
1 

 

A multi-measure approach for assessing the performance of fMRI preprocessing 

strategies in resting-state functional connectivity 

Michalis Kassinopoulos1, Georgios D. Mitsis2 

 

1Graduate Program in Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada 

2Department of Bioengineering, McGill University, Montreal, QC, Canada 

 

Abstract 

It is well established that head motion and physiological processes (e.g. cardiac and breathing activity) should be taken 1 

into consideration when analyzing and interpreting results in fMRI studies. However, even though recent studies aimed 2 

to evaluate the performance of different preprocessing pipelines there is still no consensus on the optimal strategy. This 3 

is partly due to the fact that the quality control (QC) metrics used to evaluate differences in performance across pipelines 4 

have often yielded contradictory results. Furthermore, preprocessing techniques based on physiological recordings or 5 

data decomposition techniques (e.g. aCompCor) have not been comprehensively examined. Here, to address the 6 

aforementioned issues, we propose a framework that summarizes the scores from eight previously proposed and novel 7 

QC metrics to a reduced set of two QC metrics that reflect the signal-to-noise ratio and the reduction in motion artifacts 8 

and biases in the preprocessed fMRI data. Using this framework, we evaluate the performance of three commonly used 9 

practices on the quality of data: 1) Removal of nuisance regressors from fMRI data, 2) discarding motion-contaminated 10 

volumes (i.e., scrubbing) before regression, and 3) low-pass filtering the data and the nuisance regressors before their 11 

removal. Using resting-state fMRI data from the Human Connectome Project, we show that the scores of the examined 12 

QC metrics improve the most when the global signal (GS) and about 17% of principal components from white matter 13 

(WM) are removed from the data. Finally, we observe a small further improvement with low-pass filtering at 0.20 Hz 14 

and milder variants of WM denoising, but not with scrubbing. 15 

 16 
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1. Introduction 27 

Functional connectivity (FC) using resting-state functional magnetic resonance imaging (fMRI) has attracted much 28 

attention since Biswal and colleagues first demonstrated that, during rest, the blood-oxygen-level-dependent (BOLD) 29 

signals in distinct areas of the somatomotor network are temporally correlated (Biswal et al., 1995). Strategies for 30 

studying resting-state FC have advanced in the last two decades, allowing the identification of large-scale functional 31 

networks, termed resting-state networks (RSNs; Fox et al., 2005; Smith et al., 2013b) that are also known to activate (or 32 

deactivate in the case of the default mode network) on a range of tasks (Raichle et al., 2001; Smith et al., 2009). The 33 

whole-brain functional connectivity (FC) is similar across subjects but at the same time has a subject-specific component 34 

as well. (Finn et al., 2015). FC estimates have been shown to predict behavioral measures in individuals (Smith et al., 35 

2015), while differences in FC have been reported in patients with a range of cerebrovascular and mental disorders 36 

compared to healthy subjects (Demirtaş et al., 2016; Leonardi et al., 2013; Woodward and Cascio, 2015). These findings 37 

suggest that FC has the potential to improve our understanding regarding the functional organization over development, 38 

aging, and diseases states, as well as assist in the development of new biomarkers. 39 

However, a main problem in fMRI is that significant variance on the BOLD signal is driven by head motion, which has 40 

been shown to have severe consequences on FC studies (Power et al., 2015; Satterthwaite et al., 2019). Motion artifacts 41 

tend to be more similar in nearby regions compared to distant regions (Power et al., 2012; Satterthwaite et al., 2012; van 42 

Dijk et al., 2012). As a result, correlations between regions that are close to each other (short-distance correlations) tend 43 

to be inflated by motion more compared to distant regions (long-distance correlations; see for example Fig. 5 in 44 

Satterthwaite et al., 2013). Consequently, in studies comparing differences in FC between populations that exhibit 45 

different levels of motion, motion artifacts can cause artificial differences in FC between the examined populations. 46 

Therefore, this should be carefully considered in the preprocessing and analysis of the data. This phenomenon is 47 

particularly problematic for studies of development, aging and disease as children, elderly and patients tend to move 48 

more during the scan than young or control subjects (Power et al., 2015).  49 

Importantly, confounds in fMRI arise also from physiological noise  (Caballero-Gaudes and Reynolds, 2017; Liu, 2016; 50 

Murphy et al., 2013). Cardiac pulsatility in large vessels caused by cardiac-related pressure changes generates small 51 

movements in and around large vessels. In turn, these movements introduce fast pseudo-periodic fluctuations (~1 Hz) in 52 

the BOLD signal (Dagli et al., 1999), particularly in areas around the brainstem as well as areas in the superior sagittal 53 

sinus and lateral sulcus. Similarly, breathing motion introduces high-frequency artifacts (~0.3 Hz) particularly at the 54 

edges of the brain. Slow-frequency fluctuations in heart rate and breathing pattern (<0.1 Hz) are also typically observed 55 

during rest which have a direct effect on the levels of oxygenated hemoglobin in the brain (Birn et al., 2006; Chang et 56 

al., 2009; Kassinopoulos and Mitsis, 2021, 2019; Shmueli et al., 2007). As a result, they affect widespread regions in the 57 

gray matter (GM). Group-level statistical maps generated in our previous work with areas affected by the aforementioned 58 

physiological processes are available on  https://neurovault.org/collections/5654/ (Fig. 12 in Kassinopoulos and Mitsis, 59 

2019). Finally, widespread regions in GM are also prone to artifacts induced by slow spontaneous fluctuations in levels 60 

of arterial carbon dioxide (Prokopiou et al., 2019; Wise et al., 2004) and blood pressure (Whittaker et al., 2019). fMRI 61 

fluctuations induced by changes in physiological signals are of particular concern as there is accumulating evidence that 62 

physiological processes can considerably affect FC estimates if not taken into account during the preprocessing stage 63 

(Birn, 2012; Birn et al., 2008a; Chang and Glover, 2009; Chen et al., 2020; Tong et al., 2019). 64 

Several noise correction techniques (NCTs) have been proposed to correct for head motion artifacts and physiological 65 

noise that can be classified as model-based or model-free techniques. In the case of head motion, model-based techniques 66 

are based on the motion parameters (MPs) estimated from volume realignment performed in the initial steps of 67 

preprocessing. Three translational and three rotational displacement parameters are estimated from volume realignment 68 

that describe the rigid-body movement of head in space, yielding in total 6 MPs. The most common practice used in FC 69 

studies to account for motion is to remove the 6 MPs from the data through linear regression (Power et al., 2015). 70 

Sometimes the derivatives of the 6 MPs or even the squared terms of these 12 time series are also removed from the data 71 

(Satterthwaite et al., 2013). Another practice employed in recent studies, termed scrubbing, is to identify volumes 72 
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contaminated by strong motion artifacts and discard them from the data or replace them with values from the adjacent 73 

volumes using interpolation (Lemieux et al., 2007; Power et al., 2015). 74 

With regards to physiological noise, model-based techniques utilize physiological recordings collected during the fMRI 75 

scan. Typically, cardiac and breathing activity are recorded through a pulse oximeter and a respiratory bellow 76 

respectively, and are used to model their associated artifacts. The RETROICOR model proposed by Glover et al. (2000) 77 

employs the physiological recordings to generate nuisance regressors of sinusoidal signals that are in phase with the 78 

cardiac and breathing cycle. Subsequently, the extracted nuisance regressors are removed from the data through linear 79 

regression to account for artifacts related to cardiac pulsatility and breathing motion. Similarly, the convolution models 80 

proposed by Birn et al. (2008) and Chang et al. (2009) employ the physiological signals to extract heart rate and 81 

respiratory measures which are subsequently convolved with the so-called cardiac and respiration response functions. 82 

The outputs of these convolutions are used as nuisance regressors to account for the effects of heart rate and breathing 83 

(Birn et al., 2008b, 2006; Chang et al., 2009; Kassinopoulos and Mitsis, 2019). 84 

An alternative option for noise correction in fMRI are model-free techniques that, in contrast to model-based techniques, 85 

do not require external physiological recordings and, have the theoretical benefit to be independent of a pre-established 86 

model. Some model-free techniques are based on principal component analysis (PCA) or independent component 87 

analysis (ICA), which decompose the fMRI data into a number of components (Behzadi et al., 2007; Perlbarg et al., 88 

2007; Pruim et al., 2015b; Salimi-Khorshidi et al., 2014). Following this, components associated to noise are identified 89 

based on criteria such as their spatial pattern or frequency content and are subsequently removed from the data. 90 

Furthermore, low-pass filtering at about 0.08 Hz is commonly used to remove high-frequency noise as RSNs are known 91 

to exhibit slow oscillations below 0.1 Hz (Damoiseaux et al., 2006). Finally, the mean time series across voxels in the 92 

whole brain, referred to as global signal (GS), as well as mean time series from voxels in the three tissue compartments, 93 

GM, white matter (WM) and cerebrospinal fluid (CSF), are sometimes considered as nuisance regressors to account for 94 

global artifacts (Power et al., 2017). 95 

Even though combining a variety of NCTs and removing a large set of nuisance regressors from the data may effectively 96 

suppress the effects of motion and physiological noise, this approach also leads to a reduction in the degrees of freedom 97 

in the data and potentially a loss in the signal of interest. Due to this, the set of regressors chosen for a particular dataset 98 

needs to be considered in conjunction with the degrees of freedom in the data, which in turn depend on the duration of 99 

the data and sampling frequency. Importantly, preprocessing steps that often precede the removal of nuisance regressors, 100 

such as temporal filtering  and scrubbing, can also diminish the effective degrees of freedom in the data and increase the 101 

likelihood for spurious connectivity (Bright et al., 2017; Yan et al., 2013), which further complicates the task of choosing 102 

the optimal preprocessing pipeline. 103 

Recent studies have attempted to compare the performance of a variety of NCTs as well as preprocessing pipelines that 104 

consist of a combination of techniques mentioned earlier (Birn et al., 2014; Burgess et al., 2016; Ciric et al., 2017; Parkes 105 

et al., 2018). A number of quality control (QC) metrics reflecting properties such as the identifiability of RSNs or the 106 

mitigation of motion effects were used in these studies. However, a common finding in these studies is that the scores 107 

obtained from the QC metrics for the examined NCTs or pipelines often yielded contradictory results. For example, 108 

pipelines yielding the highest score in terms of RSN identifiability were found to be less successful in reducing motion 109 

artifacts (Ciric et al., 2017). Moreover, even though there is strong evidence that model-free techniques based on PCA 110 

or ICA are able to reduce artifacts due to head motion or physiological noise (Behzadi et al., 2007; Muschelli et al., 2014; 111 

Pruim et al., 2015a; Salimi-Khorshidi et al., 2014),  it is still an open question whether combining them with model-112 

based techniques can result in superior performance. 113 

In this work, we propose a framework for summarizing the scores of different signal and motion-related QC metrics by 114 

weighting these metrics according to their sensitivity. We define the sensitivity of a metric as the consistency of its scores 115 

across subgroups of subjects with similar levels of motion. Subsequently, using this multi-measure approach for assessing 116 

fMRI data quality, we compare the performance of several NCTs on multi-session resting-state fMRI data provided by 117 

the Human Connectome Project (Van Essen et al., 2013). The comparison of NCTs is done in a series of stages that 118 
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allows us to better understand the role of each technique (e.g. low-pass filtering) in noise correction. With respect to 119 

model-free approaches, we examine FIX (“FMRIB’s ICA-based X-noisefier”; Salimi-Khorshidi et al., 2014) as well as 120 

variants of aCompCor (Behzadi et al., 2007). FIX consists of whole-brain ICA decomposition followed by removal of 121 

noisy components identified using a multi-level classifier (Salimi-Khorshidi et al., 2014). Besides evaluating the 122 

performance of the original aCompCor approach, we examine whether removing more components than previously 123 

suggested, either from WM or CSF, is beneficial. Finally, for the variant of aCompCor that exhibits the best improvement 124 

in QC scores, we investigate the additional benefit of: 1) removing nuisance regressors derived from the MPs and 125 

physiological recordings, 2) excluding motion-contaminated volumes from the analysis, and 3) performing low-pass 126 

filtering before the removal of regressors.  127 
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2. Methodology 128 

Unless stated otherwise, the preprocessing and analysis described below were performed in Matlab (R2018b; Mathworks, 129 

Natick MA). 130 

2.1 Human Connectome Project (HCP) Dataset 131 

We used resting-state scans from the HCP S1200 release (Glasser et al., 2016; Van Essen et al., 2013). The HCP dataset 132 

includes, among others, resting-state (eyes-open and fixation on a cross-hair) data from healthy young individuals (age 133 

range: 22-35 years) acquired on two different days. On each day, two 15-minute scans were collected. We refer to the 134 

two scans collected on days 1 and 2 as R1a/R1b and R2a/R2b, respectively. fMRI acquisition was performed with a 135 

multiband factor of 8, spatial resolution of 2 mm isotropic voxels, and a repetition time TR of 0.72 s (Glasser et al., 136 

2013). 137 

The minimal preprocessing pipeline for the resting-state HCP dataset is described in Glasser et al. (2013). In brief, the 138 

pipeline includes gradient-nonlinearity-induced distortion correction, motion correction, EPI image distortion correction, 139 

non-linear registration to MNI space and mild high-pass (2000 s) temporal filtering. The motion parameters are included 140 

in the database for further correction of motion artifacts. Apart from the minimally preprocessed data, the HCP provides 141 

a cleaned version of the data whereby time series corresponding to ICA components that FIX classified as noisy as well 142 

as 24 motion-related regressors (i.e., the 6 MPs estimated during volume realignment along with their temporal 143 

derivatives and the squared terms of these 12 time series) were regressed out of the data (Smith et al., 2013a). The cleaned 144 

fMRI data are referred to later as FIX-denoised data.  145 

Both minimally-preprocessed and FIX-denoised data are available in volumetric MNI152 and grayordinate space. The 146 

grayordinate space combines cortical surface time series and subcortical volume time series from GM, and has more 147 

accurate spatial correspondence across subjects than volumetrically aligned data (Glasser et al., 2013; Glasser et al., 148 

2016), particularly when the fMRI data have high spatial resolution such as in HCP. 149 

In the present work, we examined minimally-preprocessed and FIX-denoised data in both volumetric and grayordinate 150 

(MSMall registration; Glasser et al., 2016) space from 390 subjects with good quality physiological signals (cardiac and 151 

breathing waveforms) in all four scans, as assessed by visual inspection. The cardiac and breathing signals were collected 152 

with a photoplethysmograph and respiratory bellow respectively. 153 

2.2 Parcellation of the fMRI data 154 

The following three fMRI-based atlases were considered in this study: 155 

a. The Gordon atlas (Gordon et al., 2016): This atlas is composed of 333 cortical regions with 286 parcels belonging 156 

to one of twelve large-scale networks and the rest being unassigned. Only the 286 parcels that are assigned to 157 

networks were considered in the present study. 158 

b. The Seitzman atlas (Seitzman et al., 2020): This atlas consists of 239 cortical, 34 subcortical and 27 cerebellar 159 

volumetric parcels. Among the 300 parcels, 285 parcels are assigned to one of thirteen large-scale networks and 160 

only these ones were considered here. 161 

c. The MIST atlas (Urchs et al., 2017): The MIST atlas is available in several resolutions ranging from 7 to 444 162 

parcels. In this study, we considered the MIST_444 parcellation that consists of 444 regions from the whole 163 

brain that are assigned to the 7 networks of the MIST_7 parcellation. 164 

All three atlases were defined on resting-state fMRI data and all (MIST) or the majority of (Gordon and Seitzman) their 165 

parcels were assigned to large-scale networks. The association of the parcels to networks is required for three of the 166 

quality control (QC) metrics described later (i.e., 𝐹𝐶𝐶, 𝐹𝐷-𝐹𝐶𝐶 and 𝐼𝐶𝐶𝐶). Therefore, as mentioned earlier, parcels that 167 

do not belong to a specific network were excluded from the study. 168 
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Before the parcellation, in the case of the Seitzman atlas, we performed spatial smoothing on the fMRI data with a 169 

Gaussian smoothing kernel of 5 mm full width half maximum (FWHM). Spatial smoothing is commonly done on fMRI 170 

data to suppress spatially random noise and enhance the signal-to-noise ratio (SNR). However, when mapping the fMRI 171 

data to a parcellation with relatively large parcels such as the parcels in the Gordon and MIST atlases, spatial smoothing 172 

is implicitly done. Therefore, we chose to omit spatial smoothing for these two atlases. We performed spatial smoothing 173 

before conducting the mapping to the Seitzman atlas because this atlas consists of small spherical ROIs of 8 mm diameter 174 

(Seitzman et al., 2020) and, thus, if spatial smoothing is not performed, the parcel time series extracted from these ROIs 175 

may suffer from low SNR. 176 

To speed up the preprocessing step, the regression of the nuisance regressors for each pipeline was performed in a parcel- 177 

rather than voxel-wise manner. In other words, the minimally-preprocessed and FIX-denoised fMRI data were first 178 

mapped to parcel time series by averaging the time series of all voxels or vertices within a parcel and, subsequently, the 179 

resulted parcel time series were corrected for noise using the techniques described later. The mapping of the fMRI data 180 

to the Gordon parcel space was done using the fMRI data in the grayordinate form, while the mapping to the Seitzman 181 

and MIST parcel space was done using the volumetric form of the fMRI data. Finally, to mitigate the influence of spurious 182 

low-frequency fluctuations on estimations of correlations, all parcel time series were high-pass filtered at 0.008  Hz, 183 

complying with the rule of thumb proposed in Leonardi & Van De Ville (2015) of a high-pass cut-off frequency 𝑓𝑐 ≥184 

