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Abstract Mechanistic modeling in neuroscience aims to explain neural or behavioral phenomena in terms of12

underlying causes. A central challenge in building mechanistic models is to identify which models and parameters can13

achieve an agreement between the model and experimental data. The complexity of models and data characterizing14

neural systems makes it infeasible to solve model equations analytically or tune parameters manually. To overcome15

this limitation, we present a machine learning tool that uses density estimators based on deep neural networks—16

trained using model simulations—to infer data-compatible parameters for a wide range of mechanistic models. Our17

tool identifies all parameters consistent with data, is scalable both in the number of parameters and data features,18

and does not require writing new code when the underlying model is changed. It can be used to analyze new data19

rapidly after training, and can be applied to either raw data or selected data features. We demonstrate our approach20

for parameter inference on ion channels, receptive fields, and Hodgkin–Huxley models. Finally, we use it to explore the21

space of parameters which give rise to the same rhythmic activity in a network model of the crustacean stomatogastric22

ganglion and to search for potential compensation mechanisms. The approach presented here will help close the gap23

between data-driven and theory-driven models of neural dynamics.24

25

Introduction26

New experimental technologies allow us to observe neurons, networks, brain regions and entire systems at un-27

precedented scale and resolution, but using these data to understand how behavior arises from neural processes28

remains a challenge. To test our understanding of a phenomenon, we often take to rebuilding it in the form of a29

computational model that incorporates the mechanisms we believe to be at play, based on scientific knowledge,30

intuition, and hypotheses about the components of a system and the laws governing their relationships. The goal of31

such mechanistic models is to investigate whether a proposed mechanism can explain experimental data, uncover32

details that may have been missed, inspire new experiments, and eventually provide insights into the inner workings33

of an observed neural or behavioral phenomenon [1–4]. Examples for such a symbiotic relationship between model34

and experiments range from the now classical work of Hodgkin and Huxley [5], to population models investigating35

rules of connectivity, plasticity and network dynamics [6–10], network models of inter-area interactions [11, 12], and36

models of decision making [13, 14].37
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A crucial step in building a model is adjusting its free parameters to be consistent with experimental observations.38

This is essential both for investigating whether the model agrees with reality and for gaining insight into processes39

which cannot be measured experimentally. For some models in neuroscience, it is possible to identify the relevant40

parameter regimes from careful mathematical analysis of the model equations. But as the complexity of both neural41

data and neural models increases, it becomes very difficult to find well-fitted parameters by inspection, and automated42

identification of data-consistent parameters is required.43

Furthermore, to understand how a model quantitatively explains data, it is necessary to find not only the best,44

but all parameter settings consistent with experimental observations. This is especially important when modeling45

neural data, where highly variable observations can lead to broad ranges of data-consistent parameters. Elucidating46

these ranges can reveal which combinations of parameters are well-constrained by data, and helps us design further47

experiments to be maximally informative [15]. Moreover, many models in biology are inherently robust to some48

perturbations of parameters, but highly sensitive to others [3, 16], e.g. because of processes such as homeostastic49

regulation. For these systems, identifying the full range of data-consistent parameters can reveal how multiple distinct50

parameter settings give rise to the same model behavior [7, 17, 18]. Yet despite the clear benefits of mechanistic51

models in providing scientific insight, identifying their parameters given data remains a challenging open problem that52

demands new algorithmic strategies.53

The gold standard for automated parameter identification is statistical inference, which uses the likelihood p(x|θ)54

to quantify the match between parameters θ and data x. Likelihoods can be derived for purely statistical models55

commonly used in neuroscience [19–25], but are unavailable for most mechanistic models. Mechanistic models56

are designed to reflect knowledge about biological mechanisms, and not necessarily to be amenable to efficient57

inference: Many mechanistic models are defined implicitly through stochastic computer simulations (e.g. a simulation58

of a network of spiking neurons), and likelihood calculation would require the ability to integrate over all potential59

paths through the simulator code. Similarly, a common goal of mechanistic modeling is to capture selected summary60

features of the data (e.g. a certain firing rate, bursting behavior, etc...), not the full dataset in all its details. The same61

feature (such as a particular average firing rate) can be produced by infinitely many realizations of the simulated62

process (such as a time-series of membrane potential). This makes it impractical to compute likelihoods, as one would63

have to average over all possible realizations which produce the same output.64

Since the toolkit of statistical inference is inaccessible for mechanistic models, parameters are typically tuned65

ad-hoc (often through laborious, and subjective, trial-and-error), or by computationally expensive parameter search:66

A large set of models is generated, and grid search [26–28], genetic algorithms [29–32], or Approximate Bayesian67

Computation (ABC) [33–35] are used to filter out models whose simulations do not match the data. Parameter search68

methods require the user to define a heuristic rejection criterion to decide which simulations to keep, and typically69

end up discarding most simulations. They struggle when models have many parameters or data features, cannot cope70

with large datasets or high-throughput applications, and (except for ABC) yield only a single best-fitting model, rather71

than the full range of data-compatible models. Thus, computational neuroscientists face a dilemma: Either create72

carefully designed, highly interpretable mechanistic models (but rely on ad-hoc parameter tuning), or resort to purely73

statistical models offering sophisticated parameter inference but limited mechanistic insight.74

Here we propose a new approach using machine learning to combine the advantages of mechanistic and statistical75

modeling. We present SNPE (Sequential Neural Posterior Estimation), a tool that rapidly identifies all mechanistic76

model parameters consistent with observed experimental data (or summary features). SNPE builds on recent advances77

in simulation-based Bayesian inference [36–39]: Given observed experimental data (or summary features) xo , and a78

mechanistic model with parameters θ, it expresses both prior knowledge and the range of data-compatible parameters79

through probability distributions. It returns a posterior distribution p(θ|xo) which is high for parameters θ consistent80

with both the data xo and prior knowledge but approaches zero for θ inconsistent with either (Fig. 1).81

Similar to parameter search methods, SNPE uses simulations instead of likelihood calculations, but instead of82

filtering out simulations, it uses all simulations to train a multi-layer artificial neural network to identify admissible83

parameters (Fig. 1). By incorporating modern deep neural networks for conditional density estimation [40, 41], it can84

capture the full distribution of parameters consistent with the data, even when this distribution has multiple peaks or85

lies on curved manifolds. Critically, SNPE decouples the design of the model and design of the inference approach,86

giving the investigator maximal flexibility to design and modify mechanistic models. Our method makes minimal87

assumptions about the model or its implementation, and can e.g. also be applied to non-differentiable models, such88
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Figure 1. Goal: Algorithmically identify mechanistic models which are consistent with data. Our algorithm (SNPE) takes

three inputs: A candidate mechanistic model, prior knowledge or constraints on model parameters, and data (or summary statistics).

SNPE proceeds by 1) sampling parameters from the prior and simulating synthetic datasets from these parameters, and 2) using a

deep density estimation neural network to learn the (probabilistic) association between data (or data features) and underlying

parameters, i.e. to learn statistical inference from simulated data. 3) This density estimation network is then applied to empirical

data to derive the full space of parameters consistent with the data and the prior, i.e. the posterior distribution. High posterior

probability is assigned to parameters which are consistent with both the data and the prior, low probability to inconsistent

parameters. 4) If needed, an initial estimate of the posterior can be used to adaptively generate additional informative simulations.

as networks of spiking neurons. Its only requirement is that one can run model simulations for different parameters,89

and collect the resulting synthetic data or summary features of interest.90

We test SNPE using mechanistic models expressing key neuroscientific concepts. Beginning with a simple neural91

encoding problem with a known solution, we progress to more complex data types, large datasets and many-92

parameter models inaccessible to previous methods. We estimate visual receptive fields using many data features,93

demonstrate rapid inference of ion channel properties from high-throughput voltage-clamp protocols, and show how94

Hodgkin–Huxley models are more tightly constrained by increasing numbers of data features. Finally, we explore how95

multiple network models can explain the activity in the stomatogastric ganglion [7], and provide hypotheses for which96

compensation mechanisms might be at play.97

Concurrently with our work, Bittner and colleagues [42] developed an alternative approach to parameter identifica-98

tion for mechanistic models, and showed how it can be used to characterize neural population models which exhibit99

specific emergent computational properties. Both studies differ in their methodology and domain of applicability100

