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Abstract12

Mechanistic modeling in neuroscience aims to explain observed phenomena in terms of underlying causes. However,13

determining which model parameters agree with complex and stochastic neural data presents a significant challenge.14

We address this challenge with a machine learning tool which uses deep neural density estimators— trained using15

model simulations— to carry out Bayesian inference and retrieve the full space of parameters compatible with raw16

data or selected data features. Our method is scalable in parameters and data features, and can rapidly analyze new17

data after initial training. We demonstrate the power and flexibility of our approach on receptive fields, ion channels,18

and Hodgkin–Huxley models. We also characterize the space of circuit configurations giving rise to rhythmic activity in19

the crustacean stomatogastric ganglion, and use these results to derive hypotheses for underlying compensation20

mechanisms. Our approach will help close the gap between data-driven and theory-driven models of neural dynamics.21

22

Introduction23

New experimental technologies allow us to observe neurons, networks, brain regions and entire systems at un-24

precedented scale and resolution, but using these data to understand how behavior arises from neural processes25

remains a challenge. To test our understanding of a phenomenon, we often take to rebuilding it in the form of a26

computational model that incorporates the mechanisms we believe to be at play, based on scientific knowledge,27

intuition, and hypotheses about the components of a system and the laws governing their relationships. The goal of28

such mechanistic models is to investigate whether a proposed mechanism can explain experimental data, uncover29

details that may have been missed, inspire new experiments, and eventually provide insights into the inner workings30

of an observed neural or behavioral phenomenon [1–4]. Examples for such a symbiotic relationship between model31

and experiments range from the now classical work of Hodgkin and Huxley [5], to population models investigating32

rules of connectivity, plasticity and network dynamics [6–10], network models of inter-area interactions [11, 12], and33

models of decision making [13, 14].34

A crucial step in building a model is adjusting its free parameters to be consistent with experimental observations.35

This is essential both for investigating whether the model agrees with reality and for gaining insight into processes36

which cannot be measured experimentally. For some models in neuroscience, it is possible to identify the relevant37

*
These authors contributed equally to this work

For correspondence: pedro.goncalves@caesar.de; jan-matthis.lueckmann@tum.de; michael.deistler@tum.de; macke@tum.de

1 of 39

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 7, 2020. ; https://doi.org/10.1101/838383doi: bioRxiv preprint 

pedro.goncalves@caesar.de
jan-matthis.lueckmann@tum.de
michael.deistler@tum.de
macke@tum.de
https://doi.org/10.1101/838383


parameter regimes from careful mathematical analysis of the model equations. But as the complexity of both neural38

data and neural models increases, it becomes very difficult to find well-fitting parameters by inspection, and automated39

identification of data-consistent parameters is required.40

Furthermore, to understand how a model quantitatively explains data, it is necessary to find not only the best,41

but all parameter settings consistent with experimental observations. This is especially important when modeling42

neural data, where highly variable observations can lead to broad ranges of data-consistent parameters. Moreover,43

many models in biology are inherently robust to some perturbations of parameters, but highly sensitive to others44

[3, 15], e.g. because of processes such as homeostastic regulation. For these systems, identifying the full range of45

data-consistent parameters can reveal how multiple distinct parameter settings give rise to the same model behavior46

[7, 16, 17]. Yet, despite the clear benefits of mechanistic models in providing scientific insight, identifying their47

parameters given data remains a challenging open problem that demands new algorithmic strategies.48

The gold standard for automated parameter identification is statistical inference, which uses the likelihood p(x|θ)49

to quantify the match between parameters θ and data x. Likelihoods can be derived for purely statistical models50

commonly used in neuroscience [18–24], but are unavailable for most mechanistic models. Mechanistic models51

are designed to reflect knowledge about biological mechanisms, and not necessarily to be amenable to efficient52

inference: many mechanistic models are defined implicitly through stochastic computer simulations (e.g. a simulation53

of a network of spiking neurons), and likelihood calculation would require the ability to integrate over all potential54

paths through the simulator code. Similarly, a common goal of mechanistic modeling is to capture selected summary55

features of the data (e.g. a certain firing rate, bursting behavior, etc...), not the full dataset in all its details. The same56

feature (such as a particular average firing rate) can be produced by infinitely many realizations of the simulated57

process (such as a time-series of membrane potential). This makes it impractical to compute likelihoods, as one would58

have to average over all possible realizations which produce the same output.59

Since the toolkit of statistical inference is inaccessible for mechanistic models, parameters are typically tuned60

ad-hoc (often through laborious, and subjective, trial-and-error), or by computationally expensive parameter search: a61

large set of models is generated, and grid search [25–27] or a genetic algorithm [28–31] is used to filter out simulations62

which do not match the data. However, these approaches require the user to define a heuristic rejection criterion on63

which simulations to keep (which can be challenging when observations have many dimensions or multiple units of64

measurement), and typically end up discarding most simulations. Furthermore, they lack the advantages of statistical65

inference, which provides principled approaches for handling variability, quantifying uncertainty, incorporating prior66

knowledge and integrating multiple data sources. Approximate Bayesian Computation (ABC) [32–34] is a parameter-67

search technique which aims to perform statistical inference, but still requires definition of a rejection criterion and68

struggles in high-dimensional problems. Thus, computational neuroscientists face a dilemma: either create carefully69

designed, highly interpretable mechanistic models (but rely on ad-hoc parameter tuning), or resort to purely statistical70

models offering sophisticated parameter inference but limited mechanistic insight.71

