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Abstract 7 

Acetylation and phosphorylation are highly conserved post-translational modifications (PTMs) 8 
that regulate cellular metabolism, yet how metabolic control is shared between these PTMs is 9 
unknown. Here we analyze transcriptome, proteome, acetylome, and phosphoproteome 10 
datasets in E.coli, S.cerevisiae, and mammalian cells across diverse conditions using CAROM, 11 
a new approach that uses genome-scale metabolic networks and machine-learning to classify 12 
regulation by PTMs. We built a single machine-learning model that accurately distinguished 13 
reactions controlled by each PTM in a condition across all three organisms based on reaction 14 
attributes (AUC>0.8). Our model uncovered enzymes regulated by phosphorylation during a 15 
mammalian cell-cycle, which we validate using phosphoproteomics. Interpreting the machine-16 
learning model using game-theory uncovered enzyme properties including network connectivity, 17 
essentiality, and condition-specific factors such as maximum flux that differentiate regulation by 18 
phosphorylation from acetylation. The conserved and predictable partitioning of metabolic 19 
regulation identified here between these PTMs can enable rational engineering of regulatory 20 
circuits.  21 

Graphical Abstract 22 

 23 

 24 

Introduction 25 

A key challenge in systems biology is to predict how various regulatory processes orchestrate 26 
cellular response to perturbations. Numerous mechanisms regulate metabolic response to new 27 
environments [1–8]. Nevertheless, it is unclear why or when some enzymes are regulated by 28 
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acetylation while others through PTMs such as phosphorylation [3,4]. Several advantages of 29 
regulation by PTMs have been proposed over the past five decades [9–11]. These include low 30 
energy requirements, rapid response, and signal amplification. Yet these characteristics do not 31 
differentiate between PTMs such as acetylation and phosphorylation. The staggering complexity 32 
of each regulatory process has limited the comparative analysis of metabolic regulation at a 33 
systems level [3]. Existing studies have focused on a single regulatory process, usually 34 
transcriptional regulation [4,12–20]. Such studies have revealed reaction reversibility and 35 
metabolic network structure to be predictive of regulation [8,15,21–24]. Yet these studies do not 36 
shed light on the differences between each regulatory process, especially PTMs. In sum, 37 
although some general network principles of regulation are known, how it is partitioned among 38 
various regulatory mechanisms is unclear.  39 

We hence developed a data-driven approach, called Comparative Analysis of Regulators of 40 
Metabolism (CAROM), to identify unique features of each PTM. CAROM achieves this by 41 
comparing various properties of metabolic enzymes, including essentiality, flux, molecular 42 
weight, and topology. It identifies properties that are more highly enriched among targets of 43 
each process than expected by chance. Using CAROM, we found features that were 44 
significantly associated with each PTM. Nevertheless, no single feature on its own is completely 45 
predictive of regulation. CAROM hence uses machine learning to uncover how features in 46 
combination influence regulation. We used CAROM to understand PTM dynamics during well-47 
characterized fundamental processes in microbes and mammalian cells, namely the cell cycle, 48 
transition to stationary phase, and response to nutrient alterations. While we focus on 49 
acetylation and phosphorylation here as they are the most well-studied PTMs with available 50 
omics datasets, our approach can be applied to any regulatory process.  51 

The manuscript is organized as follows: we first analyze various multi-omics datasets in E. coli, 52 
yeast and mammalian cells and reveal properties that are either enzyme-specific (molecular 53 
weight) or context-specific (flux) that correlate with regulation by each PTM. These common 54 
observations across various organisms allowed us to build a multi-organism machine-learning 55 
model that explains regulation in each condition using these features. The feature importance 56 
from CAROM is highly consistent across numerous studies in all organisms studied here. These 57 
results suggest that this approach is applicable to a wide range of model systems. CAROM can 58 
shed light on how metabolic changes impact PTMs. Proteomics surveys have found PTM sites 59 
on almost all metabolic enzymes [12,25]. A key challenge currently is the identification of 60 
condition-specific PTM sites and how they coordinately regulate metabolism in a condition 61 
[3,4,26]. Overall, CAROM provides a top-down, context-specific, enzyme property-based picture 62 
of metabolic regulation. 63 

 64 

Results  65 

Comparing regulation using CAROM 66 
 67 
The CAROM approach takes as input a list of proteins that are the targets of one or more PTMs. 68 
CAROM analyzes the properties of the targets of PTMs in the context of a genome-scale 69 
metabolic network model. We hypothesize that target preferences of regulators can be inferred 70 
from the network topology and fluxes. CAROM compares the properties of the targets 71 
statistically using Analysis of Variance (ANOVA). It also builds a machine learning model 72 
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capable of classifying regulation using boosted decision trees. Overall, CAROM compares the 73 
following 13 properties:  74 

• Impact of gene knockout on biomass production, ATP synthesis, and viability across 75 
different conditions  76 

• Flux through the network measured through Flux Variability Analysis, Parsimonious flux 77 
balance analysis (PFBA), and reaction reversibility  78 

• Enzyme molecular weight and catalytic activity  79 

• Topological properties, including the total pathways each reaction is involved in, its 80 
degree, betweenness, closeness, and PageRank 81 
 82 

These properties were chosen based on ease of calculation using Flux Balance Analysis (FBA) 83 
and based on prior literature that have shown that hubs in the network and essential genes are 84 
frequent targets of transcriptional regulation [27]. Overall, CAROM can help interpret regulation 85 
in a condition and forecast targets of regulation using these features above. The CAROM 86 
source-code is available from the Synapse bioinformatics repository 87 
https://www.synapse.org/CAROM 88 

 89 

Shared features of enzymes regulated by acetylation and phosphorylation in yeast 90 

We first analyzed the dynamics of metabolic regulation during a well-characterized process in 91 
yeast, namely, transition to stationary phase. We obtained RNA sequencing, time-course 92 
proteomics, acetylomics, and phospho-proteomics data from the literature [28–30]. Targets for 93 
each process were determined based on differential levels between stationary and exponential 94 
phase (Methods). We assumed that PTMs that are dynamic and conditionally regulated are 95 
likely to be functional [31]. 96 