(see descriptions of underlying algorithms in our [37, 38] and their [43] prior work), as well in the focus of their101

neuroscientific contributions, but they share the overall goal of using deep probabilistic inference tools to build more102

interpretable models of neural data. These complementary and concurrent advances will expedite the cycle of building,103

adjusting and selecting mechanistic models in neuroscience.104

Results105

Estimating stimulus-selectivity in linear-nonlinear encoding models106

We first illustrate SNPE on linear-nonlinear (LN) encoding models, a special case of generalized linear models (GLMs).107

These are simple, commonly used phenomenological models for which likelihood-based parameter estimation is108

feasible [44–49], and which can be used to validate the accuracy of our approach. We will show that SNPE returns the109

correct posterior distribution over parameters, that it can cope with high-dimensional observation data and that it can110

can recover multiple solutions to parameter inference problems.111

An LN model describes how a neuron’s firing rate is modulated by a sensory stimulus through a linear filter θ,112
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Figure 2. Estimating receptive fields in linear-nonlinear models of single neurons with statistical inference (A) Schematic of

a time-varying stimulus, associated observed spike train and resulting spike-triggered average (STA) (B) SNPE proceeds by first

randomly generating simulated receptive fields θ, and using the mechanistic model (here an LN model) to generate simulated spike

trains and simulated STAs. (C) These simulated STAs and receptive fields are then used to train a deep neural density estimator to

identify the distribution of receptive fields consistent with a given observed STA xo (D) Posterior covariance over receptive fields,

indicating which parameters, or combinations of parameters, are constrained by the data. (E) Example of spatial receptive field. We

simulated responses and an STA of a LN-model with oriented receptive field. (F) We used SNPE to recover the distribution of

receptive-field parameters. Univariate and pairwise marginals for four parameters of the spatial filter (MCMC, yellow histograms;

SNPE, blue lines; full posterior in Supplementary Fig. 4). Non-identifiabilities of the Gabor parameterization lead to multimodal

posteriors. (G) Posterior samples from SNPE posterior (SNPE, blue) compared to ground-truth receptive field (green), overlaid on

spike-triggered average. (H) Posterior samples for V1 data; full posterior in Supplementary Fig. 5.

often referred to as the receptive field [50, 51]. We first considered a model of a retinal ganglion cell (RGC) driven by113

full-field flicker (Fig. 2A). A statistic that is often used to characterize such a neuron is the spike-triggered average (STA)114

(Fig. 2A, right). We therefore used the STA, as well as the firing rate of the neuron, as input xo to SNPE. (Note that, in115

the limit of infinite data, and for white noise stimuli, the STA will converge to the receptive field [45]–for finite, and116
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non-white data, the two will in general be different.) By randomly drawing receptive fields θ, we generated synthetic117

spike trains and calculated STAs from them (Fig. 2B), and subsequently trained a neural conditional density estimator118

to recover the underlying receptive-field model (Fig. 2C). This allowed us to estimate the posterior distribution over119

receptive fields, i.e. to estimate which receptive fields are consistent with the data (and prior) (Fig. 2C-D). For LN120

models, likelihood-based inference is possible, allowing us to validate the SNPE posterior by comparing it to a reference121

posterior obtained via Markov Chain Monte Carlo (MCMC) sampling [48, 49] (Supplementary Fig. 1 and Supplementary122

Fig. 2).123

As a more challenging inference problem, we inferred the receptive field of a neuron in primary visual cortex124

(V1) [52, 53]. Using a model composed of a bias (related to the spontaneous firing rate) and a Gabor function with 8125

parameters [54] to describe location, shape and strength of the receptive field, we simulated responses to 5-minute126

random noise movies of 41 × 41 pixels. In this case, the STA has 1681 dimensions (Fig. 2E), causing classical ABC127

methods to fail (Supplementary Fig. 3). This problem admits multiple solutions (as e.g. rotating the receptive field by128

180
◦
). As a result, the posterior distribution has multiple peaks (‘modes’). Starting from a simulation result xo with129

known parameters, we used SNPE to estimate the respective posterior distribution. To deal with the high-dimensional130

data xo in this problem, we used a convolutional neural network (CNN), as this architecture excels at learning relevant131

features from image data [55, 56]. To deal with the multiple peaks in the posterior, we fed the CNN’s output into132

a mixture density network (MDN) [57], which can learn to assign probability distributions with multiple peaks as a133

function of its inputs (full details in Methods). Using this strategy, SNPE was able to infer a posterior distribution that134

tightly enclosed the ground truth simulation parameters which generated the original simulated data xo , and closely135

matched a reference MCMC posterior (Fig. 2F, full posterior in Supplementary Fig. 4). We also applied this approach136

to electrophysiological data from a V1 cell [53], identifying a sine-shaped Gabor receptive field consistent with the137

original spike-triggered average (Fig. 2H; posterior distribution in Supplementary Fig. 5).138

Functional diversity of ion channels: efficient high-throughput inference139

We next show how SNPE can be efficiently applied to estimation problems in which we want to identify a large number140

of models for different observations in a database. We considered a flexible model of ion channels [59], which we141

here refer to as the Omnimodel. This model uses 8 parameters to describe how the dynamics of currents through142

non-inactivating potassium channels depend on membrane voltage (Fig. 3A). For various choices of its parameters θ,143

it can capture 350 specific models in publications describing this channel type, cataloged in the IonChannelGenealogy144

(ICG) database [58]. We aimed to identify these ion channel parameters θ for each ICG model, based on 11 features145

of the model’s response to a sequence of 5 voltage clamp protocols, resulting in a total of 55 characteristic different146

features per model (Fig. 3B, see Methods for details).147

Because this model’s output is a typical format for functional characterization of ion channels both in simulations148

[58] and in high-throughput electrophysiological experiments [60–63], the ability to rapidly infer different parameters149

for many separate experiments is advantageous. Existing approaches for model fitting based on numerical optimiza-150

tion [59, 63] must repeat all computations anew for a new experiment or data point (Fig. 3C). However, for SNPE the151

only heavy computational tasks are carrying out simulations to generate training data, and training the neural network.152

We therefore reasoned that by training a network once using a large number of simulations, we could subsequently153

carry out rapid “amortized” parameter inference on new data using a single pass through the network (Fig. 3D) [64, 65].154

To test this idea, we used SNPE to train a neural network to infer the posterior from any data x. To generate training155

data, we carried out 1 million Omnimodel simulations, with parameters randomly chosen across ranges large enough156

to capture the models in the ICG database [58]. In this case, SNPE was run using a single round, i.e. it learned to157

perform inference for all data from the prior (rather than a specific observed datum). Generating these simulations158

took around 1000 CPU-hours and training the network 150 CPU-hours, but afterwards a full posterior distribution159

could be inferred for new data in less than 10 ms.160

As a first test, SNPE was run on simulation data, generated by a previous characterization of a non-inactivating161

potassium channel (Fig. 3B). Simulations of the Omnimodel using parameter sets sampled from the obtained posterior162

distribution (Fig. 3E) closely resembled the input data on which the SNPE-based inference had been carried out, while163

simulations using “outlier” parameter sets with low probability under the posterior generated current responses164

that were markedly different from the data xo (Fig. 3F). Taking advantage of SNPE’s capability for rapid amortized165

inference, we further evaluated its performance on all 350 non-inactivating potassium channel models in ICG. In each166
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Figure 3. Inference on a database of ion-channel models. (A) We perform inference over the parameters of non-inactivating

potassium channel models. Channel kinetics are described by steady-state activation curves,∞gate, and time-constant curves, τgate.
(B) Observation generated from a channel model from ICG database: Normalized current responses to three (out of five)

voltage-clamp protocols (action potentials, activation, and ramping). Details in [58]. (C) Classical approach to parameter identification:

Inference is optimized on each datum separately, requiring new computations for each new datum. (D) Amortized inference: An

inference network is learned which can be applied to multiple data, enabling rapid inference on new data. (E) Posterior distribution

over eight model parameters, θ1 to θ8. (F) Traces obtained by sampling from the posterior in E. Purple: traces sampled from

posterior, i.e. with high posterior probability. Magenta: trace from parameters with low probability. (G) Observations (green) and

traces generated by posterior samples (purple) for four models from the database.
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case, we carried out a simulation to generate initial data from the original ICG model, used SNPE to calculate the167

posterior given the Omnimodel, and then generated a new simulation x using parameters sampled from the posterior168

(Fig. 3F). This resulted in high correlation between the original ICG model response and the Omnimodel response,169

in every case (>0.98 for more than 90% of models, see Supplementary Fig. 6). However, this approach was not able170

to capture all traces perfectly, as e.g. it failed to capture the shape of the onset of the bottom right model in Fig.171