Here we propose a new approach using machine learning to combine the advantages of mechanistic and statistical72

modeling. We present SNPE (Sequential Neural Posterior Estimation), a tool that rapidly identifies all mechanistic73

model parameters consistent with observed experimental data (or summary features). SNPE builds on recent advances74

in simulation-based Bayesian inference [35–38]: given observed experimental data (or summary features) xo , and a75

mechanistic model with parameters θ, it expresses both prior knowledge and the range of data-compatible parameters76

through probability distributions. SNPE returns a posterior distribution p(θ|xo) which is high for parameters θ77

consistent with both the data xo and prior knowledge, but approaches zero for θ inconsistent with either (Fig. 1).78

Similar to parameter search methods, SNPE uses simulations instead of likelihood calculations, but instead of79

filtering out simulations, it uses all simulations to train a multi-layer artificial neural network to identify admissible80

parameters (Fig. 1). By incorporating modern deep neural networks for conditional density estimation [39, 40], it can81

capture the full distribution of parameters consistent with the data, even when this distribution has multiple peaks or82

lies on curved manifolds. Critically, SNPE decouples the design of the model and design of the inference approach,83

giving the investigator maximal flexibility to design and modify mechanistic models. Our method makes minimal84

assumptions about the model or its implementation, and can e.g. also be applied to non-differentiable models, such85

as networks of spiking neurons. Its only requirement is that one can run model simulations for different parameters,86

and collect the resulting synthetic data or summary features of interest.87

While the theoretical foundations of SNPE were developed and tested using simple inference problems on small88
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Figure 1. Goal: algorithmically identify mechanistic models which are consistent with data. Our algorithm (SNPE) takes three

inputs: a candidate mechanistic model, prior knowledge or constraints on model parameters, and data (or summary statistics). SNPE

proceeds by 1) sampling parameters from the prior and simulating synthetic datasets from these parameters, and 2) using a deep

density estimation neural network to learn the (probabilistic) association between data (or data features) and underlying parameters,

i.e. to learn statistical inference from simulated data. 3) This density estimation network is then applied to empirical data to derive

the full space of parameters consistent with the data and the prior, i.e. the posterior distribution. High posterior probability is

assigned to parameters which are consistent with both the data and the prior, low probability to inconsistent parameters. 4) If

needed, an initial estimate of the posterior can be used to adaptively guide further simulations to produce data-consistent results.

models [35–37], here we show that SNPE can scale to complex mechanistic models in neuroscience, provide an89

accessible and powerful implementation, and develop validation and visualization techniques for exploring the derived90

posteriors. We illustrate SNPE using mechanistic models expressing key neuroscientific concepts: beginning with91

a simple neural encoding problem with a known solution, we progress to more complex data types, large datasets92

and many-parameter models inaccessible to previous methods. We estimate visual receptive fields using many data93

features, demonstrate rapid inference of ion channel properties from high-throughput voltage-clamp protocols, and94

show how Hodgkin–Huxley models are more tightly constrained by increasing numbers of data features. Finally,95

we showcase the power of SNPE by using it to identify the parameters of a network model which can explain an96

experimentally observed pyloric rhythm in the stomatogastric ganglion [7]–in contrast to previous approaches, SNPE97

allows us to search over the full space of both single-neuron and synaptic parameters, allowing us to study the98

geometry of the parameter space, as well as to provide new hypotheses for which compensation mechanisms might99

be at play.100

Results101

Estimating stimulus-selectivity in linear-nonlinear encoding models102

We first illustrate SNPE on linear-nonlinear (LN) encoding models, a special case of generalized linear models (GLMs).103