1/(𝑤𝑖𝑛𝑑𝑜𝑤 𝑙𝑒𝑛𝑔𝑡ℎ) = 1/(15 𝑚𝑖𝑛). 185 

2.3 Tissue-based regressors 186 

The T1-weighted (T1w) images of each subject are provided in the HCP database in both the native and MNI152 space. 187 

To extract the tissue-based regressors used by several pipelines examined here, we initially performed tissue 188 

segmentation on the T1w images in the MNI152 space using FAST (FMRIB's Automated Segmentation Tool) in FSL 189 

5.0.9, generating probabilistic maps for the GM, WM and CSF compartments (Zhang et al., 2001). Subsequently, the 190 

GM, WM and CSF binary masks were defined as follows: voxels with a probability above 0.25 of belonging to GM were 191 

assigned to GM, while the same was done for WM and CSF for probability values of 0.9 and 0.8 respectively. The choice 192 

of the threshold values was made based on visual inspection while overlaying the binary maps on the T1w images. 193 

Finally, based on these maps, the global signal was defined as the mean fMRI time series across all voxels within GM. 194 

In addition, PCA regressors were obtained separately for voxels in WM and CSF. The GS and PCA regressors were 195 

derived from both the minimally-preprocessed and FIX-denoised fMRI data in the volumetric space. 196 

2.4 Model-based regressors related to motion and physiological fluctuations 197 

An important goal of this study was to quantify the effect of model-based NCTs with respect to the quality of the fMRI 198 

data for atlas-based FC analysis and how they contribute to fMRI denoising when combined with tissue-based regressors. 199 

Therefore, for each scan the following four sets of model-based regressors were considered: 200 

a. Motion parameters (MPs; 24 regressors): The 6 MPs derived from the volume realignment during the minimal 201 

preprocessing, as well as their temporal derivatives, are provided in the HCP database. In addition to the 12 202 

aforementioned time series (12 MPs), we derived their squared terms, yielding in total 24 motion parameters (24 203 

MPs). 204 

b. Cardiac regressors (6 regressors): The cardiac regressors were modelled using a 3rd order RETROICOR model 205 

(Glover et al., 2000) based on the cardiac signal of each scan. These regressors aimed at accounting for the effect 206 

of cardiac pulsatility on the fMRI time series. 207 

c. Breathing regressors (6 regressors): The breathing regressors were modelled using a 3rd order RETROICOR 208 

model based on the breathing signal of each scan (Glover et al., 2000). These regressors aimed at accounting for 209 

the effect of breathing motion. 210 

d. Systemic low frequency oscillations (SLFOs; 1 regressor): The SLFOs refer to non-neuronal physiological 211 

BOLD fluctuations induced by changes in heart rate and breathing patterns, which were modelled following the 212 

framework proposed in our previous work (Kassinopoulos and Mitsis, 2019). The heart rate and respiratory flow 213 
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extracted from the cardiac and breathing signals of each scan were convolved with scan-specific cardiac and 214 

respiratory response functions and the outputs of these convolutions were linearly combined to obtain the 215 

corresponding SLFOs. To estimate the scan-specific physiological response functions and determine the linear 216 

combination of heart rate- and respiratory flow- related components needed to model the SLFOs, numerical 217 

optimization techniques that maximize the fit of the model output (i.e., the SLFOs-related time series) to the GS 218 

were employed. The GS was used as a fitting target as it is strongly driven by fluctuations in heart rate and 219 

breathing patterns. For more information on this method we refer the reader to Kassinopoulos and Mitsis (2019). 220 

The codes for the estimation of SLFOs can be found on https://github.com/mkassinopoulos/PRF_estimation. 221 

Even though we selected subjects with good quality of physiological recordings, it was still important to preprocess both 222 

the cardiac and breathing signals to ensure the extraction of accurate heart rate and respiratory flow traces. To this end, 223 

we applied temporal filtering and correction for outliers as described in Kassinopoulos and Mitsis (2019). Moreover, as 224 

the effect of HR and breathing pattern variations on the fMRI BOLD signal is considered to last about half a minute 225 

(Kassinopoulos and Mitsis, 2019) physiological recordings for at least half a minute before the beginning of the fMRI 226 

acquisition would be required to account for these effects. However, due to the lack of data at this period, the first 40 227 

image volumes were disregarded from the fMRI data, while the corresponding physiological data were retained so that 228 

the SLFOs could be modelled from the beginning of the considered fMRI scan. 229 

2.5 Framewise data quality indices 230 

A common index of quality in fMRI data is the framewise displacement (𝐹𝐷) introduced by Power et al. (2012). This 231 

index is defined as the sum of absolute values of the first derivatives of the 6 motion (realignment) parameters, after 232 

converting the rotational parameters to translational displacements on a sphere of radius 50 mm. 𝐹𝐷 is essentially a time 233 

series that reflects the extent of motion during the scan. In this work, 𝐹𝐷 was used for six QC metrics that are described 234 

in Section 2.6 to quantify the degree of motion artifacts and biases in the preprocessed data. In addition, it was used to 235 

identify volumes associated with relatively large 𝐹𝐷 values that are presumably corrupted by motion, and examine the 236 

effect of scrubbing, whereby these flagged volumes are discarded before any further analysis (Section 2.8.4). 237 

Another widely used framewise index of data quality is 𝐷𝑉𝐴𝑅𝑆 (Derivative of rms VARiance over voxelS) which 238 

measures how much the intensity of an fMRI volume varies at each timepoint compared to the previous point (Power et 239 

al., 2012). 𝐷𝑉𝐴𝑅𝑆 is defined as the spatial root mean square of the voxel time series after they are temporally 240 

differentiated. While 𝐷𝑉𝐴𝑅𝑆 is obtained from the fMRI time series and is not directly related to head movement, it 241 

demonstrates similar trends with 𝐹𝐷 (Power et al., 2012; Suppl. Fig. 10-Suppl. Fig. 11). Similarly to 𝐹𝐷, 𝐷𝑉𝐴𝑅𝑆 was 242 

used in this study for two QC metrics related to the effect of motion, as well as to flag volumes corrupted by motion. 243 

 244 

2.6 Quality control (QC) metrics 245 

Nine QC metrics that are described below were used to evaluate the data quality with respect to the identifiability of 246 

large-scale networks and the presence of motion-related artifacts and biases. 𝐹𝐶𝐶, 𝐹𝐷-𝐹𝐶𝐶, 𝐼𝐶𝐶𝐶, 𝐹𝐷-𝐹𝐷𝐷𝑉𝐴𝑅𝑆 and 247 

𝐹𝐷-𝑀𝐹𝐶 are novel metrics proposed in the present study whereas the rest of the four metrics were proposed in previous 248 

studies. Pearson (full) correlation was calculated between the time series of each pair of parcels resulting in an FC matrix 249 

per scan, pipeline and atlas. Apart from 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 and 𝐹𝐷-𝐹𝐷𝐷𝑉𝐴𝑅𝑆, all other metrics are based on the FC matrix. 250 

Note that throughout the text we refer to a pair of parcels as edge. Apart from 𝑀𝐼𝐶𝐶 and 𝐼𝐶𝐶𝐶, for all other metrics, only 251 

the first of the four scans was considered from each subject. This was done to facilitate the comparison of the scores of 252 

those metrics with scores that would have been obtained in conventional datasets which often consist of a single resting-253 

state fMRI scan per subject of 10-15 minutes duration. 𝑀𝐼𝐶𝐶 and 𝐼𝐶𝐶𝐶 were calculated using all four scans from each 254 

subject, as by definition these two metrics require repeated measures (scans). 255 

 256 
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Functional connectivity contrast (FCC): 257 

A main property of the three parcellations used in this study is that each parcel is assigned to a specific large-scale 258 

network, which implicitly suggests that on average a pair of parcels belonging to the same network, also called within-259 

network edge (WNE), should exhibit a higher (towards positive) correlation value compared to a pair of parcels from 260 

different networks (between-networks edge; BNE). Based on this property, we assumed that if a pipeline improves the 261 

signal-to-noise ratio (SNR) in the data, it should also lead to a larger difference between correlation values corresponding 262 

to WNEs and BNEs. To quantify the extent to which WNEs had higher correlation values than BNEs after applying a 263 

preprocessing pipeline on the data, we used the metric FC contrast (𝐹𝐶𝐶). FCC was defined as the Z-statistic of the 264 

Wilcoxon rank-sum test related to the null hypothesis that WNEs and BNEs in the FC matrix are samples from continuous 265 

distributions with equal medians (note that the real values rather than the absolute values were used in the calculation of 266 

the Z-statistic). In other words, higher values of 𝐹𝐶𝐶 correspond to higher (towards positive) correlation values for WNEs 267 

as compared to BNEs. Furthermore, for the optimal pipeline found in this work, we quantified the identifiability of each 268 

of the networks separately using the same metric but considering only WNEs belonging to the network of interest rather 269 

than WNEs from all networks when comparing WNEs with BNEs. 270 

FD-FCC: 271 

While it is desired to improve the 𝐹𝐶𝐶 score for the data of each scan, at the same time it is desired that low-motion and 272 

high-motion scans demonstrate similar 𝐹𝐶𝐶 scores. Therefore, 𝐹𝐷-𝐹𝐶𝐶 was defined as the correlation between the mean 273 

𝐹𝐷 and 𝐹𝐶𝐶 across scans and was used in this work to assess potential biases due to different levels of motion between 274 

scans. 275 

Median of Intraclass correlation values (MICC): 276 

Intraclass correlation (𝐼𝐶𝐶) is a widely used metric in statistics to assess how reproducible measurements of the same 277 

quantity are across different observers or instruments (Shrout and Fleiss, 1979). Similar to previous studies evaluating 278 

the performance of preprocessing strategies in fMRI, we have used 𝐼𝐶𝐶 to assess test-retest reliability across the four 279 

sessions of each subject in whole-brain FC estimates (Birn et al., 2014; Parkes et al., 2018; Shirer et al., 2015). For a pair 280 

of parcels 𝑖 and 𝑗, 𝐼𝐶𝐶𝑖,𝑗 was defined as 281 

where 𝑘 is the number of scans per subject (4), 𝑀𝑆𝑏 is the between-subject mean square of correlation values between 282 

parcels 𝑖 and 𝑗, and 𝑀𝑆𝑤 is the within-subject mean square of correlation values for the same pair of parcels. The 𝑀𝐼𝐶𝐶 283 

score assigned to each pipeline for the assessment of data quality was defined as the median of 𝐼𝐶𝐶𝑖,𝑗 across all edges.  284 

ICC contrast (ICCC): 285 

A common finding from previous studies is that 𝑀𝐼𝐶𝐶 values tend to drop when a preprocessing pipeline is applied (Birn 286 

et al., 2014; Parkes et al., 2018; Shirer et al., 2015). This finding suggests that artifacts in fMRI data have high subject-287 

specificity and, thus, when the artifacts are reduced after the preprocessing, 𝑀𝐼𝐶𝐶 decreases as well. In addition, Birn et 288 

al. (2014) have observed that the 200 most significant connections exhibited higher mean 𝐼𝐶𝐶 after preprocessing as 289 

compared to the mean 𝐼𝐶𝐶 across all (16100) connections. Similarly, we also observed that WNEs that exhibited higher 290 

connectivity strength than BNEs also exhibited higher ICC values. Based on this observation, in the present study we 291 

propose a new metric termed 𝐼𝐶𝐶 contrast (𝐼𝐶𝐶𝐶), which quantifies the difference in 𝐼𝐶𝐶𝑖,𝑗 values between WNEs and 292 

BNEs. The assumption behind 𝐼𝐶𝐶𝐶 is that only WNEs should demonstrate high subject specificity. Similarly to 𝐹𝐶𝐶, 293 

𝐼𝐶𝐶𝐶 was defined as the Z-statistic of the Wilcoxon rank-sum test related to the null hypothesis that WNEs and BNEs in 294 

the 𝐼𝐶𝐶 matrix are samples from continuous distributions with equal medians. In other words, a high value of 𝐼𝐶𝐶𝐶 295 

suggests that WNEs have higher 𝐼𝐶𝐶𝑖,𝑗 values compared to BNEs. 296 

 297 

 𝐼𝐶𝐶𝑖,𝑗 =
𝑀𝑆𝑏−𝑀𝑆𝑤

𝑀𝑆𝑏+(𝑘−1) 𝑀𝑆𝑤
 , [1] 
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FDDVARS: 298 

To assess the presence of motion artifacts in the parcel time series after preprocessing, we calculated the Pearson 299 

correlation coefficient between 𝐹𝐷 and 𝐷𝑉𝐴𝑅𝑆 (Muschelli et al., 2014). Even though 𝐹𝐷 was estimated only once based 300 

on the motion (realignment) parameters, the framewise data quality index 𝐷𝑉𝐴𝑅𝑆 was estimated for each pipeline 301 

separately using the parcel (instead of voxel) time series after the preprocessing, as described in Section 2.5 (note that 302 

the parcel-wise 𝐷𝑉𝐴𝑅𝑆 considered here was computed across all parcels over the whole-brain and should not be confused 303 

with the parcel-wise 𝐷𝑉𝐴𝑅𝑆 considered in Muschelli et al. (2014) that was computed across voxels within a parcel). 304 

Even though the parcel-wise and voxel-wise 𝐷𝑉𝐴𝑅𝑆 values were similar (mean correlation of 0.56±0.21), they were not 305 

identical (Suppl. Fig. 10-Suppl. Fig. 11). The parcel time series, defined as the average time series of voxels assigned to 306 

each parcel, exhibited lower levels of noise compared to voxel time series and, as a consequence, the parcel 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 307 

values were also found to be lower (Suppl. Fig. 10-Suppl. Fig. 11). And as it is common practice to conduct the FC 308 

analysis at the parcel-level, we performed the assessment of data quality using the parcel 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 values. The 309 

𝐹𝐷𝐷𝑉𝐴𝑅𝑆 score assigned to each pipeline was obtained by initially calculating the correlation value between 𝐹𝐷 and 310 

𝐷𝑉𝐴𝑅𝑆 for each scan and then averaging the correlations across all scans. 311 

FD-FDDVARS: 312 

While the 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 score reflects the extent to which motion artifacts are present in the data of a given scan, a low 313 

mean value of 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 within a group of scans does not necessarily imply that the motion-related biases across scans 314 

in the FC estimates are also low. High-motion scans are contaminated by more severe motion artifacts compared to low-315 

motion scans, which has been shown to systematically bias the estimated FC matrices (Power et al., 2015). Even though 316 

a preprocessing strategy may reduce the motion artifacts in both high- and low-motion scans, if in the preprocessed data 317 

there are still differences in the levels of motion artifacts between the two groups, this would result in a systematic bias 318 

for the FC estimates of these groups. To assess the presence of motion-related biases, we used the QC metric 𝐹𝐷-319 

𝐹𝐷𝐷𝑉𝐴𝑅𝑆, which was defined as the correlation between the mean 𝐹𝐷 and 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 across scans. 320 

FDFCmedian: 321 

For a pair of parcels 𝑖 and 𝑗, 𝐹𝐷𝐹𝐶𝑖,𝑗 was defined as the correlation between the Pearson correlation coefficient of this 322 

pair (i.e., 𝐹𝐶𝑖,𝑗)  and the mean 𝐹𝐷 across scans. To assess the quality of data with respect to motion-related biases in FC, 323 

each pipeline was assigned an 𝐹𝐷𝐹𝐶median score that corresponded to the median absolute 𝐹𝐷𝐹𝐶𝑖,𝑗 across all edges 324 

(Parkes et al., 2018; Power et al., 2012). 325 

FDFCdist: 326 

Earlier studies on the effect of motion in fMRI have shown that, in the case of raw data, the correlation values for short-327 

distance edges are inflated to a greater extent due to motion compared to long-distance edges (Power et al., 2012; 328 

Satterthwaite et al., 2013). An interpretation for this distance-dependent effect is that when motion occurs, nearby voxels 329 

are typically affected by similar displacements and, thus, present similar spin-history artifacts as well. And even though 330 

distant voxels may also exhibit similar displacements that can lead to widespread artifacts, these artifacts are not as 331 

pronounced as in the case of nearby voxels (Power et al., 2015). As these distance-dependent motion artifacts are 332 

generally considered undesirable, the quality control metric 𝐹𝐷𝐹𝐶dist is commonly used to quantify the degree of this 333 

dependence and assess the capability of a preprocessing strategy to mitigate it (Ciric et al., 2018, 2017; Muschelli et al., 334 

2014; Parkes et al., 2018; Power et al., 2015, 2012; Satterthwaite et al., 2019, 2012). 𝐹𝐷𝐹𝐶dist is defined as the correlation 335 

between the 𝐹𝐷𝐹𝐶𝑖,𝑗 value, as defined for the previous QC metric (𝐹𝐷𝐹𝐶median)  and the Euclidean distance between 336 

parcels 𝑖 and 𝑗, across all edges (Ciric et al., 2017; Parkes et al., 2018). 337 

FD – Mean FC (FD-MFC): 338 

The metric 𝐹𝐷𝐹𝐶median inherently assumes that the Pearson correlation of an edge is affected by motion in the same 339 

way across subjects. However, considering that differences in brain anatomy across subjects exist (Bijsterbosch et al., 340 
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2018), we can not necessarily assume that motion affects edge-wise FC estimates in the exact same way across subjects. 341 

Therefore, to assess the effect of motion on FC estimates, without the aforementioned assumption, we propose the 𝐹𝐷-342 

𝑀𝐹𝐶 metric which is defined as follows: First, the mean of all Pearson correlations in the FC matrix (𝑀𝐹𝐶) is estimated 343 

for each scan separately (considering only unique pairs of parcels) and, subsequently, the correlation between the mean 344 

