can measure the Jacobian. One approach849

for this calculation that scales well is EAR [28]. A popular efficient approach for systems of ODEs850

has been neural ODE adjoint [87] and its stochastic adaptation [88]. Casting identifiability as a851

statistical estimation problem, the profile likelihood works via iterated optimization while holding852

parameters fixed [27]. An exciting recent method is capable of recovering the functional form of such853

unidentifiabilities away from a point by following degenerate dimensions of the fisher information854

matrix [30]. Global structural non-identifiabilities can be found for models with polynomial or855

rational dynamics equations using DAISY [89], or through mean optimal transformations [90].856

With EPI, we have all the benefits given by a statistical inference method plus the ability to query857

the first- or second-order gradient of the probability of the inferred distribution at any chosen858

parameter value. The second-order gradient of the log probability (the Hessian), which is directly859

afforded by EPI distributions, produces quantified information about parametric sensitivity of the860

emergent property in parameter space (see Section 3.2).861

5.1.2 Deep probability distributions and normalizing flows862

Deep probability distributions are comprised of multiple layers of fully connected neural networks863

(Equation 13). When each neural network layer is restricted to be a bijective function, the sample864

density can be calculated using the change of variables formula at each layer of the network. For865

zi = gi(zi−1),866

p(zi) = p(g−1
i (zi))

∣∣∣∣det
∂g−1

i (zi)

∂zi

∣∣∣∣ = p(zi−1)

∣∣∣∣det
∂gi(zi−1)

∂zi−1

∣∣∣∣−1

. (15)

However, this computation has cubic complexity in dimensionality for fully connected layers. By867

restricting our layers to normalizing flows [36, 37] – bijective functions with fast log determinant868
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Jacobian computations, which confer a fast calculation of the sample log probability. Fast log869

probability calculation confers efficient optimization of the maximum entropy objective (see Section870

5.1.4).871

We use the real NVP [39] normalizing flow class, because its coupling architecture confers both872

fast sampling (forward) and fast log probability evaluation (backward). Fast probability evaluation873

facilitates fast gradient and Hessian evaluation of log probability throughout parameter space.874

Glow permutations were used in between coupling stages [40]. This is in contrast to autoregressive875

architectures [91,92], in which only one of the forward or backward passes can be efficient. In this876

work, normalizing flows are used as flexible parameter distribution approximations qθ(z) having877

weights and biases θ. We specify the architecture used in each application by the number of real878

NVP affine coupling stages, and the number of neural network layers and units per layer of the879

conditioning functions.880

When calculating Hessians of log probabilities in deep probability distributions, it is important to881

consider the normalizing flow architecture. With autoregressive architectures [91, 92], fast sam-882

pling and fast log probability evaluations are mutually exclusive. That makes these architectures883

undesirable for EPI, where efficient sampling is important for optimization, and log probability884

evaluation speed predicates the efficiency of gradient and Hessian calculations. With real NVP885

coupling architectures, we get both fast sampling and fast Hessians making both optimization and886

scientific analysis efficient.887

5.1.3 Maximum entropy distributions and exponential families888

The inferred distribution of EPI is a maximum entropy distribution, which have fundamental links889

to exponential family distributions. A maximum entropy distribution of form:890

p∗(z) = argmax
p∈P

H(p(z))

s.t. Ez∼p [T (z)] = µopt,

(16)

where T (z) is the sufficient statistics vector and µopt a vector of their mean values, will have891

probability density in the exponential family:892

p∗(z) ∝ exp(η>T (z)). (17)

The mappings between the mean parameterization µopt and the natural parameterization η are893

formally hard to identify except in special cases [85].894
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In this manuscript, emergent properties are defined by statistics f(x; z) having a fixed mean µ and895

variance σ2 as in Equation 12. The variance constraint is a second moment constraint on f(x; z):896

Varz,x [f(x; z)] = Ez,x

[
(f(x; z)− µ)2

]
. (18)

As a general maximum entropy distribution (Equation 16), the sufficient statistics vector contains897

both first and second order moments of f(x; z)898

T (z) =

 Ex∼p(x|z) [f(x; z)]

Ex∼p(x|z)

[
(f(x; z)− µ)2

]
 , (19)

which are constrained to the chosen means and variances899

µopt =

 µ

σ2

 . (20)

Thus, µopt is used to denote the mean parameter of the maximum entropy distribution defined by900

the emergent property (all constraints), while µ is only the mean of f(x; z). The subscript “opt” of901

µopt is chosen since it contains all of the constraint values to which the EPI optimization algorithm902

must adhere.903

5.1.4 Augmented lagrangian optimization904

To optimize qθ(z) in Equation 14, the constrained maximum entropy optimization is executed using905

the augmented lagrangian method. The following objective is minimized:906

L(θ;ηopt, c) = −H(qθ) + η>optR(θ) +
c

2
||R(θ)||2 (21)

where there are average constraint violations907

R(θ) = Ez∼qθ(z) [T (z)− µopt] , (22)

ηopt ∈ Rm are the lagrange multipliers where m is the number of total constraints908

m = |µopt| = |T (z)| = 2|f(x; z)|, (23)

and c is the penalty coefficient. The mean parameter µopt and sufficient statistics T (z) are de-909

termined by the means µ and variances σ2 of the emergent property statistics f(x; z) defined in910

Equation 14. Specifically, T (z) is a concatenation of the first and second moments (Equation 19)911

and µopt is a concatenation of their constraints µ and σ2 (Equation 20). (Although, note that912
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this algorithm is written for general T (z) and µopt to satisfy the more general class of emergent913

properties.) The lagrange multipliers ηopt are closely related to the natural parameters η of expo-914

nential families (see Section 5.1.6). Weights and biases θ of the deep probability distribution are915

optimized according to Equation 21 using the Adam optimizer with learning rate 10−3 [93].916

The gradient with respect to entropy H(qθ(z)) can be expressed using the reparameterization trick917

as an expectation of the negative log density of parameter samples z over the randomness in the918

parameterless initial distribution q0(z0):919

H(qθ(z)) =

∫
−qθ(z) log(qθ(z))dz = Ez∼qθ [− log(qθ(z))] = Ez0∼q0 [− log(qθ(gθ(z0)))] . (24)

Thus, the gradient of the entropy of the deep probability distribution can be estimated as an920

average of gradients with respect to the base distribution z0:921

∇θH(qθ(z)) = Ez0∼q0 [−∇θ log(qθ(gθ(z0)))] . (25)

The gradients of the log density of the deep probability distribution are tractable through the use922

of normalizing flows (see Section 5.1.2).923

The full EPI optimization algorithm is detailed in Algorithm 1. The lagrangian parameters ηopt924

are initialized to zero and adapted following each augmented lagrangian epoch, which is a period of925

optimization with fixed (ηopt, c) for a given number of stochastic gradient descent (SGD) iterations.926

A low value of c is used initially, and conditionally increased after each epoch based on constraint927

error reduction. The penalty coefficient is updated based on the result of a hypothesis test regarding928

the reduction in constraint violation. The p-value of E[||R(θk+1)||] > γE [||R(θk)||] is computed,929

and ck+1 is updated to βck with probability 1 − p. The other update rule is ηopt,k+1 = ηopt,k +930

ck
1
n

∑n
i=1(T (z(i)) − µopt) given a batch size n and z(i) ∼ qθ(z). Throughout the study, γ = 0.25,931

while β was chosen to be either 2 or 4. The batch size of EPI also varied according to application.932

In general, c and ηopt should start at values encouraging entropic growth early in optimization.933

With each training epoch in which the update rule for c is invoked, the constraint satisfaction934

terms are increasingly weighted, which generally results in decreased entropy (e.g. see Figure935

S1C). This encourages the discovery of suitable regions of parameter space, and the subsequent936

refinement of the distribution to produce the emergent property. The momentum parameters of the937

Adam optimizer are reset at the end of each augmented lagrangian epoch, which proceeds for imax938

iterations. In this work, we used a maximum number of augmented lagrangian epochs kmax >= 5.939

Rather than starting optimization from some θ drawn from a randomized distribution, we found940

that initializing qθ(z) to approximate an isotropic gaussian distribution conferred more stable, con-941
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Algorithm 1: Emergent property inference

1 initialize θ by fitting qθ to an isotropic gaussian of mean µinit and variance σ2
init

2 initialize c0 > 0 and ηopt,0 = 0.

