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Abstract

Motivation: Large somatic copy number alterations (CNA), short indels and single nucleotide variants
(SNVs) are playing important role in cancer development and can serve as a predictor for targeted therapy
selection as well as prognostic factor. Genomic microarrays, FISH, MLPA and many other technologies are
widely used for detection of CNAs. Whole-genome sequencing (WGS), whole-exome sequencing (WES) and
targeted panel sequencing (TPS) are well established, highly accurate tools for detection of SNVs and small
indels, but detection of larger structural variants using WGS, WES and TPS data remains challenging. We
developed a tool for high-resolution allele-specific detection of somatic CNAs in NGS data using statistical
approach.

Results: We have developed a new method for read-depth and B-allele frequency (BAF) based multi-sample
detection of copy-number changes in paired normal-tumor NGS data and showed its performance using large
cohorts of WES and TPS sequenced samples.

Availability: ClinCNV is freely available on https://github.com/imgag/ClinCNV.

I. Introduction

During the recent decade, big progress in can-
cer genomics was made. Hundreds of thou-
sands of tumor-normal pairs were sequenced
using WGS, WES or TPS approaches for re-
search or clinical purposes. Structural variants
play a significant role in cancer development
and treatment, so detection of SVs becomes
essential for tumor genome analysis. Several
tools that successfully decipher a whole vari-
ety of structural variants including CNAs in
high-coverage WGS data were developed (such
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as MANTA [Chen et al., 2015]), but CNAs de-
tection in WES and TPS data is still challeng-
ing. Nonetheless, targeted sequencing is used
more often than WGS in routine clinical prac-
tice. The main reasons for this are lower price
allowing for deeper sequencing and the pos-
sibility to accurately infer alterations within
specific cancer-related genomic regions due to
high short read coverage in targeted (which
usually means important) regions.

We first assembled a set of requirements
for CNA detection tools used for clinical di-
agnostics: 1) ability to work with heteroge-
neous tumors, 2) high sensitivity even for com-
paratively short CNAs or sub-clonal events
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with the low CCF, 3) high specificity even
for noisy samples; 4) ability to perform allele-
specific calling for the deciphering of complex
CNAs, 5) ability to work with all the types
of NGS data used for the analysis of cancer
genomes, 6) intuitive output visualization for
clinical interpretation by clinicians. Several
tools have already proven their comparatively
good performance in targeted sequencing NGS
data, such as AscatNGS [Raine et al., 2016],
CNV-Kit [Talevich et al., 2016] and FACETS
[Shen et al., 2016], among others, but none of
them meets all established requirements per-
fectly.

To address this issue, we have developed
ClinCNV, a tool that utilizes on- and off-target
read depth and B-allele frequency signatures
to generate genome-wide allele-specific calls.
Since the price of sequencing was dropping
rapidly during last years, we aimed at the de-
tection of variants in large (>30 samples) co-
horts where large parts of the genome (hun-
dreds of genes or more) were sequenced. We
analyzed 473 sample pairs from the CLL study
([Puente et al., 2015]) and compared the per-
formance of ClinCNV to other tools as well
as to matched microarray data. Additionally,
we analyzed 251 clinical samples, sequenced
with TPS, and showed the good concordance
between our results and the results obtained
with the alternative method.

II. Methods

i. Input data and normalization

ClinCNV’s normalization flowchart is pro-
vided in figure 1. We describe the algorithm
in a step-wise manner, moving from the top of
the flowchart.

i.1 Generation of input data for ClinCNV

ClinCNV is a multi-sample caller so all the sam-
ples sequenced with the same panel should be
analyzed jointly. On-target, off-target read cov-
erage depth is used together with the signal
from heterozygous germline SNVs and their
matching tumor variants allele frequencies

(BAFs). As input, coverage profiles and BAF
tracks should be pre-calculated from .BAM and
.BED files. To generate BAF tracks, germline
SNVs have to be called, or existing databases
of populational SNPs may be used. We follow
the first approach since it provides more in-
formation but may lead to privacy issues, so
we intentionally store BAF data (which can be
removed immediately after calling) separately
from calling results and other input data to pre-
vent accidental revealing of the private variant
information.

i.2 Exclusion of copy-number imbalanced
chromosome arms from further normal-
ization process.