𝐹𝐷 and 𝑀𝐹𝐶 across all scans (subjects) is obtained. 345 

 346 

2.7 Normalization of QC metrics 347 

The nine QC metrics described in Session 2.6 can be categorized into signal-related and motion-related metrics. The 348 

signal-related metrics (𝐹𝐶𝐶, 𝑀𝐼𝐶𝐶 and 𝐼𝐶𝐶𝐶) reflect the SNR of the data and are expected to yield low scores for data 349 

that have not been preprocessed, as high levels of artifacts are likely to obscure the signal of interest. They are also 350 

expected to yield low scores for data to which a very aggressive pipeline is applied and the signal of interest is lost. On 351 

the other hand, relatively high scores of signal-related metrics would be expected for data whereby a good pipeline is 352 

applied and artifacts are reduced while the signal of interest is preserved. Motion-related metrics are expected to yield 353 

high absolute scores for data that have not been preprocessed, indicating the presence of motion artifacts or biases, 354 

whereas for gradually more aggressive pipelines, these scores are expected to approach zero, reflecting the reduction of 355 

motion artifacts and biases. 356 

As the goal of a preprocessing strategy is to remove artifacts while also preserving the signal of interest, ideally a pipeline 357 

that yields high scores in signal-related QC metrics and low scores in motion-related metrics would be preferred. 358 

However, due to the fact that each QC metric is based on different assumptions and some metrics are based on Pearson 359 

correlation while other ones are based on the Wilcoxon rank-sum test, each metric illustrates a different trend across 360 

pipelines and yields a different range of scores (see for example Fig. 2) making the selection of the optimal pipeline 361 

difficult. Therefore, to overcome this potential drawback, we followed the following steps:  362 

1. First, we randomly split the 390 subjects to 10 groups of 39 subjects, ensuring that the groups were characterized 363 

by similar distributions of mean 𝐹𝐷 values.  364 

2. Then, the QC scores were estimated for each of the 10 groups separately. Apart from 𝑀𝐼𝐶𝐶 and 𝐼𝐶𝐶𝐶, for all 365 

other metrics, only the first of the four scans were considered from each subject to avoid estimating correlations 366 

with repeated measures. 𝑀𝐼𝐶𝐶 and 𝐼𝐶𝐶𝐶 were calculated using all four scans from each subject, as by definition 367 

these two 𝐼𝐶𝐶-based metrics require repeated measures (scans). 𝐹𝐶𝐶 and 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 that are calculated on a 368 

scan basis, rather than within a group of scans, were averaged across subjects within each group. In this way, the 369 

quality of the data for a given atlas, pipeline and group of subjects was assigned with one score for each of the 370 

nine QC metrics. 371 

3. Subsequently, all motion-related metrics were normalized to 1 –  𝑎𝑏𝑠(𝑥), where x is the score of each metric, so 372 

that, similarly to signal-related metrics, a high positive score is assigned to good quality data. 373 

4. In the next step, the scores were expressed as Z-scores based on the relation 𝑍𝑖,𝑘,𝑝 =
𝑥𝑖,𝑘,𝑝−𝜇𝑖

𝜎𝑖
 where 𝑥𝑖,𝑘,𝑝 and 374 

𝑧𝑖,𝑘,𝑝 are respectively the original and Z-score values obtained for QC 𝑖, group of subjects 𝑘 and pipeline 𝑝 and, 375 

𝜇𝑖 and 𝜎𝑖 are respectively the mean and standard deviations of the scores from all groups of subjects related to 376 

the QC 𝑖 obtained from the raw data. For example, considering the case where the 𝐹𝐶𝐶 scores obtained from the 377 

raw data for the ten groups of subjects have a mean and standard deviation of 47.3 and 1.6 respectively, if the 378 

𝐹𝐶𝐶 score for a given pipeline (e.g. FIX) and group of subjects is 56.0, the corresponding Z-score for that 379 

particular pipeline and group of subjects would be 5.4 [(56.0-47.3)/1.6=5.4]. 380 

5. Subsequently, the Z-scores of 𝐹𝐶𝐶 and 𝐼𝐶𝐶𝐶 were averaged to yield the summarized score 𝑄𝐶signal and the Z-381 

scores of the 6 motion-related metrics 𝐹𝐷-𝐹𝐶𝐶, 𝐹𝐷𝐷𝑉𝐴𝑅𝑆, 𝐹𝐷-𝐹𝐷𝐷𝑉𝐴𝑅𝑆, 𝐹𝐷𝐹𝐶median , 𝐹𝐷𝐹𝐶dist and 𝐹𝐷-382 

𝑀𝐹𝐶 were averaged to yield the summarized score 𝑄𝐶motion. The 𝑀𝐼𝐶𝐶 was not included in the estimation of 383 

the 𝑄𝐶signal score as it was proven to reflect subject-specificity due to noise rather than signal of interest. 384 
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6. Finally, the two latter summarized scores, 𝑄𝐶signal and 𝑄𝐶motion, were averaged to obtain the score for the 385 

combined quality control metric 𝐶𝑄𝐶. 386 

The normalization described here allowed us to express the scores of the QC metrics as Z-scores that reflect the relative 387 

improvement in standard deviations with respect to the raw data. High Z-scores can be interpreted as the associated QC 388 

metric exhibiting high sensitivity. If the QC metric for a given pipeline exhibits a high Z-score, it is very likely that in a 389 

new dataset the score for the same QC metric will be better when the data are preprocessed with the same pipeline 390 

compared to the raw data. After the normalization of the QC metrics, all metrics were summarized into two indices, the 391 

𝑄𝐶signal and the 𝑄𝐶motion, which, in turn, were averaged to obtain the final 𝐶𝑄𝐶 score. While we present the results for 392 

𝑄𝐶signal and 𝑄𝐶motion apart from 𝐶𝑄𝐶, the choice for the optimal pipeline is based on the third one. 393 

 394 

2.8 Noise correction techniques (NCTs) 395 

We assessed the performance of a large number of preprocessing pipelines using eight QC metrics that quantify the 396 

improvement in network identifiability and reduction of motion-related artifacts and biases. The pipelines consisted of 397 

commonly used preprocessing strategies, namely scrubbing, temporal low-pass filtering and removal of nuisance 398 

regressors through linear regression. To better understand the effect of each of the aforementioned strategies, five 399 

different groups of pipelines were examined that are described in the following sections. The QC metrics used to evaluate 400 

the performance of each pipeline are described in Section 2.6.   401 

2.8.1 Optimizing aCompCor 402 

In aCompCor, PCA regressors are obtained from the WM and CSF tissues and the first five components ordered by the 403 

variance explained in the WM and CSF voxel time series are used as nuisance regressors. This practice implicitly suggests 404 

that the PCA regressors that explain most of the variance in WM and CSF are also the ones with the stronger association 405 

to model-based nuisance regressors. To examine whether the latter is the case, we estimated the fraction of variance in 406 

WM and CSF PCA regressors explained by each of the following sets of regressors: 1) 24 MPs, 2) breathing regressors, 407 

3) cardiac regressors, 4) SLFOs, and 5) all the aforementioned regressors combined. In addition, we estimated the fraction 408 

of variance in the model-based regressors explained by an increasing number of WM or CSF regressors (between 1 and 409 

100). The estimated explained variances corresponding to each model-based regressor were averaged across regressors 410 

associated with the same source of noise. 411 

After confirming the hypothesis stated above, a main objective of this study was to examine the performance of WM and 412 

CSF denoising independently and determine the number of regressors that improves the quality of the fMRI data the 413 

most. To this end, for both noise ROIs, we considered the removal of the most significant PCA regressors with or without 414 

including the GS as an additional nuisance regressor for a varying number of PCA regressors between 1 and 600 (to keep 415 

the computational time low we varied the number using a logarithmic base of ten as follows: 416 

1, 2, … ,10, 20,… , 100, 200,… , 600). Note that each scan consisted of 1160 fMRI volumes, therefore 600 components 417 

correspond to about half of the available PCA regressors. Regarding the tissue-based regressors used in aCompCor, we 418 

refer to a set of regressors from WM and CSF as 𝑊𝑀(𝐺𝑆)
𝑥  and 𝐶𝑆𝐹(𝐺𝑆)

𝑥 , respectively, where 𝑥 indicates the number of 419 

PCA regressors considered from each of the two tissue compartments and the presence of the 𝐺𝑆 as superscript denotes 420 

the inclusion of the GS in the set of nuisance regressors. For example, the set of regressors 𝑊𝑀𝐺𝑆
200 refers to the set 421 

consisting of the 𝐺𝑆 and the first 200 PCA regressors from WM. Note that the set 𝑊𝑀𝐺𝑆
200 demonstrated the highest 422 

improvement in QC scores and, thus, the subsequent analyses in this work investigate the possibility of further 423 

improvement using additional strategies in the preprocessing along with the regression of this set. 424 

2.8.2 Evaluation of data-driven NCTs 425 

Typically, fMRI studies consider only data-driven regressors for the preprocessing of the data that can be a combination 426 

of motion, tissue-based regressors or whole-brain component regressors (e.g., FIX). However, it is still not clear which 427 
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preprocessing strategy is the best for whole-brain FC as the number and type of regressors included in the preprocessing 428 

stage vary across studies. In the present study, a selection of pipelines used in the literature were evaluated using the QC 429 

metrics described in Section 2.6 to allow a comparison between them (Table 1). However, as the focus of this analysis 430 

was to examine the effect of the regressors per se rather than the entire pipeline, steps such as scrubbing (i.e., removal  431 

of motion-contaminated volumes) or temporal low-pass filtering were omitted. In addition, several pipelines were 432 

considered in this analysis that consisted of a small number of regressors (e.g. pipelines 1-5), even though, typically, 433 

more aggressive pipelines are found in the literature. These pipelines were considered in order to better understand 434 

possible differences in QC scores yielded by more aggressive pipelines (e.g. pipelines 7 and 8). 435 

Regarding the pipelines that involve FIX (i.e., pipelines 11-13), even though the HCP database provides the results from 436 

MELODIC-ICA and, thus, we could have removed noisy ICA components and further nuisance regressors from the 437 

minimally-preprocessed fMRI data in one step, we chose to remove the additional nuisance regressors from the FIX-438 

denoised data found in the HCP database  to be consistent with the approach taken in previous studies (Burgess et al., 439 

2016; Siegel et al., 2017). For pipelines 12 and 13, we used the GS and WM/CSF regressors derived from the FIX-440 

denoised data. Note that, as mentioned earlier, the FIX denoising performed in HCP included the removal of the 24 MPs. 441 

2.8.3 Evaluation of model-based (motion and physiological) NCTs 442 

 Even though the motion parameters are indirectly derived from the data through the process of volume realignment, they 443 

do not purely correspond to motion-induced fMRI artifacts, but rather rigid-body displacements (Patriat et al., 2017). 444 

Table 1. Preprocessing pipelines based on data-driven approaches 

Pipeline Sets of nuisance regressors considered in the pipeline (Related to) pipeline used in: 

1 6 motion parameters (6 MPs) — 

2 12 motion parameters (12 MPs; i.e., 6 MPs plus their derivatives) — 

3 
24 motion parameters (24 MPs; i.e., 12 MPs plus their squared 

terms) 
— 

4 Global signal (GS) — 

5 12 MPs, GS — 

6 
𝑊𝑀5, 𝐶𝑆𝐹5 (i.e., first 5 PCA regressors from white matter (WM) 

and first 5 PCA regressors from cerebrospinal fluid (CSF)) 
Behzadi et al., 2007 

7 
12 MPs, mean WM time-series (𝑊𝑀𝑚𝑒𝑎𝑛) and mean CSF time-

series (𝐶𝑆𝐹𝑚𝑒𝑎𝑛) 
Urchs et al., 2017 

8 12 MPs,  𝑊𝑀𝑚𝑒𝑎𝑛,  𝐶𝑆𝐹𝑚𝑒𝑎𝑛, GS Finn et al., 2015 

9 24 MPs, [GS,  𝑊𝑀𝑚𝑒𝑎𝑛,  𝐶𝑆𝐹𝑚𝑒𝑎𝑛, plus their derivatives] Laumann et al., 2017 

10 
24 MPs, [GS,  𝑊𝑀𝑚𝑒𝑎𝑛,  𝐶𝑆𝐹𝑚𝑒𝑎𝑛, plus their derivatives and the 

squared terms of the 6 aforementioned time-series] 
Ciric et al., 2017; Xia et al., 2018 

11 𝐹𝐼𝑋 (i.e., the FIX-denoised data as provided from HCP) 
Bijsterbosch et al., 2017; Smith et 

al., 2015; Zhang et al., 2018 

12 𝐹𝐼𝑋𝐺𝑆 (i.e., 𝐹𝐼𝑋 followed by GS regression) Burgess et al., 2016 

13 FIX, GS, 𝑊𝑀5, 𝐶𝑆𝐹5 Siegel et al., 2017 

14 PCA regressors needed to explain 50% of variance in WM and CSF Muschelli et al., 2014 

15 GS, WM regressors needed to explain 30% of variance — 

16 GS, WM regressors needed to explain 35% of variance — 

17 GS, WM regressors needed to explain 40% of variance — 

18 GS, WM regressors needed to explain 45% of variance — 

19 GS, WM regressors needed to explain 50% of variance — 

20 𝑊𝑀𝐺𝑆
200 (i.e., the GS and the first 200 PCA regressors from WM) — 
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Therefore, treating them as nuisance regressors during preprocessing inherently imposes some assumptions about the 445 

effect of motion on the fMRI time series, which may not be valid. Similarly, the efficiency of physiological regressors 446 

that are obtained from concurrent physiological recordings (e.g. cardiac and breathing signals) depends on the validity 447 

of the employed physiological response function models, as well as the quality of the recordings. Thus, an important 448 

question that needs to be addressed is whether the aforementioned model-based regressors contribute to the denoising of 449 

the fMRI data, and particularly when combined with tissue-based regressors that do not have the limitations of the model-450 

based approaches. To this end, using the QC metrics, we evaluated 64 combinations of pipelines that employ sets of 451 

model-based and tissue-based regressors. Specifically, we considered as model-based regressors the 24 MPs, the cardiac 452 

and breathing regressors and the SLFOs regressor, while as tissue-based regressors we considered the GS and 200 PCA 453 

regressors from WM (𝑊𝑀200). 454 

2.8.4  Scrubbing 455 

In the analyses preceding scrubbing, it was found that the set of nuisance regressors 𝑊𝑀𝐺𝑆
200 yielded the highest QC 456 

scores. Therefore, the next question that we aimed to address is whether scrubbing can provide any further improvement 457 

in the QC scores for this specific set of regressors and at what threshold. This analysis was done both using the 𝐹𝐷 and 458 

the 𝐷𝑉𝐴𝑅𝑆 to determine the motion-contaminated volumes that would be discarded. In the case of 𝐹𝐷, we repeated the 459 

analysis for the values of threshold 𝐹𝐷thr  0.15, 0.20, 0.25, 0.30, 0.50, 0.80 and 1.00 mm, and in the case of 𝐷𝑉𝐴𝑅𝑆 we 460 

considered the values of threshold 𝐷𝑉𝐴𝑅𝑆thr  0.5, 1, 1.5, 2, 5, 10 and 20 median absolute deviations (MAD). 461 

2.8.5 Low-pass filtering (LPF) 462 

We also investigated whether low-pass filtering the data and removing nuisance regressors would yield higher QC scores 463 

compared to no filtering. Low-pass filtering, however, apart from removing high-frequency noise, it also leads to a 464 

substantially decreased number of degrees of freedom (Bright et al., 2017). The degrees of freedom 𝐷𝑂𝐹 can be roughly 465 

estimated by the relation: 𝐷𝑂𝐹 = 𝑁𝑉 ∙ (
𝑓𝑐

𝑓𝑁
) where 𝑁𝑉 is the number of volumes, 𝑓𝑐 is the cut-off frequency and 𝑓𝑁 the 466 

Nyquist frequency. For instance, in our dataset, low-pass filtering at 0.08 Hz (𝑁𝑉 = 1160, 𝑓𝑐 =
1

2𝑇𝑅
= 0.69 𝐻𝑧) reduces 467 

the degrees of freedom from 1160 to ~134. This property suggests that removing a large set of nuisance regressors (e.g. 468 

𝑊𝑀𝐺𝑆
200), in addition to applying a strong low-pass filter (e.g. a low-pass filter with 0.08 Hz cut-off frequency), can 469 

remove all the degrees of freedom available in the data. Given this, we examined the effect of low-pass filtering for both 470 

mild and aggressive variants of WM denoising, considering only cut-off frequencies that yield data with a minimum of 471 

30 degrees of freedom. Specifically, we examined the sets 𝑊𝑀𝐺𝑆
20 and 𝑊𝑀𝐺𝑆

50 with low-pass filtering at 0.05, 0.08, 0.2, 472 

0.3, 0.4, 0.5 and 0.6 Hz, the set 𝑊𝑀𝐺𝑆
100 with values of cut-off frequency between 0.08 Hz and 0.6 Hz, as well as the set 473 

𝑊𝑀𝐺𝑆
200 with values between 0.2 and 0.6 Hz.  474 
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3. Results 475 

Here we present results mainly for the Gordon atlas since the results between the three examined atlases did not yield 476 

significant differences. The results obtained using the Seitzman and MIST atlases can be found in the Supplementary 477 

Material. 478 

3.1 Optimizing aCompCor 479 

Fig. 1 shows the estimated fraction of variance in WM and CSF PCA regressors explained by various sets of model-480 

based regressors (left panel), as well as the estimated fraction of variance explained in the sets of model-based regressors 481 

by an increasing number of WM and CSF regressors (right panel). The WM and CSF regressors were ordered with 482 