3 for Augmented lagrangian epoch k = 1, ..., kmax do

4 for SGD iteration i = 1, ..., imax do

5 Sample z
(1)
0 , ..., z

(n)
0 ∼ q0, get transformed variable z(j) = gθ(z

(j)
0 ), j = 1, ..., n

6 Update θ by descending its stochastic gradient (using ADAM optimizer [93]).

∇θL(θ;ηopt,k, c) =
1

n

n∑
j=1

∇θ log qθ(z(j)) +
1

n

n∑
j=1

∇θ

(
T
(
z(j)
)
− µopt

)
ηopt,k

+ ck
2

n

n
2∑
j=1

∇θ

(
T
(
z(j)
)
− µopt

)
· 2

n

n∑
j=n

2
+1

(
T
(
z(j)
)
− µopt

)

7 end

8 Sample z
(1)
0 , ..., z

(n)
0 ∼ q0, get transformed variable z(j) = gθ(z

(j)
0 ), j = 1, ..., n

9 Update ηopt,k+1 = ηopt,k + ck
1
n

∑n
j=1

(
T
(
z(j)
)
− µopt

)
.

10 Update ck+1 > ck (see text for detail).

11 end
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sistent optimization. The parameters of the gaussian initialization were chosen on an application-942

specific basis. Throughout the study, we chose isotropic Gaussian initializations with mean µinit at943

the center of the support of the distribution and some variance σ2
init, except for one case, where an944

initialization informed by random search was used (see Section 5.2). Deep probability distributions945

were fit to these gaussian initializations using 10,000 iterations of stochastic gradient descent on946

the evidence lower bound (as in [86]) with Adam optimizer and a learning rate of 10−3.947

To assess whether the EPI distribution qθ(z) produces the emergent property, we assess whether948

each individual constraint on the means and variances of f(x; z) is satisfied. We consider the EPI949

to have converged when a null hypothesis test of constraint violations R(θ)i being zero is accepted950

for all constraints i ∈ {1, ...,m} at a significance threshold α = 0.05. This significance threshold is951

adjusted through Bonferroni correction according to the number of constraints m. The p-values for952

each constraint are calculated according to a two-tailed nonparametric test, where 200 estimations953

of the sample mean R(θ)i are made using Ntest samples of z ∼ qθ(z) at the end of the augmented954

lagrangian epoch. Of all kmax augmented lagrangian epochs, we select the EPI inferred distribution955

as that which satisfies the convergence criteria and has greatest entropy.956

When assessing the suitability of EPI for a particular modeling question, there are some important957

technical considerations. First and foremost, as in any optimization problem, the defined emergent958

property should always be appropriately conditioned (constraints should not have wildly different959

units). Furthermore, if the program is underconstrained (not enough constraints), the distribution960

grows (in entropy) unstably unless mapped to a finite support. If overconstrained, there is no961

parameter set producing the emergent property, and EPI optimization will fail (appropriately).962

5.1.5 Example: 2D LDS963

To gain intuition for EPI, consider a two-dimensional linear dynamical system (2D LDS) model964

(Fig. S1A):965

τ
dx

dt
= Ax (26)

with966

A =

a1,1 a1,2

a2,1 a2,2

 . (27)

To run EPI with the dynamics matrix elements as the free parameters z = [a1,1, a1,2, a2,1, a2,2]967

(fixing τ = 1s), the emergent property statistics f(x; z) were chosen to contain parts of the primary968
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eigenvalue of A, which predicate frequency, imag(λ1), and the growth/decay, real(λ1), of the system969

f(x; z) ,

 real(λ1)(x; z)

imag(λ1)(x; z)

 (28)

λ1 is the eigenvalue of greatest real part when the imaginary component is zero, and alternatively970

that of positive imaginary component when the eigenvalues are complex conjugate pairs. To learn971

the distribution of real entries of A that produce a band of oscillating systems around 1Hz, we for-972

malized this emergent property as real(λ1) having mean zero with variance 0.252, and the oscillation973

frequency imag(λ1)
2π having mean 1Hz with variance 0.1Hz2:974

X : Ez,x [f(x; z)] , Ez,x

 real(λ1)(x; z)

imag(λ1)(x; z)

 =

 0

2π

 , µ

Varz,x [f(x; z)] , Varz,x

 real(λ1)(x; z)

imag(λ1)(x; z)

 =

0.252

(π5 )2

 , σ2.

(29)

To write the emergent property X in the form required for the augmented lagrangian optimization975

(Section 5.1.4), we concatenate these first and second moment constraints into a vector of sufficient976

statistics T (z) and constraint values µopt.977

Ez [T (z)] , Ez


Ex∼p(x|z) [real(λ1)(x; z)]

Ex∼p(x|z) [imag(λ1)(x; z)]

Ex∼p(x|z)

[
(real(λ1)(x; z)− 0)2

]
Ex∼p(x|z)

[
(imag(λ1)(x; z)− 2π)2

]

 =


0

2π

0.252

(π5 )2

 , µopt. (30)

From now on in all scientific applications (Sections 5.2-5.5, we specify how the EPI optimization978

was setup by specifying f(x; z), µ, and σ2.979

Unlike the models we presented in the main text, this model admits an analytical form for the980

mean emergent property statistics given parameter z, since the eigenvalues can be calculated using981

the quadratic formula:982

λ =
(
a1,1+a2,2

τ )±
√

(
a1,1+a2,2

τ )2 + 4(
a1,2a2,1−a1,1a2,2

τ )

2
. (31)

We study this example, because the inferred distribution is curved and multimodal, and we can983

compare the result of EPI to analytically derived contours of the emergent property statistics.984

Despite the simple analytic form of the emergent property statistics, the EPI distribution in this985

example is not simply determined. Although Ez [T (z)] is calculable directly via a closed form986
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Figure S1: A. Two-dimensional linear dynamical system model, where real entries of the dynamics

matrix A are the parameters. B. The EPI distribution for a two-dimensional linear dynamical

system with τ = 1 that produces an average of 1Hz oscillations with some small amount of vari-

ance. Dashed lines indicate the parameter axes. C. Entropy throughout the optimization. At the

beginning of each augmented lagrangian epoch (imax = 2, 000 iterations), the entropy dipped due to

the shifted optimization manifold where emergent property constraint satisfaction is increasingly

weighted. D. Emergent property moments throughout optimization. At the beginning of each

augmented lagrangian epoch, the emergent property moments adjust closer to their constraints.
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function, the distribution q∗θ(z | X ) cannot be derived directly. This fact is due to the formally hard987

problem of the backward mapping: finding the natural parameters η from the mean parameters µ988

of an exponential family distribution [85]. Instead, we used EPI to approximate this distribution989