3G. Additional analysis of this example revealed that this example is not a failure of SNPE, but rather a limitation of172

the Omnimodel–thus, SNPE can be used to reveal limitations of candidate models and aid the development of more173

verisimilar mechanistic models.174

Calculating the posterior for all 350 ICG models only took a few seconds, and was fully automated, i.e. did not175

require user interactions. These results show how SNPE allows fast and accurate identification of biophysical model176

parameters on new data, and shows how these approaches could scale to high-throughput or online applications177

which require rapid and automated inference.178

Hodgkin–Huxley model: stronger constraints from additional data features179

The Hodgkin–Huxley (HH) model [5] of action potential generation through ion channel dynamics is a highly influential180

mechanistic model in neuroscience. A number of algorithms have been proposed for fitting HH models to electro-181

physiological data [26, 31, 32, 66–68], but (with the exception of [69]) these approaches do not attempt to estimate182

the full posterior. Given the central importance of the HH model in neuroscience, we sought to test how SNPE would183

cope with this challenging non-linear model. As previous approaches for HH models concentrated on reproducing184

specified features (e.g. the number of spikes) [66], we also sought to determine how various features provide different185

constraints. We considered the problem of inferring 8 biophysical parameters in a HH single-compartment model,186

describing voltage-dependent sodium and potassium conductances and other intrinsic membrane properties (Fig. 4A,187

left). We simulated the neuron’s voltage response to the injection of a square wave of depolarizing current, and defined188

the model output x used for inference as the number of evoked action potentials along with 6 additional features189

of the voltage response (Fig. 4A, right, details in Methods). We first applied SNPE to observed data xo created by190

simulation from the model, calculating the posterior distribution using all 7 features in the observed data (Fig. 4B). The191

posterior contained the ground truth parameters in a high probability-region, as in previous applications, indicating192

the consistency of parameter identification. The variance of the posterior was narrower for some parameters than for193

others, indicating that the 7 data features strongly constrain some parameters (such as the potassium conductance),194

but only weakly others (such as the adaptation time constant). Additional simulations with parameters sampled from195

the posterior closely resembled the observed data xo , in terms of both the raw membrane voltage over time and the 7196

data features (Fig. 4C, purple and green). Parameters with low posterior probability (outliers) generated simulations197

that markedly differed from xo (Fig. 4C, magenta).198

To investigate how individual data features constrain parameters, we compared SNPE-estimated posteriors based199

1) solely on the spike count, 2) on the spike count and 3 voltage-features, or 3) on all 7 features of xo . This analysis200

revealed that as more features are taken into account, the posterior became narrower and centered more closely on201

the ground truth parameters (Fig. 4D, Supplementary Fig. 7). Posterior simulations matched the observed data only202

in those features that had been used for inference, e.g. applying SNPE to spike counts alone identified parameters203

that generated the correct number of spikes, but for which spike timing and subthreshold voltage time course were204

off, unless these additional data features were also provided to SNPE (Fig. 4E). For some parameters, such as the205

potassium conductance, providing more data features brought the peak of the posterior (the posterior mode) closer to206

the ground truth and also decreased uncertainty. For other parameters, such as VT , a parameter adjusting the spike207

threshold [66], the peak of the posterior was already close to the correct value with spike counts alone, but adding208

additional features reduced uncertainty. While SNPE can be used to study the effect of additional data features in209

reducing parameter uncertainty, this would not be the case for methods that only return a single best-guess estimate210

of parameters. These results show that SNPE can reveal how information from multiple data features imposes211

collective constraints on channel and membrane properties in the HH model.212

We also inferred HH parameters for 8 in vitro recordings from the Allen Cell Types database using the same current-213

clamp stimulation protocol as in our model [60, 70] (Fig. 4F, Supplementary Fig. 8). In each case, simulations based214

on the SNPE-inferred posterior closely resembled the original data (Fig. 4F). We note that while inferred parameters215

differed across recordings, some parameters (the spike threshold, the density of sodium channels, the membrane216
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Figure 4. Inference for single compartment Hodgkin–Huxley model. (A) Circuit diagram describing the Hodgkin–Huxley model

(left), and simulated voltage-trace given a current input (right). 3 out of 7 voltage features are depicted: (1) number of spikes, (2)

mean resting potential and (3) standard deviation of the pre-stimulus resting potential. (B) Inferred posterior for 8 parameters given

7 voltage features. (C) Traces (left) and associated features f (right) for the desired output (observation), the mode of the inferred

posterior, and a sample with low posterior probability. The voltage features are: number of spikes sp, mean resting potential rpot,

standard deviation of the resting potential σrpot, and the first 4 voltage moments, mean m1, standard deviation m2, skewness m3 and

kurtosis m4. Each feature is normalized by σf PRIOR, the standard deviation of the respective feature of simulations sampled from the

prior. (D) Partial view of the inferred posteriors (4 out of 8 parameters) given 1, 4 and 7 features (full posteriors over 8 parameters in

Supplementary Fig. 7). (E) Traces for posterior modes given 1, 4 and 7 features. Increasing the number of features leads to posterior

traces that are closer to the observed data. (F) Observations from Allen Cell Types Database (green) and corresponding mode

samples (purple). Posteriors in Supplementary Fig. 8.

reversal potential and the density of potassium channels) were consistently more strongly constrained than others217

(the intrinsic neural noise, the adaptation time constant, the density of slow voltage-dependent channels and the leak218

conductance) (Supplementary Fig. 8). Overall, these results suggest that the electrophysiological responses measured219

by this current-clamp protocol can be approximated by a single-compartment HH model, and that SNPE can identify220

the admissible parameters.221
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Figure 5. Identifying network models underlying pyloric rhythms in the crustacean stomatogastric ganglion. (A) Circuit

diagram of the stomatogastric ganglion. Thin connections are fast glutamatergic, thick connections are slow cholinergic. (B)

Extracellular recordings from the crab Cancer borealis [71]. (C) Posterior over 24membrane and 7 synaptic conductances given the

experimental observation shown in panel B (8 parameters shown, full posterior in Supplementary Fig. 9). Inset: magnified marginal

posterior for the synaptic strengths AB to LP neuron vs. PD to LP neuron. (D) Identifying directions of sloppiness and stiffness. Two

samples from the posterior both show similar network activity as the experimental observation (top left and top right), but have very

different parameters (purple dots in panel C). Along the high-probability path between these samples, network activity is preserved

(trace 1). When perturbing the parameters orthogonally off the path, network activity changes abruptly and becomes non-pyloric

(trace 2).

Crustacean stomatogastric ganglion: sensitivity to perturbations222

For some biological systems, multiple parameter sets give rise to the same system behavior [7, 18, 72–75]. In particular,223

neural systems can be robust to specific perturbations of parameters [75–77], yet highly sensitive to others, properties224

referred to as sloppiness and stiffness [3, 16, 78]. To demonstrate how SNPE can identify which parameter perturbations225

affect model outputs, we applied it to a model [7] and data [71] of the pyloric rhythm in the crustacean stomatogastric226

ganglion (STG). This model describes a triphasic motor pattern generated by a fully characterized circuit (Fig. 5A). The227

circuit consists of two electrically coupled pacemaker neurons (anterior burster and pyloric dilator, AB/PD), modeled228

as a single neuron, as well as two types of follower neurons (lateral pyloric (LP) and pyloric (PY)), all connected through229

inhibitory synapses (details in Methods). Eight membrane conductances are included for each modeled neuron, along230

with 7 synaptic conductances, for a total of 31 parameters. This model has been used to demonstrate that virtually231

indistinguishable activity can arise from vastly different membrane and synaptic conductances in the STG [7, 18].232

We applied SNPE to an extracellular recording from the STG of the crab Cancer borealis [71] which exhibited233

pyloric activity (Fig. 5B), and inferred the posterior distribution over all 31 parameters based on 18 salient features234

of the voltage traces, including cycle period, burst durations, burst delays, and phase gaps (Fig. 5C, full posterior235

in Supplementary Fig. 9, details in Methods). Consistent with previous reports, the posterior distribution has high236

probability over extended value ranges for many membrane and synaptic conductances. To verify that parameter237

settings across these extended ranges are indeed capable of generating the experimentally observed network activity,238

we sampled two sets of membrane and synaptic conductances from the posterior distribution. These two samples239

have widely disparate parameters from each other (Fig. 5C, purple dots, details in Methods), but both exhibit activity240

highly similar to the experimental observation (Fig. 5D, top left and top right).241