In order to facilitate in-depth analysis of allelic
imbalances, we use bi-allelic single nucleotide
variants, namely their BAFs (ratio between the
number of reads supporting the alternative al-
lele of an SNV to the overall coverage of the
position). We use only well-covered in both
tumor and normal samples SNVs which are
likely to be heterozygous in normal tissue.

For tumor samples deeply affected by copy-
number alterations, we need to perform all
the normalization steps within the genomic re-
gions where the copy number state is expected
to be neutral. Ideally we would perform such
normalization fo diploid genomic regions only,
but we can not infer which regions are diploid
and only small part of the genome may remain
diploid, thus, we include all copy-number bal-
anced regions and rely on the fact that one
copy-number (2 for diploid or 4 for tetraploid
tumors) is usually dominating the other copy-
number balanced states. We use B-allele fre-
quency as an indicator if the genomic region
can be used for normalization or not. Namely,
we select chromosome arms which are likely
to be copy-number neutral and use only them
for normalization.

We test all the SNVs within the chromosome
arm and then check the percentage of SNVs
that are likely to be different between normal
and tumor tissues. We expect such percentage
to be high for the chromosome arms highly
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Calling

Figure 1: Input data and normalization in Somatic mode of ClinCNV. Dashed line blocks are optional.

affected by CNAs (and thus not suitable for
the normalization). For each SNV from the
chromosome arm, we use the proportion test
to determine if the allele ratio for the partic-
ular SNV is different between the tumor and
healthy tissues. Thenwe count the number of
p-values that are below the 0.01 significance
threshold and exclude any chromosome where
the fraction of significant p-values is bigger
than 5% (thus, allowing up to 5% of outly-
ing values). Otherwise, we assume that copy-
number change was relatively small or affected
only a small part of the chromosome arm, and
we include coverages from this arm into the
normalization procedure. However, we need
at least 5 chromosome arms for performing
normalization since variance increases rapidly
when using a smaller amount of sequenced ge-
nomic material for normalization. Thus, even if
no chromosome arms pass the filter, we choose
at least 5 chromosome arms with the smallest
number of significant p-values.

i.3 Normalization of coverage profiles

We perform targeted regions length-based and
GC-normalization for tumor and normal sam-
ples separately, using only chromosome arms
selected at the previous step for tumor sample
normalization. log2-transformation of ratios is
applied for tumor-normal coverage ratios.

i.4 Estimation of per-sample and per-region
variance of normalized coverage depth

This step is performed in the same manner for
off-target and on-target read coverage counts.
These two sources of coverage signal have dif-
ferent properties, so we can not normalize
them jointly.

To achieve the maximum power of detection,
we separate sources of variability, namely – we
estimate variances separately for the normal
sample and the tumor sample and also we es-
timate each individual region variance. Since
tumor and normal samples’ coverage depths
profiles are often highly correlated, we esti-
mate the correlations between them and then
infer variance of the log-ratios for each sample
pair and each genomic region. Existing tools
for CNA detection usually use the assumption
that log-ratios of normalized read counts be-
tween the same genomic region in tumor and
matched normal sample (denoted as T and N,
respectively) follow the Normal distribution.

log(T/N) = log(T)− log(N) ∼

∼ N (
TCN
NCN

, σp · σr)

where TCN denotes tumor copy number,
NCN denotes normal copy-number, and TCN

NCN
is a subject of CNA detection problem which is
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possible to solve only knowing log-ratio vari-
ance (σp denotes the sample pair variance, σr
denotes the specific individual region variance
of log-ratios). Using the normality of log-ratios
assumption, we also assume that T and N fol-
low the log-normal distribution which may
be an inaccurate, but useful approximation.
Thus, in order to exclude per-sample variabil-
ity, we standardize log(N) and log(T) with
z-transformation using their per-sample vari-
ances estimated directly from the data and me-
dian of log(N) or log(T), respectively:

Z(log(N)) ∼ N (0, σr), Z(log(T)) ∼ N (0, σr)

For the tumor sample’s variance we estimate
it for each chromosome arm separately and
then choose the median value, for normal sam-
ple the variance is calculated within all autoso-
mal regions.