(Fig. S1B). We used a real NVP normalizing flow architecture three coupling layers and two-layer990

neural networks of 50 units per layer, mapped onto a support of zi ∈ [−10, 10]. (see Section 5.1.2).991

Even this relatively simple system has nontrivial (though intuitively sensible) structure in the992

parameter distribution. To validate our method, we analytically derived the contours of the proba-993

bility density from the emergent property statistics and values. In the a1,1-a2,2 plane, the black line994

at real(λ1) =
a1,1+a2,2

2 = 0, dashed black line at the standard deviation real(λ1) =
a1,1+a2,2

2 ± 0.25,995

and the dashed gray line at twice the standard deviation real(λ1) =
a1,1+a2,2

2 ± 0.5 follow the con-996

tour of probability density of the samples (Fig. S2A). The distribution precisely reflects the desired997

statistical constraints and model degeneracy in the sum of a1,1 and a2,2. Intuitively, the parameters998

equivalent with respect to emergent property statistic real(λ1) have similar log densities.999

To explain the bimodality of the EPI distribution, we examined the imaginary component of λ1.1000

When real(λ1) = a1,1 + a2,2 = 0 (which is the case on average in X ), we have1001

imag(λ1) =


√

a1,1a2,2−a1,2a2,1
τ , if a1,1a2,2 < a1,2a2,1

0 otherwise

. (32)

In Figure S2B, we plot the contours of imag(λ1) where a1,1a2,2 is fixed to 0 at one standard1002

deviation (π5 , black dashed) and two standard deviations (2π
5 , gray dashed) from the mean of 2π.1003

This validates the curved multimodal structure of the inferred distribution learned through EPI.1004

Subtler combinations of model and emergent property will have more complexity, further motivating1005

the use of EPI for understanding these systems. As we expect, the distribution results in samples1006

of two-dimensional linear systems oscillating near 1Hz (Fig. S3).1007

5.1.6 EPI as variational inference1008

In variational inference, a posterior approximation q∗θ is chosen from within some variational family1009

Q to be as close as possible to the posterior under the KL divergence criteria1010

q∗θ(z) = argmin
qθ∈Q

KL(qθ(z) || p(z | x)). (33)

This KL divergence can be written in terms of entropy of the variational approximation:1011

KL(qθ(z) || p(z | x)) = Ez∼qθ [log(qθ(z))]− Ez∼qθ [log(p(z | x))] (34)
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A B

Figure S2: A. Probability contours in the a1,1-a2,2 plane were derived from the relationship to

emergent property statistic of growth/decay factor real(λ1). B. Probability contours in the a1,2-

a2,1 plane were derived from the emergent property statistic of oscillation frequency 2πimag(λ1).

A B

Figure S3: Sampled dynamical systems z ∼ qθ(z | X ) and their simulated activity from x(t = 0) =

[
√

2
2 ,−

√
2

2 ] colored by log probability. A. Each dimension of the simulated trajectories throughout

time. B. The simulated trajectories in phase space.
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1012

= −H(qθ)− Ez∼qθ [log(p(x | z)) + log(p(z))− log(p(x))] (35)

Since the marginal distribution of the data p(x) (or “evidence”) is independent of θ, variational1013

inference is executed by optimizing the remaining expression. This is usually framed as maximizing1014

the evidence lower bound (ELBO)1015

argmin
qθ∈Q

KL(qθ || p(z | x)) = argmax
qθ∈Q

H(qθ) + Ez∼qθ [log(p(x | z)) + log(p(z))] . (36)

Now, we will show how the maximum entropy problem of EPI is equivalent to variational inference.1016

In general, a maximum entropy problem (as in Equation 16) has an equivalent lagrange dual form:1017

argmax
q∈Q

H(q(z)) ⇐⇒ argmax
q∈Q

H(q(z)) + η∗>Ez∼q [T (z)] ,

s.t. Ez∼q [T (z)] = 0

(37)

with lagrange multipliers η∗. By moving the lagrange multipliers within the expectation1018

q∗ = argmax
q∈Q

H(q(z)) + Ez∼q

[
η∗>T (z)

]
, (38)

inserting a log exp(·) within the expectation,1019

q∗ = argmax
q∈Q

H(q(z)) + Ez∼q

[
log exp

(
η∗>T (z)

)]
, (39)

and finally choosing T (·) to be likelihood averaged statistics as in EPI1020

q∗ = argmax
q∈Q

H(q(z)) + Ez∼q

log exp

η∗>


Ex∼p(x|z) [φ1(x; z)]

...

Ex∼p(x|z) [φm(x; z)]



 , (40)

we can compare directly to the objective used in variational inference (Equation 36). We see1021

that EPI is exactly variational inference with an exponential family likelihood defined by sufficient1022

statistics T (z) = Ex∼p(x|z) [φ(x; z)], and where the natural parameter η∗ is predicated by the mean1023

parameter µopt. Equation 40 implies that EPI uses an improper (or uniform) prior, which is easily1024

changed.1025

This derivation of the equivalence between EPI and variational inference emphasizes why defining1026

a statistical inference program by its mean parameterization µopt is so useful. With EPI, one can1027

clearly define the emergent property X that the model of interest should produce through intuitive1028

selection of µopt for a given T (z). Alternatively, figuring out the correct natural parameters η∗ for1029

the same T (z) that produces X is a formally hard problem.1030
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5.2 Stomatogastric ganglion1031

In Section 3.1 and 3.2, we used EPI to infer conductance parameters in a model of the stomatogastric1032

ganglion (STG) [41]. This 5-neuron circuit model represents two subcircuits: that generating the1033

pyloric rhythm (fast population) and that generating the gastric mill rhythm (slow population).1034

The additional neuron (the IC neuron of the STG) receives inhibitory synaptic input from both1035

subcircuits, and can couple to either rhythm dependent on modulatory conditions. There is also1036

a parametric regime in which this neuron fires at an intermediate frequency between that of the1037

fast and slow populations [41], which we infer with EPI as a motivational example. This model1038

is not to be confused with an STG subcircuit model of the pyloric rhythm [68], which has been1039

statistically inferred in other studies [15,35].1040

5.2.1 STG model1041

We analyze how the parameters z = [gel, gsynA] govern the emergent phenomena of intermediate1042

hub frequency in a model of the stomatogastric ganglion (STG) [41] shown in Figure 1A with1043

activity x = [xf1, xf2, xhub, xs1, xs2], using the same hyperparameter choices as Gutierrez et al.1044

Each neuron’s membrane potential xα(t) for α ∈ {f1, f2, hub, s1, s2} is the solution of the following1045

stochastic differential equation:1046

Cm
dxα
dt

= − [hleak(x; z) + hCa(x; z) + hK(x; z) + hhyp(x; z) + helec(x; z) + hsyn(x; z)] + dB. (41)

The input current of each neuron is the sum of the leak, calcium, potassium, hyperpolarization,1047

electrical and synaptic currents. Each current component is a function of all membrane potentials1048

and the conductance parameters z. Finally, we include gaussian noise dB to the model of Gutierrez1049

et al. so that the model stochastic, although this is not required by EPI.1050

The capacitance of the cell membrane was set to Cm = 1nF . Specifically, the currents are the1051

difference in the neuron’s membrane potential and that current type’s reversal potential multiplied1052

by a conductance:1053

hleak(x; z) = gleak(xα − Vleak) (42)
1054

helec(x; z) = gel(x
post
α − xpreα ) (43)

1055

hsyn(x; z) = gsynS
pre
∞ (xpostα − Vsyn) (44)