We then investigated the geometry of the parameter space producing these rhythms [17, 18]. First, we wanted to242

identify directions of sloppiness, and we were interested in whether parameter settings producing pyloric rhythms243

form a single connected region, as has been shown for single neurons [79], or whether they lie on separate ‘islands.’244

Starting from the two above parameter settings showing similar activity, we examined whether they were connected245
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by a path through parameter space along which pyloric activity was maintained. To do this, we algorithmically246

identified a path lying only in regions of high posterior probability (Fig. 5C, white, details in Methods). Along the path,247

network output was tightly preserved, despite a substantial variation of the parameters (voltage trace 1 in Fig. 5D,248

Supplementary Fig. 10A,C). Second, we inspected directions of stiffness by perturbing parameters off the path. We249

applied perturbations that yield maximal drops in posterior probability (see Methods for details), and found that the250

network quickly produced non-pyloric activity (voltage trace 2, Fig. 5D). In identifying these paths and perturbations,251

we exploited the fact that SNPE provides a differentiable estimate of the posterior, as opposed to parameter search252

methods which provide only discrete samples.253

Overall, these results show that the pyloric network can be robust to specific perturbations in parameter space, but254

sensitive to others, and that one can interpolate between disparate solutions while preserving network activity. This255

analysis demonstrates the flexibility of SNPE in capturing complex posterior distributions, and how the differentiable256

posterior can be used to study directions of sloppiness and stiffness.257

Predicting compensation mechanisms from posterior distributions258

Experimental and computational studies have shown that stable neural activity can be maintained despite variable259

circuit parameters [7, 82, 83]. This behavior can emerge from two sources [82]: either the variation of a certain260

parameter barely influences network activity at all, or alternatively, the variation of several parameters influence261

network activity, but their effects compensate for one another. Here, we investigated these possibilities by using the262

posterior distribution over membrane and synaptic conductances of the STG.263

We begin by drawing samples from the posterior and inspecting their pairwise histograms (Fig. 6A, full posterior264

over all parameters in Supplementary Fig. 9). Consistent with previously reported results [84], we found that most265

pairs of parameters are only weakly correlated (Fig. 6B). However, in these histograms over two parameters, all other266

parameters are fully unconstrained and can take on diverse values, which could blur out compensation mechanisms.267

Therefore, we held all but 2 parameters constant at a given consistent circuit configuration (sampled from the268

posterior), and observed the network activity across different values of the remaining pair of parameters. We can do269

so by calculating the conditional posterior distribution (details in Methods), and do not have to generate additional270

simulations (as would be required by parameter search methods). Doing so has a simple interpretation: when all but271

2 parameters are fixed, what values of the remaining 2 parameters can then lead to pyloric activity? We found that272

pyloric activity can emerge only from narrowly tuned and often highly correlated combinations of the remaining 2273

parameters, showing how these parameters can compensate for one another (Fig. 6C). When repeating this analysis274

across multiple network configurations, i.e. when holding the parameters fixed at different values, we found that275

these ‘conditional correlations’ are often preserved (Fig. 6C, left and right). We calculated conditional correlations276

for each parameter pair using 500 different circuit configurations sampled from the posterior (Fig. 6D). Compared to277

correlations based on the pairwise histograms (Fig. 6B), these conditional correlations were substantially stronger.278

They were particularly strong across membrane conductances of the same neuron, but primarily weak across different279

neurons (black boxes in Fig. 6D).280

Finally, we tested whether the conditional correlations were in line with experimental observations. For the PD281

and the LP neuron, it has been reported that overexpression of the fast transient potassium current leads to a282

compensating increase of the hyperpolarization current, suggesting a positive correlation between these two currents283

[80, 85]. Also, using current injections into the LP neuron, a positive correlation has been reported between the284

strength of the synaptic input and the maximal conductance of the hyperpolarization current [81]. These results are285

qualitatively consistent with the conditional correlations (Fig. 6E), which were positive both between the fast transient286

potassium and hyperpolarization currents for all three model neurons, as well as for 6 out of 7 correlations between287

synaptic input strength and hyperpolarization current.288

Overall, we showed how SNPE can be used to study parameter dependencies in circuits with parameter degeneracy,289

and how the posterior distribution can be used to efficiently explore potential compensation mechanisms. We found290

that our method can predict compensation mechanisms which are qualitatively consistent with experimental studies.291

Discussion292

How can we build models which give insights into the causal mechanisms underlying neural or behavioral dynamics?293

The cycle of building mechanistic models, generating predictions, comparing them to empirical data, and rejecting,294
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Figure 6. Investigating compensation mechanisms in the stomatogastric ganglion. (A) Inferred posterior. We show a subset

of parameters which are weakly constrained (full posterior in Supplementary Fig. 9). Pyloric activity can emerge from a wide range of

maximal membrane conductances, as the 1D and 2D posterior marginals cover almost the entire extent of the prior. (B) Correlation

matrix, based on the samples shown in panel A. Almost all correlations are weak. (C) Conditional distributions given a particular

circuit configuration: For the plots on the diagonal, we keep all but one parameter fixed. For plots above the diagonal, we keep all but

two parameters fixed. The remaining parameter(s) are narrowly tuned, tuning across parameters is often highly correlated. When

conditioning on a different parameter setting (right plot), the conditional posteriors change, but correlations are often maintained.

(D) Conditional correlation matrix, averaged over 500 conditional distributions like the ones shown in panel C. Black squares highlight

parameter-pairs within the same model neuron. (E) Consistency with experimental observations. Top: Maximal conductance of the

fast transient potassium current and the maximal conductance of the hyperpolarization current are positively correlated for all three

neurons. This has also been experimentally observed in the PD and the LP neuron [80]. Bottom: Maximal conductance of the

hyperpolarization current is positively correlated with the strength of the synaptic input for six out of seven synapses in the circuit, as

experimentally observed using current injection into the LP neuron [81]. The boxplots indicate the maximum, 75% quantile, median,

25% quantile, and minimum across 500 conditional correlations for different parameter pairs. Face color indicates mean correlation

using the colorbar shown in panel B.

or refining models has been of crucial importance in the empirical sciences. However, a key challenge has been the295

difficulty of identifying mechanistic models which can quantitatively capture observed phenomena. We predict that296

a generally applicable tool to constrain mechanistic models by data is going to expedite progress in neuroscience.297

While many considerations should go into designing a model that is appropriate for a given question and level298

of description [2, 3, 86, 87], the question of whether and how one can perform statistical inference on the model299

should not compromise model-design. In our tool, SNPE, the process of model building and parameter inference300

are entirely decoupled. We illustrated the power of our approach on a diverse set of applications, highlighting the301

potential of SNPE to rapidly identify data-compatible mechanistic models, to investigate which data-features constrain302

which parameters, to reveal shortcomings of candidate-models, and to explore the parameter-landscape of a neural303

oscillator and provide hypotheses for compensation mechanisms.304
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Related work305

SNPE builds on recent advances in machine learning, and in particular in density-estimation approaches to likelihood-306

free inference [36–39, 88, 89]. The idea of learning inference networks on simulated data can be traced back to307

regression-adjustment methods in ABC [33, 90]. Papamakarios and Murray (2016) [36] first proposed to use expressive308

conditional density estimators in the form of deep neural networks [41, 57], and to optimize them sequentially309

over multiple rounds with cost-functions derived from Bayesian inference principles. Compared to commonly310

used rejection-based ABC methods [91, 92], such as MCMC-ABC [34], SMC-ABC [35, 93], Bayesian-Optimization ABC311

[94], or ensemble methods [95, 96], SNPE approaches do not require one to define a distance function in data312

space. In addition, by leveraging the ability of neural networks to learn informative features, they enable scaling313

to high-dimensional estimation problems, as are common in neuroscience and other fields in biology. Alternative314

likelihood-free approaches include synthetic likelihood methods [97–102], moment-based approximations of the315

posterior [103, 104], inference compilation [105, 106], and density-ratio estimation [107]. For some mechanistic316

models in neuroscience (e.g. for integrate-and-fire neurons), likelihoods can be computed via stochastic numerical317

approximations [67, 108, 109] or model-specific analytical approaches [68, 110–113].318

Finally, a complementary approach to mechanistic modeling is to pursue purely phenomenological models, which319

are designed to have favorable statistical and computational properties: these data-driven models can be efficiently320

fit to neural data [19–25, 44, 46] or to implement desired computations [114]. Although tremendously useful for a321

quantitative characterization of neural dynamics, these models typically have a large number of parameters, which322

rarely correspond to physically measurable or mechanistically interpretable quantities, and thus it can be challenging323

to derive mechanistic insights or causal hypotheses from them (but see e.g. [115–117]).324