Fig. 1. Relation between model-based regressors and PCA regressors obtained from WM and CSF. Left panel (first two columns): Estimated 

variance explained in each of the first 100 WM and CSF PCA regressors by the set of model-based regressors stated on the left of each row (for 

instance, it shows the variance in the 50th principal component of WM explained by the 24 MPs). Right panel (last two columns): Mean estimated 

variance explained in the regressors stated on the left of each row by an increasing number of WM or CSF regressors (for instance, it shows the 

variance explained on average in the 24 MPs by the first 50 principal components of WM). To examine the dependence of the curves on the degree 

of motion in each scan, two groups of scans were considered, referred to as low- and high-motion scans, corresponding to the lower and upper 

quartile of the distribution of mean 𝐹𝐷 values respectively. The blue and red curves correspond to the variance accounted for (VAF) averaged 

across low-motion and high-motion scans, respectively, whereas the shaded areas denote the standard error. For all four sources of noise, we 

observe that the first few PCA regressors demonstrated stronger association to the model-based regressors compared to components found later 

in the order, justifying the practice of using the most significant PCA components in aCompCor. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2021. ; https://doi.org/10.1101/837609doi: bioRxiv preprint 

https://doi.org/10.1101/837609
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

respect to decreasing tissue signal variance explained (see Suppl. Fig. 1 for the variance explained in the WM and CSF 483 

compartments by the corresponding WM and CSF regressors). In the left panel, it can be seen that the model-based 484 

regressors explained larger fraction of variance in the first few WM and CSF regressors than in subsequent regressors. 485 

Moreover, the high-motion scans demonstrated different trends compared to low-motion scans. For example, in the left 486 

panel we can see that high-motion scans exhibited stronger association between the first PCA regressors and the 24 MPs, 487 

while low-motion scans exhibited stronger association between the first PCA regressors and regressors related to cardiac 488 

pulsatility. Looking at WM vs CSF regressors, we observed several slight differences such as that the first few WM 489 

regressors explained better the 24 MPs compared to the CSF regressors, whereas the opposite was observed when looking 490 

at the cardiac pulsatility. However, when considering a large number of regressors (e.g. 100) both WM and CSF 491 

regressors explained a significant fraction of variance for all four sets of model-based regressors, with mean correlation 492 

values above 0.5. This suggests that both WM and CSF regressors can account (to some extent) for BOLD fluctuations 493 

due to head and breathing motion as well as cardiac pulsatility and SLFOs. 494 

Different trends were observed between the nine QC metrics when varying the number of components (Fig. 2, Suppl. 495 

Fig. 2). Similar to previous studies, the signal-related metric median intraclass correlation (𝑀𝐼𝐶𝐶) yielded high scores in 496 

the raw data whereas when preprocessing was performed, the 𝑀𝐼𝐶𝐶 was decreasing as more WM or CSF regressors 497 

were removed (Fig. 2c; Birn et al., 2014; Parkes et al., 2018). This trend is possibly due to that noise in fMRI is 498 

characterized by high subject specificity and, hence, removing the noise when using more aggressive pipelines leads to 499 

reduction in subject specificity (Birn et al., 2014; Parkes et al., 2018). As the 𝑀𝐼𝐶𝐶 metric did not seem to reflect the 500 

preservation of signal in the data, we excluded it from the rest of the analysis.  501 

Fig. 3 shows the metric 𝑄𝐶signal which was defined as the mean Z-score of the two signal-related metrics, 𝐹𝐶𝐶 and 502 

𝐼𝐶𝐶𝐶, as well as the metric 𝑄𝐶motion, defined as the mean Z-score of the six motion-related metrics, 𝐹𝐷-𝐹𝐶𝐶, 503 

𝐹𝐷𝐷𝑉𝐴𝑅𝑆, 𝐹𝐷-𝐹𝐷𝐷𝑉𝐴𝑅𝑆, 𝐹𝐷𝐹𝐶median, 𝐹𝐷𝐹𝐶dist and 𝐹𝐷-𝑀𝐹𝐶. Fig. 3 also shows the scores for the combined QC 504 

metric CQC, defined as the average score between 𝑄𝐶signal and 𝑄𝐶motion. Note that due to their definition, 𝑄𝐶signal 505 

reflects the enhancement of SNR in the data, whereas 𝑄𝐶motion reflects the reduction in motion artifacts and biases. Even 506 

though WM and CSF denoising yielded similar performance in terms of mitigating motion effects, WM denoising 507 

achieved a considerably higher SNR compared to CSF denoising (Fig. 3). Furthermore, including the GS to the nuisance 508 

regressors significantly improved the scores for both 𝑄𝐶signal and 𝑄𝐶motion, particularly for low numbers of PCA 509 

components. Due to these observations, the subsequent results and discussion are focused on the performance of WM 510 

denoising, and, unless explicitly stated otherwise, it is assumed that the GS is also included in the set of regressors. 511 

Overall, we observed that 𝑄𝐶signal was high for the sets of regressors 𝑊𝑀𝐺𝑆
30 to 𝑊𝑀𝐺𝑆

200 with a maximum score of 8.9 512 

for 𝑊𝑀𝐺𝑆
60 (Fig. 3). In contrast, 𝑄𝐶motion illustrated a sharp peak for the more aggressive set of regressors 𝑊𝑀𝐺𝑆

200 and, 513 

as a consequence, the optimal set of regressors according to CQC was the latter one (i.e., 𝑊𝑀𝐺𝑆
200). Note that the fMRI 514 

scans considered in this study consisted of 1160 volumes, therefore the 200 WM regressors used in the preprocessing 515 

correspond to ~17% of the total WM regressors. To allow generalization of our results to conventional datasets that 516 

typically have a longer TR between 2-4 s, we repeated the analysis for the case of the Gordon atlas after downsampling 517 

the fMRI data by a factor of four, resulting in an effective TR of 2.88 s. For this subset of fMRI data that consisted of 518 

290 volumes per scan, the best improvement, as assessed with the summarized metric CQC, was observed with the set 519 

of regressors 𝑊𝑀𝐺𝑆
30 (Suppl. Fig. 7). 520 

The analysis of optimizing aCompCor was repeated in the Seitzman and MIST parcel space and yielded similar trends 521 

for a varying number of PCA regressors (Suppl. Fig. 3-Suppl. Fig. 6). Similar to the data in the Gordon space, the set 522 

𝑊𝑀𝐺𝑆
200 was found to be the best choice for the data in the Seitzman atlas space, whereas the set 𝑊𝑀𝐺𝑆

300 seemed to 523 

perform slightly better for the data in the MIST atlas space. In the following analyses, for both three atlases, we 524 

considered 𝑊𝑀𝐺𝑆
200 when comparing the performance with other preprocessing strategies (e.g. scrubbing and low-pass 525 

filtering). 526 
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   527 

Fig. 2. Quality control (QC) scores 

obtained by aCompCor using the 

data in the Gordon parcel space. 

The green and purple curves show the 

dependence of the QC scores on the 

number of WM and CSF PCA 

regressors that were removed from 

the data respectively. The black and 

red lines indicate the QC scores for 

the raw (i.e., minimally-preprocessed 

data) and FIX-denoised data. The 

middle points in the curves and lines 

correspond to the QC scores averaged 

across the 10 groups of subjects and 

the error bars indicate the standard 

error across the 10 groups. To ease 

visualization, the error bars for the 

raw and FIX-denoised data are shown 

in the column corresponding to 500 

components. The two columns 

correspond to the global signal being 

regressed out (right) or not (left) 

whereas the rows (a)-(i) correspond to 

the nine QC metrics described in 

Session 2.6. 
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 528 

Signal-related QC metrics 529 

Functional connectivity contrast (FCC) 530 

The metric 𝐹𝐶𝐶 proposed in this work for assessing the identifiability of large-scale networks exhibited unimodal curves 531 

for both WM and CSF, both with and without GSR (Fig. 2a). However, WM denoising achieved higher scores with a 532 

maximum score of 69.9 for 𝑊𝑀𝐺𝑆
60. Fig. 4 shows the FC matrix for the raw (minimally-preprocessed) data and for data 533 

that have been preprocessed with different pipelines for a scan that demonstrated considerable improvement in 534 

identifiability of the networks when regressing out the set 𝑊𝑀𝐺𝑆
200. It is evident that the raw data were very noisy, 535 

preventing the identification of the networks (𝐹𝐶𝐶=23.0) but when denoising was performed with 𝑊𝑀𝐺𝑆
200, all 12 536 

networks were clearly identified (𝐹𝐶𝐶=69.4). Interestingly, when GSR was applied without any other nuisance regressor 537 

or NCT to the raw data, it did not have a strong effect on the contrast but when it was applied after FIX denoising it led 538 

to a significant increase of 𝐹𝐶𝐶 score from 40.1 to 65.4. Overall, GSR improved the FCC score for both FIX and WM 539 

denoising (Fig. 2a).  540 

Fig. 5 shows the FC matrices averaged across all 1560 scans (group-level FC matrices) obtained from raw and four 541 

preprocessed fMRI datasets (i.e., data preprocessed with different pipelines). The FCC estimated from the group-level 542 

Fig. 3. Summarized quality control (QC) scores obtained by aCompCor using the data in the Gordon parcel space. The Z-scores of the two 

signal-related metrics 𝐹𝐶𝐶 and 𝐼𝐶𝐶𝐶, and six motor-related metrics 𝐹𝐷-𝐹𝐶𝐶, 𝐹𝐷𝐷𝑉𝐴𝑅𝑆, 𝐹𝐷-𝐹𝐷𝐷𝑉𝐴𝑅𝑆, 𝐹𝐷𝐹𝐶median, 𝐹𝐷𝐹𝐶dist and 𝐹𝐷-𝑀𝐹𝐶 

were averaged to yield the summarized scores 𝑄𝐶signal (a) and 𝑄𝐶motion (b), respectively. Subsequently, the two latter summarized scores were 

averaged to obtain the combined QC metric (𝐶𝑄𝐶). We observe that about 50 to 100 PCA regressors from WM were needed in order to achieve 

high 𝑄𝐶signal scores, while 200 components from WM yielded the highest score in 𝑄𝐶motion. Including the GS in the set of regressors led to 

slightly higher scores for both summarized metrics. With respect to the CQC metric, the set of regressors 𝑊𝑀𝐺𝑆
200 yielded the highest score (5.9) 

with the 𝐹𝐼𝑋𝐺𝑆 demonstrating the second highest score (5.4). While CSF denoising yielded comparable scores to WM denoising with respect to 

reduction of motion artifacts and biases (𝑄𝐶motion), it also led to loss of signal of interest based on the low scores of 𝑄𝐶signal. 
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FC matrices were substantially higher compared to the 𝐹𝐶𝐶 estimated on a scan basis for the same pipelines (Fig. 2a). 543 

Note that for the raw data, the 𝐹𝐶𝐶 score that was estimated first on a scan-basis and, then, averaged across all scans was 544 

47.3 (Fig. 2a), whereas the 𝐹𝐶𝐶 score estimated from the group-level FC matrix (i.e. the FC matrix was first averaged 545 

across all scans) had a higher value of 67.2 (Fig. 5). In addition, the 𝐹𝐶𝐶 score obtained from the group-level FC matrix 546 

(67.2) was at similar levels with the highest 𝐹𝐶𝐶 score achieved on a scan-specific basis across all pipelines (i.e., when 547 

preprocessed with 𝑊𝑀𝐺𝑆
200). 548 

Intraclass correlation contrast (ICCC) 549 

The metric 𝐼𝐶𝐶𝐶 proposed in this work to assess subject specificity in the fMRI data, showed an increasingly monotonic 550 

behavior in the range of mild pipelines, for both WM and CSF (with and without GSR), reaching a plateau at about 30 551 

Fig. 4. FC matrix of subject S896778 (R1a) for different pipelines (Gordon atlas). While the networks could not be distinguished by visually 

inspecting the FC matrix of the raw data, they were easily identified after regressing out the set 𝑊𝑀𝐺𝑆
200 or after FIX denoising, especially when 

FIX was combined with GSR. Similar conclusions were drawn based on the 𝐹𝐶𝐶 metric, which quantifies the identifiability of the networks 

(reported on the top of each matrix). 

Fig. 5. FC (top) and ICC (bottom) matrices considering all scans for different pipelines obtained from the data in the Gordon parcel space. 

Averaging the FC matrices across all 1560 scans improved the identifiability of the networks considerably for both the raw and preprocessed data. 

As a consequence, the associated 𝐹𝐶𝐶 scores reported on the top of each matrix were higher than the scores presented in Fig. 2a, which were 

obtained on a scan-specific basis and subsequently averaged within groups of 39 subjects. Similarly, the contrast estimated from the 𝐼𝐶𝐶 matrices 

(i.e., 𝐼𝐶𝐶𝐶) when considering all 1560 scans was higher compared to the 𝐼𝐶𝐶𝐶 estimated from the smaller groups of 39 subjects each (Fig. 2d). 

Interestingly, we observe that a large number of BNEs, and especially edges between the default mode and fronto-pariental networks, exhibited 

low FC values but high 𝐼𝐶𝐶 values. 
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components, followed by a small decline for the most aggressive pipelines. However, as shown in Suppl. Fig. 2 (a & d), 552 

𝐹𝐶𝐶 exhibited higher Z-scores compared to 𝐼𝐶𝐶𝐶 and, therefore, contributed the most to the scores in the signal-related 553 

summarized metric 𝑄𝐶signal (Fig. 3a), which was defined as the average Z-score between 𝐹𝐶𝐶 and 𝐼𝐶𝐶𝐶. 554 

Fig. 5 shows the 𝐼𝐶𝐶 matrices for the raw data and four preprocessed fMRI datasets estimated using all 1560 scans. It 555 

can be seen that in the case of the raw data the 𝐼𝐶𝐶 values were high for all edges, which resulted in a low 𝐼𝐶𝐶𝐶 score. 556 

On the other hand, when an aggressive pipeline was used (e.g. 𝑊𝑀𝐺𝑆
200), the 𝐼𝐶𝐶 values for most of the BNEs dropped 557 

to significantly lower values compared to the rest of the edges leading to an increase in 𝐼𝐶𝐶𝐶 score. Nevertheless, even 558 

with aggressive pipelines, many BNEs, and particularly edges corresponding to interactions between the default mode 559 

and fronto-parietal networks, demonstrated high 𝐼𝐶𝐶 scores even though the corresponding edges in the group-level FC 560 

matrix exhibited low correlation values (Fig. 5). Similar results were observed for the Seitzman and MIST atlases (Suppl. 561 

Fig. 8-Suppl. Fig. 9). In addition, note that the 𝐼𝐶𝐶𝐶 scores reported in Fig. 5 were higher compared to the 𝐼𝐶𝐶𝐶 scores 562 

extracted from the smaller groups of subjects shown in Fig. 2d (groups of 39 subjects each). Also, differences in 𝐼𝐶𝐶𝐶 563 

between pipelines found when scores were obtained for each group of subjects separately were decreased when 𝐼𝐶𝐶𝐶 564 

was obtained from all subjects in one step (e.g. differences in 𝐼𝐶𝐶𝐶 scores between 𝐺𝑆 and 𝐹𝐼𝑋𝐺𝑆). The aforementioned 565 

property of the metric 𝐼𝐶𝐶𝐶 suggests that its sensitivity in comparing the performance between preprocessing strategies 566 

decreases when larger number of subjects is considered. 567 

 568 

Motion-related QC metrics 569 

FD-FCC 570 

The raw data yielded a mean 𝐹𝐷-𝐹𝐶𝐶 score of -0.42 implying that lower levels of motion were associated with higher 571 

𝐹𝐶𝐶 scores (Fig. 2b). Importantly, when performing WM denoising with more than 30 components, the strength of 𝐹𝐷-572 

𝐹𝐶𝐶 dropped to about -0.15 (Z-score 2.2). Fig. 6 shows scatterplots of mean 𝐹𝐷 vs 𝐹𝐶𝐶 for the first scan of 370 subjects 573 

(20 subjects that demonstrated a mean 𝐹𝐷 three median absolute deviations (MADs) above the median were excluded). 574 

We observe that even though GSR applied alone on the raw data improved the 𝐹𝐶𝐶 score, it also increased the negative 575 

correlation between mean 𝐹𝐷 and 𝐹𝐶𝐶 or, in other words, it enhanced the dependence of 𝐹𝐶𝐶 score on the levels of 576 

motion (𝑟 = −0.46; 𝑝 = 10−19). However, when GSR was performed along with WM denoising of 200 regressors 577 

(𝑊𝑀𝐺𝑆
200) the negative correlation between 𝐹𝐷 and 𝐹𝐶𝐶 almost vanished (𝑟 = −0.11; 𝑝 < 0.04). 578 

FDDVARS 579 

The raw data demonstrated an 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 score of 0.37, suggesting that the parcel time series were strongly contaminated 580 

by motion artifacts (Fig. 2e). WM denoising with 200 components (𝑊𝑀𝐺𝑆
200) was able to drop 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 to 0.02, 581 

corresponding to a Z-score of 11.3. Suppl. Fig. 10-Suppl. Fig. 11 present traces of 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 from individual scans, 582 

where it can be appreciated that WM denoising led to a strong reduction of motion artifacts during time windows with 583 

high levels of motion. Note that 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 exhibited significantly higher Z-scores than the rest of the motion-related 584 

QC metrics (Suppl. Fig. 2e) and, therefore, contributed the most to the scores of the summarized metric 𝑄𝐶motion (Fig. 585 

3). 586 

FD-FDDVARS 587 

The raw data exhibited a mean correlation 𝐹𝐷-𝐹𝐷𝐷𝑉𝐴𝑅𝑆 of 0.48 (Fig. 2f), implying that higher levels of motion in a 588 

scan resulted in significantly larger motion artifacts in the fMRI data. The set of regressors 𝑊𝑀𝐺𝑆
200 achieved the smallest 589 

absolute score of 𝐹𝐷-𝐹𝐷𝐷𝑉𝐴𝑅𝑆 (score: -0.07), corresponding to a Z-score of 2.7. Fig. 6 shows scatterplots of the mean 590 