1056

hCa(x; z) = gCaM∞(xα − VCa) (45)
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1057

hK(x; z) = gKN(xα − VK) (46)
1058

hhyp(x; z) = ghH(xα − Vhyp). (47)

The reversal potentials were set to Vleak = −40mV , VCa = 100mV , VK = −80mV , Vhyp = −20mV ,1059

and Vsyn = −75mV . The other conductance parameters were fixed to gleak = 1 × 10−4µS. gCa,1060

gK , and ghyp had different values based on fast, intermediate (hub) or slow neuron. The fast1061

conductances had values gCa = 1.9×10−2, gK = 3.9×10−2, and ghyp = 2.5×10−2. The intermediate1062

conductances had values gCa = 1.7 × 10−2, gK = 1.9 × 10−2, and ghyp = 8.0 × 10−3. Finally, the1063

slow conductances had values gCa = 8.5× 10−3, gK = 1.5× 10−2, and ghyp = 1.0× 10−2.1064

Furthermore, the Calcium, Potassium, and hyperpolarization channels have time-dependent gating1065

dynamics dependent on steady-state gating variables M∞, N∞ and H∞, respectively:1066

M∞ = 0.5

(
1 + tanh

(
xα − v1

v2

))
(48)

1067

dN

dt
= λN (N∞ −N) (49)

1068

N∞ = 0.5

(
1 + tanh

(
xα − v3

v4

))
(50)

1069

λN = φN cosh

(
xα − v3

2v4

)
(51)

1070

dH

dt
=

(H∞ −H)

τh
(52)

1071

H∞ =
1

1 + exp
(
xα+v5
v6

) (53)

1072

τh = 272−

 −1499

1 + exp
(
−xα+v7

v8

)
 . (54)

where we set v1 = 0mV , v2 = 20mV , v3 = 0mV , v4 = 15mV , v5 = 78.3mV , v6 = 10.5mV ,1073

v7 = −42.2mV , v8 = 87.3mV , v9 = 5mV , and vth = −25mV .1074

Finally, there is a synaptic gating variable as well:1075

S∞ =
1

1 + exp
(
vth−xα
v9

) . (55)

When the dynamic gating variables are considered, this is actually a 15-dimensional nonlinear1076

dynamical system. The gaussian noise dB has variance (1× 10−12)2 A2, and introduces variability1077

in frequency at each parameterization z.1078
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5.2.2 Hub frequency calculation1079

In order to measure the frequency of the hub neuron during EPI, the STG model was simulated for1080

T = 300 time steps of dt = 25ms. The chosen dt and T were the most computationally convenient1081

choices yielding accurate frequency measurement. We used a basis of complex exponentials with1082

frequencies from 0.0-1.0 Hz at 0.01Hz resolution to measure frequency from simulated time series1083

Φ = [0.0, 0.01, ..., 1.0]> .. (56)

To measure spiking frequency, we processed simulated membrane potentials with a relu (spike1084

extraction) and low-pass filter with averaging window of size 20, then took the frequency with the1085

maximum absolute value of the complex exponential basis coefficients of the processed time-series.1086

The first 20 temporal samples of the simulation are ignored to account for initial transients.1087

To differentiate through the maximum frequency identification, we used a soft-argmax Let Xα ∈1088

C|Φ| be the complex exponential filter bank dot products with the signal xα ∈ RN , where α ∈1089

{f1, f2, hub, s1, s2}. The soft-argmax is then calculated using temperature parameter βψ = 1001090

ψα = softmax(βψ|Xα| � i), (57)

where i = [0, 1, ..., 100]. The frequency is then calculated as1091

ωα = 0.01ψαHz. (58)

Intermediate hub frequency, like all other emergent properties in this work, is defined by the mean1092

and variance of the emergent property statistics. In this case, we have one statistic, hub neuron1093

frequency, where the mean was chosen to be 0.55Hz,(Equation 2) and variance was chosen to be1094

0.0252 Hz2 (Equation 3).1095

5.2.3 EPI details for the STG model1096

EPI was run for the STG model using1097

f(x; z) = ωhub(x; z), (59)
1098

µ =
[
0.55

]
, (60)

and1099

σ2 =
[
0.0252

]
(61)
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Figure S4: EPI optimization of the STG model producing network syncing. A. Entropy throughout

optimization. B. The emergent property statistic means and variances converge to their constraints

at 25,000 iterations following the fifth augmented lagrangian epoch.

(see Sections 5.1.3-5.1.4, and example in Section 5.1.5). Throughout optimization, the augmented1100

lagrangian parameters η and c, were updated after each epoch of imax = 5, 000 iterations (see1101

Section 5.1.4). The optimization converged after five epochs (Fig. S4).1102

For EPI in Fig 1E, we used a real NVP architecture with three coupling layers and two-layer1103

neural networks of 25 units per layer. The normalizing flow architecture mapped z0 ∼ N (0, I) to1104

a support of z = [gel, gsynA] ∈ [4, 8] × [0.01, 4], initialized to a gaussian approximation of samples1105

returned by a preliminary ABC search. We did not include gsynA < 0.01, for numerical stability.1106

EPI optimization was run using 5 different random seeds for architecture initialization θ with an1107

augmented lagrangian coefficient of c0 = 105, β = 2, a batch size n = 400, and we simulated one1108

x(i) per z(i). The architecture converged with criteria Ntest = 100.1109

5.2.4 Hessian sensitivity vectors1110

To quantify the second-order structure of the EPI distribution, we evaluated the Hessian of the log1111

probability ∂2 log q(z|X )
∂zz>

. The eigenvector of this Hessian with most negative eigenvalue is defined as1112

the sensitivity dimension v1, and all subsequent eigenvectors are ordered by increasing eigenvalue.1113

These eigenvalues are quantifications of how fast the emergent property deteriorates via the param-1114

eter combination of their associated eigenvector. In Figure 1D, the sensitivity dimension v1 (solid)1115

and the second eigenvector of the Hessian v2 (dashed) are shown evaluated at the mode of the1116

distribution. Since the Hessian eigenvectors have sign degeneracy, the visualized directions in 2-D1117

parameter space were chosen to have positive gsynA. The length of the arrows is inversely propor-1118

tional to the square root of the absolute value of their eigenvalues λ1 = −10.7 and λ2 = −3.22. For1119
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the same magnitude perturbation away from the mode, intermediate hub frequency only diminishes1120

along the sensitivity dimension v1 (Fig. 1E-F).1121

5.3 Scaling EPI for stable amplification in RNNs1122

5.3.1 Rank-2 RNN model1123

We examined the scaling properties of EPI by learning connectivities of RNNs of increasing size1124

that exhibit stable amplification. Rank-2 RNN connectivity was modeled as W = UV >, where1125

U =
[
U1 U2

]
+ gχ(W ), V =

[
V1 V2

]
+ gχ(V ), and χ

(W )
i,j , χ

(V )
i,j ∼ N (0, 1). This RNN model has1126

dynamics1127

τ ẋ = −x +Wx. (62)

In this analysis, we inferred connectivity parameterizations z =
[
U>1 ,U

>
2 ,V

>
1 ,V

>
2

]> ∈ [−1, 1](4N)
1128

that produced stable amplification using EPI, SMC-ABC [26], and SNPE [35] (see Section Related1129