Having Z(log(N)) ∼ Normal(0, σr), we
can estimate the individual genomic regions
coverage depths’ variances from the data.
Here and below we always use robust mea-
sures of standard deviation (such as Qn,
[Rousseeuw et al., 1993]) for estimation. Then
we calculate robust correlations between stan-
dardized Tumor and Normal normalised
counts ([Pasman et al., 1987]). Again, we cal-
culate such correlations for each chromosome
arm separately and then choose the median
value as a final estimation. In the end, in or-
der to estimate the final variance of log(T/N),
which is equal to σ2 = σ2

p · σ2
r , we use the for-

mula:

σ2 = σ2
r · (σ2

sn + σ2
tn−

−2 · robCor(Z(log(N)), Z(log(T))) · σsn · σst)

where σsn denotes the variance of a normal
sample, σst denotes the variance of a tumor
sample.

In order to estimate variances of regions
from X and Y chromosomes, we randomly re-
sample log-transformed normalized counts for
all males with the counts from females (for
chrX) and vice versa for the Y chromosome.

i.5 Statistical modeling of BAF

We model BAFs with Normal distribution ap-
proximation with an expected value equal to
mappingBias · (A/D) or mappingBias · (B/D),
where A denotes the number of reads support-
ing alternative allele of an SNV and B denotes
the reference allele count, D = A + B. We do
not allow the expected value to be below 0.01 or
above 0.99. The expected variance is inferred as
the Binomial distribution variance. We correct
for positive reference alignment bias, estimated
as median of BAFs divided by 0.5.

ii. Calling

Having data normalized and parameters esti-
mated we start calling procedure (fig. 2). At
first, we define a set of potential copy-number
changes that may occur in a tumor sample at
each allele. In the beginning, we investigate
major and minor alleles under assumptions of:

1. Discrete set of the potential clonal fraction
(starting from 5 to 100% with the step of
2.5%);

2. Minor copy number from 0 to 4;

3. Major copy number from 0 to 30: major
and minor copies together are limited to
30 copies.

Having probabilistic models and set of
states S we can calculate likelihoods of each
data point x1, . . . , xn under all these models:
L(Sa|xi). We fill a matrix of size |S| × |G|,
where |S| denotes the number of states and
|G| is the length of the genome with the cor-
responding likelihoods. It is usually possible
to define a baseline copy-number state: it is a
diploid state for human or mice autosomes, or
a haploid state is a baseline for males’ sex chro-
mosomes. We denote the probabilistic model
corresponding to such a baseline state as Sb.
The problem of finding one CNV in such a
matrix may be formulated as:

Problem 1 Having matrix of likelihoods of data-
points under different states and baseilne state Sb,
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Prepared data for
Calling

QC filter variants that are likely to be technical
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Clonal structure inference 

Figure 2: Flowchart of CNA calling. Dashed line blocks are optional.

identify a pair of indices i, j and state Sa 6= Sb such
as 1 ≤ i ≤ j ≤ |G| and

arg max
i,j,Sa

P(Sa|xi, . . . , xj)

P(Sb|xi, . . . , xj)

We take logarithms of likelihoods so we
will be able to sum them instead of multiply-
ing, so now we have a matrix of l(Sa|xi) =
log(L(Sa|xi). Then, for each genomic region i
we can switch to likelihood ratio log L(Sa |xi)

L(Sb |xi)
=

l(Sa|xi)− l(Sb|xi). To find segments with the
largest sums for one particular state, we can
use a well-known maximum subarray sum al-
gorithm ([Bentley et al., 1984]) that solves the
following problem in linear time:

Problem 2 Giving a one-dimensional array of
numbers A, A[i] ∈ R, find indices i and j, 1 ≤
i ≤ j ≤ n, such as ∑

j
k=i A[k] is a large as possible.

Whenever we have different signals (such
as read depth and B-allele frequency), we can
simply sum up matrices of likelihoods from
different signal types and perform the same

procedure, so it does not affect computational
time except for the additional calculations of
likelihoods. The actual copy-number state (as
well as cancer cell fraction) of the variant is
inferred by determining which Sa is the best
for the explanation of the observed data com-
paring to the baseline Sb.