Protein targets were mapped to corresponding metabolic reactions using the gene-protein-97 
reaction annotations in the genome-scale metabolic network model of yeast [32]. There was 98 
significant overlap among reactions regulated through changes in both the transcriptome and 99 
proteome, and transcriptome and acetylome (hypergeometric p-value = 5 x 10-25 and 1 x 10-15 100 
respectively, S. Table 1). In contrast, there was little overlap between targets of phosphorylation 101 
with other mechanisms (p-value > 0.1; S. Table 1). While prior studies found higher overlap 102 
between targets of PTMs [33,34], they used all possible sites that can be acetylated or 103 
phosphorylated. However, only a fraction of PTM sites are likely to be active and functional in a 104 
single condition. Overall, each regulatory mechanism had a distinct set of targets (Figure 1A). 105 
The targets of each regulatory mechanism were then used as input to CAROM. 106 

We used CAROM to find common features of enzymes that are regulated by each mechanism. 107 
We first analyzed the regulation of enzymes that are essential for growth in minimal media. 108 
Essential enzymes in the yeast metabolic model were determined using FBA. Surprisingly, this 109 
set of enzymes was highly enriched among those regulated by acetylation but not by other 110 
processes (ANOVA p-value < 10-16; Figure 1B; S. Table 2). Since regulation can be optimized 111 
for fitness across multiple conditions [35], we identified enzymes that impact growth in 87 112 
different nutrient conditions comprising various carbon and nitrogen sources using FBA. This set 113 
of essential enzymes was once again enriched for acetylation relative to other mechanisms 114 
(ANOVA p-value < 10-16; S. Figure 1). This trend was observed using an experimentally derived 115 
list of essential genes as well (hypergeometric p-value = 2 x 10-7 for acetylation). Thus, essential 116 
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enzymes are likely to be constitutively expressed and their activity modulated through 117 
acetylation. This may explain why transcriptional regulation has minimal impact on fluxes in 118 
central metabolism, which contain several growth-limiting enzymes [3,14].  119 

We next determined the impact of reaction position in the network on its regulation. We counted 120 
the number of pathways each reaction is involved in, along with other topological metrics, such 121 
as the closeness, degree, and Page Rank. We found that the regulation of enzymes differed 122 
significantly based on network topology (Figure 1C; S. Figure 2). First, reactions with low 123 
connectivity, measured through any of the topological metrics, were highly likely to be not 124 
regulated by these mechanisms. In contrast, highly connected enzymes linking multiple 125 
pathways were more likely to be regulated by PTMs. Connectivity metrics however were unable 126 
to differentiate between the two PTMs. Interestingly, reactions regulated by both PTMs had the 127 
highest connectivity (S. Figures 2, 3). Several key hubs, such as acetyl-CoA acetyltransferase, 128 
hexokinase and phosphofructokinase are regulated by multiple mechanisms (S. Table 3).  129 

We next assessed how regulation differs based on the magnitude and direction of flux through 130 
the network. We inferred the full range of fluxes possible through each reaction using flux 131 
variability analysis (FVA) [36]. Since yeast cells may not optimize their metabolism for biomass 132 
synthesis during transition to stationary phase, we also performed FVA without assuming 133 
biomass maximization. We found that reversible reactions were not regulated by any of these 134 
mechanisms (S. Figure 4). A recent study found the same trend for allosteric regulation as well 135 
[21]. However, reversibility alone did not differentiate between regulatory mechanisms.  136 

Interestingly, reactions that have high predicted maximum flux (Vmax) from FVA, such as ATP 137 
synthase and phosphofructokinase, were predominantly regulated by phosphorylation (Figure 138 
1D; ANOVA p-value < 10-16). This set of phosphorylated reactions comprise several kinase-139 
phosphatase pairs, enzymes that are part of loops that consume energy (“futile cycles”), or 140 
reactions that have isozymes in compartments such as vacuoles or nucleus (S. Table 4). Thus, 141 
phosphorylation in this condition selectively regulates reactions to avoid futile cycling between 142 
antagonizing reactions or those operating in different compartments. Using data from 143 
experimentally constrained fluxes from the Hackett et al study [21] revealed similar patterns of 144 
regulation (S. Figure 5).  145 

Finally, we compared regulation based on fundamental enzyme properties: catalytic activity and 146 
molecular weight. While catalytic activity was similar across the targets of all mechanisms, 147 
targets of phosphorylation had the highest molecular weight (p-value < 10-16) (S. Figure 6). 148 
There is no correlation between molecular weight and maximum flux (Pearson’s correlation R = 149 
0.02), suggesting that both maximum flux and molecular weight are likely to be independent 150 
predictors of regulation by phosphorylation.  151 

To check if this pattern of regulation is observed in other conditions, we analyzed data from 152 
nitrogen starvation response and cell cycle in yeast, where both phospho-proteomics and 153 
transcriptomics data are available [37–40]. A similar trend of regulation was observed in this 154 
condition (S. Figure 6), with phosphorylation regulating isozymes and enzymes that have high 155 
Vmax (futile cycles). Overall, these results are robust to the thresholds used for finding 156 
differentially regulated sites, using data from different sources, and other modeling parameters 157 
(S. Tables 5, 6, 7, 8, 9).  158 
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Figure 1. Comparison of the properties of the targets of regulation in yeast. The ANOVA p-value comparing 

the differences in means is shown in the title of the box plots. (Abbreviation: Enzymes regulated by transcription 

(Tr), post-transcription (Pr), acetylation (Ac), phosphorylation (Ph), Unregulated or unknown regulation (Un)) A. 

The Venn diagram shows the extent of overlap between targets of each process in stationary phase. Only 2 genes 

were found to be regulated by all four mechanisms. Targets of phosphorylation did not show any significant overlap 

with other mechanisms, while transcriptome and proteome showed the highest overlap (S. Table 1). B. Enzymes that 

impact growth when knocked out are highly likely to be acetylated. C. Enzymes with poor connectivity, as 

measured through the network connectivity metric - closeness, are more likely to be Unregulated. D. Enzymes 

catalyzing reactions with high maximum flux are likely to be either regulated through phosphorylation or to be 

unregulated. E. The heatmap shows the statistical enrichment (positive sign) and depletion (negative sign) of the 

targets of each process among reactions that are - (1) essential, (2) have high maximum flux (Vmax > 75th 

percentile), (3) catalyzed by enzymes with high molecular weight (MW > 75th percentile), (4) highly connected 

(Closeness > 75th percentile), and (5) reversible. F. A schematic pathway summarizing the division of labor in 

metabolic regulation. Essential reactions (Enz1 and Enz4) are preferentially acetylated; reactions in futile cycles and 

in different compartments (Enz6) are phosphorylated, and reactions with high connectivity are regulated through 

multiple mechanisms (Enz2). Reversible reactions are predominantly unregulated or regulated by unknown 

mechanisms (Enz5).  