Methods).1130

5.3.2 Stable amplification1131

For this RNN model to be stable, all real eigenvalues of W must be less than 1: real(λ1) < 1,1132

where λ1 denotes the greatest real eigenvalue of W . For a stable RNN to amplify at least one input1133

pattern, the symmetric connectivity W s = W+W>
2 must have an eigenvalue greater than 1: λs1 > 1,1134

where λs is the maximum eigenvalue of W s. These two conditions are necessary and sufficient for1135

stable amplification in RNNs [51].1136

5.3.3 EPI details for RNNs1137

We defined the emergent property of stable amplification with means of these eigenvalues (0.51138

and 1.5, respectively) that satisfy these conditions. To complete the emergent property definition,1139

we chose variances (0.252) about those means such that samples rarely violate the eigenvalue1140

constraints. To write the emergent property of Equation 5 in terms of the EPI optimization, we1141

have1142

f(x; z) =

real(λ1)(x; z)

λs1(x; z)

 , (63)
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1143

µ =

0.5

1.5

 , (64)

and1144

σ2 =

0.252

0.252

 (65)

(see Sections 5.1.3-5.1.4, and example in Section 5.1.5). Gradients of maximum eigenvalues of Her-1145

mitian matrices like W s are available with modern automatic differentiation tools. To differentiate1146

through the real(λ1), we solved the following equation for eigenvalues of rank-2 matrices using the1147

rank reduced matrix W r = V >U1148

λ± =
Tr(W r)±

√
Tr(W r)2 − 4Det(W r)

2
. (66)

For EPI in Fig. 2, we used a real NVP architecture with three coupling layers of affine transfor-1149

mations parameterized by two-layer neural networks of 100 units per layer. The initial distribution1150

was a standard isotropic gaussian z0 ∼ N (0, I) mapped to the support of zi ∈ [−1, 1]. We used an1151

augmented lagrangian coefficient of c0 = 103, a batch size n = 200, β = 4, and we simulated one1152

W(i) per z(i). We chose to use imax = 500 iterations per augmented lagrangian epoch and emergent1153

property constraint convergence was evaluated at Ntest = 200 (Fig. 2B blue line, and Fig. 2C-D1154

blue). It was fastest to initialize the EPI distribution on a Tesla V100 GPU, and then subsequently1155

optimize it on a CPU with 32 cores. EPI timing measurements accounted for this initialization1156

period.1157

5.3.4 Methodological comparison1158

We compared EPI to two alternative simulation-based inference techniques, since the likelihood1159

of these eigenvalues given z is not available. Approximate bayesian computation (ABC) [24] is a1160

rejection sampling technique for obtaining sets of parameters z that produce activity x close to some1161

observed data x0. Sequential Monte Carlo approximate bayesian computation (SMC-ABC) is the1162

state-of-the-art ABC method, which leverages SMC techniques to improve sampling speed. We ran1163

SMC-ABC with the pyABC package [94] to infer RNNs with stable amplification: connectivities1164

having eigenvalues within an ε-defined l-2 distance of1165

x0 =

real(λ1)

λs1

 =

0.5

1.5

 . (67)
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Figure S5: Number of parameters in deep probability distribution architectures of EPI (blue) and

SNPE (orange) by RNN size (N).

SMC-ABC was run with a uniform prior over z ∈ [−1, 1](4N), a population size of 1,000 particles1166

with simulations parallelized over 32 cores, and a multivariate normal transition model.1167

SNPE, the next approach in our comparison, is far more similar to EPI. Like EPI, SNPE treats pa-1168

rameters in mechanistic models with deep probability distributions, yet the two learning algorithms1169

are categorically different. SNPE uses a two-network architecture to approximate the posterior dis-1170

tribution of the model conditioned on observed data x0. The amortizing network maps observations1171

xi to the parameters of the deep probability distribution. The weights and biases of the parameter1172

network are optimized by sequentially augmenting the training data with additional pairs (zi, xi)1173

based on the most recent posterior approximation. This sequential procedure is important to get1174

training data zi to be closer to the true posterior, and xi to be closer to the observed data. For1175

the deep probability distribution architecture, we chose a masked autoregressive flow with affine1176

couplings (the default choice), three transforms, 50 hidden units, and a normalizing flow mapping1177

to the support as in EPI. This architectural choice closely tracked the size of the architecture used1178

by EPI (Fig. S5). As in SMC-ABC, we ran SNPE with x0 = µ. All SNPE optimizations were run1179

for a limit of 1.5 days, or until two consecutive rounds resulted in a validation log probability lower1180

than the maximum observed for that random seed. It was always faster to run SNPE on a CPU1181

with 32 cores rather than on a Tesla V100 GPU.1182

To compare the efficiency of these algorithms for inferring RNN connectivity distributions producing1183

stable amplification, we develop a convergence criteria that can be used across methods. While EPI1184

has its own hypothesis testing convergence criteria for the emergent property, it would not make1185

sense to use this criteria on SNPE and SMC-ABC which do not constrain the means and variances1186
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of their predictions. Instead, we consider EPI and SNPE to have converged after completing its1187

most recent optimization epoch (EPI) or round (SNPE) in which the distance |Ez,x [f(x; z)]− µ|21188

is less than 0.5. We consider SMC-ABC to have converged once the population produces samples1189

within the ε = 0.5 ball ensuring stable amplification.1190

When assessing the scalability of SNPE, it is important to check that alternative hyperparamter-1191

izations could not yield better performance. Key hyperparameters of the SNPE optimization are1192

the number of simulations per round nround, the number of atoms used in the atomic proposals of1193

the SNPE-C algorithm [95], and the batch size n. To match EPI, we used a batch size of n = 2001194

for N <= 25, however we found n = 1, 000 to be helpful for SNPE in higher dimensions. While1195

nround = 1, 000 yielded SNPE convergence for N <= 25, we found that a substantial increase to1196

nround = 25, 000 yielded more consistent convergence at N = 50 (Fig. S6A). By increasing nround,1197

we also necessarily increase the duration of each round. At N = 100, we tried two hyperparameter1198

modifications. As suggested in [95], we increased natom by an order of magnitude to improve gra-1199

dient quality, but this had little effect on the optimization (much overlap between same random1200

seeds) (Fig. S6B). Finally, we increased nround by an order of magnitude, which yielded conver-1201

gence in one case, but no others. We found no way to improve the convergence rate of SNPE1202

without making more aggressive hyperparameter choices requiring high numbers of simulations. In1203

Figure 2C-D, we show samples from the random seed resulting in emergent property convergence1204

at greatest entropy (EPI), the random seed resulting in greatest validation log probability (SNPE),1205

and the result of all converged random seeds (SMC).1206

5.3.5 Effect of RNN parameters on EPI and SNPE inferred distributions1207

To clarify the difference in objectives of EPI and SNPE, we show their results on RNN models1208

with different numbers of neurons N and random strength g. The parameters inferred by EPI1209

consistently produces the same mean and variance of real(λ1) and λs1, while those inferred by1210

SNPE change according to the model definition (Fig. S7A). For N = 2 and g = 0.01, the SNPE1211

posterior has greater concentration in eigenvalues around x0 than at g = 0.1, where the model has1212

greater randomness (Fig. S7B top, orange). At both levels of g when N = 2, the posterior of SNPE1213

has lower entropy than EPI at convergence (Fig. S7B top). However at N = 10, SNPE results in1214

a predictive distribution of more widely dispersed eigenvalues (Fig. S7A bottom), and an inferred1215

posterior with greater entropy than EPI (Fig. S7B bottom). We highlight these differences not1216

to focus on an insightful trend, but to emphasize that these methods optimize different objectives1217
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# simulations time (min)

A N = 50

N = 100B

# simulations time (min)

N = 100C

# simulations time (min)

Figure S6: SNPE convergence was enabled by increasing nround, not natom. A. Difference of mean

predictions x0 throughout optimization at N = 50 with by simulation count (left) and wall time