Use of summary statistics325

When fitting mechanistic models to data, it is common to target summary statistics to isolate specific behaviors,326

rather than the full data. For example, the spike shape is known to constrain sodium and potassium conductances327

[29, 30, 66]. When modeling population dynamics, it is often desirable to achieve realistic firing rates, rate-correlations328

and response nonlinearities [42, 118], or specified oscillations [7]. Inmodels of decision making, one is often interested329

in reproducing psychometric functions or reaction-time distributions [119]. Choice of summary statistics might also330

be guided by known limitations of either the model or the measurement approach, or necessitated by the fact331

that published data are only available in summarized form. Several methods have been proposed to automatically332

construct informative summary statistics [120–122]. SNPE can be applied to, and might benefit from the use of333

summary statistics, but it also makes use of the ability of neural networks to automatically learn informative features334

in high-dimensional data. Thus, SNPE can also be applied directly to raw data (e.g. using recurrent neural networks335

[37]), or to high-dimensional summary statistics which are challenging for ABC approaches (Fig. 2). In all cases, care is336

needed when interpreting models fit to summary features, as choice of features can influence the results [120–122].337

Applicability and limitations338

A key advantage of SNPE is its general applicability: it can be applied whenever one has a simulator that allows to339

stochastically generate model outputs from specific parameters. Furthermore, it can be applied in a fully ‘black-box340

manner’, i.e. does not require access to the internal workings of the simulator, likelihoods or gradients. It does not341

impose any other limitations on the model or the summary features, and in particular does not require them to be342

differentiable. However, it also has limitations: First, current implementations of SNPE scale well to high-dimensional343

observations (∼100s dims, also see [38]), but scaling to high-dimensional parameter spaces (>30) is challenging.344

Second, while it is a long-term goal for these approaches to be made fully automatic, our current implementation still345

requires choices by the user: As described in Methods, one needs to provide the architecture of the density estimation346

network, and specify settings related to network-optimisation, and the number of simulations and inference rounds.347

These settings depend on the complexity of the relation between summary statistics and model parameters, and the348

number of simulations that can be afforded. In the documentation accompanying our code-package, we provide349

examples and guidance. For small-scale problems, we have found SNPE to be robust to these settings. However, for350

challenging, high-dimensional applications, SNPE might currently require substantial user interaction. Third, the power351

of SNPE crucially rests on the ability of deep neural networks to perform density estimation. While deep nets have had352

ample empirical success, we still have an incomplete understanding of their limitations, in particular in cases where353
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the mapping between data and parameters might not be smooth (e.g. near phase transitions). Fourth, when applying354

SNPE (or any other model-identification approach), validation of the results is of crucial importance, both to assess355

the accuracy of the inference procedure, as well as to identify possible limitations of the mechanistic model itself.356

In the example applications, we used several procedures for assessing the quality of the inferred posteriors. One357

common ingredient of these approaches is to sample from the inferred model, and search for systematic differences358

between observed and simulated data, e.g. to perform posterior predictive checks [37, 38, 93, 123, 124] (Fig. 2G,359

Fig. 3F,G, Fig. 4C, and Fig. 5D). There are challenges and opportunities ahead in further scaling and automating360

simulation-based inference approaches. However, in its current form, SNPE will be a powerful tool for quantitatively361

evaluating mechanistic hypotheses on neural data, and for designing better models of neural dynamics.362
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Methods371

Code availability372

Code implementing SNPE is available at http://www.mackelab.org/delfi/.373

Simulation-based inference374

To perform Bayesian parameter identification with SNPE, three types of input need to be specified:375

1. A mechanistic model. The model only needs to be specified through a simulator, i.e. that one can generate a376

simulation result x for any parameters θ. We do not assume access to the likelihood p(x|θ) or the equations377

or internals of the code defining the model, nor do we require the model to be differentiable. This is in378

contrast to many alternative approaches (including [42]), which require the model to be differentiable and to be379

implemented in a software code that is amenable to automatic differentiation packages. Finally, SNPE can both380

deal with inputs x which resemble ‘raw’ outputs of the model, or summary features/statistics calculated from381

data.382

2. Observed data xo of the same form as the results x produced by model simulations.383

3. A prior distribution p(θ) describing the range of possible parameters. p(θ) could consist of upper and lower384

bounds for each parameter, or a more complex distribution incorporating mechanistic first principles or385

knowledge gained from previous inference procedures on other data.386

For each problem, our goal was to estimate the posterior distribution p(θ|xo). To do this we used SNPE [36–38].387

Setting up the inference procedure required three design choices:388

1. A network architecture, including number of layers, units per layer, layer type (feedforward or convolutional),389

activation function and skip connections.390

2. A parametric family of probability densities qψ(θ) to represent inferred posteriors, to be used as conditional391

density estimator. We used either a mixture of Gaussians (MoG) or a masked autoregressive flow (MAF) [41]. In392

the former case, the number of components K must be specified; in the latter the number of MADES (Masked393

Autoencoder for Distribution Estimation) nMADES. Both choices are able to represent richly structured, and394

multi-modal posterior distributions.395

3. A simulation budget, i.e. number of rounds R and simulations per round Nr .396

We emphasize that SNPE is highly modular, i.e. that the the inputs (data, the prior over parameter, the mechanistic397

model), and algorithmic components (network architecture, probability density, optimization approach) can all be398

modified and chosen independently. This allows neuroscientists to work with models which are designed with399

mechanistic principles—and not convenience of inference—in mind. Furthermore, it allows SNPE to benefit from400

advances in more flexible density estimators, more powerful network architectures, or optimization strategies.401

With the problem and inference settings specified, SNPE adjusts the network weights φ based on simulation results,402

so that p(θ|x) ≈ qF (x,φ)(θ) for any x. In the first round of SNPE simulation parameters are drawn from the prior p(θ). If403

a single round of inference is not sufficient, SNPE can be run in multiple rounds, in which samples are drawn from the404

version of qF (xo ,φ)(θ) at the beginning of the round. After the last round, qF (xo ,φ) is returned as the inferred posterior on405

parameters θ given observed data xo . If SNPE is only run for a single round, then the generated samples only depend406

on the prior, but not on xo : In this case, the inference network is applicable to any data (covered by the prior ranges),407

and can be used for rapid amortized inference.408

SNPE learns the correct network weights φ by minimizing the objective function
∑

j L(θj , xj) where the simulation409

with parameters θj produced result xj . For the first round of SNPE L(θj , xj) = − log qF (x,φ), while in subsequent rounds410

a different loss function accounts for the fact that simulation parameters were not sampled from the prior. Different411

choices of the loss function for later rounds result in SNPE-A [36], SNPE-B [37] or SNPE-C algorithm [38]. To optimize412

the networks, we used ADAM with default settings [125].413
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The details of the algorithm are below:414

Algorithm 1: SNPE

Input: simulator with (implicit) density p(x|θ), observed data xo , prior p(θ), density family qψ , neural network

F (x,φ), number of rounds R , simulation count for each round Nr

randomly initialize φ

p̃1(θ) := p(θ)

N := 0

for r = 1 to R do

for i = 1 ...Nr do

sample θN+i ∼ p̃r (θ)

simulate xN+i ∼ p(x|θN+i )
N ← N + Nr

train φ← arg min
φ

N∑
j=1

L(θj , xj)

p̃r (θ) := qF (xo ,φ)(θ)

return qF (xo ,φ)(θ)

415

Linear-nonlinear encoding models416

We used a Linear-Nonlinear (LN) encoding model (a special case of a generalized linear model, GLM, [19, 21, 44–47]) to

simulate the activity of a neuron in response to a univariate time-varying stimulus. Neural activity zi was subdivided in

T = 100 bins and, within each bin i , spikes were generated according to a Bernoulli observation model,

zi ∼ Bern(η(v>i f + β)),

where vi is a vector of white noise inputs between time bins i − 8 and i , f a length-9 linear filter, β is the bias, and417

η(·) = exp(·)/(1 + exp(·)) is the canonical inverse link function for a Bernoulli GLM. As summary statistics, we used418

the total number of spikes N and the spike-triggered average 1
N

Vz, where V = [v1, v2, ... , vT ] is the so-called design419

matrix of size 9× T . We note that the spike-triggered sum Vz constitutes sufficient statistics for this GLM, i.e. that420

selecting the STA and N together as summary statistics does not lead to loss of model relevant information over the421

full input-output dataset {V, z}. We used a Gaussian prior with zero mean and covariance matrix Σβ = σ2(F>F)−1
,422

where F encourages smoothness by penalizing the second-order differences in the vector of parameters [126].423