Context specific metabolic regulation by PTMs in E. coli  159 

Since many mechanisms of metabolic regulation are evolutionarily conserved [3], we next 160 
analyzed multi-omic data from E. coli cells during stationary phase [41–43]. By analyzing 161 
transcriptomics, proteomics, acetylomics and phosphoproteomics data using the E. coli 162 
metabolic network model, we uncovered that the pattern of regulation observed in yeast was 163 
also observed in E. coli (Figure 2A-C, S. Figure 7). Essential reactions were enriched for 164 
regulation by acetylation, and reactions with high maximum flux or large enzyme molecular 165 
weight were enriched for regulation by phosphorylation. However, in contrast to yeast, 166 

A       B            C          

                           

D       E                                                           F 

              

log10(p-value) of enrichment 
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phosphorylation impacted very few metabolic genes in E. coli, and may play a relatively minor 167 
role in this specific context. Phosphorylation had 20-fold fewer targets compared to other 168 
mechanisms, and its targets overlapped significantly with other processes (S. Tables 10, 11). 169 
Interestingly, the number of reactions with high maximum flux was considerably lower in E. coli 170 
compared to yeast (1282 in Yeast and 100 in E. coli), which correlates with the difference in 171 
phosphorylation between the species.  172 

Regulation by acetylation and phosphorylation are strongly associated with factors such as 173 
reaction flux and essentiality that change significantly between conditions. To further understand 174 
the condition-specific regulation of enzymes by PTMs, we used data from the Schmidt et al 175 
study that measured PTM levels for a small set of proteins in E. coli [44]. From this dataset we 176 
used 11 growth conditions in distinct nutrient sources that could be modeled using FBA. We 177 
selected 10 and 5 proteins, which were both part of the metabolic model and had acetylation 178 
and phosphorylation data, respectively. Despite the small sample size, we found that enzymes 179 
that impact biomass when deleted using FBA were more likely to be regulated by acetylation in 180 
that condition (p-value = 0.02; Figure 2D). This trend was also observed using experimental 181 
gene essentiality data from transposon mutagenesis screens (TN-seq) across these growth 182 
conditions (Figure 2E). For example, isocitrate lyase (aceA) show a consistent increase in 183 
acetylation as it becomes more essential (S. Figure 8, 9). Similarly, we observed a significant 184 
association between phosphorylation levels and the maximal flux through a reaction in each 185 
condition (Figure 2F). For example, phosphorylation of isocitrate dehydrogenase (icd) increased 186 
up to 20-fold in conditions with the highest maximal flux (S. Figure 10).  187 

These results suggest that the metabolic features like essentiality and flux are predictive of both 188 
the regulation of different enzymes in a condition and for the same enzyme between conditions. 189 
Nevertheless, even though the maximal reaction flux and essentiality were associated with 190 
regulation by PTMs for many proteins in both organisms, there were exceptions that did not 191 
show this trend, suggesting that various factors identified earlier likely influence regulation by 192 
PTMs in a combinatorial fashion. 193 
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 194 

Figure 2. Comparison of the properties of enzymes in E. coli regulated by transcription (Tr), post-195 
transcription (Pr), acetylation (Ac), phosphorylation (Ph) or Unregulated/Unknown regulation (Un) during 196 
transition to stationary phase. Similar to yeast, reaction essentiality (A), maximum flux (B) and molecular weight 197 
(C) are predictive of regulation by acetylation and phosphorylation (Vmax, MW) respectively. Proteins that were 198 
found to be conditionally essential (growth < wild type glucose) based on FBA (D) or Transposon sequencing (Z-199 
score < -2) (E) were more likely to be acetylated (p-value = 0.02 & 0.0011 for FBA and Tn-seq respectively). F. 200 
Enzymes that are predicted to have high maximal flux (Vmax > 90th percentile) in a condition were likely to be 201 
phosphorylated compared to those with low maximal flux (p-value = 0.008).  202 

 203 

Classifying metabolic regulation by PTMs using CAROM 204 

While our statistical analysis has revealed the impact of various metabolic features on regulation 205 

by PTMs, each feature on its own is a weak predictor. We next sought to uncover how these 206 

features in combination determine the regulation of each enzyme. We used machine-learning 207 

(ML) to build a CAROM model that accounts for all these features and quantifies their 208 

interrelationship in influencing regulation by PTMs. While metabolic network models are more 209 

mechanistic, ML methods outperform metabolic models in prediction tasks [45]. Integrating 210 

metabolic network outputs with ML can enable mechanistic interpretation without compromising 211 

predictive accuracy [46,47]. We used the decision trees ML algorithm in CAROM due to its ease 212 

of interpretation and created an ensemble of decision trees using the XGBoost framework [48].  213 

We re-analyzed the E. coli and yeast genome-wide omics datasets using CAROM. We further 214 

augmented this with phosphorylation and acetylation datasets from HeLa cells to assess if 215 

similar pattern of PTM regulation exists in mammalian cells. Time course acetylation data was 216 

A        B                                                    C   

                 

D        E                                                     F   
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taken from the Kori et al study [49], which identified 702 proteins whose acetylation levels 217 

changed significantly over time (Mann-Kendall test p-value < 0.05). Similarly, time course 218 

phosphorylation data from HeLa cells undergoing mitosis were obtained from Olsen et al [50].  219 

We created a single CAROM model using data from all organisms with the goal of identifying 220 

conserved patterns of PTM regulation. A ternary classification algorithm was built to identify 221 

proteins that are regulated by acetylation, phosphorylation or were not regulated by these 222 

PTMs. The input to CAROM was the list of 13 features (Methods; Figure 3A, 3B). The model 223 

was trained using known examples of proteins that were regulated by each of the PTMs. The 224 

trained CAROM model was then used to predict the regulators of new proteins based on their 225 

feature values.  226 

 227 

The trained CAROM model showed very high accuracy in predicting proteins that are regulated 228 

by each PTM in all three systems based on five-fold cross-validation, wherein a portion of the 229 

dataset (20%) is hidden from the model. We used a range of metrics to quantify accuracy 230 

including the Matthews Correlation Coefficient (MCC), the F1 score, precision, and recall. The 231 