(right) of SNPE with nround = 5, 000 (light orange), SNPE with nround = 25, 000 (dark orange),

and EPI (blue). Each line shows an individual random seed. B. Same conventions as A at N = 100

of SNPE with natom = 100 (light orange) and natom = 1, 000 (dark orange). C. Same conventions

as A at N = 100 of SNPE with nround = 25, 000 (light orange) and nround = 250, 000 (dark orange).
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with different implications.1218

Note that SNPE converges when it’s validation log probability has saturated after several rounds1219

of optimization (Fig. S7C), and that EPI converges after several epochs of its own optimization1220

to enforce the emergent property constraints (Fig. S7D blue). Importantly, as SNPE optimizes1221

its posterior approximation, the predictive means change, and at convergence may be different1222

than x0 (Fig. S7D orange, left). It is sensible to assume that predictions of a well-approximated1223

SNPE posterior should closely reflect the data on average (especially given a uniform prior and1224

a low degree of stochasticity), however this is not a given. Furthermore, no aspect of the SNPE1225

optimization controls the variance of the predictions (Fig. S7D orange, right).1226

5.4 Primary visual cortex1227

5.4.1 V1 model1228

E-I circuit models, rely on the assumption that inhibition can be studied as an indivisible unit,1229

despite ample experimental evidence showing that inhibition is instead composed of distinct ele-1230

ments [63]. In particular three types of genetically identified inhibitory cell-types – parvalbumin1231

(P), somatostatin (S), VIP (V) – compose 80% of GABAergic interneurons in V1 [61–63], and follow1232

specific connectivity patterns (Fig. 3A) [64], which lead to cell-type specific computations [47,96].1233

Currently, how the subdivision of inhibitory cell-types, shapes correlated variability by reconfigur-1234

ing recurrent network dynamics is not understood.1235

In the stochastic stabilized supralinear network [59], population rate responses x to mean input h,1236

recurrent input Wx and slow noise ε are governed by1237

τ
dx

dt
= −x + φ(Wx + h + ε), (68)

where the noise is an Ornstein-Uhlenbeck process ε ∼ OU(τnoise,σ)1238

τnoisedεα = −εαdt+
√

2τnoiseσ̃αdB (69)

with τnoise = 5ms > τ = 1ms. The noisy process is parameterized as1239

σ̃α = σα

√
1 +

τ

τnoise
, (70)

so that σ parameterizes the variance of the noisy input in the absence of recurrent connectivity1240

(W = 0). As contrast c ∈ [0, 1] increases, input to the E- and P-populations increases relative to1241
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A B C

time (min) time (min)

D

EPI
SNPE

time (min) time (min) time (min) time (min)

Figure S7: Model characteristics affect predictions of posteriors inferred by SNPE, while predictions

of parameters inferred by EPI remain fixed. A. Predictive distribution of EPI (blue) and SNPE

(orange) inferred connectivity of RNNs exhibiting stable amplification with N = 2 (top), N = 10

(bottom), g = 0.01 (left), and g = 0.1 (right). B. Entropy of parameter distribution approximations

throughout optimization with N = 2 (top), N = 10 (bottom), g = 0.1 (dark shade), and g = 0.01

(light shade). C. Validation log probabilities throughout SNPE optimization. Same conventions

as B. D. Adherence to EPI constraints. Same conventions as B.
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a baseline input h = hb + chc. Connectivity (Wfit) and input (hb,fit and hc,fit) parameters were fit1242

using the deterministic V1 circuit model [47]1243

Wfit =


WEE WEP WES WEV

WPE WPP WPS WPV

WSE WSP WSS WSV

WV E WV P WV S WV V

 =


2.18 −1.19 −.594 −.229

1.66 −.651 −.680 −.242

.895 −5.22× 10−3 −1.51× 10−4 −.761

3.34 −2.31 −.254 −2.52× 10−4

 ,
(71)

hb,fit =


.416

.429

.491

.486

 , (72)

and1244

hc,fit =


.359

.403

0

0

 . (73)

To obtain rates on a realistic scale (100-fold greater), we map these fitted parameters to an equiv-1245

alence class1246

W =


WEE WEP WES WEV

WPE WPP WPS WPV

WSE WSP WSS WSV

WV E WV P WV S WV V

 =


.218 −.119 −.0594 −.0229

.166 −.0651 −.068 −.0242

.0895 −5.22× 10−4 −1.51× 10−5 −.0761

.334 −.231 −.0254 −2.52× 10−5

 ,
(74)

hb =


hb,E

hb,P

hb,S

hb,V

 =


4.16

4.29

4.91

4.86

 , (75)
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and1247

hc =


hc,E

hc,P

hc,S

hc,V

 =


3.59

4.03

0

0

 . (76)

Circuit responses are simulated using T = 200 time steps at dt = 0.5ms from an initial condition1248

drawn from x(0) ∼ U [10Hz, 25Hz]. Standard deviation of the E-population sE(x; z) is calculated1249

as the square root of the temporal variance from tss = 75ms to Tdt = 100ms1250

sE(x; z) =

√
Et>tss

[
(xE(t)− Et>tss [xE(t)])2

]
. (77)

5.4.2 EPI details for the V1 model1251

To write the emergent properties of Equation 7 in terms of the EPI optimization, we have1252

f(x; z) = sE(x; z), (78)

1253

µ =
[
5
]

(79)

(or µ =
[
10
]
), and1254

σ2 =
[
12
]

(80)

(see Sections 5.1.3-5.1.4, and example in Section 5.1.5).1255

For EPI in Figures 3D-E and S8, we used a real NVP architecture with three coupling layers1256

and two-layer neural networks of 50 units per layer. The normalizing flow architecture mapped1257

z0 ∼ N (0, I) to a support of z = [σE , σP , σS , σV ] ∈ [0.0, 0.5]4. EPI optimization was run using three1258

different random seeds for architecture initialization θ with an augmented lagrangian coefficient of1259

c0 = 10−1, β = 2, a batch size n = 100, and simulated 100 trials to calculate average sE(x; z) for1260

each z(i). We used imax = 2, 000 iterations per epoch. The distributions shown are those of the1261

architectures converging with criteria Ntest = 100 at greatest entropy across three random seeds.1262

Optimization details are shown in Figure S9. The sums of squares of each pair of parameters are1263

shown for each EPI distribution in Figure S10. The plots are histograms of 500 samples from each1264

EPI distribution from which the significance p-values of Section 3.4 are determined.1265
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Figure S8: EPI inferred distribution for X (10Hz).