𝐹𝐷 vs the 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 score (i.e., 𝐹𝐷-𝐹𝐷𝐷𝑉𝐴𝑅𝑆) for the raw data and four different preprocessed datasets considering 591 

the first scan from 370 subjects (20 subjects were excluded due to extreme values in mean 𝐹𝐷). As we can see from the 592 

raw data, the levels of motion during a scan (as evaluated with mean 𝐹𝐷)  had a strong effect on 𝐹𝐷𝐷𝑉𝐴𝑅𝑆, which 593 

reflects the degree of motion artifacts in the fMRI data (𝑟 = 0.47; 𝑝 < 10−21). The pipelines 𝐹𝐼𝑋𝐺𝑆 and 𝑊𝑀𝐺𝑆
200 were 594 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2021. ; https://doi.org/10.1101/837609doi: bioRxiv preprint 

https://doi.org/10.1101/837609
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

able to reduce the correlation of 𝐹𝐷-𝐹𝐷𝑉𝐴𝑅𝑆 to -0.18 (𝑝 < 0.001). We also observed that 𝐹𝐼𝑋 achieved a lower 595 

correlation 𝐹𝐷-𝐹𝐷𝐷𝑉𝐴𝑅𝑆 of -0.10 compared to 𝐹𝐼𝑋𝐺𝑆 and 𝑊𝑀𝐺𝑆
200. However, 𝐹𝐼𝑋 exhibited also larger absolute scores 596 

of 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 than 𝐹𝐼𝑋𝐺𝑆 and 𝑊𝑀𝐺𝑆
200. 597 

FDFCmedian 598 

When GS was included in the sets of regressors, the scores for 𝐹𝐷𝐹𝐶median exhibited a monotonically decreasing trend 599 

for an increasing number of components, beginning at 0.15 for raw data (Z-score: 0.1) and reaching 0.13 (Z-score: 0.7) 600 

for both 𝐹𝐼𝑋𝐺𝑆 and 𝑊𝑀𝐺𝑆
600 (Fig. 2g). However, when GS was not included in the preprocessing, increasing the number 601 

of WM components from 1 to 7 PCA regressors resulted in an increase for 𝐹𝐷𝐹𝐶median from 0.15 to 0.22; for an even 602 

higher number of components, FDFCmedian decreased, reaching 0.13 in the case of 𝑊𝑀𝐺𝑆
600. 603 

FDFCdist 604 

In the case of raw data, 𝐹𝐷𝐹𝐶dist was equal to -0.16, which reflects that short-distance pairwise correlations were more 605 

severely confounded by motion than long-distance correlations (Fig. 2i). Increasing the number of components in WM 606 

denoising resulted in a decrease in the correlation values, with the more aggressive sets 𝑊𝑀600 and 𝑊𝑀𝐺𝑆
600 achieving 607 

the minimum 𝐹𝐷𝐹𝐶dist scores of -0.01 and -0.04. However, the associated Z-scores for the latter two sets were relatively 608 

low (1.1 and 1.0; Suppl. Fig. 2i) and, as a consequence, 𝐹𝐷𝐹𝐶dist did not have a significant weighting on the CQC 609 

metric. 610 

FD-MFC 611 

𝐹𝐷-𝑀𝐹𝐶 was proposed in this work and is based on the assumption that the more a subject moves during a scan, the 612 

higher the mean value of correlations in the FC matrix is. As we can see in Fig. 2h, the score for 𝐹𝐷-𝑀𝐹𝐶 in the case of 613 

raw data was 0.22, confirming that motion can inflate the estimated correlations in the FC matrix. Importantly, when 614 

GSR was not performed, increasing the number of WM components from 1 to 30 led to an increase of 𝐹𝐷-𝑀𝐹𝐶, with 615 

𝑊𝑀30 exhibiting an 𝐹𝐷-𝑀𝐹𝐶 score of 0.45. For a higher number of WM components, 𝐹𝐷-𝑀𝐹𝐶 decreased 616 

monotonically reaching 0.19 for 𝑊𝑀600. Overall, when WM denoising was combined with GSR, a lower 𝐹𝐷-𝑀𝐹𝐶 was 617 
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Fig. 6. Scatterplots of mean FD vs FCC (top) and mean FD vs FDDVARS (bottom) considering the first scan from all subjects*. In the 

case of raw data, higher levels of motion in a scan made network identification more difficult (lower FCC scores) and resulted in significantly 

larger motion artifacts in the fMRI data (higher FDDVARS values). Using the pipelines 𝑊𝑀𝐺𝑆
200 and 𝐹𝐼𝑋, resulted in a significant reduction of 

the dependence of FCC and FDDVARS on the levels of motions. *Scans with mean FD three median absolute deviations (MADs) above the 

median were excluded (based on this criterion, 20 out of 390 subjects were excluded). 
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achieved, with 𝑊𝑀𝐺𝑆
200 yielding a score of -0.06 (Z-score: 0.7). Similar results were found when 𝐹𝐷-𝑀𝐹𝐶 was estimated 618 

using the first scan from all subjects, even though there was a mild decrease in the scores for all pipelines (Fig. 7).  619 
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Fig. 7. Scatterplots of mean  𝑫 vs mean FC for different pipelines with (bottom) or without (top) GSR considering the first scan from all 

subjects*. In the case of raw data, scans with high levels of motion were associated to high correlation values in FC. This dependence on the 

levels of motion vanished when the data were preprocessed with 𝑊𝑀𝐺𝑆
200 or 𝐹𝐼𝑋𝐺𝑆. Importantly, when a relatively low number of components 

were removed (e.g., 𝑊𝑀30), the effect of motion was enhanced compared to the raw data. *Scans with mean 𝐹𝐷 three median absolute deviations 

(MADs) above the median were excluded (based on this criterion, 20 out of 390 subjects were excluded). 
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3.2 Evaluation of data-driven NCTs 620 

In this analysis, we used the QC metrics to compare twenty different pipelines involving the removal of data-driven 621 

nuisance regressors from the fMRI data (Table 1). Fig. 8 shows the scores for the summarized metrics 𝑄𝐶signal and 622 

𝑄𝐶motion, as well as the combined metric 𝐶𝑄𝐶 for the Gordon atlas (the results for the Seitzman and MIST atlas are 623 

shown in Suppl. Fig. 12-Suppl. Fig. 13). Looking at the first three pipelines that correspond to the 6, 12 and 24 MPs, we 624 

observe that motion regressors reduced the effect of motion and (to a less extent) improved the SNR in the data, with the 625 

more aggressive pipeline (24 MPs) exhibiting the strongest impact for all three atlases. GSR alone (pipeline 4) 626 

significantly improved the SNR even though, for the Seitzman and MIST atlas, it also led to a small decrease in the 627 

𝑄𝐶motion score (Suppl. Fig. 12-Suppl. Fig. 13). As can be seen from Suppl. Fig. 3-Suppl. Fig. 4, 𝐹𝐷-𝐹𝐶𝐶 and 𝐹𝐷-𝑀𝐹𝐶 628 

increased after GSR, while 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 was at similar or lower levels compared to the raw data, suggesting that even 629 

Fig. 8. Evaluation of data-driven NCTs (Gordon atlas). Twenty different data-driven pipelines were examined, as listed in Table 1. Among all 

pipelines, pipelines that included GSR and WM or FIX denoising yielded the highest scores in 𝑄𝐶signal, 𝑄𝐶motion and 𝐶𝑄𝐶 (i.e., pipelines 12 and 

17-20). 
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though there was not any enhancement of motion artifacts, the systematic differences across scans due to motion 630 

increased. 631 

Several studies employ aCompCor as NCT, removing five WM and five CSF regressors (Wang et al., 2017; Xiao et al., 632 

2016). Our results derived from the HCP data suggest that this set of regressors demonstrates a moderate improvement 633 

with respect to both 𝑄𝐶signal and 𝑄𝐶motion (pipeline 6). Similar improvement in the quality of data was achieved when 634 

the mean time series from WM and CSF, and the 12 MPs were regressed out (pipeline 7; Urchs et al., 2017) whereas 635 

when including also the GS to the set of regressors, the 𝑄𝐶signal score reached a higher value (pipeline 8; Finn et al., 636 

2015). Pipelines 9 and 10 were more aggressive variants of pipeline 8, including 24 instead of 12 MPs, as well as the 637 

derivatives and squared terms of the tissue mean time series from GM, WM and CSF (Ciric et al., 2017; Laumann et al., 638 

2017; Xia et al., 2018). Considering more nuisance regressors in the preprocessing (36 rather than 15 regressors), pipeline 639 

10 exhibited a small but significant improvement compared to pipeline 8, with respect to 𝑄𝐶signal and 𝑄𝐶motion for the 640 

Gordon and Seitzman atlases, whereas for the MIST atlas 𝑄𝐶motion increased and 𝑄𝐶signal slightly decreased. 641 

Pipelines 11 to 13 evaluated the data quality for the FIX-denoised data provided in HCP with and without further 642 

denoising (Fig. 8). We observe that, as proposed in Burgess et al. (2016), regressing out the GS from the FIX-denoised 643 

data improved both 𝑄𝐶signal and 𝑄𝐶motion scores (pipelines 11 vs 12). However, when five WM and five CSF regressors 644 

were removed in addition to the GS (pipeline 13; Siegel et al., 2017) both summarized metrics were lower compared to 645 

performing only GSR (pipeline 12). 646 

Pipeline 14 was based on the NCT recommended by Muschelli et al. (2014), which considers as set of regressors the 647 

necessary number of WM and CSF regressors needed to explain 50% of variance in their associated compartments. As 648 

we see, in all three atlases pipeline 14 achieved a satisfactory reduction in motion artifacts, even though the SNR was 649 

much lower compared to other pipelines. Earlier results presented here showed that, the scores of the 𝑄𝐶signal metric 650 

were relatively low when CSF denoising was performed and high for WM denoising, particularly when GSR was also 651 

performed (Fig. 3). Based on these results, we also considered pipelines 15 to 19 that consider the GS as well as the WM 652 

regressors needed to explain a predefined fraction of variance in WM ranging from 30 to 50%. Our results suggest that 653 

pipelines 15 to 19 achieved high scores for both 𝑄𝐶signal and 𝑄𝐶motion, with the highest scores achieved when 45-50% 654 

of the variance was used as a threshold to select the WM regressors. 655 

Finally, the set of regressors 𝑊𝑀𝐺𝑆
200 that was found in the previous section to perform the best was considered as pipeline 656 

20. For all pipelines, we observed that the highest QC scores were obtained when GSR was performed in combination 657 

with FIX or WM denoising (i.e., pipelines 12 and 17-20). 658 

  659 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2021. ; https://doi.org/10.1101/837609doi: bioRxiv preprint 

https://doi.org/10.1101/837609
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 

3.3 Evaluation of model-based (motion and physiological) NCTs 660 

Four sets of model-based regressors were examined with respect to improvement in SNR and reduction of motion 661 

artifacts and biases. The four sets were related to head motion (24 MPs), cardiac pulsatility, breathing motion and SLFOs 662 

To assess their contribution when tissue-based regressors were also included in the set of nuisance regressors, we 663 

examined 64 pipelines presented in Fig. 9 in the form of a design matrix that refers to combinations of the four sets of 664 

model-based regressors, the GS and a set of 200 PCA regressors from WM. When only model-based regressors were 665 

considered, accounting for SLFOs improved the 𝑄𝐶signal score, whereas correcting for either head or breathing motion 666 

improved both 𝑄𝐶signal and 𝑄𝐶motion scores. Accounting for cardiac pulsatility led to an increase in 𝑄𝐶signal and 667 

decrease in 𝑄𝐶motion, even though the effect of cardiac regressors was lower compared to the rest of the model-based 668 

regressors. Finally, when GS and 200 WM regressors were considered (𝑊𝑀𝐺𝑆
200), accounting also for breathing motion, 669 

cardiac pulsatility or SLFOs, using model-based regressors, did not have any impact on the data quality, whereas 670 

correcting for motion with the 24 MPs led to a small decrease in the score for 𝑄𝐶motion. 671 

 672 

  673 

Fig. 9. Evaluation of model-based NCTs (Gordon parcel space). Model-based regressors were obtained from the motion (realignment) 

parameters and physiological recordings to correct for artifacts due to head motion (24 MPs), cardiac pulsatility (Cardiac), breathing motion 

(Breathing) and SLFOs (i.e., BOLD fluctuations due to changes in heart rate and respiratory flow; Kassinopoulos and Mitsis, 2019). Overall, none 

of the examined model-based NCTs contributed further to data quality improvement beyond that achieved with the set of tissue-based regressors 

𝑊𝑀𝐺𝑆
200. Similar results were found using the data in the Seitzman and MIST parcel space (Suppl. Fig. 14). 
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3.4 Evaluation of scrubbing 674 

Discarding volumes contaminated with motion artifacts before regressing out the set of nuisance regressors 𝑊𝑀𝐺𝑆
200 did 675 

not provide any gain with respect to the fMRI data quality (Fig. 10). Instead, stricter threshold values 𝐹𝐷thr resulted in 676 

lower scores for 𝑄𝐶signal and 𝑄𝐶motion. Also, discarding volumes with 𝐷𝑉𝐴𝑅𝑆 values beyond the threshold did not have 677 

any impact on the 𝑄𝐶motion score, while it significantly decreased 𝑄𝐶signal. 678 

  679 

Fig. 10. Effect of scrubbing in data quality for different threshold values. The framewise data quality indices 𝐹𝐷 and 𝐷𝑉𝐴𝑅𝑆 were used to 

flag volumes contaminated with motion artifacts. Subsequently, the motion-contaminated volumes were discarded before preprocessing the data 

with the set 𝑊𝑀𝐺𝑆
200 and estimating the 𝑄𝐶signal, 𝑄𝐶motion and 𝐶𝑄𝐶 scores. The obtained scores for varying values of thresholds 𝐹𝐷thr and 

𝐷𝑉𝐴𝑅𝑆thr are shown on the left and right columns, respectively. For both 𝐹𝐷 and 𝐷𝑉𝐴𝑅𝑆 scrubbing, the lower (stricter) were the threshold 

values, the worse was the resulting data quality. Similar results were found using the data in the Seitzman and MIST parcel space (Suppl. Fig. 15). 

For the fraction of volumes retained after scrubbing at a given threshold please see Suppl. Fig. 18. 
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3.5 Evaluation of low-pass filtering 680 

To examine the effect of low-pass filtering on data quality as well as its dependence on the cut-off frequency, we repeated 681 

the denoising of the data with variants of WM denoising (i.e. 𝑊𝑀𝐺𝑆
20, 𝑊𝑀𝐺𝑆

50, 𝑊𝑀𝐺𝑆
100 and 𝑊𝑀𝐺𝑆

200) after low-pass 682 

filtering the data and the regressors at different cut-off frequencies. For all variants of WM denoising, the highest 𝐶𝑄𝐶 683 

scores were achieved when low-pass filtering was performed at 0.20 Hz (Fig. 11). At this cut-off frequency, the sets of 684 

regressors 𝑊𝑀𝐺𝑆
50 and 𝑊𝑀𝐺𝑆

100 outperformed the larger set 𝑊𝑀𝐺𝑆
200. In addition, we observed that the lower cut-off 685 

frequency 0.08 Hz that is commonly used in the literature, as well as the cut-off frequency 0.05 Hz, led to a decrease in 686 

the 𝐶𝑄𝐶 score which was attributed to a reduction in 𝑄𝐶signal. The pipelines that consisted of a low-pass filtering at 0.20 687 

and removal of 𝑊𝑀𝐺𝑆
50 or 𝑊𝑀𝐺𝑆

100 were among the pipelines that achieved the highest 𝐶𝑄𝐶 scores for the Seitzman and 688 

MIST atlas as well (Suppl. Fig. 19). Overall, we observed that mild variants of WM benefitted the most from low-pass 689 

filtering, particularly in terms of reducing motion artifacts and biases (Fig. 11, Suppl. Fig. 19). 690 

  691 

Fig. 11. Effect of low-pass filtering in data quality for different cut-off frequencies. For all variants of WM denoising examined, low-pass 

filtering with a cut-off frequency of 0.2 Hz yielded the highest 𝐶𝑄𝐶 score. At this cut-off frequency, 𝑊𝑀𝐺𝑆
50 and 𝑊𝑀𝐺𝑆

100 yielded the highest CQC 

scores with mean scores 6.2 and 6.3, respectively. No significant difference was observed between 𝑊𝑀𝐺𝑆
50 and 𝑊𝑀𝐺𝑆

100 (p > 0.05, two-sample t-

test). The cut-off frequency of 0.2 Hz, and particularly when combined with 𝑊𝑀𝐺𝑆
50 and 𝑊𝑀𝐺𝑆

100, yielded the highest 𝐶𝑄𝐶 score also for the data 

registered to the Seitzman and MIST atlases (Suppl. Fig. 19). Note that the lowest cut-off frequencies examined for 𝑊𝑀𝐺𝑆
100 and 𝑊𝑀𝐺𝑆

200 were 

0.08 Hz and 0.2 Hz, as for these sets of regressors lower cut-off frequencies lead to fMRI data with a substantially low number of degrees of 

freedom (Bright et al. 2017). Data that had not been filtered are indicated with a ∞ cut-off frequency. 
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3.6 Identifiability of large-scale networks 692 

Finally, we sought to quantify the identifiability of each of the large-scale networks defined in the three functional atlases 693 

employed here and its dependence on the preprocessing pipeline. To this end, we calculated the 𝐹𝐶𝐶 score of each 694 

network for the raw dataset as well as four preprocessed datasets. To obtain the 𝐹𝐶𝐶 score per network, for a given 695 

network, when estimating the 𝐹𝐶𝐶 score, we compared WNEs with BNEs considering only WNEs that belonged to the 696 

examined network (for more information see Section 2.6). 697 

In Suppl. Fig. 20, we see that for the Gordon and Seitzman atlases, there was larger variability in 𝐹𝐶𝐶 score across 698 

networks rather than across pipelines. Networks consisting of a small number of parcels, such as the salience network in 699 

the Gordon atlas and the medial temporal lobe network in Seitzman atlas, exhibited small negative 𝐹𝐶𝐶 scores for the 700 

raw data, whereas when the data were preprocessed with a pipeline that included GSR the 𝐹𝐶𝐶 scores were increased to 701 

small positive values. On the other hand, large networks such as the default mode network exhibited significantly higher 702 