Segmentation of a genomic piece into candi-
date CNV regions is done analogously to CBS.
We find one piece that shows the presence of an
alternative model at one step of our algorithm,
and then we divide the initial genomic piece
into three segments: one to the left, one to the
right from the discovered segment and the dis-
covered segment itself. We stop segmenting
once the next detected segment fails to reach
a significance threshold. When the detected
variant is shorter than the pre-specified length
threshold, but significant, we correct the corre-
sponding likelihood of this potential outlier.

To correct for potential ploidy change we
not only select BAF-balanced chromosomes’
arms for normalization, but also try to sep-
arate tetraploid regions from diploid, using
the assumption that the smallest possible BAF-
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balanced chromosome arm copy-number is 2
(since, as mentioned in [Shen et al., 2016], long
stretches of homozygous deletions most prob-
ably lead to cell death and thus are highly
unlikely). In order to do this, we sub-select
all chromosome arms with small deviations in
BAF and calculate coverage baselines (medians
of log-ratios of coverages) for all such arms.
Then we iteratively merge all arms with differ-
ences in medians of their normalized coverage
less than 2.5% and choose the smallest merged
value that includes at least 10% of markers
from BAF-balanced chromosome arms as the
baseline.

After we have finished the first round of call-
ing using all possible purities, we calculate the
likely sub-clonal structure of the sample. We
assume that CNAs appear in several rounds
of clonal expansions. We assume that having
many sub-clones is not likely, so we penalize
each additional sub-clone with empirically cho-
sen threshold (can be selected according to BIC
criteria and number of regions under investi-
gation). Then, we want to find an optimal set
of clonal cell fractions from the pre-defined
discrete set of 5%, 7.5%, . . . , 97.5%, 100% that
will explain our CNAs in the best possible way,
considering sub-clones as real only if they sub-
stantially improve the overall likelihood of the
variants. For each cancer cell fraction α and
each CNA we choose the best possible expla-
nation (the state with the maximum score with
the CCF fixed and equal to α). Then we inves-
tigate all potential combinations of sub-clonal
fractions up to 5 clones. For each CNA we
select one cancer cell fraction from the possible
combination that explains this CNA in the best
way.

When the likely sub-clonal structure is in-
ferred, we run the calling procedure again,
using only states that may arise from this re-
stricted set of sub-clones.

We also developed a QC control for vari-
ants which is based on the fact that all the
allele-imbalanced events are expected to have
BAF signature different from the paired normal
BAFs and CNA events in the regions of high
variance or extremely low-covereage are, likely,

false positives. The procedure is described in
Supplementary.

III. Results

For evaluating analytical performance and
comparison with existing methods, we ana-
lyzed the following data:

1. 473 WES sequenced tumor-normal pairs
from CLL cohort (272 samples were en-
riched with Agilent 51MB kit and 169
samples with Agilent 71MB kit, only pre-
calculated coverage counts and BAFs data
were available for the whole cohort due
to data migration issues). This dataset
was already explored and described in
[Puente et al., 2015] with the array-based
methods, we re-analyse this cohort with
WES and ClinCNV.

2. 251 TPS in-house sequenced tumor-
normal pairs, sequenced with 3 different
panels. Additionally, panels number 2 and
3 (in chronological order) had many sam-
ples sequenced with the low-input sample
preparation protocol, which we separated
from the others since their coverage pro-
files differ. Summing up, we had 5 differ-
ent cohorts of TPS samples.

For comparisons using alternative tools we
had:

1. 505 pairs from CLL cohort analysed with
Affymetrix 6.0 SNP arrays (partially over-
lapping with our WES samples);

2. 80 raw alignment BAM files (40 tumor-
normal pairs) from whole exome se-
quenced CLL cohort pairs (enriched with
Agilent 71MB kit, initially selected for SNV
calling algorithm study benchmarking

3. BAM files from in-house TPS samples

For array data analysis, we selected ASCAT
([Van Loo et al., 2010]) – a well-established tool
for benchmarking of CNA calling pipelines
that allows purity and ploidy estimation. For
WES and TPS data analysis FACETS tool was
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applied due to its high performance and so-
phisticated algorithm that involves joint seg-
mentation of two signals (from coverage at
SNV positions and BAFs from heterozygous
SNVs). CNV-Kit was used for comparison in
WES data.