5.4.3 Sensitivity analyses1266

In Fig. 3E, we visualize the modes of qθ(z | X ) throughout the σE-σP marginal. At each local1267

mode z∗(σP ), where σP is fixed, we calculated the Hessian and visualized the sensitivity dimension1268

in the direction of positive σE .1269

5.4.4 Testing for the paradoxical effect1270

The paradoxical effect occurs when a populations steady state rate is decreased (or increased)1271

when an increase (decrease) in current is applied to that population [12]. To see which, if any,1272

populations exhibited a paradoxical effect, we examined responses to changes in input (Fig. S11).1273

Input magnitudes were chosen so that the effect is salient (0.002 for E and P, but 0.02 for S and1274

V). Only the P-population exhibited the paradoxical effect at this connectivity W and input h.1275

5.4.5 Primary visual cortex: Mathematical intuition and challenges1276

The dynamical system that we are working with can be written as1277
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A B

Figure S9: EPI optimization qθ(z | X (5Hz)) A. Entropy throughout optimization. B. The emergent

property statistic means and variances converge to their constraints at 8,000 iterations following

the fourth augmented lagrangian epoch.

dx =
1

τ
(−x+ f(Wx+ h+ ε))dt

dε = − dt

τnoise
ε+

√
2

√
τnoise

ΣεdW
(81)

Where in this paper we chose1278

Σε = τnoise


σ̃E 0 0 0

0 σ̃P 0 0

0 0 σ̃S 0

0 0 0 σ̃V

 (82)

where σ̃α is the reparameterized standard deviation of the noise for population α from Equation1279

70.1280

In order to compute this covariance, we define v = ωx+ h+ ε and S = I −ωf ′(v)), to re-write Eq.1281

(81) as an 8-dimensional system:1282

d

δv
ε

 = −

S − τnoise−τ
ττnoise

I

0 1
τnoise

I

δv
ε

 dt+

0
√

2√
τnoise

Σε

0
√

2√
τnoise

Σε

 dW (83)

Where dW is a vector with the private noise of each variable. The dW term is multiplied by a1283

non-diagonal matrix is because the noise that the voltage receives is the exact same than the one1284

that comes from the OU process and not another process. The solution of this problem is given by1285

the Lyapunov Equation [59,66]:1286
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Figure S10: EPI predictive distributions of the sum of squares of each pair of noise parameters.

S − τnoise−τ
ττnoise

I

0 1
τnoise

I

Λv Λc

ΛTc Λε

+

Λv Λc

ΛTc Λε

 ST 0

− τnoise−τ
ττnoise

I 1
τnoise

I

 =

 2
τnoise

Λε
2

τnoise
Λε

2
τnoise

Λε
2

τnoise
Λε

 (84)

To obtain an equation for Λv, we solve this block matrix multiplication:1287

SΛv + ΛvS
T =

2Λε
τnoise

+
τ2

noise − τ2

(ττnoise)2

(
(

1

τnoise
I + S)−1Λε + Λε(

1

τnoise
I + ST )−1

)
(85)

Which is another Lyapunov Equation, now in 4 dimensions. In the simplest case in which τnoise =

τ , the voltage is directly driven by white noise, and Λv can be expressed in powers of S and

ST . Because S satisfies its own polynomial equation (Cayley Hamilton theorem), there will be 4

coefficients for the expansion of S and 4 for ST , resulting in 16 coefficients that define Λv for a

given S. Due to symmetry arguments [66], in this case the diagonal elements of the covariance

matrix of the voltage will have the form:

Λvii =
∑

i={E,P,S,V }

gi(S)σ2
ii (86)

These coefficients gi(S) are complicated functions of the Jacobian of the system. Although expres-1288

sions for these coefficients can be found explicitly, only numerical evaluation of those expressions1289

determine which components of the noisy input are going to strongly influence the variability of ex-1290

citatory population. Showing the generality of this dependence in more complicated noise scenarios1291

(e.g. τnoise > τ as in Section 3.4), is the focus of current research.1292
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E
P
S
V

Figure S11: (Left) SSSN simulations for small increases in neuron-type population input. (Right)

Average (solid) and standard deviation (shaded) of stochastic fluctuations of responses.
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5.5 Superior colliculus1293

5.5.1 SC model1294

The ability to switch between two separate tasks throughout randomly interleaved trials, or “rapid1295

task switching,” has been studied in rats, and midbrain superior colliculus (SC) has been show to1296

play an important in this computation [67]. Neural recordings in SC exhibited two populations of1297

neurons that simultaneously represented both task context (Pro or Anti) and motor response (con-1298

tralateral or ipsilateral to the recorded side), which led to the distinction of two functional classes:1299

the Pro/Contra and Anti/Ipsi neurons [48]. Given this evidence, Duan et al. proposed a model1300

with four functionally-defined neuron-type populations: two in each hemisphere corresponding to1301

the Pro/Contra and Anti/Ipsi populations. We study how the connectivity of this neural circuit1302

governs rapid task switching ability.1303

The four populations of this model are denoted as left Pro (LP), left Anti (LA), right Pro (RP)1304

and right Anti (RA). Each unit has an activity (xα) and internal variable (uα) related by1305

xα = φ(uα) =

(
1

2
tanh

(
uα − a
b

)
+

1

2

)
, (87)

where α ∈ {LP,LA,RA,RP}, a = 0.05 and b = 0.5 control the position and shape of the nonlin-1306

earity. We order the neural populations of x and u in the following manner1307

x =


xLP

xLA

xRP

xRA

 u =


uLP

uLA

uRP

uRA

 , (88)

which evolve according to1308

τ
du

dt
= −u +Wx + h + dB. (89)

with time constant τ = 0.09s, step size 24ms and Gaussian noise dB of variance 0.22. These1309

hyperparameter values are motivated by modeling choices and results from [48].1310

The weight matrix has 4 parameters for self sW , vertical vW , horizontal hW , and diagonal dW1311

connections:1312

W =


sW vW hW dW

vW sW dW hW

hW dW sW vW

dW hW vW sW

 . (90)
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A B

C

Figure S12: A. Same pairplot as Fig. 4C colored by Pro task accuracy. B. Same as A colored by

Anti task accuracy. C. Connectivity parameters of EPI distributions versus task accuracies. β is

slope coefficient of linear regression, r is correlation, and p is the two-tailed p-value.
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Pro, Left

Anti, Left

A B
LP
RP
RA
LA

Figure S13: A. Simulations in network regime 1: z∗(sW = −0.75). B. Simulations in network

regime 2: z∗(sW = 0.75).

We study the role of parameters z = [sW, vW, hW, dW ]> in rapid task switching.1313

The circuit receives four different inputs throughout each trial, which has a total length of 1.8s.1314

h = hconstant + hP,bias + hrule + hchoice-period + hlight. (91)

There is a constant input to every population,1315

hconstant = Iconstant[1, 1, 1, 1]>, (92)

a bias to the Pro populations1316

hP,bias = IP,bias[1, 0, 1, 0]>, (93)

rule-based input depending on the condition1317

hP,rule(t) =


IP,rule[1, 0, 1, 0]>, if t ≤ 1.2s

0, otherwise

(94)

1318

hA,rule(t) =


IA,rule[0, 1, 0, 1]>, if t ≤ 1.2s

0, otherwise

, (95)

a choice-period input1319

hchoice(t) =


Ichoice[1, 1, 1, 1]>, if t > 1.2s

0, otherwise

, (96)
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Figure S14: A. Invariant eigenvectors of connectivity matrix W . B. Accuracies for connectivity

perturbations when changing λall and λside (λtask and λdiag shown in Fig. 4D).

and an input to the right or left-side depending on where the light stimulus is delivered1320

hlight(t) =


Ilight[1, 1, 0, 0]>, if 1.2s < t < 1.5s and Left

Ilight[0, 0, 1, 1]>, if 1.2s < t < 1.5s and Right

0, otherwise

. (97)

The input parameterization was fixed to Iconstant = 0.75, IP,bias = 0.5, IP,rule = 0.6, IA,rule = 0.6,1321

Ichoice = 0.25, and Ilight = 0.5.1322

5.5.2 Task accuracy calculation1323

The accuracies of the Pro and Anti tasks are calculated as1324

pP (x; z) = Ex∼p(x|z) [dP (x; z)] (98)

and1325

pA(x; z) = Ex∼p(x|z) [dA(x; z)] (99)
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Figure S15: (Left) Mean and standard error of Pro and Anti error from regime 1 to regime 2 at

γ = 0.85. (Right) Correlations of connectivity eigenvalues with Anti error from regime 1 to regime