𝐹𝐶𝐶 scores. 703 

In the case of the MIST atlas there was less variability in 𝐹𝐶𝐶 score across networks compared to the Gordon and 704 

Seitzman atlas, which may be due to the fact that these networks consisted of a similar number of parcels. However, two 705 

out of the seven networks demonstrated a somewhat unexpected behavior. Specifically, the mesolimbic network 706 

demonstrated a large negative 𝐹𝐶𝐶 score for the raw and FIX-denoised data, despite the fact that it consists of a similar 707 

number of parcels to other networks in the atlas. Furthermore, regarding the cerebellum network, even though the 𝐹𝐶𝐶 708 

score in the raw data was relatively high, when FIX denoising was applied the 𝐹𝐶𝐶 score dropped to zero. 709 

Finally, while some networks in the three atlases were assigned the same name, they did not necessarily demonstrate the 710 

same behavior in terms of differences in 𝐹𝐶𝐶 across the five fMRI datasets. For example, in the Gordon atlas we observe 711 

that the fronto-pariental network yielded the highest 𝐹𝐶𝐶 score when the data were preprocessed using 𝑊𝑀𝐺𝑆
200, whereas 712 

in the MIST atlas, for the same network, the highest 𝐹𝐶𝐶 score was observed with the raw data. Nevertheless, for the 713 

majority of networks, 𝐹𝐶𝐶 scores were maximized when preprocessing was done with 𝐹𝐼𝑋𝐺𝑆 or 𝑊𝑀𝐺𝑆
200. 714 

 715 

 716 

 717 

 718 

  719 
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4. Discussion 720 

In this study, we have rigorously examined the effects of different preprocessing steps on SNR and degree of motion 721 

artifacts and biases in resting-state fMRI data, focusing on functional networks. As in previous studies, the QC metrics 722 

used to compare preprocessing pipelines illustrated different trends between them (Fig. 2). Therefore, to facilitate the 723 

comparison across pipelines, we introduced a novel framework that initially normalizes each of the 8 QC metrics to Z-724 

scores so that they reflect relative improvement in standard deviations with respect to the raw data. Subsequently, the 725 

two normalized signal-related metrics 𝐹𝐶𝐶 and 𝐼𝐶𝐶𝐶, and the six normalized motion-related metrics FD-FCC, 726 

𝐹𝐷𝐷𝑉𝐴𝑅𝑆, 𝐹𝐷-𝐹𝐷𝐷𝑉𝐴𝑅𝑆, 𝐹𝐷𝐹𝐶median, 𝐹𝐷𝐹𝐶dist and 𝐹𝐷-𝑀𝐹𝐶 are averaged to obtain the metrics 𝑄𝐶signal and 727 

𝑄𝐶motion, respectively. Finally, the combined QC metric 𝐶𝑄𝐶 defined as the mean of the 𝑄𝐶signal and 𝑄𝐶motion scores 728 

is calculated. Using this framework and resting-state fMRI data from the HCP registered to the Gordon atlas, we found 729 

that the largest improvement in the score of 𝐶𝑄𝐶 was obtained when the GS and 200 PCA regressors from WM were 730 

regressed out (Fig. 3). Similar results were found when the fMRI data were registered to the Seitzman and MIST atlases 731 

(Suppl. Fig. 3-Suppl. Fig. 6). Note that 200 WM regressors correspond to about 17% of the regressors derived with PCA 732 

from WM as the fMRI scans consisted of 1160 volumes each, and explain on average 36±6% of the variance in the WM 733 

voxel time series (Suppl. Fig. 1). 734 

Although we considered only subjects with good quality physiological data in all four scans, none of the model-based 735 

techniques examined here yielded further improvement in terms of data quality when compared to WM denoising (Fig. 736 

9). Note that similar conclusions were derived from a subsequent study from our lab in which the effects of physiological 737 

processes on FC were more systematically examined (Xifra-Porxas et al., 2021). Specifically, in Xifra-Porxas et al. 738 

(2021), we provided evidence that data decomposition techniques (FIX and WM denoising) combined with GSR lead to 739 

a substantial mitigation of  the effects of head motion and physiological fluctuations on FC but also improve connectome-740 

based subject discriminability. In addition, when data decomposition techniques were considered, model-based 741 

preprocessing approaches did not provide any additional benefit. These observations may not be surprising as it has been 742 

previously shown that artifacts due to head motion and physiological fluctuations can be corrected by removing WM and 743 

CSF regressors  (aCompCor) as well (Behzadi et al., 2007; Muschelli et al., 2014). Also, WM denoising, and in general 744 

model-free approaches such as FIX (Salimi-Khorshidi et al., 2014) and AROMA (Pruim et al., 2015b), have the benefit 745 

that they do not require physiological data and are not based on any assumptions related to the mechanisms by which 746 

physiological processes affect the BOLD signal. For example, the convolution models used here to account for the effect 747 

of heart rate and breathing pattern assume that a linear stationary system can describe these effects, which may not be 748 

entirely true (Kassinopoulos and Mitsis, 2019). 749 

Even though the model-based techniques were not found to yield any additional improvement as compared to data 750 

decomposition techniques, it is important to bear in mind that the QC metrics considered in the present study are mainly 751 

intended for whole-brain FC studies and, thus, are not necessarily informative or even applicable in different contexts. 752 

Model-based techniques are of great importance in several cases, such as studies with limited filed-of-view (e.g. laminar 753 

fMRI, brainstem imaging) where data-driven techniques (e.g. FIX denoising) cannot be directly used. Furthermore, 754 

model-based techniques are useful in studies of the autonomic nervous system (Kassinopoulos et al., 2021; Mulcahy et 755 

al., 2019) and task-based studies whereby physiological noise is often correlated to the signal of interest (Glasser et al., 756 

2018) and, therefore, conservative approaches based on concurrent physiological recordings and physiologically-inspired 757 

models are needed to account for the associated noise, while also preserving the signal of interest. 758 

Performing scrubbing before WM denoising (𝑊𝑀𝐺𝑆
200) was found to deteriorate the quality of the data rather than 759 

improving it (Fig. 10). As this result contradicts with the benefits of scrubbing reported in the literature (Ciric et al., 760 

2017; Gratton et al., 2020; Parkes et al., 2018; Power et al., 2015), we repeated the analysis using standard aCompCor, 761 

which removes a significantly smaller number of regressors (i.e. five WM and five CSF regressors), and found that 762 

scrubbing at specific threshold values (𝐹𝐷 > 0.20 mm and 𝐷𝑉𝐴𝑅𝑆 > 1.5 MAD) improved the data quality with respect 763 

to motion-related QC metrics and, to a smaller extent, signal-related metrics (Suppl. Fig. 16). However, our findings 764 
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suggest that the improvement in data quality observed with mild preprocessing and scrubbing was still inferior to that 765 

obtained with more aggressive pipelines (e.g. WM denoising and FIX) that are not preceded by scrubbing. 766 

Recent studies have suggested that in multi-band fMRI datasets with short TR, such as the HCP dataset, the effect of 767 

breathing activity on 𝐹𝐷 traces should be suppressed to ease the identification of motion-contaminated volumes and 768 

avoid removing presumably noise-free volumes (Gratton et al., 2020; Power et al., 2019). With this in mind, we removed 769 

the effects of breathing from the six motion realignment parameters using concurrent breathing recordings and 3rd order 770 

RETROICOR, and estimated 𝐹𝐷 traces free of breathing effects. Consistent with previous studies (Gratton et al., 2020; 771 

Power et al., 2019), these 𝐹𝐷 traces were characterized by lower amplitude and smaller oscillatory fluctuations and 772 

yielded in turn lower numbers of motion-contaminated volumes for a given threshold value (Suppl. Fig. 18). However, 773 

when the data were preprocessed using 𝑊𝑀𝐺𝑆
200, even with the proposed 𝐹𝐷 traces, scrubbing was found to deteriorate 774 

the quality of the data (Suppl. Fig. 17). Note that, for the motion-related metrics examined in this study that are based on 775 

𝐹𝐷, we considered the standard 𝐹𝐷 traces, which include breathing-related fluctuations. Breathing, apart from shifting 776 

the acquired images due to disturbances in the magnetic field, can also alter the intensity in fMRI voxel time series (Raj 777 

et al., 2001, 2000), and these alterations are not corrected via volume realignment. Therefore, the standard 𝐹𝐷 traces 778 

were used in the QC metrics to render them sensitive to the presence of breathing-induced artifacts. 779 

Finally, we found that low-pass filtering at 0.2 Hz led to further improvement in data quality beyond the improvement 780 

achieved with WM denoising and, importantly, this improvement was more prominent for mild variants of WM denoising 781 

(i.e. 𝑊𝑀𝐺𝑆
50 and 𝑊𝑀𝐺𝑆

100;  Fig. 11). However, a substantial decrease in SNR was observed when the 0.08 Hz cut-off 782 

frequency commonly used in fMRI studies was considered. The rationale behind choosing the 0.08 Hz cut-off frequency 783 

for low-pass filtering in resting-state FC is that well-established large-scale networks have been found to oscillate at 784 

frequencies below 0.10 Hz (Damoiseaux et al., 2006), while breathing motion and other sources of noise appear at 785 

frequencies above this frequency (Caballero-Gaudes and Reynolds, 2017; Liu, 2016). Nevertheless, several studies have 786 

found activity in RSNs in the range from 0.1 to 0.5 Hz (Chen and Glover, 2015; Niazy et al., 2011), suggesting that low-787 

pass filtering at 0.08 Hz may potentially remove signal of interest. Based on our results, when considering whole-brain 788 

FC, low-pass filtering at 0.2 Hz yields the highest SNR, which may be related to reduction in breathing motion artifacts 789 

that appear at around 0.3 Hz and may not be fully corrected with WM denoising. 790 

 791 

4.1 QC metrics 792 

Nine QC metrics were initially considered with three metrics related to the SNR in the fMRI data and six metrics related 793 

to motion artifacts and biases. To assess the sensitivity of each metric, the subjects were split into 10 groups of 39 subjects 794 

each with similar levels of motion across groups, as assessed with within-scan mean FD. Subsequently, the QC scores 795 

were estimated for each group separately. Based on the fact that the 10 groups of subjects were characterized by similar 796 

distributions of mean 𝐹𝐷 values, we hypothesized that more sensitive QC metrics would be associated with a lower 797 

variability (or standard deviation) of scores across groups. Furthermore, to obtain QC metric values that are easier to 798 

interpret and compare, the score for a given metric and group of subjects was expressed as a Z-score, which reflects the 799 

improvement in standard deviations compared to the distribution of values found in the raw data across the ten groups 800 

of subjects (for more information see Section 2.7). 801 

To keep the computational load of the present study feasible, we considered three different functional atlases based upon 802 

hard non-overlapping parcellations, which do not account for cross-subject variations in the parcel locations (Seitzman 803 

atlas) and boundaries (Gordon and MIST atlas), and may therefore provide incomplete descriptions of the brain functional 804 

organization (Pervaiz et al., 2020; Van Essen and Glasser, 2018). However, the QC metrics can be easily extended to 805 

data-driven soft parcellations as well (e.g. spatial ICA), provided that the main functional connections expected to be 806 

observed at the group level, as well as their strength, are known. 807 

Signal-related metrics 808 
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Among the three signal-related metrics (i.e., metrics related to the SNR), 𝐹𝐶𝐶 demonstrated a substantially higher 809 

improvement in Z-score compared to the other two metrics (Suppl. Fig. 2), and as such was the main determinant of the 810 

summarized metric 𝑄𝐶signal. The 𝐹𝐶𝐶 is based on the assumption that the strength of correlation for WNEs in FC is on 811 

average larger than BNEs. Previous studies have used similar metrics to assess spatial specificity in FC considering 812 

though only interactions between specific regions in the brain rather than whole-brain interactions (Birn et al., 2014; 813 

Chai et al., 2012; Muschelli et al., 2014), whereas Shirer et al. (2015) used a metric that compares the correlations of 814 

WNEs with correlations between brain regions and regions outside the brain. While we acknowledge that some of the 815 

BNEs may correspond to neuronal-related connections, these edges would likely be the minority. In addition, the relative 816 

magnitude of within- vs -between- network edges allows the identification of clusters or networks. Therefore, we believe 817 

that considering all BNEs to form the null distribution, rather than connections with voxels outside the brain, is more 818 

appropriate. 819 

𝐹𝐶𝐶 can be considered as a measure of segregation, similar to the modularity index adopted in graph theory approaches 820 

for assessing the degree to which a  network topology can be subdivided into distinct nonoverlapping communities 821 

(Rubinov and Sporns, 2010). Note that our results were consistent with an earlier study that used the modularity index 822 

as a signal-related QC metric for the evaluation of preprocessing strategies (Ciric et al., 2017). For instance, in the present 823 

study, preprocessing approaches based on decomposition techniques (WM and FIX denoising) were characterized by 824 

high 𝐹𝐶𝐶 scores, which is in agreement with the high modularity index reported for the ICA-based technique AROMA 825 

(Pruim et al., 2015b) and aCompCor in Ciric et al. (2017). However, a main difference between FCC and the modularity 826 

index (Ciric et al., 2017; Cisler, 2017) is that FCC is based on a-priori information about the large-scale network 827 

(community) to which each parcel belongs, whereas the modularity index assigns the parcels to communities for each 828 

subject separately, a step that, depending on the algorithm employed, can be computationally demanding (Rubinov and 829 

Sporns, 2010). 830 

The signal-related metric 𝑀𝐼𝐶𝐶 was used to assess test-retest reliability across the four sessions of each subject in whole-831 

brain FC estimates. However, as in previous studies, more aggressive pipelines were associated with lower 𝑀𝐼𝐶𝐶 scores, 832 

which has been interpreted as this metric reflecting subject-specificity due to presence of noise rather than signal of 833 

interest (Fig. 2, Birn et al., 2014; Parkes et al., 2018). As 𝑀𝐼𝐶𝐶 scores did not seem to correspond to SNR, it was excluded 834 

from the rest of the analysis. Interestingly, Birn et al. (2014) reported smaller decreases in ICC for significant connections 835 

compared to the remaining connections, which was also confirmed in our data (see for example Fig. 5). Therefore, in the 836 

present work, based on these findings, we proposed a novel metric termed 𝐼𝐶𝐶𝐶, which reflects the extent to which 𝐼𝐶𝐶 837 

values in WNEs are higher as compared to BNEs. 𝐼𝐶𝐶𝐶 was found to behave in a similar manner with 𝐹𝐶𝐶 and, thus, 838 

later in the analysis it was combined with the 𝐹𝐶𝐶 score to obtain the summarized metric 𝑄𝐶signal.  839 

Note that the metrics 𝐹𝐶𝐶 and 𝐼𝐶𝐶𝐶 assume that each parcel belongs to only one large-scale network and that only 840 

parcels from the same network interact with each other, which is an oversimplified description of the brain functional 841 

organization and can be potentially misleading, as numerous resting-state fMRI studies have documented interactions 842 

between networks. For instance, in healthy controls, a positive intrinsic functional connection has been reported between 843 

the amygdala and medial prefrontal cortex, which consist of key nodes of the limbic and default mode network, 844 

respectively (Roy et al., 2009). In our work, pipelines that yielded some of the highest 𝐹𝐶𝐶 and 𝐼𝐶𝐶𝐶 scores, such as 845 

WM and FIX denoising along with GSR, were also characterised by strong functional connections and connections with 846 

high subject-specificity for a large fraction of BNEs (Fig. 5 & Suppl. Fig. 13). Therefore, the use of 𝐹𝐶𝐶 and 𝐼𝐶𝐶𝐶 did 847 

not seem to suppress connectivity between brain regions of different networks. Nevertheless, to address the potential 848 

limitations of 𝐹𝐶𝐶 and 𝐼𝐶𝐶𝐶, we would need to incorporate information in QC metrics about both within- and between-849 

network interactions associated with the population examined. However, this is challenging as the literature currently 850 

lacks a detailed characterization of the brain functional organization at this level of detail. 851 

Intriguingly, when the data were preprocessed with 𝐹𝐼𝑋𝐺𝑆 or 𝑊𝑀𝐺𝑆
200, edges corresponding to interactions between the 852 

default mode and fronto-parietal networks, despite the low correlation values in group-level FC, demonstrated 853 

significantly higher 𝐼𝐶𝐶 values compared to other BNEs (Fig. 5). This finding suggests that regions in the default mode 854 
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and fronto-parietal networks may be functionally connected but in a subject-specific manner. On a side note, the values 855 

of connectivity strength between regions in the aforementioned two networks were found in recent studies to contribute 856 

to the identification of individuals using fMRI FC (Finn et al., 2015) as well as to the prediction of behavioral measures 857 

(Smith et al., 2015). 858 

A caveat of using 𝐼𝐶𝐶𝐶 as a metric to compare pipelines is that it requires a dataset with several subjects and more than 859 

one scan per subject. As a result, in contrast to 𝐹𝐶𝐶, it cannot be used to assess the data quality for a specific scan. In 860 

addition, looking at Fig. 2 & Fig. 5, we see that 𝐼𝐶𝐶𝐶 was increased both with a better preprocessing strategy or with a 861 

larger sample size. In addition, when 𝐼𝐶𝐶𝐶 was estimated from all 390 subjects in one step rather than in groups of 39 862 

subjects, apart from the increase in 𝐼𝐶𝐶𝐶 scores for all pipelines, we also observed smaller differences between pipelines 863 

which can be translated as a lower sensitivity of 𝐼𝐶𝐶𝐶 when comparing pipelines. We found the dependence of the metric 864 