Newest available versions of tools were used:
ClinCNV 1.16.0, FACETS 0.6.0, ASCAT 2.5.3,
CNV-kit 0.9.6. Tools were evaluated using rec-
ommended parameters and pipelines. Internal
quality control of variants was applied at the
first step of the ClinCNV’s calling algorithm
for TPS samples and for both steps for WES
samples.

i. CLL cohort results

The on- and off-target coverages were substan-
tially different between two enrichment kits
fig. 3.

0 20 40 60 80 100 120

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Ontarget coverage across the cohorts

Median coverage

D
en

si
ty

0.0 0.5 1.0 1.5 2.0

0
2

4
6

8
10

12

Offtarget coverage across the cohorts

Median coverage

D
en

si
ty

Figure 3: Median coverage plots. Dark red and red de-
note Agilent 51 tumor and normal, dark blue
and blue – Agilent 71 tumor and normal. Av-
erage coverage is 15-20% higher than median
coverage. As can be seen, on-target coverage
for Agilent 51 was higher while for Agilent
71 off-target coverage becomes more valuable
signal.

Six samples were excluded after the man-
ual examination (described in supplementary)
due to likely mislabeling or large stretches of
zero covered genomic regions. The second part
of QC control was done automatically. Sam-
ples with the coverage variance bigger than
one were excluded automatically. We checked
if a sample had a lot of false-positive events
detected and either excluded such a sample
from the analysis or removed likely false pos-
itive variants. In order to determine the level

of false positives, we took all events where
a major allele is not equal to a minor allele
and found how many such CNAs (that con-
tain at least one SNV) showed no significant
deviation in BAF frequency (p-value > 0.5)
since we expected deviation in BAF for im-
balanced events. If the amount of likely false
positive imbalanced variants was bigger than
10% of the overall number of detected CNAs,
we said that the false discovery rate in this
sample was too high and we discarded it. 20
samples (less than 5%) from our CLL cohort
did not pass this check and were excluded. If
the amount of likely false positive variants was
bigger than 5%, we retained the sample, but
removed all imbalanced events with FDR cor-
rected p-value bigger than 0.05 to control FDR
at least for copy-number imbalanced events
(balanced events are relatively rare except for
high ploidy samples). We did nothing if a sam-
ple was of good quality and less than 5% likely
false positive results were found. We did not
filter all imbalanced events with q-value big-
ger than 0.05 since for the short or low CCF
true positive variants q-values may be bigger,
but often these events were real. It is worth to
mention that many false positive variants with
increased/decreased coverage but an absence
of any shift in BAFs were observed in other
datasets sequenced with the high coverage and
modern enrichment kits, so this phenomenon
can not be explained by the unusual sequenc-
ing technical conditions of the investigated co-
hort .

21 out of 473 samples were marked as QC-
failed and re-sequenced in the previous anal-
ysis of CLL data. They were included in our
test cohort in order to check if these samples
will be recognized by ClinCNV, and 11 of them
were filtered out.

After these two steps, the QC-filtered cohort
included tumor DNA sequenced from 433 sam-
ples. Only samples without QC issues were
used for comparisons.
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(a) CNA calls from the CLL whole-exome sequencing results. Top panel: BAF, middle: coverage depth log-ratio, bottom:
allelic decomposition of CNAs. The color of different intensity shows different cancer cell fraction of variants.

(b) CNA calls made by ASCAT from the CLL microarray results (before post-processing, many of these calls disappear
after additional evaluation done by the tool). Bottom panel: BAF, top panel: log-ratio of microarray intensities.

Figure 4: CNA calling results in the same CLL sample, obtained by ClinCNV in WES data and by ASCAT in
microarray data. Due to the presence of several clear clones ASCAT mistakengly counted this samples as
having ploidy 4. The LOH at chromosome 15 was not called by ASCAT, even if it can be recognised visually.
3 clones were identified by ClinCNV at cancer cell fractions of 97.5%, 60% and 17.5%.
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i.1 Overall statistics of CLL callset

Size distributions of detected variants are
shown in fig. 5.
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Figure 5: Length of detected variants, by type.