ML models performed accurately based on all these metrics and significantly better than 232 

random shuffling of the data (Figure 3C).  233 

 234 

To test the generalizability of this approach in novel conditions, we used the model to predict 235 

phosphorylation during a mammalian cell cycle. We used time-course phosphoproteome data 236 

for the first cell cycle from a murine lymphocyte cell line in response to a cytokine activation 237 

(Methods). We focused on the cell cycle as it is a fundamental process and is known to involve 238 

coordination of kinases and phosphorylase cascades [51]. Importantly, this model system was 239 

previously used by Lee et al to measure metabolomics changes during the cell cycle [52]. 240 

Phospho-proteomes were obtained at the same time points as the metabolomics data from the 241 

Lee et al study. We used the extracellular and intracellular metabolomics data from the Lee et al 242 

study to build metabolic models for each phase of the cell cycle. We used the DFA approach, a 243 

variation of dynamic FBA, to fit the rate of change of metabolites in FBA to experimental 244 

measurements from time course metabolomics [53,54]. We used this approach to create four 245 

different models corresponding to different phases of the cell cycle (G0, G1, G1-S and G2/M) 246 

(S. Figure 11, Methods).  247 

 248 

The feature data (i.e., fluxes, topology) from the phase-specific metabolic models were used as 249 

input for the CAROM model to predict reactions regulated by phosphorylation. The G0 phase 250 

data was used for additional training of the model to learn cell-type specific phosphorylation 251 

patterns, and the G1, G2 and S phase were used for testing the CAROM model. CAROM 252 

achieved high MCC, AUC and precision in all conditions tested. 116 out of 142 predictions on 253 

phase-specific phosphorylated enzymes/reactions were also observed experimentally (S. Table 254 

12). Similar to E. coli and yeast, there was significant correlation between the maximum flux of a 255 

reaction in a condition and the change in phosphorylation of the corresponding enzyme during 256 

the mammalian cell cycle (S. Figure 11). For example, AMP deaminase (AMPD2) shows a 257 

threefold increase in phosphorylation in G2 phase wherein it also shows a corresponding 258 

increase in maximal flux. These results together suggest that knowledge of fluxes can be 259 

predictive of regulation by phosphorylation in mammalian systems as well. 260 
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CAROM also predicted several reactions to be targets of acetylation in various phases (S. Table 261 

13). The predicted list includes enzymes such as ATP-citrate lyase whose activity is known to 262 

be regulated by acetylation during the cell cycle [55,56]. As we lack proteome-wide time-course 263 

acetylation data to systematically confirm these predictions, we compared predictions with data 264 

from cells treated with deacetylase inhibitors [57]. Deacetylase inhibitors prevent the removal of 265 

acetylation marks. Hence new acetylation marks progressively accumulate over time resulting in 266 

cell death. We hypothesized that acetylation sites predicted by the CAROM model during the 267 

cell cycle will be enriched among the proteins with increased acetylation after deacetylase 268 

inhibitor treatment. Indeed, there was a significant overlap between CAROM predicted 269 

acetylated enzymes and those found to increase significantly (> 1.5-fold) after treatment with 270 

four different pan-deacetylase inhibitors – nicotinamide, tenovin-6, tubacin and PCI24781. 271 

Interestingly, even though the experimental proteomics data was not phase specific, we 272 

observed the highest overlap for nicotinamide targets with CAROM predictions in the G2 phase 273 

of the cell cycle (hyper-geometric p-value = 3 x 10-16), which also had the highest number of 274 

acetylated reactions (Figure 3E; S. Table 14). This overlap suggests that growth inhibition likely 275 

occurs in the G2 phase, which is consistent with experimental data from nicotinamide treatment 276 

in various mammalian cell types that have observed growth arrest at G2 [58–60].  277 
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 278 

Figure 3:  Construction and validation of the CAROM model A. Table of inputs for CAROM. The input features 279 
comprise 13 gene, reaction, and enzyme properties. The target column includes the post-translational modification 280 
class. Each gene-reaction pair is marked as either phosphorylated, acetylated, or unregulated by PTMs. B. A single 281 
decision tree model was built by training on the observations from all organisms, while only using the top 50% most 282 
important features as identified in the SHAP analysis. The complexity of the tree was constrained by limiting the 283 
tree depth to enable ease of interpretation and visualization. The XGBoost model is made of an ensemble of such 284 
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decision trees. C. The results from the CAROM model from 5-fold cross validation are shown in the bar graph (left) 285 
with the standard deviations represented by the error bars. The cross-validation results are also shown in the 286 
confusion matrix. D. Comparison of model predictions for the G1, S and G2 phases of the cell cycle with 287 
experimental phospho-proteomics data for those phases. Confusion matrix shows predictions from main CAROM 288 
model, while the bar graph shows the standard deviation for five models trained with different random seeds. E. 289 
Comparison of cell cycle acetylation predictions with experimental acetylomics data from HeLa cells treated with 290 
pan-deacetylase inhibitors. The number of unique acetylated genes for each group are displayed in parentheses. 291 
Within the table, the number of overlapping genes between each phase and drug is shown, along with the p-value of 292 
the hypergeometric test. 293 
  294 

Interpreting the machine-learning model using Shapley analysis 295 

To understand how CAROM predicted regulation by each PTM, we used a game-theoretic 296 
framework called Shapley analysis to quantify the contribution of each feature to the model 297 
accuracy using the SHAP (SHapley Additive exPlanation) Python package [61,62]. The Shapley 298 
‘feature importance’ values are computed by sequentially adding one feature at a time and 299 
measuring the feature’s contribution to the model output. To account for the order in which the 300 
features are added to the decision trees, this process is repeated for all possible orderings. The 301 
Shapley value represents the average impact for each feature across all orders (Methods).  302 