𝐼𝐶𝐶𝐶 on sample size somewhat puzzling. Due to the aforementioned dependence of 𝐼𝐶𝐶𝐶 sensitivity on the sample size, 865 

for future studies with large sample sizes interested in assessing the performance of pipelines, we would recommend 866 

estimating 𝐼𝐶𝐶𝐶 in small groups of subjects as done here. 867 

Motion-related metrics 868 

Head motion during the scan is a major confound in fMRI FC studies as it diminishes the signal of interest in the data 869 

but also affects the strength of connectivity across regions and across populations in a systematic manner. While the 870 

majority of edges in FC are typically inflated by motion, short-distance edges tend to be inflated even more than long-871 

distance edges (Satterthwaite et al., 2013). In addition, different populations often exhibit different tendency for motion 872 

(e.g., young vs older participants), which has been shown to lead to artificial differences in 𝐹𝐶 (Power et al., 2015). To 873 

assess the performance of each preprocessing strategy examined here on the aforementioned aspects of motion effects, 874 

three previously proposed metrics (i.e., 𝐹𝐷𝐷𝑉𝐴𝑅𝑆, 𝐹𝐷𝐹𝐶median and 𝐹𝐷𝐹𝐶dist) as well as three novel metrics (i.e., 𝐹𝐷-875 

𝐹𝐶𝐶, 𝐹𝐷-𝐹𝐷𝐷𝑉𝐴𝑅𝑆 and 𝐹𝐷-𝑀𝐹𝐶) were considered in the present study. While the main trend in all motion-related 876 

metrics was that removing more WM regressors resulted in bringing the scores closer to zero, a different pipeline was 877 

favored by each metric (Fig. 2). For example, in the case of WM denoising with GSR, the metric 𝐹𝐷-𝐹𝐶𝐶 demonstrated 878 

the smallest absolute score when 70 WM regressors were removed, whereas the metric 𝐹𝐷𝐹𝐶median yielded the smallest 879 

absolute score for the most aggressive pipeline examined here (600 WM regressors). However, after normalizing the 880 

metrics to Z-scores, 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 was found to be considerably more sensitive than the remaining metrics (Suppl. Fig. 2) 881 

and, thus, was the main determinant of 𝑄𝐶motion. As a result, the summarized metric 𝑄𝐶motion, despite being defined as 882 

the average of all six motion-related metrics, favored the set 𝑊𝑀𝐺𝑆
200 that was characterized by a high Z-score of 883 

𝐹𝐷𝐷𝑉𝐴𝑅𝑆. 884 

Combined QC metric 885 

While the summarized metric associated to SNR 𝑄𝐶signal reached a maximum score for a broad range of pipelines 886 

(𝑊𝑀𝐺𝑆
60 to 𝑊𝑀𝐺𝑆

200), to ensure an efficient mitigation of motion artifacts and biases, the combined QC metric favored the 887 

more aggressive option of WM denoising (i.e., 𝑊𝑀𝐺𝑆
200; Fig. 3). Due to the lack of ground truth in resting-state fMRI, 888 

we cannot be certain that the combined QC metric is successful in identifying the best preprocessing pipeline. However, 889 

it is reassuring that the combined QC metric favors data decomposition techniques combined with GSR as these 890 

preprocessing techniques have been shown to improve subject discriminability of functional connectomes the most 891 

(Xifra-Porxas et al., 2021). In addition, we find reassuring that the combined QC metric favors the inclusion of GSR in 892 

the preprocessing, as GSR has been shown to strengthen the association of functional connectomes with behavioral 893 

measurements (Li et al., 2019). 894 

We acknowledge that depending on the fMRI study, the researchers may prefer, rather than using the combined QC 895 

metric as it is, to give more weighting to the metric 𝑄𝐶signal and, thus, apply a milder WM denoising, particularly when 896 

two populations with similar levels of motion are compared. In addition, we observe that for the majority of analyses, 897 

𝐹𝐶𝐶 and 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 favor similar pipelines with the summarized metrics 𝑄𝐶signal and 𝑄𝐶motion (e.g. Suppl. Fig. 3 & 898 

Suppl. Fig. 5). For example, in the search of the variant of WM denoising and low-pass filter that maximize the SNR, 899 
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we observe that 𝐹𝐶𝐶 favors the cut-off frequency 0.2 Hz with the set of regressors 𝑊𝑀𝐺𝑆
50 (Suppl. Fig. 22; Gordon and 900 

Seitzman atlas), and this finding is consistent with the indications based on the summarized metric 𝑄𝐶signal (Fig. 9; 901 

Suppl. Fig. 19). Similarly, in the search of the pipeline that mitigates the effects of motion the most, FDDVARS is in 902 

favor of the cut-off frequency 0.2 Hz with the set of regressors 𝑊𝑀𝐺𝑆
100 (Suppl. Fig. 22; Gordon and Seitzman atlas), 903 

which is also consistent with the indications based on the summarized metric 𝑄𝐶motion (Fig. 9; Suppl. Fig. 19). Therefore, 904 

considering that 𝐹𝐶𝐶 and 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 demonstrate significantly higher sensitivity than the rest of the metrics (Suppl. Fig. 905 

2), it would be sensible for a study to determine the preprocessing strategy based solely on these two metrics. If the levels 906 

of motion in a cohort are relatively low, the mild pipeline proposed by 𝐹𝐶𝐶 could be employed, whereas in the case that 907 

the levels of motion are high, a more aggressive pipeline towards the indications of 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 would be more 908 

appropriate. 909 

 910 

4.2 PCA-based WM denoising improves SNR and mitigates motion effects 911 

In the original study introducing the aCompCor technique (Behzadi et al. 2007), the authors proposed the removal of 6 912 

PCA regressors from WM and CSF to account for cardiac and breathing artifacts. However, this proposal was based on 913 

Monte Carlo simulations using a modified version of the “broken stick” method described in Jackson (2016), which does 914 

not take into account QC metrics that reflect in some way improvement in the quality of the fMRI data. A few years 915 

later, Chai et al., (2012) also proposed the removal of five PCA regressors from each noise ROI based on observations 916 

related to the connectivity between a region in the medial prefrontal cortex with other brain regions. They also showed 917 

that regressing out higher number of PCA regressors led to reduced correlation strengths, which may be associated to 918 

reduction of degrees of freedom in the data. Very likely based on these findings, many subsequent fMRI studies 919 

considered only 5 PCA regressors from each noise ROI (Ciric et al., 2017; Wang et al., 2017; Xiao et al., 2016). 920 

In this study, we sought to examine the effect of varying the number of PCA regressors on data quality based on QC 921 

metrics that account for the effect of motion, as well as the SNR in whole-brain FC rather than interactions between 922 

specific regions. Moreover, as there is evidence that neuronal-related activation can be detected in WM (Grajauskas et 923 

al., 2019), we examined separately the effects of WM and CSF denoising to determine whether CSF denoising could be 924 

sufficient for preprocessing. Interestingly, our results showed that even though WM and CSF denoising achieved similar 925 

reduction with respect motion artifacts and biases, the former exhibited substantially better performance in terms of SNR 926 

improvement compared to the latter (Fig. 2-Fig. 3). Particularly, the set of regressors 𝑊𝑀𝐺𝑆
200, which consists of 200 927 

PCA regressors from WM and the GS illustrated one of the best overall performance among all sets of nuisance regressors 928 

examined here (Fig. 8). In addition, our results suggested that a small, albeit significant, further improvement can be 929 

achieved when combining mild variants of WM denoising (e.g. 𝑊𝑀𝐺𝑆
50) with low-pass filtering at 0.2 Hz. 930 

The standard aCompCor technique that employs 5 PCA regressors from each noise ROI was found to increase the 931 

summarized metrics 𝑄𝐶signal and 𝑄𝐶motion compared to the raw data but not as much as the set 𝑊𝑀𝐺𝑆
200 (pipeline 6 vs 932 

20 in Fig. 8). However, we observed that, when GSR was not considered, removing a low number of WM or CSF 933 

regressors yielded more negative scores in 𝐹𝐷𝐹𝐶median and 𝐹𝐷-𝑀𝐹𝐶 compared to the raw data, suggesting that the 934 

biases in FC due to differences in motion across scans were enhanced (Fig. 2). While this may seem counterintuitive, a 935 

possible explanation, based on Fig. 7, is that in raw data high-motion scans are associated with a larger inflation in 936 

connectivity due to motion artifacts as compared to low-motion scans. Even though the first few PCA regressors may 937 

correct for this inflation, this correction is more effective for low-motion scans which in turn increases the differences in 938 

inflation between low- and high-motion scans even more. This phenomenon was not observed for 𝐹𝐷𝐹𝐶median when 939 

GSR was considered and it was diminished for 𝐹𝐷-𝑀𝐹𝐶, suggesting that the inflation in connectivity may be associated 940 

to motion-related fluctuations that are also reflected on the GS. 941 

While the practice of regressing out from the data 200 WM regressors may raise concerns with regards to loss of signal 942 

of interest, it is important to bear in mind that the examined fMRI data lasted about 15 minutes and had a repetition time 943 

TR of 0.72. Therefore, each of the scans examined here corresponded to the relatively large number of 1200 volumes 944 
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and the voxel time series in WM and CSF were decomposed into 1200 PCA components (note that the first 40 volumes 945 

were subsequently discarded to allow modelling of the SLFOs; for more information see Section 2.4). Note also that 946 

during the training phase of FIX conducted by the HCP group, the average number of components estimated by ICA was 947 

229 and from these components, on average 205 components were labelled as noisy (Smith et al., 2013a) which is overall 948 

in agreement with the optimal number of WM components reported in the present study (200). Nevertheless, to examine 949 

the dependence of the optimal number of regressors on the TR, we repeated the aCompCor analysis for a downsampled 950 

version of the dataset that was generated by retaining every 4th functional volume of each scan, resulting this way to an 951 

effective TR of 2.88 s. Doing so, we found that for this subset of data that is more similar to a conventional fMRI dataset 952 

than the original dataset, the best improvement in data quality was achieved with 30 WM regressors combined with GSR 953 

(i.e. 𝑊𝑀𝐺𝑆
30; Suppl. Fig. 7). This result suggests that for data consisting of fewer timepoints a lower number of PCA 954 

regressors would likely yield the best performance and vice versa. 955 

An alternative preprocessing strategy proposed by Muschelli et al. (2014) is to use the number of PCA regressors needed 956 

to explain 50% variance in the two noise ROIs. To compare the performance of this strategy, referred to as aCompCor50, 957 

with the original aCompCor they used the QC metric FDDVARS as well as two metrics similar to the 𝐹𝐷-𝐹𝐷𝐷𝑉𝐴𝑅𝑆 958 

and 𝐹𝐶𝐶 used here. Based on their results, aCompCor50, as compared to aCompCor, exhibited a larger reduction in 959 

motion artifacts and improvement in FC specificity, even though the difference for the latter was only marginal when 960 

corrected for multiple comparisons. In our dataset, aCompCor50, which corresponded to about 360 (±60) WM and 90 961 

(±40) CSF regressors (Suppl. Fig. 1), also performed better compared to aCompCor (pipelines 14 vs 6 in Fig. 8). In the 962 

present study, however, we also examined variants of aCompCor50 that consisted of GSR and WM denoising with 963 

different thresholds of variance for choosing the optimal number of regressors (pipelines 15-19). In the case of the Gordon 964 

and Seitzman atlas, GSR combined with WM regressors needed to explain about 45% variance performed almost as well 965 

as 𝑊𝑀𝐺𝑆
200, whereas for the MIST atlas, GSR with WM regressors needed to explain 50% variance performed slightly 966 

better than 𝑊𝑀𝐺𝑆
200 (Fig. 8). It should be noted that, in the case that the number of WM regressors was determined based 967 

on the variance accounted for, the exact number of regressors, and equivalently the loss of degrees of freedom from the 968 

data, varied across participants. However, despite the varying number of degrees of freedom in the data, this approach 969 

performed, overall, as well as 𝑊𝑀𝐺𝑆
200, both in terms of enhancement of SNR and mitigation of motion artifacts and 970 

biases. Based on these observations, we believe that it will be important for future studies to examine more systematically 971 

whether choosing the number of regressors based on a specific percentage of variance accounted for can lead to improved 972 

data quality for a variety of fMRI datasets that may differ in terms of pulse sequence (single-band vs multi-band fMRI, 973 

scan duration, main magnetic field, etc.) or population examined. 974 

Another potential means of improving the performance of aCompCor is by defining the WM and CSF masks in a way 975 

that partial volume effects are minimized, such as by restricting the CSF mask to the lateral ventricles or by applying 976 

erosion along the boundaries, as was done in previous studies (Behzadi et al., 2007; Muschelli et al., 2014). It should be 977 

noted that in the present study, the probability thresholds for defining the WM and CSF compartments (0.80 and 0.90, 978 

respectively) were determined based on visual inspection. However, based on a secondary analysis, the performance of 979 

CSF denoising can be improved if a stricter probability threshold is considered, albeit it still cannot outperform WM 980 

denoising (Suppl. Fig. 21). Given this finding, we believe that future work should also examine the role of the probability 981 

threshold for defining the WM and CSF masks in the context of denoising, as well as whether the optimal threshold 982 

depends on factors such as the spatial resolution of fMRI data and the software used for tissue segmentation. 983 

 984 

4.3 GSR combined with WM or FIX denoising further improves SNR and mitigates motion effects 985 

The GS, which is defined as the average fMRI time series across all voxels in the brain or GM, is often regressed out 986 

from the data. In our study, GSR improved the scores for the signal-related QC metrics and, to a less extent, the scores 987 

for the motion-related QC metrics for both WM and FIX denoising (Fig. 2-Fig. 3). For a low number of PCA regressors 988 

in WM denoising, we observed that the effect of GSR was stronger compared to higher regressor numbers, which implies 989 

that WM regressors share common variance with the GS. Previous studies have shown that the GS derived either by the 990 
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whole brain or GM are very similar to each other and also that the GS is highly correlated with the mean time series 991 

across voxels in WM and CSF (Kassinopoulos and Mitsis, 2019; Power et al., 2017), which further lends support to the 992 

idea that WM regressors share common variance with the GS. Furthermore, we observed that the SLFOs that reflect 993 

BOLD fluctuations due to changes in heart rate and breathing patterns, and account for a significant fraction of GS 994 

fluctuations (Falahpour et al., 2013; Kassinopoulos and Mitsis, 2021, 2019), were well explained using the first 20-30 995 

WM and CSF regressors (Fig. 1). This result suggests that the practice of considering PCA regressors from WM or CSF 996 

exhibits to some extent similar effects to GSR. As a result, the effect of GSR when considering 200 WM regressors (i.e., 997 

𝑊𝑀𝐺𝑆
200 vs 𝑊𝑀200) is relatively small (Fig. 2-Fig. 3). In contrast, GSR has a strong effect on FIX denoising, which 998 

suggests that the ICA regressors that are removed by FIX denoising do not share a large fraction of common variance 999 

with the GS. This is not surprising, as it has been suggested that spatial ICA used in FIX is, by design, unable to separate 1000 

global temporal artifacts from fMRI data (Glasser et al., 2018). For instance, it has been shown that the default mode 1001 

network identified with ICA is often confounded by variations in breathing patterns (Birn et al., 2008a). And since the 1002 

BOLD fluctuations due to variations in breathing patterns or heart rate are in low frequencies (~0.1 Hz), FIX is unlikely 1003 

to classify components that are confounded by these sources as noisy with the result of preserving global artifacts in the 1004 

fMRI data. 1005 

Despite the simplicity of GSR, there has been much debate about its use (Liu et al., 2017; Murphy and Fox, 2017). Even 1006 

though several studies have shown that a large fraction of the GS is associated to physiological processes such as heart 1007 

rate and breathing activity (Birn et al., 2006; Chang et al., 2009; Falahpour et al., 2013; Kassinopoulos and Mitsis, 2021, 1008 

2019; Shmueli et al., 2007; Wise et al., 2004) as well as head motion (Power et al., 2014; Satterthwaite et al., 2013), 1009 

there is accumulating evidence that GS is also driven by neuronal activity as assessed by intracranial recordings 1010 

(Schölvinck et al., 2010) and vigilance-related measures (Chang et al., 2016; Falahpour et al., 2018; Liu and Falahpour, 1011 

2020; Wong et al., 2016, 2013). Therefore, while our results are in support of GSR for both WM and FIX denoising, we 1012 

cannot exclude the possibility of removing some neuronal-related fluctuations from the data when the GS is removed. 1013 

Finally, we should acknowledge that several attempts have been made to address some of the limitations of GSR (Aquino 1014 

et al., 2020; Carbonell et al., 2014, 2011; Erdoğan et al., 2016); however, whether the proposed techniques suppress 1015 

physiological noise while also preserving neuronal activity still remains an open question. 1016 

 1017 

5. Conclusion 1018 

In summary, the current study evaluated the performance of a large range of model-based and model-free techniques 1019 

using previously proposed as well as novel QC metrics. As the QC metrics did not uniformly favor a specific 1020 

preprocessing strategy, we proposed a framework that evaluates the sensitivity of each metric. Among eight QC metrics, 1021 