Distribution of cancer cell fraction of de-
tected variants against length of variants is
provided in fig. 6. As can be seen, the distribu-
tions are shifted to the top-right corner. It can
be hypothesized that it is not only due to the
abundance of variants with the large lengths
and high cancer cell fraction, but also due to
the power limitation of detection of short sub-
clonal variants.
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Figure 6: Distribution of cancer cell fraction of detected
variants against length of variants. Blue dots
denote duplications, green – LOH, red – dele-
tions. Density contours are also shown.

i.2 False Discovery Rate

Since not all the calls from ClinCNV were
present in ASCAT’s output, we came up with
the procedure for autosomal CNA validation
using array data pre-processed and normalized
by ASCAT. The main idea was to create two
distributions of p-values: a null distribution

from simulated CNAs and a distribution of p-
values from the real results. Having both, we
could estimate FDR: in theory, two times the
number of p-values, bigger than 0.5, should
give us an estimate of FDR, but we decided to
generate a null distribution in order to check if
it is actually uniform (described in Supplemen-
tary).

P-values from real ClinCNV’s CNA calls
were compared with the null distribution
(fig. 7). For the analysis of LOH variants, we
included BAF-based p-value only; for deletions
and duplications, we merged p-values from ar-
ray intensities and BAFs with Fisher method
where possible. However, we have noticed that
our null distribution was not strictly uniform.
Hence, the doubled number of p-values which
were bigger than the median of negative con-
trol p-values gave us a more accurate estimate
of overall FDR.

Histogram of merged p-values
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Figure 7: ClinCNV calls p-values (red) and simulated
calls p-values (blue).

As an additional FDR check, we filled the
contingency matrix of deletions and duplica-
tions, distinguishing between deletions and
duplications that show positive/negative in-
tensity in arrays. If ClinCNV called variants
randomly, we could expect the array intensity
to be independent of the CNA type called –
array intensity may be shifted positively and
negatively for false positive deletions or dupli-
cations with an equal probability.

Overall 2464 CNAs were detected in QC
passed samples. 2341 CNAs were suitable
for validation (contained at least one marker

9

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 11, 2019. ; https://doi.org/10.1101/837971doi: bioRxiv preprint 

https://doi.org/10.1101/837971
http://creativecommons.org/licenses/by-nd/4.0/


bioRxiv • November 2019

from arrays). Median of p-values from simu-
lated CNAs was equal to 0.346, and 34 CNAs
detected by ClinCNV had p-values bigger
than this median. Thus we could conclude
that false discovery rate of our callset was
2 · 34/2341 ∼ 0.029. Analysis of the contin-
gency matrix showed that 20 deletions and 13
duplications detected by ClinCNV showed dis-
cordant median array intensity, respectively.
Thus we concluded that false discovery rate in
copy-number imbalanced events was equal to
2 · (20 + 13)/(2250) ∼ 0.0293.

i.3 Sensitivity comparing to arrays

We compared the ASCAT callset from microar-
ray data with the results of ClinCNV in WES
data in a similar manner. Among 3787 vari-
ants detected by arrays and containing a suffi-
cient amount of markers in WES, we found out
that we potentially missed 490 CNAs. Analy-
sis of events with copy-number changes (dele-
tions and duplications) detected by ASCAT but
not found by ClinCNV showed that 1974 of
them showed concordant direction (variant de-
tected as deletion showed lower coverage in
WES and higher for duplications) and 1425
showed discordant direction, which gave us
estimation of 549 potentially missed CNAs
(which is bigger than estimation of 490 due
to low power of detection in some regions
in WES comparing to arrays). However such
evaluation also showed us that false discov-
ery rate of ASCAT in array data was high
– ClinCNV detected 1708 CNAs matching to
1321 array results and ASCAT detected 3787
unique variants in arrays. Only around 550 of
them were also observed in NGS data, so we
can roughly estimate FDR of ASCAT as bigger
than 50%. We hypothesize that ClinCNV may
detect such variants using more relaxed thresh-
olds, which will lead to a higher false discovery
rate. Such calculations led to the estimation
of the sensitivity of ClinCNV (using variants
that span at least 5 WES markers) of approxi-
mately 1− 550/(550 + 1319) ∼ 0.7 (comparing
to array-based method).