For inference, we used a single round of 10000 simulations, and the posterior was approximated with a Gaussian424

distribution (θ ∈ R10, x ∈ R10
). We used a feedforward neural network with two hidden layers of 50 units each. We425

used a Polya Gamma Markov Chain Monte Carlo sampling scheme [48] to estimate a reference posterior.426

For the spatial receptive field model of a cell in primary visual cortex, we simulated the activity of a neuron

depending on an image-valued stimulus. Neural activity was subdivided in bins of length ∆t = 0.025s and within each

bin i , spikes were generated according to a Poisson observation model,

zi ∼ Poiss(η(v>i h + β)),

where vi is the vectorized white noise stimulus at time bin i , h a 41× 41 linear filter, β is the bias, and η(·) = exp(·) is
the canonical inverse link function for a Poisson GLM. The receptive field h is constrained to be a Gabor filter:

h(gx , gy ) = g exp

(
−x ′2 + r 2y ′2

2σ2

)
cos
(
2πfx ′ − φ

)
x ′ = (gx − x) cosψ − (gy − y) sinψ

y ′ = (gx − x) sinψ + (gy − y) cosψ

σ =

√
2

2πf

2w + 1

2w − 1
,
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where (gx , gy ) is a regular grid of 41× 41 positions spanning the 2D image-valued stimulus. The parameters of the427

Gabor are gain g , spatial frequency f , aspect-ratio r , width w , phase φ (between 0 and π), angle ψ (between 0 and428

2π) and location x , y (assumed within the stimulated area, scaled to be between −1 and 1). Bounded parameters429

were transformed with a log-, or logit-transform, to yield unconstrained parameters. After applying SNPE, we back-430

transformed both the parameters and the estimated posteriors in closed form, as shown in Fig. 2. We did not431

transform the parameters bias β and gain g .432

We used a factorizing Gaussian prior for the vector of transformed Gabor parameters

[ g , log f , log r , logw , l0,π(φ), l0,2π(ψ), l−1,1(x), l−1,1(y) ],

where transforms l0,π(X ) = log(X/(2π − X )), l0,2π(X ) = log(X/(π − X )), l−1,1(X ) = log((X + 1)/(1 − X )) ensured the433

assumed ranges for the Gabor parameters φ,ψ, x , y . Our Gaussian prior had zero mean and standard deviations434

[2, 0.5, 0.5, 0.5, 1.9, 1.78, 1.78, 1.78]. We note that a Gaussian prior on a logit-transformed random variable logitX with435

zero mean and standard deviation around 1.78 is close to a uniform prior over the original variable X . For the bias β,436

we used a Gaussian prior with mean −0.57 and variance 1.63, which approximately corresponds to an exponential437

prior exp(β) ∼ Exp(λ) with rate λ = 1 on the baseline firing rate exp(β) in absence of any stimulus.438

The ground-truth parameters for the demonstration in Fig. 2 were chosen to give an asymptotic firing rate of 1Hz439

for 5 minutes stimulation, resulting in 307 spikes, and a signal-to-noise ratio of −12dB.440

As summary statistics, we used the total number of spikes N and the spike-triggered average 1
N

Vz, where V =441

[v1, v2, ... , vT ] is the stimulation video of length T = 300/∆t = 12000. As for the GLM with a temporal filter, the442

spike-triggered sum Vz constitutes sufficient statistics for this GLM.443

For inference, we applied SNPE-A with in total 2 rounds: an initial round serves to first roughly identify the relevant444

region of parameter space. Here we used a Gaussian distribution to approximate the posterior from 10000 simulations445

each. A second round then used a mixture of 8 Gaussian components to estimate the exact shape of the posterior446

from another 100000 simulations (θ ∈ R9, x ∈ R1682
). We used a convolutional network with 5 convolutional layers with447

16 to 32 convolutional filters followed by three fully connected layers with 50 units each. The total number of spikes N448

within a simulated experiment was passed as an additional input directly to the fully-connected layers of the network.449

Similar to the previous GLM, this model has a tractable likelihood, so we use MCMC to obtain a reference posterior.450

We applied this approach to extracelullar recordings from primary visual cortex of alert mice obtained using silicon451

microelectrodes in response to colored-noise visual stimulation. Experimental methods are described in Dyballa et al452

2018 [53].453

Comparison with Sequential Monte Carlo (SMC) ABC454

In order to illustrate the competitive performance of SNPE, we obtained a posterior estimate with a classical ABC455

method, Sequential Monte Carlo (SMC) ABC [35, 127]. Likelihood-free inference methods from the ABC family require456

a distance function d(xo , x) between observed data xo and possible simulation outputs x to characterize dissimilarity457

between simulations and data. A common choice is the (scaled) Euclidean distance d(xo , x) = ||x− xo ||2. The Euclidean458

distance here was computed over 1681 summary statistics given by the spike-triggered average (one per pixel) and a459

single summary statistic given by the ‘spike count’. To ensure that the distance measure was sensitive to differences in460

both STA and spike count, we scaled the summary statistic ‘spike count’ to account for about 20% of the average total461

distance (other values did not yield better results). The other 80% were computed from the remaining 1681 summary462

statistics given by spike-triggered averages. To showcase how this situation is challenging for ABC approaches, we463

generated 10000 input-output pairs (θi , xi ) ∼ p(x|θ)p(θ) with the prior and simulator used above, and illustrate the 10464

STAs and spike counts with closest d(xo , xi ) in Supplementary Fig. 3A. Spike counts were comparable to the observed465

data (307 spikes), but STAs are noise-dominated and the 10 ‘closest’ underlying receptive fields (yellow contours) show466

substantial variability in location and shape of the receptive field. If even the ‘closest’ samples do not show any visible467

receptive field, then there is little hope that even an appropriately chosen acceptance threshold will yield a good468

approximation to the posterior. This findings were also reflected in the results from SMC-ABC with a total simulation469

budget of 106
simulations (Fig. 3B). The estimated posterior marginals for ‘bias’ and ‘gain’ parameters show that the470

parameters related to the firing rate were constrained by the data xo , but marginals of parameters related to shape471

and location of the receptive field did not differ from the prior, highlighting that SMC-ABC was here not able to identify472
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the posterior distribution. Further comparisons of neural-density estimation approaches with ABC-methods can be473

found in the publications describing the underlying machine-learning methodologies [36, 38, 101].474

Ion channel models475

We simulated non-inactivating potassium channel currents subject to voltage-clamp protocols as:

IK = ḡKm(V − EK),

where V is the membrane potential, ḡK is the density of potassium channels, EK is the reversal potential of potassium,

and m is the gating variable for potassium channel activation. m is modeled according to the first-order kinetic

equation

dm

dt
=

m∞(V )−m

τm(V )
,

where m∞(V ) is the steady-state activation, and τm(V ) the respective time constant. We used a general formulation

of m∞(V ) and τm(V ) [59], where the steady-state activation curve has 2 parameters (slope and offset) and the time

constant curve has 6 parameters, amounting to a total of 8 parameters (θ1 to θ8):

m∞(V ) =
1

1 + e−θ1V+θ2

τm(V ) =
θ4

e−[θ5(V−θ3)+θ6(V−θ3)2] + e [θ7(V−θ3)+θ8(V−θ3)2]
.