All 13 features contributed to the CAROM predictions, albeit to various extents. Molecular 303 
weight and maximum flux had two of the highest importance scores, and higher values favored 304 
phosphorylation, which is consistent with the high enrichment we observed using our statistical 305 
analysis (Figure 4A). Growth-related features, such as impact of gene knockout on biomass and 306 
ATP, were found to have opposite Shapley values for acetylation and phosphorylation 307 
respectively (Figure 4A). Thus, high growth values after knockout favor phosphorylation while 308 
low growth values favor acetylation. Similar to E. coli and yeast, the set of proteins acetylated in 309 
HeLa cells were highly enriched for essential genes identified by both FBA simulations and 310 
experimental genome-wide CRISPR knockdown studies (hypergeometric test comparing 311 
acetylated metabolic genes to all metabolic genes, p-value = 1 x 10-3 & 9 x 10-7 for FBA and 312 
CRISPR respectively). These results show that changes in fluxes and essentiality between 313 
conditions are associated with a corresponding change in regulation by PTMs. 314 

Molecular weight, topological features and reversibility were used by CAROM to differentiate all 315 
regulated genes from those that are un-regulated (Figure 4A, 3B, S. Figure 12). Gene knockout 316 
growth and maximum flux likely aid in differentiating between PTMs based on their opposing 317 
Shapley values for each PTM. These observations help explain why using both acetylation and 318 
phosphorylation in a single model improves performance compared to ML models built 319 
separately for each PTM (S. Figure 14). The SHAP decision plots and force plots shows how 320 
these features influence the prediction outcome for any given protein (Figure 4B). This also 321 
allowed us to identify factors that led to incorrect predictions by the ML model. Notably, a 322 
majority of the incorrect phosphorylation predictions were on proteins that had high molecular 323 
weight (S. Figure 13). Our ability to more accurately predict context specific fluxes and gene 324 
essentiality in the future may help rectify these incorrect predictions.  325 

To tease out organism specific differences, we next built CAROM models separately for each 326 
organism. Overall, the model accuracy and feature importance were similar for both the pan-327 
organism CAROM model and organism-specific models (S. Figures 15, 16, 17, 18). This 328 
suggests that a similar template involving the same set of features is used for partitioning 329 
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regulation. Vmax, molecular weight, topology and gene knockout values are used in the same 330 
way in all three organisms for partitioning regulation. However, the specific parameters (the 331 
threshold for Vmax or molecular weight) were organism specific. Nevertheless, these 332 
parameters can be learned by CAROM using a small subset of data. Hence while the accuracy 333 
is very low when an entire organism’s data is removed from the model and used as a test set, a 334 
substantial increase is observed when just 10% of the test organism’s data is used for additional 335 
training (S. Figure 18).  336 

The distribution of these top features from CAROM may explain the differences in distribution of 337 
PTMs observed between different species and metabolic conditions. We observed that the 338 
number of reactions with high Vmax was an order of magnitude higher in yeast compared to E. 339 
coli for the same condition (stationary phase). A concordant difference in number of reactions 340 
regulated by phosphorylation was observed between the two species (S. Figure 19). A similar 341 
trend was observed in phosphorylation levels in different conditions within the same species, 342 
namely the phases of the mammalian cell cycle and nutrient adaptation in E. coli (S. Figures 343 
10,11). In addition, the total reactions regulated by acetylation correlated with the number of 344 
growth-limiting enzymes across conditions or species (S. Figure 8, 9, 19). 345 

 346 

 347 
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 348 

Figure 4: Interpretation of the CAROM model using Shapley analysis. A. SHAP summary plot for the 349 
phosphorylation class (left) and acetylation class (right). The summary plot shows how a feature’s effect on the 350 
output changes with its own value. For each feature, high values are shown in red and low values in blue. For 351 
example, it appears that Vmax is positively and negatively correlated with the log odds of phosphorylation and 352 
acetylation, respectively. Features are ordered on the y-axis by their average SHAP importance value across the 353 
three classes. B. SHAP decision plots for a phosphorylated enzyme (left) and acetylated enzyme (right) show how 354 
the model’s prediction was made for a single observation. Each line represents the log odds for a single class. The 355 
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features are on the y-axis and are sorted by the average SHAP value for that specific observation. The lines intercept 356 
the top x-axis at their final log odds value. The class with the maximum log odds value is used as the model’s 357 
output. C. SHAP force plots show the features which significantly pushed the model output from its expected value 358 
to its final prediction. Features that push the prediction higher for the respective class are shown in purple and 359 
features that pushed it lower are shown in green. Single force plots for a phosphorylated reaction (top; TPS3) and an 360 
acetylated reaction (bottom; sdhA) are shown. The collective force plots are made up of many single force plots 361 
rotated 90 degrees and stacked together horizontally and are shown for phosphorylation (upper middle) and 362 
acetylation (bottom middle) for the same 50 random observations. The model output, f(x), is on the y-axis and 363 
observations on the x-axis. The dashed lines show where the single force plot observations appear in the collective 364 
force plot. For both the single and collective force plots, the model output is read where the purple and green areas 365 
intersect.  366 

 367 

Discussion 368 

There are several ways to regulate an enzyme's activity in a cell. Yet, the principles that 369 
determine when an enzyme is regulated by different PTMs are unknown. Here we 370 
systematically analyze patterns of metabolic regulation in model microbes and mammalian cells 371 
using a new approach called CAROM. Our approach explains why some proteins are regulated 372 
by specific PTMs in a given condition based on their biochemical properties, activity in a 373 
condition, and location in the metabolic network. We find that a small set of 13 features can 374 
distinguish the targets of each mechanism. The importance of these features is highly 375 
consistent across numerous datasets suggesting that these features may play a role in 376 
influencing regulation. Although the relevance of some of the features, such as topology, has 377 
been observed previously for transcriptional regulation, this is the first time that an association 378 
between regulation by PTMs and condition-specific attributes such as maximal flux has been 379 
reported.  380 