The purities of samples estimated by

ClinCNV (as maximum cancer cell fraction of
variants) and ASCAT were compared in fig. 8.
Aberrant cell fraction estimated by ClinCNV
for some samples was close to 1 while much
smaller as estimated by ASCAT – after man-
ual checking of these samples we concluded
that such divergence in estimations mostly hap-
pened in samples where arrays had not found
any large significant CNA while for almost
all the samples aberrations in immunoglobulin
genes regions occured and were detected by
ClinCNV.
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Figure 8: Purities (ClinCNV’s estimation vs. ASCAT
estimation). Spearman correlation: 0.874.

i.4 Comparison with other tools

We have validated FACETS calls from 40 WES
sample pairs using the same procedure as
ClinCNV. No QC failed samples were present
in this dataset, and one variant was removed
at the postprocessing step from the ClinCNV’s
callset according to the QC guidelines provided
above. FACETS calling was performed using
ten reads as a minimum depth, and cvalue
quality threshold was chosen equal to 150, ac-
cording to the authors’ recommendations.

Out of 190 autosomal raw calls from FACETS
152 had at least one array marker within the
borders and thus were suitable for validation.
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Seventeen variants had p-values bigger than
the median of a negative control, so using our
methodology at least 2 · 17 = 34 variants were
false positives. Also, 19 deletions showed pos-
itive array intensity shift; four amplifications
showed a negative shift, and 93 and 17 dele-
tions/duplications, respectively, showed the
correct direction. Thus, FACETS FDR was es-
timated as 0.22 for all variants from p-values,
0.35 for variants with change in copy-number
from the contingency table.

CNV-kit evaluation was complicated since it
does not detect LOH events by default, and it
does not estimate purity by itself. However, our
data were obtained with FACS-sorted blood
cells sequencing results, so we may assume
that the purities of the samples were close to
100%. CNV-kit detected 137 autosomal copy-
number imbalanced events from these 40 sam-
ples. 132 variants were suitable for validation
with arrays, and the estimated FDR was equal
to 0.56 based on p-values and 0.77 based on
the contingency matrix. The potential sources
of differences in FDR estimated with two meth-
ods are described in Supplementary.

Using the same 40 tumor-normal pairs, we
were able to validate 179 autosomal variants
from 181 ClinCNV raw calls. None of the de-
tected deletions/duplications had an incorrect
direction of array intensity shift. One variant
had p-value bigger than the median of the null
distribution, thus, ClinCNV’s FDR in this sub-
group may be estimated as 2 · 1/176 = 0.011.

As for concordance between methods, we
chose CNAs that had p-values less than 0.01
in array BAFs or intensities as True Positives
and considered two variants as matching if
they overlap for at least 50% of the length of
the smallest variant. The number of True Posi-
tives in ClinCNV was equal to 178, in CNVKit
52, in FACETS 109 (table 1). 122 True Positive
variants from ClinCNV were mapped into 97
True Positive variants from FACETS. Such dif-
ference was not caused by over-segmentation,
but rather, it was due to the fact that ClinCNV
analyses each chromosome arm separately so
aneuploidies (such as chr12 duplication, fre-
quent in CLL tumors) were represented as two

variants in ClinCNV’s output. 50 ClinCNV
True Positive variants matched with 39 vari-
ants from CNVKit. ClinCNV detected 56 (52
if we consider closely located variants as one)
real CNAs not present in FACETS calls while
12 variants from FACETS were not present
in ClinCNV’s callset. CNV-Kit detected 13
variants not present in ClinCNV callset while
128 CNAs from ClinCNV’s callset were not
detected by CNV-Kit (9 of which were LOH
events nondetectable by CNV-Kit using the de-
fault pipeline). Concordance between FACETS
and CNV-kit was even lower: 32 variants from
FACETS were matched with 30 variants from
CNV-kit.