𝐹𝐶𝐶 proposed here as well as 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 employed in Muschelli et al. (2014) exhibited the highest sensitivity. 𝐹𝐶𝐶 1022 

reflects the difference between WNE and BNE correlation values, whereas 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 reflects the levels of motion 1023 

artifacts in the parcel time series. Our results suggest that the choice of the preprocessing strategy to be employed in a 1024 

study could be based solely on the metrics 𝐹𝐶𝐶 and 𝐹𝐷𝐷𝑉𝐴𝑅𝑆, where the former tends to favor relatively mild strategies 1025 

for improving the identification of large-scale networks, while the latter is in favor of more aggressive strategies in an 1026 

attempt to minimize the presence of motion artifacts. 1027 

The data-driven approaches (WM denoising and FIX denoising) combined with GSR demonstrated the largest increase 1028 

in SNR as well as reduction in motion artifacts and biases. In the case of WM denoising, using resting-state fMRI data 1029 

from the HCP, we found that removing about 17% of the WM regressors yielded one of the largest improvements in QC 1030 

scores. Scrubbing did not provide any gain to the data quality when it was followed by WM denoising, whereas low-pass 1031 

filtering at 0.2 Hz led to an additional improvement, particularly when combined with mild variants of WM denoising. 1032 

Similar conclusions were derived using three different functional atlases. However, unless the framework followed here 1033 

is repeated with different datasets that vary in terms of the population examined or acquisition parameters (e.g. repetition 1034 

time TR and duration of scan) we cannot be certain whether our conclusions can be directly generalized to other datasets. 1035 
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Therefore, we recommend investigators to consult the QC metrics when deciding about the pipeline they want to employ 1036 

in a study. Finally, as has been suggested in previous studies (Ciric et al., 2017; Parkes et al., 2018), we recommend 1037 

investigators to report scores of QC metrics for the preprocessed data so that readers can independently interpret the 1038 

findings with respect to possible biases that can arise due to motion. To assist with this, we provide the codes used in 1039 

this study (https://github.com/mkassinopoulos/Estimation_of_QC_metrics), which can be used for preprocessing of the 1040 

data and estimation of the QC scores. 1041 
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Suppl. Fig. 1. Cumulative variance explained (%) for PCA 

regressors obtained from WM and CSF. About 360 (±60) WM 

and 90 (±40) CSF regressors were required to explain 50% of the 

variance in the WM and CSF compartments, respectively. These 

numbers correspond to the number of PCA regressors to be 

removed from the fMRI data according to the variant of aCompCor 

proposed in Muschelli et al. (2014). The first 200 WM regressors 

used in 𝑊𝑀200 correspond to an average explained variance of 

36±6 %. 
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Suppl. Fig. 2. Quality control (QC) 

scores obtained by aCompCor, after 

normalization, using the data in the 

Gordon parcel space. To summarize 

all the QC metrics to signal-related and 

motion-related metrics it was 

important that the obtained scores from 

each group of subjects were 

transformed to Z-scores as described in 

Section 2.7. For both signal- and 

motion-related metrics, high 

normalized scores corresponded to 

better quality of data. Among all 

metrics, 𝐹𝐶𝐶 and 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 

demonstrated the most significant 

improvement in quality with respect to 

the raw data. For the correspondence 

of the different curves and lines please 

see Fig. 2. 
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Suppl. Fig. 3. Quality control (QC) 

scores obtained by aCompCor using 

the data in the Seitzman parcel 

space. Similarly to the data at the 

Gordon parcel space, different trends 

were observed among the nine QC 

metrics. Furthermore, the two QC 

scores 𝐹𝐶𝐶 and 𝐼𝐶𝐶𝐶 that are based on 

the contrast in the FC and 𝐼𝐶𝐶 matrices 

exhibited different range of scores for 

the data in the Seitzman parcel space 

compared to the data in the Gordon 

parcel space which may be related to 

the different number of parcels and 

networks between the atlases. 

However, the trends of these two 

scores for varying number of 

components were similar. For the 

correspondence of the different curves 

and lines please see Fig. 2. 
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Suppl. Fig. 4. Quality control (QC) 

scores obtained by aCompCor using 

the data in the MIST parcel space. 

Similarly to the data at the Gordon 

parcel space, different trends were 

observed among the nine QC metrics. 

Furthermore, the two QC scores 𝐹𝐶𝐶 

and 𝐼𝐶𝐶𝐶 that are based on the contrast 

in the FC and 𝐼𝐶𝐶 matrices exhibited 

different range of scores for the data in 

the MIST parcel space compared to the 

data in the Gordon parcel space which 

may be related to the different number 

of parcels and networks between the 

atlases. However, the trends of these 

two scores for varying number of 

components were similar. For the 

correspondence of the different curves 

and lines please see Fig. 2. 
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Suppl. Fig. 5. Summarized QC scores obtained by aCompCor using the data in the Seitzman parcel space. Similarly to the data in the 

Gordon parcel space (Fig. 3), GSR and white matter denoising with 50 to 100 PCA regressors yielded the highest scores for 𝑄𝐶signal whereas the 

more aggressive set of regressors 𝑊𝑀𝐺𝑆
200 achieved the highest score in 𝑄𝐶motion. Overall, the CQC score that accounts for both 𝐶signal and 

𝑄𝐶motion yielded its highest value when the set 𝑊𝑀𝐺𝑆
200 was used. 

For the correspondence of the different curves and lines please see Fig. 1.  
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Suppl. Fig. 6. Summarized QC scores obtained by aCompCor using the data in the MIST parcel space. In the MIST parcel space, the 

𝑄𝐶signal was kept relatively stable at its highest score for a larger range of sets (𝑊𝑀𝐺𝑆
10 - 𝑊𝑀𝐺𝑆

200) compared to the 𝑄𝐶signal in the Gordon and 

Seitzman parcel space. Moreover, the 𝑄𝐶motion yielded its highest score for the set 𝑊𝑀𝐺𝑆
300. As a result, the set 𝑊𝑀𝐺𝑆

300 exhibited the highest 

score for the 𝐶𝑄𝐶 as well.   
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Suppl. Fig. 7. Summarized QC scores obtained from the fMRI data after being downsampled to TR=2.88 s (Gordon atlas). About 20 to 40 

PCA regressors from WM were needed in order to achieve high 𝑄𝐶𝑠𝑖𝑔𝑛𝑎𝑙 scores, while 50 regressors from either WM or CSF yielded the highest 

score in 𝑄𝐶𝑚𝑜𝑡𝑖𝑜𝑛. Among all sets of regressors, 𝑊𝑀𝐺𝑆
30 yielded the highest score (4.9) for the CQC metric. 
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Suppl. Fig. 8. FC (top) and ICC (bottom) matrices considering all scans for different pipelines obtained from the data in the Seitzman 

parcel space. The pipelines 𝑊𝑀𝐺𝑆
200 and 𝐹𝐼𝑋𝐺𝑆 significantly improved the identifiability of the networks. Note that many parcels appeared at the 

end of each network illustrated low correlation and 𝐼𝐶𝐶 values. These parcels correspond to subcortical parcels and as reported by Seitzman et al. 

(2020), those parcels demonstrated low temporal signal-to-noise (SNR) in the HCP data which may explain the low correlation and 𝐼𝐶𝐶 values 

observed here. Similar to the data in the Gordon parcel space, a large number of BNEs, and especially edges corresponding to interactions between 

the default mode and fronto-parietal networks, exhibited low FC values but high 𝐼𝐶𝐶 values.   
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Suppl. Fig. 9. FC (top) and  𝑪𝑪 (bottom) matrices considering all scans for different pipelines obtained from the data in the MIST parcel 

space. Based on the 𝐹𝐶𝐶 scores obtained from the group-level FC matrices, the pipelines 𝑊𝑀𝐺𝑆
200 and 𝐹𝐼𝑋𝐺𝑆 significantly improved the 

identifiability of the networks. However, similar 𝐹𝐶𝐶 score was observed when only the GS was regressed out. On the other hand, as seen in 

Suppl. Fig. 3a, on a scan-specific basis analysis, the 𝐹𝐶𝐶 scores between the pipelines 𝐺𝑆, 𝐹𝐼𝑋𝐺𝑆 and 𝑊𝑀𝐺𝑆
200 presented significant differences. 

Moreover, we observe that, similar to the data in the Gordon parcel space, a large number of BNEs, and especially edges corresponding to 

interactions between the default mode and fronto-parietal networks, exhibited low FC values but high 𝐼𝐶𝐶 values.   
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Suppl. Fig. 10. Traces of 𝑫𝑽𝑨   time-series for two scans for which WM denoising (    
   ) reduced the corresponding  𝑫𝑫𝑽𝑨   

values (i.e. correlation of  𝑫 and 𝑫𝑽𝑨  ) close to zero. For the raw data, 𝐷𝑉𝐴𝑅𝑆, either estimated at the voxel- or parcel-level, exhibited 

frequent spikes at times of motion, as assessed with 𝐹𝐷, which resulted in 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 values above 0.45. Parcel-wise 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 values were on 

average lower than voxel-wise 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 (0.37±0.19 vs 0.53±0.20). After WM denoising, the spikes in 𝐷𝑉𝐴𝑅𝑆 were significantly attenuated, 

resulting in 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 values close to zero (0.02±0.06). 
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Suppl. Fig. 11.  Traces of 𝑫𝑽𝑨   time-series for two scans for which WM denoising (    
   ) resulted in negative  𝑫𝑫𝑽𝑨   values. In 

some scans, while most of the spikes in 𝐷𝑉𝐴𝑅𝑆 were significantly attenuated after WM denoising, the sign of some spikes reversed from positive 

to negative which resulted in negative 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 values (e.g. spikes at 670 s and 800 s for scans S118932 (R1b) and S121921 (R2a), respectively). 

As suggested by Power et al. (2020), these 𝐷𝑉𝐴𝑅𝑆 dips indicate that the framewise changes in fMRI time series are abnormally low at those 

times. As negative 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 values may be associated with the presence of 𝐷𝑉𝐴𝑅𝑆 dips at times with motion, and these dips can presumably 

lead to systematic confounds, 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 values, similar to the rest of the motion-related QC metrics, were normalized to 1 − abs(𝐹𝐷𝐷𝑉𝐴𝑅𝑆) so 

that a high positive value of normalized 𝐹𝐷𝐷𝑉𝐴𝑅𝑆 is assigned to good quality data. 
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Suppl. Fig. 12. Evaluation of data-driven NCTs (Seitzman atlas). Twenty different data-driven pipelines were examined, as listed in Table 1. 

Similar to the Gordon atlas, among all pipelines, pipelines that included GSR and WM or FIX denoising yielded the highest scores in 𝑄𝐶signal, 

𝑄𝐶motion and 𝐶𝑄𝐶 (i.e., pipelines 12 and 17-20). 
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Suppl. Fig. 13. Evaluation of data-driven NCTs (MIST atlas). Twenty different data-driven pipelines were examined, as listed in Table 1. 

Similar to the Gordon atlas, among all pipelines, pipelines that included GSR and WM denoising yielded the highest scores in 𝑄𝐶signal, 𝑄𝐶motion 

and 𝐶𝑄𝐶 (i.e., pipelines 17-20). The FIX denoising (pipeline 12) yielded a smaller improvement in 𝑄𝐶signal compared to the Gordon and Seitzman 

atlases. 
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Suppl. Fig. 14.  Evaluation of model-based NCTs using the fMRI data in the Seitzman (top) and MIST (bottom) parcel space. As with the 

data in the Gordon parcel space (Fig. 9), when the model-based regressors related to SLFOs, head motion and breathing motion were used without 

tissue-based regressors, the data quality as assessed with the three QC metrics 𝑄𝐶signal, 𝑄𝐶motion and 𝐶𝑄𝐶, was improved. However, when the 

set of nuisance regressors included the GS and the 200 components from WM, none of the model-based regressors was found to provide any 

additional improvement on the data quality. 
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Suppl. Fig. 15. Effect of scrubbing in data quality for different threshold values on fMRI data in the Seitzman (top) and MIST (bottom) 

parcel space. When the data were preprocessed with the set of regressors 𝑊𝑀𝐺𝑆
200, scrubbing before the removal of the regressors did not provide 

any improvement in the combined summarized QC metric 𝐶𝑄𝐶. In contrast, thresholds of 𝐹𝐷thr below 0.50 mm led to a significant decrease of 

the 𝐶𝑄𝐶 score. In the case of the 𝐷𝑉𝐴𝑅𝑆, the 𝐶𝑄𝐶 score was decreased when the threshold was below 1.5 MAD. However, typically, higher 

values of 𝐷𝑉𝐴𝑅𝑆thr are used in the literature. 
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Suppl. Fig. 16. Effect of scrubbing for a mild pipeline that consists of removing five WM and five CSF regressors (Gordon atlas). When 

the data were preprocessed with the standard aCompCor approach (i.e. removal of five WM and CSF regressors), scrubbing before the removal 

of the regressors provided an additional improvement in the combined summarized QC metric 𝐶𝑄𝐶. The largest improvement was observed for 

a threshold 𝐹𝐷thr equal to 0.20 mm, which is commonly used in the literature (Power et al., 2015) and for a threshold 𝐷𝑉𝐴𝑅𝑆thr equal to 1.5 

MAD. 
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Suppl. Fig. 17. Effects of scrubbing for an  𝑫 

trace that is free of breathing motion effects 

(Gordon atlas). To remove the effects of breathing 

motion from the 𝐹𝐷 trace, the six motion 

realignment parameters that are used in the 

estimation of 𝐹𝐷 were first filtered out for 

breathing-related fluctuations using 3rd order 

RETROICOR. When the data were preprocessed 

using 𝑊𝑀𝐺𝑆
200, scrubbing resulted in lower QC 

metric values, regardless of whether the influence 

of breathing in 𝐹𝐷 traces was removed or not. 

Removing the influence of breathing motion from 

𝐹𝐷 traces was found to attenuate the effects of 

scrubbing, which is likely due to the smaller 

number of volumes marked as motion-

contaminated for a given value of threshold 𝐹𝐷thr. 
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Suppl. Fig. 18. Fraction of volumes retained after 

scrubbing based on the original  𝑫 trace (top row), 

an  𝑫 trace free of breathing motion effects (middle 

row) and 𝑫𝑽𝑨   (bottom row). The bottom and top of 

each box correspond to the 25th and 75th percentiles of the 

sample distribution and the line in the box corresponds to 

the median (the outliers are not shown for ease of 

visualization). 
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Suppl. Fig. 19. Effect of low-pass filtering in data quality for different cut-off frequencies on fMRI data in the Seitzman (left) and MIST 

(right) parcel space. For both atlases, the highest 𝐶𝑄𝐶 score was achieved when low-pass filtering was done with a cut-off frequency of 0.2 Hz, 

and removal of nuisance regressors was done with 𝑊𝑀𝐺𝑆
50 or 𝑊𝑀𝐺𝑆

100. In the case of the Seitzman atlas, similar levels of 𝐶𝑄𝐶 score were also 

achieved with 𝑊𝑀𝐺𝑆
50 and 𝑊𝑀𝐺𝑆

100 at a cut-off frequency of 0.1 Hz. For both atlases, mild variants of WM denoising (i.e. 𝑊𝑀𝐺𝑆
20 and 𝑊𝑀𝐺𝑆

50) 

benefited significantly from low-pass filtering in terms of 𝑄𝐶motion. 
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Suppl. Fig. 20. Identifiability of each network for the three examined functional atlases (Gordon, Seitzman and MIST). The 𝐹𝐶𝐶 score of 

each network was defined as the Z-statistic of the Wilcoxon rank-sum test related to the null hypothesis that WNEs of the examined network and 

BNEs in the FC matrix are samples from continuous distributions with equal medians. In the case of the Gordon and Seitzman atlases, there was 

larger variability in 𝐹𝐶𝐶 scores across networks rather than across pipelines, which might be due to the variability in the number of parcels of 

each network. In the majority of networks, pipelines 𝐹𝐼𝑋𝐺𝑆 and 𝑊𝑀𝐺𝑆
200 exhibited the highest 𝐹𝐶𝐶 scores.  * The last network in the MIST atlas, 

apart from the ventral attention network, consists also of the salience network, the basal ganglia and the thalamus. 
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Suppl. Fig. 21. Performance of WM 

(top panel) and CSF (bottom panel) 

denoising for two different masks 

(Gordon atlas). For the case of WM 

denoising, using a stricter probability 

threshold for defining the mask of 

WM compartment (𝑝 > 0.99 instead 

of 𝑝 > 0.90) did not have any 

significant impact on the performance 

of WM denoising. In contrast, for the 

case of CSF denoising with nuisance 

sets consisting of more than 20 

regressors, a stricter probability 

threshold for defining the CSF mask 

(𝑝 > 0.99 instead of 𝑝 > 0.90) led to 

substantially higher scores of 

𝑄𝐶𝑠𝑖𝑔𝑛𝑎𝑙. 

*For several scans, a probability 

threshold of 𝑝 > 0.99 led to masks 

with an inadequate number of CSF 

voxels (<600) for performing 

principal component analysis (PCA), 

and thus, in those cases, the threshold 

was iteratively decreased (up to 𝑝 <
0.90) until a sufficient number of CSF 

voxels was found.  
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Suppl. Fig. 22. Effect of low-pass filtering in FCC and FDDVARS on fMRI data in the Gordon (left), Seitzman (middle) and MIST (right) 

parcel space. For the Gordon and Seitzman atlas, the highest 𝐹𝐶𝐶 score was achieved with 𝑊𝑀𝐺𝑆
50 and a cut-off frequency of 0.2 Hz, whereas for 

the MIST atlas it was achieved with 𝑊𝑀𝐺𝑆
20 and a cut-off frequency of 0.3 Hz. For all three atlases, a cut-off frequency lower than 0.2 Hz led to a 

significant decrease in 𝐹𝐶𝐶 score. In the case of 𝐹𝐷𝐷𝑉𝐴𝑅𝑆, the pipeline that yielded the lowest absolute scores (i.e. lowest levels of motion) 

varied across the three atlases. However, for all atlases, 𝑊𝑀𝐺𝑆
100 with low-pass filtering at 0.2 Hz led overall to scores very close to zero (i.e. low 

levels of motion artifacts). 
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