These key features identified by CAROM may be related to specific functions performed by 381 
each PTM. For example, phosphorylation may represent a mechanism of feedback regulation to 382 
control futile cycles and high flux reactions that consume ATP [6,63]. The differences in the total 383 
number of isozymes and high flux enzymes between species may explain the varying number of 384 
phosphorylation targets observed between the species. Since isozymes arise frequently from 385 
gene duplication, our results may also explain the observation that duplicated genes are more 386 
likely to be regulated by phosphorylation [64]. However, it is unclear how the maximum flux is 387 
sensed by cells. These regulatory interactions may have been shaped by evolution to avoid 388 
drain of ATP. Cells may also utilize ‘flux sensors’ to identify such reactions [65]. Similarly, we 389 
find that enzymes are likely to be acetylated in conditions where their activity is growth limiting. 390 
The number of acetylated enzymes correlates with the number of essential genes between 391 
organisms or between conditions. During transition to stationary phase, essential genes do not 392 
show significant changes in transcript and protein levels, but show significant changes in 393 
acetylation in both yeast and E. coli. By regulating growth limiting enzymes, acetylation may 394 
play an evolutionarily conserved role in determining the balance of biosynthetic and catabolic 395 
processes in a cell.  396 

Our approach does have limitations primarily due to the underlying algorithms and datasets 397 
used. The accuracy of the metabolic reconstruction strongly influences CAROM accuracy. False 398 
positive gene knockout essentiality predictions can lead to incorrect assignment of regulation by 399 
acetylation. Using experimental gene deletion screens can improve accuracy but may not be 400 
available for all conditions. Similarly, phosphorylation predictions can be impacted by flux 401 
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predictions by FBA. FBA is currently the most powerful approach to obtain genome-wide fluxes. 402 
Nevertheless, the incorporation of context-specific omics datasets can improve accuracy of the 403 
predicted fluxes from FBA and subsequently predicted regulation by CAROM. Further, the set of 404 
features used in CAROM, although most of them were significantly associated with regulation, 405 
are unlikely to be exhaustive. These features were selected based on prior knowledge and ease 406 
of prediction using FBA. Other features such as presence of other PTMs may provide additional 407 
information to improve accuracy.  Finally, ML methods require numerous measurements for 408 
training and may not perform well in cases with small sample sizes.  409 

In sum, our analysis reveals a unique distribution of regulation by PTMs within the metabolic 410 
network. This can help identify PTMs that will likely orchestrate flux adjustments based on 411 
reaction attributes. By identifying context-specific factors that are associated with regulation by 412 
PTMs, CAROM can complement sequence-based approaches for identifying PTM sites. It is 413 
well established that individual regulators such as transcription factors or kinases have their own 414 
unique set of targets. Here we find that similar specialization likely occurs at a higher scale, 415 
between PTMs. Our approach can guide drug discovery and metabolic engineering efforts by 416 
identifying regulators that are dominant in different parts of the network [66]. CAROM can also 417 
be used to uncover the impact of metabolic alterations on PTMs in normal and pathological 418 
processes. Given the conservation of these principles in E. coli, yeast, and mammalian cells, it 419 
provides a path towards a detailed understanding of post-translational regulation in a wide 420 
range of organisms and to uncover target specificities of other PTMs. This approach may help 421 
define the basic regulatory architecture of metabolic networks. 422 

 423 

Methods 424 

Compilation of omics data  425 

We used RNA-sequencing data from Treu et al 2014 that compared the expression profile of S. 426 
cerevisiae between mid-exponential growth phase with early stationary phase [30]. A 2-fold 427 
change threshold was used to identify differentially expressed genes. Lysine acetylation and 428 
protein phosphorylation data were obtained from the Weinert et al 2014 study that compared 429 
PTM levels between exponentially growing and stationary phase cells using stable isotope 430 
labeling with amino acids in cell culture (SILAC) [29]. A 2-fold change threshold of the protein-431 
normalized PTM data was used to identify differentially expressed PTMs. Proteomics data was 432 
taken from Murphy et al time-course proteomics study [28]. The hoteling T2 statistic defined by 433 
the authors was used to identify proteins differentially expressed during diauxic shift; the top 434 
25% of the differentially expressed proteins were assumed to be regulated. Proteomics data 435 
from Weinert et al was also used as an additional control and we observed the same trends 436 
using this data as well (S. Table 7). Further, we repeated the analysis after removing genes that 437 
were not expressed during transition to stationary phase; the transcripts for a total of 12 genes 438 
out of the 910 in the model were not detected by RNA-sequencing in the Treu et al study [30]. 439 
Removing the 12 genes did not impact any of the results (S. Table 6).   440 

As additional validation, we used periodic data from the yeast cell cycle. Time-course SILAC 441 
phospho-proteomics data was obtained from Touati et al [39]. Phospho-sites whose abundance 442 
declined to less than 50% or increased by more than 50% at least two consecutive timepoints 443 
were considered dephosphorylated or phosphorylated respectively as defined by the authors. 444 
Transcriptomics data was taken from Kelliher et al study that identified 1246 periodic transcripts 445 
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using periodicity-ranking algorithms [40]. The phospho-proteomics and transcriptome data 446 
during nitrogen shift was obtained from Oliveira et al [37,38]. The nitrogen shift studies 447 
compared the impact of adding glutamine to yeast cells growing on a poor nitrogen source 448 
(proline alone or glutamine depletion) with cells growing on a rich nitrogen source (glutamine 449 
plus proline). A 2-fold change threshold was used to identify differentially expressed transcripts 450 
and phospho-sites. 451 

E. coli acetylation data was taken from the Weinert et al study comparing actively growing 452 
exponential phase cells to stationary phase cells [43]. Proteomics and transcriptomics were 453 
from Houser et al study of E. coli cells in early exponential phase and stationary phase [42]. 454 
Phospho-proteomics data for exponential and early stationary phase E. coli cells was taken 455 
form Soares et al [41]. We used a 2-fold change (p < 0.05) threshold for all studies. 456 

Condition specific PTM data for E. coli was taken from Schmidt et al 2016 study [44]. Among the 457 

22 different experimental conditions measured, those conditions that involved change in carbon 458 

sources that could be modeled using FBA were chosen. The following carbon sources were 459 

used: acetate, fumarate, galactose, glucose, glucosamine, glycerol, pyruvate, succinate, 460 

fructose, mannose and xylose. Out of 44 unique lysine acetylation and 21 serine/ threonine 461 

phosphorylation sites identified in the study (FDR < 0.01), 11 and 5 proteins were mapped to 462 

the metabolic model for the subset of conditions analyzed here. Protein modifications were 463 

normalized by their corresponding protein levels.  464 

Acetylated proteins in HeLa cells were taken from Kori et al 2017 which measured time course 465 

acetylation levels in HeLa cells grown on 13C labeled glucose with samples collected at 0.5, 1, 466 