ClinCNV CNV-Kit FACETS
ClinCNV 178 / 0 50 / 128 122 / 56
CNV-Kit 39 / 13 52 / 0 30 / 22
FACETS 97 / 12 32 / 77 109 / 0

Table 1: Table of concordance. First number denotes
number of True Positive CNAs from the callset
matched with another True Positive callset, sec-
ond number denotes number of TP events de-
tected by the tool uniquely comparing to another
callset.

ii. Targeted panel sequenced cohort
results

For our TP-sequenced cohort, we had no ar-
ray data to validate so we could only compare
results from different tools. CNV-kit was ex-
cluded from the comparison due to the ne-
cessity of third-party tools for purity estima-
tion. We have selected only samples with tu-
mor content determined by a pathologist as
bigger than 20% since TP-sequenced samples
of lower purity are usually discarded by molec-
ular tumor boards and thus accuracy of calling
in such samples is not crucial. We addition-
ally excluded samples where pathology data
on purity was not available and ended up with
216 tumor-normal pairs from 251 initially se-
quenced samples.

We say that a variant from FACETS matched
a variant from ClinCNV if their overlap
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was bigger than 50% of the smallest variant
length and vice versa. 3654 variants from
FACETS were matched with 5772 variants
from ClinCNV. Again, such a difference was
likely due to the fact that ClinCNV operates
with chromosome arms while FACETS oper-
ates with whole chromosomes and ClinCNV
utilizes off-target reads while FACETS is
mainly concentrated on working with the tar-
geted regions. FACETS detected 564 variants
not matched with ClinCNV variants while
ClinCNV detected 1196 variants not presented
in FACETS callset. On average ClinCNV de-
tected 2.9 variants more than FACETS per sam-
ple (median: 1) which may be a consequence
of higher sensitivity in off-target regions.

Comparing purities estimated by these two
methods (estimated as maximum cancer cell
fraction of detected CNA for ClinCNV, 0% if no
CNAs were detected, and extracted as a desig-
nated value from FACETS calls), we found that
despite the good concordance between meth-
ods in general, a large number of samples have
higher purity in ClinCNV estimations (bottom
right corner at fig. 9).
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Figure 9: Purities of targeted panel sequenced samples
estimated by ClinCNV and FACETS.

We hypothesized that it might occur due to
the fact that ClinCNV penalizes higher copy

numbers as less realistic while FACETS finds
an optimal solution without taking this into
consideration. In order to check which method
is better, we decided to compare purity values
with pathology estimation even if pathology es-
timation is regularly reported as being inaccu-
rate. We have found that even if for some sam-
ples estimations from FACETS were more ac-
curate, for a large amount of samples FACETS
underestimated purity, potentially, due to its
optimization process that does not take the
lower prior probability of large copy-number
changes into account.

To make it more obvious, we concentrate on
samples with more than 25% discrepant pu-
rity between ClinCNV and FACETS and show
their purities in comparison with pathologists
estimation (fig. 10).

Thus, the median difference between
ClinCNV predicted value and pathologist tu-
mor content estimation was -5% (mean -7.5%)
and for FACETS median difference was -19%
(mean -23%). Using MAD as a measure of vari-
ability, we can estimate that ClinCNV median
absolute deviation was 15% while for FACETS
it was 25% (likely, due to bi-modality of the dis-
tribution). Otherwise, methods showed a simi-
lar degree of variability comparing to pathol-
ogy estimation.

IV. Discussion

We have developed a new powerful approach
for CNA detection in paired tumor-normal
NGS data and showed its superior perfor-
mance compared to other tools for CNA de-
tection in large cohort of CLL samples. We
also showed good concordance with existing
method in cohort of cancer-gene panel targeted
sequenced samples. We performed callset anal-
ysis using Cancer Genome Interpreter and
showed that CNAs were often annotated as
biomarkers of response, resistance or toxicity
as a response to particular drugs in many sam-
ples (Supplementary Materials). Thus, CNAs
calling using ClinCNV and annotation of the
calls can be routinely done and reported to-
gether with other biomarkers such as point
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(a) Purity estimated by ClinCNV in comparison with
pathology estimation
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(b) Purity estimated by FACETS in comparison with
pathology estimation

Figure 10: Purity of discordant samples (more than 25% difference in purity estimations) of ClinCNV and FACETS in
comparison with pathologist estimations.

mutations or indels, tumor mutational bur-
den, gene expression of specific markers, etc..
ClinCNV may provide an extensive summary
of CNAs in tumor genomes which is of extreme
importance for the healthcare.
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