2 at γ = 0.85.

where dP (x; z) and dA(x; z) calculate the decision made in each trial (approximately 1 for correct1326

and 0 for incorrect choices). Specifically,1327

dP (x; z) = Θ[xLP (t = 1.8s)− xRP (t = 1.8s)] (100)

in Pro trials where the stimulus is on the left side, and Θ approximates the Heaviside step function.1328

Similarly,1329

dA(x; z) = Θ[xRP (t = 1.8s)− xLP (t = 1.8s)] (101)

in Anti trials where the stimulus was on the left side. Our accuracy calculation only considers one1330

stimulus presentation (Left), since the model is left-right symmetric. The accuracy is averaged over1331

200 independent trials, and the Heaviside step function is approximated as1332

Θ(x) = sigmoid(βΘx), (102)

where βΘ = 100.1333

5.5.3 EPI details for the SC model1334

To write the emergent properties of Equation 9 in terms of the EPI optimization, we have1335

f(x; z) =

dP (x; z)

dA(x; z)

 (103)

1336

µ =

.75

.75

 , (104)
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Figure S16: (Left) Mean and standard deviation (shading) of responses of the SC model at the mode

of the EPI distribution to delay period inactivation at γ = 0.675. Accuracy in Pro (top) and Anti

(bottom) task is shown as a percentage. (Right) Anti accuracy following delay period inactivation

at γ = 0.675 versus accuracy in the Pro task across connectivities in the EPI distribution.

A B

Figure S17: EPI optimization of the SC model producing rapid task switching. A. Entropy through-

out optimization. B. The emergent property statistic means and variances converge to their con-

straints at 20,000 iterations following the tenth augmented lagrangian epoch.

and1337

σ2 =

.0752

.0752

 (105)

(see Sections 5.1.3-5.1.4, and example in Section 5.1.5).1338

Throughout optimization, the augmented lagrangian parameters η and c, were updated after each1339

epoch of imax = 2, 000 iterations (see Section 5.1.4). The optimization converged after ten epochs1340

(Fig. S16).1341

For EPI in Fig. 4C, we used a real NVP architecture with three coupling layers of affine transfor-1342

mations parameterized by two-layer neural networks of 50 units per layer. The initial distribution1343

was a standard isotropic gaussian z0 ∼ N (0, I) mapped to a support of zi ∈ [−5, 5]. We used an1344
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Figure S18: A.Rapid task switching SC connectivities obtained from random sampling. B. Task

accuracies of the inferred distributions from random sampling (top) and EPI (bottom).

augmented lagrangian coefficient of c0 = 102, a batch size n = 100, and β = 2. The distribution1345

was the greatest EPI distribution to converge across 5 random seeds with criteria Ntest = 25.1346

The bend in the EPI distribution is not a spurious result of the EPI optimization. The structure1347

discovered by EPI matches the shape of the set of points returned from brute-force random sampling1348

(Fig. S18A) These connectivities were sampled from a uniform distribution over the range of each1349

connectivity parameter, and all parameters producing accuracy in each task within the range of1350

60% to 90% were kept. This set of connectivities will not match the distribution of EPI exactly,1351

since it is not conditioned on the emergent property. For example the parameter set returned by1352

the brute-force search is biased towards lower accuracies (Fig. S18B).1353

5.5.4 Mode identification with EPI1354

We found one mode of the EPI distribution for fixed values of sW from 1 to -1 in steps of 0.25.1355

To begin, we chose an initial parameter value from 500 parameter samples z ∼ qθ(z | X ) that1356

had closest sW value to 1. We then optimized this estimate of the mode (for fixed sW ) using1357

probability gradients of the deep probability distribution for 500 steps of gradient ascent with a1358

learning rate of 5 × 10−3. The next mode (at sW = 0.75) was found using the previous mode as1359

the initialization. This and all subsequent optimizations used 200 steps of gradient ascent with a1360

learning rate of 1×10−3, except at sW = −1 where a learning rate of 5×10−4 was used. During all1361
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mode identification optimizations, the learning rate was reduced by half (decay = 0.5) after every1362

100 iterations.1363

5.5.5 Sample grouping by mode1364

For the analyses in Figure 5C and Figure S15, we obtained parameters for each step along the1365

continuum between regimes 1 and 2 by sampling from the EPI distribution. Each sample was1366

assigned to the closest mode z∗(sW ). Sampling continued until 500 samples were assigned to each1367

mode, which took 2.67 seconds (5.34ms/sample-per-mode). It took 9.59 minutes to obtain just1368

5 samples for each mode with brute force sampling requiring accuracies between 60% and 90%1369

in each task (115s/sample-per-mode). This corresponds to a sampling speed increase of roughly1370

21,500 once the EPI distribution has been learned.1371

5.5.6 Sensitivity analysis1372

At each mode, we measure the sensitivity dimension (that of most negative eigenvalue in the Hessian1373

of the EPI distribution) v1(z∗). To resolve sign degeneracy in eigenvectors, we chose v1(z∗) to have1374

negative element in hW . This tells us what parameter combination rapid task switching is most1375

sensitive to at this parameter choice in the regime.1376

5.5.7 Connectivity eigendecomposition and processing modes1377

To understand the connectivity mechanisms governing task accuracy, we took the eigendecomposi-1378

tion of the connectivity matrices W = QΛQ−1, which results in the same eigenmodes qi for all W1379

parameterized by z (Fig. S14A). These eigenvectors are always the same, because the connectivity1380

matrix is symmetric and the model also assumes symmetry across hemispheres, but the eigenvalues1381

of connectivity (or degree of eigenmode amplification) change with z. These basis vectors have in-1382

tuitive roles in processing for this task, and are accordingly named the all eigenmode - all neurons1383

co-fluctuate, side eigenmode - one side dominates the other, task eigenmode - the Pro or Anti pop-1384

ulations dominate the other, and diag mode - Pro- and Anti-populations of opposite hemispheres1385

dominate the opposite pair. Due to the parametric structure of the connectivity matrix, the pa-1386

rameters z are a linear function of the eigenvalues λ = [λall, λside, λtaskλdiag]> associated with these1387

eigenmodes.1388

z = Aλ (106)
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1389

A =
1

4


1 1 1 1

1 −1 −1 1

1 1 −1 −1

1 −1 1 −1

 . (107)

We are interested in the effect of raising or lowering the amplification of each eigenmode in the1390

connectivity matrix by perturbing individual eigenvalues λ. To test this, we calculate the unit1391

vector of changes in the connectivity z that result from a change in the associated eigenvalues1392

va =
∂z
∂λa

| ∂z∂λa |2
, (108)

where1393

∂z

∂λa
= Aea, (109)

and e.g. eall = [1, 0, 0, 0]>. So va is the normalized column of A corresponding to eigenmode1394

a. The parameter dimension va (a ∈ {all, side, task, and diag}) that increases the eigenvalue of1395

connectivity λa is z-invariant (Equation 109) and va ⊥ vb6=a. By perturbing z along va, we1396

can examine how model function changes by directly modulating the connectivity amplification of1397

specific eigenmodes, which having interpretable roles in processing in each task.1398

5.5.8 Modeling optogenetic silencing.1399

We tested whether the inferred SC model connectivities could reproduce experimental effects of1400

optogenetic inactivation in rats [48]. During periods of simulated optogenetic inactivation, activity1401

was decreased proportional to the optogenetic strength γ ∈ [0, 1]1402

xα = (1− γ)φ(uα). (110)

Delay period inactivation was from 0.8 < t < 1.2.1403
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