4, 8, 12, 16, and 24 hours [49]. A total of 702 unique target proteins were identified based on 467 

significance of acetylation incorporation as monotonic trend across the time points using the 468 

Mann-Kendall statistical test (p-value < 0.05) as defined by the authors.  For the phosphorylation 469 

data for HeLa cells, phosphorylation sites that are up-regulated during mitosis and show more 470 

than 50% occupancy as defined by the authors were used [50]. 471 

Phosphoproteomics data from the mammalian cell cycle contained a total of 5861 identified 472 

phosphopeptides. Phospho-peptides whose abundance intensities (or signal to noise ratios) are 473 

zero at any channel (or any time point sample), those with Ascore < 13, and those that were 474 

identified by a decoy dataset in a reverse manner were removed, resulting in a set of 3095 475 

phosphopeptides that correspond to 1552 unique proteins. A z-score normalization was 476 

performed to identify phase specific differential levels of phosphorylated proteins (z threshold of 477 

+/- 2) 478 

Gene essentiality based on CRISPR knockout screens was obtained from Hart et al 2015 study 479 

that measured essentiality across all 5 cell lines (HeLa, RPE1 DLD1, GBM and HCT116) [67]. 480 

Growth limiting genes with FDR < 0.05 were considered to be essential, as defined by the 481 

authors. In addition, essential genes from Hart et al 2017 study using genome-wide knockout 482 

screens in 17 human cell lines also showed similar enrichment among acetylated proteins (p-483 

value = 1.7 x 10-7) [68]. 484 

The results are robust to the thresholds used for identifying differentially expressed genes or 485 
proteins (S. Tables 6, 7, 8). In all studies, genes and proteins that are either up or down 486 
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regulated were considered to be regulated. The final data set table used for all comparative 487 
analyses is provided as a supplementary material (S. Tables 14, 15, 16). 488 

 489 

Genome scale metabolic modeling 490 

We used the yeast metabolic network reconstruction (Yeast 7) by Aung et al, which contains 491 

3,498 reactions, 910 genes and 2,220 metabolites [32]. The analysis of E. coli data was done 492 

using the IJO1366 metabolic model [69] and the mammalian cell cycle modeling was done 493 

using the human metabolic reconstruction (Recon1) [70]. All analyses were performed using the 494 

COBRA toolbox for MATLAB [71].  495 

The impact of gene knockouts on growth was determined using flux balance analysis (FBA). 496 
FBA identifies an optimal flux through the metabolic network that maximizes an objective, 497 
usually the production of biomass. A minimal glucose media (default condition) was used to 498 
determine the impact of gene knockouts. Further, gene knockout analysis was repeated in 499 
different minimal nutrient conditions to identify genes that impact growth across diverse 500 
conditions; these conditions span all carbon and nitrogen sources that can support growth in the 501 
metabolic models. The number of times each gene was found to be lethal (growth < 0.01 units) 502 
across all conditions was used as a metric of essentiality.  503 

To infer topological properties, a reaction adjacency matrix was created by connecting reactions 504 
that share metabolites. We used the Centrality toolbox function in MATLAB to infer all network 505 
topological attributes including centrality, degree and PageRank. Removing highly connected 506 
metabolites did not affect the associations between topology and regulation (S. Figure 20).  507 

Flux Variability Analysis (FVA) was used to infer the range of fluxes possible through every 508 
reaction in the network. Two sets of flux ranges were obtained with FVA – the first with optimal 509 
biomass and the latter without assuming optimality. In the second case, the fluxes are limited by 510 
the availability of nutrients and energetics alone, thus it reflects the full range of metabolic 511 
activity possible in a cell. Reactions with maximal flux above 900 units were assumed to be 512 
unconstrained and were excluded from the analysis, as they are likely due to thermodynamically 513 
infeasible internal cycles [72]; the choice of this threshold for flagging unconstrained reactions 514 
did not impact the distribution between regulators over a wide range of values (S. Table 9).  515 

For fitting experimentally derived flux data from Hackett et al [21], reactions were fit to the fluxes 516 
using linear optimization and the flux through remaining reactions that do not have 517 
experimentally derived flux data were inferred using FVA. Analysis using a related approach for 518 
inferring fluxes – PFBA, did not reveal any significant difference as PFBA eliminates futile cycles 519 
and redundancy by minimizing total flux through the network while maximizing for biomass [73] 520 
(S. Figure 5).  521 

Reaction reversibility was determined directly from the model annotations. We also used 522 
additional reversibility annotation from Martinez et al based on thermodynamics analysis of the 523 
Yeast metabolic model [74]. Pathway annotations and enzyme molecular weight values were 524 
obtained from Sanchez et al. The catalytic activity values were obtained from Sanchez et al, 525 
Heckman et al, and Yeo et al for Yeast, E. coli and mammalian cells respectively [75–77]. The 526 
comparative analysis of regulatory mechanisms was also repeated using the updated Yeast 7.6 527 
model and yielded similar results (S. Table 5) [75].  528 
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Models for each cell cycle phase were built using the Dynamic Flux Activity (DFA) approach 529 
[53,78]. The cell cycle metabolomics data contains 155 intracellular metabolites and 173 530 
extracellular metabolites and was used as inputs for DFA. The time points were grouped in to 531 
different phases as follows: 0 – 4 hours for G0-G1, 4 – 8 – 12 hours for G1, 12 – 16 hours for 532 
G1-S, and 16 – 20 hours for G2-M. DFA utilizes time-course metabolomics data and calculates 533 
the rate of change of each metabolite level over time (dM/dt). The rate of change of each 534 
metabolite is calculated using linear regression in DFA. Based on the regression line for a 535 
metabolite i, one calculates ϵi which is the slope divided by the intercept which is a 536 
normalization factor at the initial time point. Then, together with a known metabolic network for 537 
the stoichiometry matrix, S, and by introducing flux activity coefficients, α and β, the DFA 538 
equation becomes a modified version of the conventional FBA: S•v + α - β = ϵ. α and β are both 539 
positive values. This equation is then solved by minimizing α + β and maximizing the biomass 540 
objective function, yielding a flux vector or distribution of all reactions for time-course data. For 541 
validating the CAROM model, the fluxes from the G0 phase were used in the training set and 542 
the remaining phases were used for testing. This analysis was repeated by training on different 543 
phases of the cell cycle. The accuracy from the G1, S and G2 phases was lower compared to 544 
training on G0. suggesting that these conditions have a distinct phosphorylation pattern from the 545 
G0 condition (S. Figure 21). 546 