Since this model can be used to describe the dynamics of a wide variety of channel models, we refer to it as Omnimodel.476

We modeled responses of the Omnimodel to a set of five voltage-clamp protocols described in [58]. Current477

responses were reduced to 55 summary statistics (11 per protocol). Summary statistics were coefficients to basis478

functions derived via Principal Components Analysis (PCA) (10 per protocol) plus a linear offset (1 per protocol) found479

via least-squares fitting. PCA basis functions were found by simulating responses of the non-inactivating potassium480

channel models to the five voltage-clamp protocols and reducing responses to each protocol to 10 dimensions481

(explaining 99.9% of the variance).482

To amortize inference on the model, we specified a wide uniform prior over the parameters: θ1 ∈ U(0, 1), θ2 ∈483

U(−10., 10.), θ3 ∈ U(−120., 120.), θ4 ∈ U(0., 2000), θ5 ∈ U(0., 0.5), θ6 ∈ U(0, 0.05), θ7 ∈ U(0., 0.5), θ8 ∈ U(0, 0.05).484

For inference, we trained a shared inference network in a single round of 106
simulations generated by sampling485

from the prior (θ ∈ R8, x ∈ R55
). The density estimator is a masked autoregressive flow (MAF) [41] with five MADES486

with [250,250] hidden units each.487

We evaluated performance on 350 non-inactivating potassium ion channels selected from IonChannelGenealogy488

(ICG) by calculating the correlation coefficient between traces generated by the original model and traces from the489

Omnimodel using the posterior mode.490

Single-compartment Hodgkin–Huxley neurons491

We simulated a single-compartment Hodgkin–Huxley type neuron with channel kinetics as in [66],

Cm
dV

dt
= gl(El − V ) + ḡNam

3h(ENa − V ) + ḡKn
4(EK − V ) + ḡMp(EK − V ) + Iinj + ση(t)

dq

dt
=

q∞(V )− q

τq(V )
, q ∈ {m, h, n, p},

where V is the membrane potential, Cm is the membrane capacitance, gl is the leak conductance, El is the membrane492

reversal potential, ḡc is the density of channels of type c (Na
+
, K

+
, M), Ec is the reversal potential of c , (m, h, n, p) are the493

respective channel gating kinetic variables, and ση(t) is the intrinsic neural noise. The right hand side of the voltage494

dynamics is composed of a leak current, a voltage-dependent Na
+
current, a delayed-rectifier K

+
current, a slow495

voltage-dependent K
+
current responsible for spike-frequency adaptation, and an injected current Iinj. Channel gating496

variables q have dynamics fully characterized by the neuron membrane potential V , given the respective steady-state497

q∞(V ) and time constant τq(V ) (details in [66]). Two additional parameters are implicit in the functions q∞(V ) and498

τq(V ): VT adjusts the spike threshold through m∞, h∞, n∞, τm, τh and τn; τmax scales the time constant of adaptation499

17 of 36

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 12, 2019. ; https://doi.org/10.1101/838383doi: bioRxiv preprint 

https://doi.org/10.1101/838383


through τp(V ) (details in [66]). We set ENa = 53mV and EK = −107mV, similar to the values used for simulations in500

Allen Cell Types Database (http://help.brain-map.org/download/attachments/8323525/BiophysModelPeri.pdf).501

We applied SNPE to infer the posterior over 8 parameters (ḡNa, ḡK, gl, ḡM, τmax, VT , σ, El), given 7 voltage features502

(number of spikes, mean resting potential, standard deviation of the resting potential, and the first 4 voltage moments,503

mean, standard deviation, skewness and kurtosis).504

The prior distribution over the parameters was uniform,

θ ∼ U
(
plow, phigh

)
,

where plow = [0.5, 10−4, 10−4, 10−4, 50, 40, 10−4, 35] and phigh = [80, 15, 0.6, 0.6, 3000, 90, 0.15, 100]. These ranges are505

similar to the ones obtained in [66].506

For inference in simulated data, we used a single round of 100000 simulations (θ ∈ R8, x ∈ R11
). The density507

estimator was a masked autoregressive flow (MAF) [41] with five MADES with [50,50] hidden units each.508

For the inference on in vitro recordings from mouse cortex (Allen Cell Types Database, https://celltypes.brain-map.509

org/data), we selected 8 recordings corresponding to spiny neurons with at least 10 spikes during the current-510

clamp stimulation. The respective cell identities and sweeps are: (518290966,57), (509881736,39), (566517779,46),511

(567399060,38), (569469018,44), (532571720,42), (555060623,34), (534524026,29). For each recording, SNPE-B was run512

for 2 rounds with 125000 Hodgkin–Huxley simulations each, and the posterior was approximated by a mixture of two513

Gaussians. In this case, the density estimator was composed of two fully connected layers of 100 units each.514

Circuit model of the crustacean stomatogastric ganglion515

We used extracellular recordings from the crab Cancer borealis [71]. The preparations from the stomatogastric ganglion516

were decentralized, i.e. the input from descending modulatory inputs was removed. The data was recorded at a517

temperature of 11
◦
C. See Haddad & Marder (2018) [71] for full experimental details.518

We simulated the circuit model of the crustacean stomatogastric ganglion by adapting a model described in [7].

The model is composed of three single-compartment neurons, AB/PD, LP, and PD, where the electrically coupled AB

and PD neurons are modeled as a single neuron. Each of the model neurons contains 8 currents, a Na+ current INa,

a fast and a slow transient Ca
2+
current ICaT and ICaS, a transient K

+
current IA, a Ca

2+
-dependent K

+
current IKCa, a

delayed rectifier K
+
current IKd, a hyperpolarization-activated inward current IH, and a leak current Ileak. In addition, the

model contains 7 synapses. As in [7], these synapses were simulated using a standard model of synaptic dynamics

[128]. The synaptic input current into the neurons is given by Is = gss(Vpost − Es), where gs is the maximal synapse

conductance, Vpost the membrane potential of the postsynaptic neuron, and Es the reversal potential of the synapse.

The evolution of the activation variable s is given by

ds

dt
=

s(Vpre)− s

τs

with

s(Vpre) =
1

1 + exp((Vth − Vpre)/δ)
and τs =

1− s(Vpre)

k−
.

Here, Vpre is the membrane potential of the presynaptic neuron, Vth is the half-activation voltage of the synapse, δ sets519

the slope of the activation curve, and k− is the rate constant for transmitter-receptor dissociation rate.520

As in [7], two types of synapses were modeled since AB, LP, and PY are glutamatergic neurons whereas PD is521

cholinergic. We set Es = −70mV and k− = 1/40ms for all glutamatergic synapses and Es = −80mV and k− = 1/100522

ms for all cholinergic synapses. For both synapse types, we set Vth = −35mV and δ = 5mV.523

For each set of membrane and synaptic conductances, we numerically simulated the rhythm for 10 seconds with524

a step size of 0.025ms. To make the model stochastic, at each time step, we added Gaussian noise with a standard525

deviation of 0.001mV to the input of each neuron.526

We applied SNPE to infer the posterior over 24 membrane parameters and 7 synaptic parameters, i.e. 31 pa-527

rameters in total. The 7 synaptic parameters were the maximal conductances gs of all synapses in the circuit,528

each of which is varied uniformly in logarithmic domain from 0.01 nS to 1000 nS, with an exception of the synapse529

from AB to LP, which is varied uniformly in logarithmic domain from 0.01 nS to 10000 nS. The membrane param-530

eters were the maximal membrane conductances for each of the neurons. The membrane conductances were531
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varied over an extended range of previously reported values [7], which led us to the uniform prior bounds plow =532

[0, 0, 0, 0, 0, 25, 0, 0]mS cm−2
and phigh = [500, 7.5, 8, 60, 15, 150, 0.2, 0.01]mS cm−2

for the maximal membrane conduc-533

tances of the AB neuron, plow = [0, 0, 2, 10, 0, 0, 0, 0.01]mS cm−2
and phigh = [200, 2.5, 12, 60, 10, 125, 0.06, 0.04]mS cm−2

534

for the maximal membrane conductances of the LP neuron, and plow = [0, 0, 0, 30, 0, 50, 0, 0]mS cm−2
and phigh =535

[600, 12.5, 4, 60, 5, 150, 0.06, 0.04]mS cm−2
for the maximal membrane conductances of the PY neuron. The order of536

the membrane currents was: [Na, CaT, CaS, A, KCa, Kd, H, leak].537

We used the 15 summary statistics proposed by [7], and extended them by 3 additional features. The features538

proposed by [7] are 15 salient features of the pyloric rhythm, namely: cycle period T (s), AB/PD burst duration dbAB (s),539

LP burst duration dbLP (s), PY burst duration dbPY (s), gap AB/PD end to LP start ∆tesAB-LP (s), gap LP end to PY start ∆tesLP-PY540

(s), delay AB/PD start to LP start ∆tssAB-LP (s), delay LP start to PY start ∆tssLP-PY (s), AB/PD duty cycle dAB, LP duty cycle dLP,541