The comparative analysis of target properties was done using gene-reaction pairs rather than 547 
genes or reactions alone. The gene-reaction pairs accounts for regulation involving all possible 548 
combinations of genes and associated reaction. This includes isozymes that may involve 549 
different genes but the same reaction, or multi-functional enzymes involving same the gene 550 
associated with different reactions. For example, the 910 genes and 2310 gene-associated 551 
reactions resulted in 3375 unique gene-reaction pairs in yeast. 552 

Statistical analysis 553 

All statistical tests were performed using MATLAB. Significance of overlap between lists was 554 
estimated using the hypergeometric test. Significance of the differences in target properties 555 
between regulatory mechanisms were determined using ANOVA, the non-parametric Kruskal-556 
Wallis test, and after multiple hypothesis correction (S. Table 5).  557 

Machine learning  

The CAROM-ML model was built using the XGBoost package in Python. XGBoost is a gradient 558 
boosting algorithm that uses decision trees as its weak learners [48]. Unlike bagging algorithms, 559 
such as random forest, which train their learners independently in parallel, boosting algorithms 560 
train their predictors sequentially. Each weak learner uses gradient descent to minimize the 561 
error of the previous learner. XGBoost is unique among boosted algorithms due to its speed and 562 
regularization abilities, which help prevent over-fitting. 563 

We used a randomized search with an internal cross validation in the training set to tune 564 
hyperparameters. A stratified split was employed to ensure the class balance was preserved 565 
between the training and test sets. To measure the model robustness and generalization, we 566 
performed 5-fold cross-validation. The hyperparameters were re-tuned on each iteration. The 567 
hyperparameters from the fold with the best performance were then used to fit a final model to 568 
the entire training set. To assess predictive power in novel conditions, the model was also 569 
assessed using data from G1, G2 & S phase conditions. Note that for the acetylation predictions 570 
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during the cell cycle, no additional training data was available for the G0 phase (in contrast to 571 
phosphorylation)  572 

To assess the impact of using other ML algorithms on CAROM accuracy, additional models 573 
were built using Random Forests and AdaBoost. Similar accuracy to XGBoost was obtained 574 
using these approaches (S. Figure 22) [79]. AdaBoost is also a gradient boosting algorithm that 575 
can use decision trees as its base learners. For each learner, weights are assigned to its errors 576 
and these weights are used to adjust the next learner’s predictions.  577 

For model interpretation, a single decision tree model was created to visualize the typical 578 
prediction path that an observation follows when its class is being decided. The decision tree 579 
was built using the scikit-learn Python package. The decision tree was trained on the entire 580 
dataset and the RandomizedSearchCV function was used to tune hyperparameters, including 581 
maximum depth. To address the class imbalance, synthetic minority oversampling (SMOTE) 582 
was used for training the decision tree model.  583 

To build the ML model, each gene-reaction pair is assigned a class of -1, 0, or 1, corresponding 584 
to phosphorylated, unregulated and acetylated, respectively. For cases where genes/proteins 585 
were regulated by both PTM types in the training data, phosphorylation was assigned, as this 586 
was the minority class. This overlap occurred in 25 gene-reaction pairs in the E. coli dataset, 67 587 
pairs for yeast and 2 for HeLa. Any genes that were included in the metabolic network, but not 588 
found in the corresponding PTM dataset, were assumed to be non-regulated. Any missing 589 

feature data was replaced with the median value. To account for the differences between 590 
organism characteristics, we normalized the features for each condition table on a scale of 0 to 591 
1 for each condition. The catalytic activity and PFBA flux features showed unique organism-592 
specific signatures when normalized, so these two attributes were scaled using their mean 593 
values. Reaction reversibility is a binary variable and therefore was not scaled. Prior to scaling, 594 
the maximum and minimum reaction flux features were limited to 100 to reduce feature range, 595 
as opposed to the value of 900 used in the statistical portion of the study. This step did not 596 
significantly affect the model accuracy (S. Figure 23) 597 

Proteins that were not annotated to be acetylated or phosphorylated in any condition in the 598 
protein lysine modification database or the UniProt database were removed from the ML model 599 
[80,81]. However, this step did not significantly alter the accuracy as most metabolic proteins 600 
were annotated to be regulated by these PTMs (S. Figure 24). The final data used to train the 601 
CAROM-ML model included 2427 gene-reaction pairs for E. coli, 3039 for yeast, 3661 for HeLa, 602 
and 3582 for the G0 condition of the mammalian cell cycle dataset, for a total of 12,709 603 
observations (S. Figure 25, S. Tables 15-17). The validation set, which includes the G1, S, and 604 
G2 phases, contained 10746 pairs (3582 for each phase). 605 

Shapley analysis  606 

For determining features that have the largest influence in the ML models, we used the SHAP 607 
(SHapley Additive exPlanation) package in Python. SHAP uses the game theory concept of 608 
Shapley values for calculating each feature’s contribution to the model output [62]. The Shapley 609 
analysis was completed using TreeExplainer from the SHAP package. TreeExplainer is 610 
specifically designed for use with tree-based models. The Shapley value represents the average 611 
impact for each feature across for all possible orderings. This process is represented by the 612 
following equation: 613 
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 614 

The Shapley value is the 𝜙𝑖(𝑓, 𝑥) term, or the effect that feature i has on model f, given the 615 

independent variable data, x. M is the total number of features, and M! represents the number of 616 
possible feature combinations. S is a subset of the features excluding feature i, |S| is the 617 
number of features in subset S, and fx(S) is the model output for subset S. The SHAP values 618 
are relative to the average model output, called the base value. The base value can also be 619 
thought of as the null model output. Therefore, the sum of the SHAP values for a given 620 
observation is equal to the difference between the model prediction and the base value. 621 
Considering the SHAP values across all observations in a dataset provides insight into the 622 
overall feature importance, direction of a feature’s impact on the model output and relationships 623 
between the predictor features. For model interpretation using SHAP, the final XGBoost model 624 
and its training data were used as inputs to the TreeExplainer function. 625 
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