PY duty cycle dPY, phase gap AB/PD end to LP start ∆φAB-LP, phase gap LP end to PY start ∆φLP-PY, LP start phase φLP,542

and PY start phase φPY. Note that several of these values are only defined if each neuron produces rhythmic bursting543

behavior. In addition, for each of the three neurons, we used one feature that describes the maximal duration of its544

voltage being above −30mV. We did this as we observed plateaus at around −10mV during the onset of bursts, and545

wanted to distinguish such activity traces from others. If the maximal duration was below 5ms, we set this feature to 5546

ms. To extract the summary statistics from the observed experimental data, we first found spikes by searching for547

local maxima above a hand-picked voltage threshold, and then extracted the 15 above described features. We set the548

additional 3 features to 5ms.549

We used SNPE to infer the posterior distribution over the 18 summary statistics from experimental data. For550

inference, we used a single round with 18.5 million samples, out of which 174,000 samples contain bursts in all551

neurons. We therefore used these 174,000 samples with well defined summary statistics for training the inference552

network (θ ∈ R31, x ∈ R18
). The density estimator was a masked autoregressive flow (MAF) [41] with five MADES with553

[200,400] hidden units each. The synaptic conductances were transformed into logarithmic space before training and554

for the entire analysis.555

Finding paths in the posterior556

In order to find directions of robust network output, we searched for a path of high posterior probability. First, as in557

[7], we aimed to find 2 similar model outputs with disparate parameters. To do so, we sampled from the posterior and558

searched for 2 parameter sets whose summary statistics were within 0.1 standard deviations of all 174,000 samples559

from the observed experimental data, but that had strongly disparate parameters from each other. In the following,560

we denote the obtained parameter sets by θs and θg .561

Second, in order to identify whether network output can be maintained along a continuous path between these 2562

samples, we searched for a connection in parameter space lying in regions of high posterior probability. To do so, we563

considered the connection between the samples as a path and minimize the following path integral:564

L(γ) =

∫ 1

0

− log(pX (γ(s))) ‖γ̇(s)‖ ds. (1)

To minimize this term, we parameterized the path γ(s) using sinusoidal basis-functions with coefficients αn,k :

γ(s) =


∑K

k=1 α1,k · sin(πks)
.
.
.∑K

k=1 αN,k · sin(πks)

+


∑2K

k=K+1 αN,k · sin2(πks)
.
.
.∑2K

k=K+1 αN,k · sin2(πks)

+ (1− s) · θs + sθg

These basis functions are defined such that, for any coefficients αn,k , the starting and end points of the path are exactly

the two parameter sets defined above:

γ(0) = θs γ(1) = θg

With this formulation, we have framed the problem of finding the path as an unconstrained optimization problem over565

the parameters αn,k . We can therefore minimize the path integral L using gradient descent over αn,k . For numerical566

simulations, we approximated the integral in equation 1 as a sum over 80 points along the path and use 2 basis567

functions for each of the 31 dimensions, i.e. K = 2.568
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In order to demonstrate the sensitivity of the pyloric network, we aimed to find a path along which the circuit

output quickly breaks down. For this, we picked a starting point along the high-probability path and then minimize

the posterior probability. In addition, we enforced that the orthogonal path lies within the orthogonal disk to the

high-probability path, leading to the following constrained optimization problem:

min
θ

log(p(θ|x)) s.t. nT∆θ = 0

where n is the tangent vector along the path of high probability. This optimization problem can be solved using the

gradient projection method [129]:

∆θ = − P(∇ log(p(θ|x)))√
(∇ log(p(θ|x)))TP(∇ log(p(θ|x)))

with projection matrix P = 1 − 1
nT n

nnT
and 1 indicating the identity matrix. Each gradient update is a step along569

the orthogonal path. We let the optimization run until the distance along the path is 1/27 of the distance along the570

high-probability path.571

Identifying conditional correlations572

In order to investigate compensation mechanisms in the STG, we compared marginal and conditional correlations.573

For the marginal correlation matrix in Fig. 6B, we calculated the Pearson correlation coefficient based on 1.26million574

samples from the posterior distribution p(θ|x). To find the 2-dimensional conditional distribution for any pair of575

parameters, we fixed all other parameters to values taken from an arbitrary posterior sample, and varied the remaining576

2 on an evenly spaced grid with 50 points along each dimension for figure 6C and with 20 points along each dimension577

for figure 6D, covering the entire prior space. We evaluated the posterior distribution at every value on this grid.578

We then calculated the conditional correlation as the Pearson correlation coefficient over this distribution. For the579

1-dimensional conditional distribution, we varied only 1 parameter and kept all others fixed. Lastly, in Fig. 6D, we580

sampled 500 parameter sets from the posterior, computed the respective conditional posteriors and conditional581

correlation matrices, and took the average over the conditional correlation matrices.582
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Supplementary material837

Supplementary figures838

839

Supplementary Figure 1. Comparison between SNPE and MCMC results on LN model. (A) Posterior mean ± standard
deviation of temporal filter (receptive field) from SNPE posterior (SNPE, blue) and reference posterior (MCMC, yellow). (B) Full

covariance matrices from SNPE posterior (left) and reference (MCMC, right).
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844

Supplementary Figure 2. Full posterior for LN model. In green, ground-truth parameters. Marginals (blue lines) and 2D

marginals for SNPE (contour lines correspond to 95% of the mass) and MCMC (yellow histograms).
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848

Supplementary Figure 3. SMC-ABC posterior estimate for Gabor GLM receptive field model. (A) Spike-triggered

averages (STAs) and spike counts with closest distance d(xo , xi ) to the observed data xo out of 10000 simulations with θi
sampled from the prior. Spike counts are comparable to the observed data (xo : 307 spikes), but receptive fields (contours)

are not well constrained. (B) Results for SMC-ABC with 106 simulations total. Histograms of 1000 particles (yellow) returned in

the final iteration of SMC-ABC, compared to prior (red contour lines) and ground-truth parameters (green). Distributions over

(log-/logit-)transformed parameters, axis limits scaled to mean ± 3 standard deviations of the prior.
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856

Supplementary Figure 4. Full posterior for Gabor GLM receptive field model. SNPE posterior estimate (blue lines)

compared to MCMC samples from ground-truth posterior (histograms). Ground-truth parameters used to simulate the data

in green. We depict the distributions over the original receptive field parameters, whereas we estimate the posterior as a

Gaussian mixture over transformed parameters, see Methods for details. We find that a (back-transformed) Gaussian

mixture with four components approximates the posterior well in this case.
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863

Supplementary Figure 5. Full posterior for Gabor LN receptive field model on V1 recordings. We depict the

distributions over the receptive field parameters, derived from the Gaussian mixture over transformed-parameters (see

Methods for details).
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868

Supplementary Figure 6. Summary results on ICG channel models, and comparison with direct fits. We generate

predictions either with the posterior mode (blue) or with parameters obtained by directly fitting steady-state activation and

time-constant curves (yellow). We calculate the correlation coefficient (CC) between observation and prediction. The

distribution of CCs is similar for both approaches.

869

870

871

872873

32 of 36

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 12, 2019. ; https://doi.org/10.1101/838383doi: bioRxiv preprint 

https://doi.org/10.1101/838383


874

Supplementary Figure 7. Full posteriors for Hodgkin-Huxley model for 1, 4 and 7 features. Images show the pairwise

marginals for 7 features. Each contour line corresponds to 68% density mass for a different inferred posterior. Light blue

corresponds to 1 feature and dark blue to 7 features.
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879

Supplementary Figure 8. Full posteriors for Hodgkin-Huxley model on 8 different recordings from Allen Cell Type

Database. Images show the pairwise marginals for 7 features. Each contour line corresponds to 68% density mass for a

different inferred posterior.
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884

Supplementary Figure 9. Full posterior for the stomatogastric ganglion over 24 membrane and 7 synaptic

conductances. The first 24 dimensions depict membrane conductances (top left), the last 7 depict synaptic conductances

(bottom right). All synaptic conductances are logarithmically spaced. Between two samples from the posterior with high

posterior probability (purple dots), there is a path of high posterior probability (white).
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Supplementary Figure 10. Identifying directions of sloppiness and stiffness in the pyloric network of the

crustacean stomatogastric ganglion. (A) Minimal and maximal values of all summary statistics along the path lying in

regions of high posterior probability, sampled at 20 evenly spaced points. Summary statistics change only little. The

summary statistics are scaled with the standard deviation of the 170,000 bursting samples in the created dataset. (B)

Summary statistics sampled at 20 evenly spaced points along the orthogonal path. The summary statistics show stronger

changes than in panel A and, in particular, often could not be defined because neurons bursted irregularly, as indicated by

an ’x’ above barplots. (C) Minimal and maximal values of the circuit parameters along the path lying in regions of high

posterior probability. Both membrane conductances (left) and synaptic conductances (right) vary over large ranges. Axes as

in panel D. (D) Circuit parameters along the orthogonal path. The difference between the minimal and maximal value is

much smaller than in panel C.
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