These are simple, commonly used phenomenological models for which likelihood-based parameter estimation is104

feasible [41–46], and which can be used to validate the accuracy of our approach, before applying SNPE to more105

complex models for which the likelihood is unavailable. We will show that SNPE returns the correct posterior106

distribution over parameters, that it can cope with high-dimensional observation data, that it can recover multiple107

solutions to parameter inference problems, and that it is substantially more simulation efficient than conventional108

rejection-based ABC methods.109

An LN model describes how a neuron’s firing rate is modulated by a sensory stimulus through a linear filter θ, often110

referred to as the receptive field [47, 48]. We first considered a model of a retinal ganglion cell (RGC) driven by full-field111

flicker (Fig. 2a). A statistic that is often used to characterize such a neuron is the spike-triggered average (STA) (Fig. 2a,112
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Figure 2. Estimating receptive fields in linear-nonlinear models of single neurons with statistical inference (a) Schematic of

a time-varying stimulus, associated observed spike train and resulting spike-triggered average (STA) (b) SNPE proceeds by first

randomly generating simulated receptive fields θ, and using the mechanistic model (here an LN model) to generate simulated spike

trains and simulated STAs. (c) These simulated STAs and receptive fields are then used to train a deep neural density estimator to

identify the distribution of receptive fields consistent with a given observed STA xo . (d) Relative error in posterior estimation between

SNPE and alternative methods (mean and 95%CI; 0 corresponds to perfect estimation, 1 to prior-level, details in Methods). (e)

Example of spatial receptive field. We simulated responses and an STA of a LN-model with oriented receptive field. (f) We used SNPE

to recover the distribution of receptive-field parameters. Univariate and pairwise marginals for four parameters of the spatial filter

(MCMC, yellow histograms; SNPE, blue lines; full posterior in Supplementary Fig. 4). Non-identifiabilities of the Gabor

parameterization lead to multimodal posteriors. (g) Average correlation (±SD) between ground-truth receptive field and receptive
field samples from posteriors inferred with SMC-ABC, SNPE, and MCMC (which provides an upper bound given the inherent

stochasticity of the data). (h) Posterior samples from SNPE posterior (SNPE, blue) compared to ground-truth receptive field (green;

see panel (e)), overlaid on STA. (i) Posterior samples for V1 data; full posterior in Supplementary Fig. 5.

right). We therefore used the STA, as well as the firing rate of the neuron, as input xo to SNPE. (Note that, in the limit of113
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infinite data, and for white noise stimuli, the STA will converge to the receptive field [42]–for finite, and non-white data,114

the two will in general be different.) Starting with random receptive fields θ, we generated synthetic spike trains and115

calculated STAs from them (Fig. 2b). We then trained a neural conditional density estimator to recover the receptive116

fields from the STAs and firing rates (Fig. 2c). This allowed us to estimate the posterior distribution over receptive fields,117

i.e. to estimate which receptive fields are consistent with the data (and prior) (Fig. 2c). For LN models, likelihood-based118

inference is possible, allowing us to validate the SNPE posterior by comparing it to a reference posterior obtained119

via Markov Chain Monte Carlo (MCMC) sampling [45, 46]. We found that SNPE accurately estimates the posterior120

distribution (Supplementary Fig. 1 and Supplementary Fig. 2), and substantially outperforms Sequential Monte Carlo121

(SMC) ABC methods [34, 49] (Fig. 2d).122

As a more challenging problem, we inferred the receptive field of a neuron in primary visual cortex (V1) [50, 51].123

Using a model composed of a bias (related to the spontaneous firing rate) and a Gabor function with 8 parameters124

[52] describing the receptive field’s location, shape and strength, we simulated responses to 5-minute random noise125

movies of 41× 41 pixels, such that the STA is high-dimensional, with a total of 1681 dimensions (Fig. 2e). This problem126

admits multiple solutions (as e.g. rotating the receptive field by 180
◦
). As a result, the posterior distribution has127

multiple peaks (‘modes’). Starting from a simulation result xo with known parameters, we used SNPE to estimate the128

posterior distribution p(θ|xo). To deal with the high-dimensional data xo in this problem, we used a convolutional129

neural network (CNN), as this architecture excels at learning relevant features from image data [53, 54]. To deal with130

the multiple peaks in the posterior, we fed the CNN’s output into a mixture density network (MDN) [55], which can131

learn to assign probability distributions with multiple peaks as a function of its inputs (details in Methods). Using this132

strategy, SNPE was able to infer a posterior distribution that tightly enclosed the ground truth simulation parameters133

which generated the original simulated data xo , and matched a reference MCMC posterior (Fig. 2f, posterior over134

all parameters in Supplementary Fig. 4). For this challenging estimation problem with high-dimensional summary135

features, an SMC ABC algorithm with the same simulation-budget failed to identify the correct receptive fields (Fig. 2g)136

and posterior distributions (Supplementary Fig. 3). We also applied this approach to electrophysiological data from a137

V1 cell [51], identifying a sine-shaped Gabor receptive field consistent with the original spike-triggered average (Fig. 2i;138

posterior distribution in Supplementary Fig. 5).139

Functional diversity of ion channels: efficient high-throughput inference140

We next show how SNPE can be efficiently applied to estimation problems in which we want to identify a large number141

of models for different observations in a database. We considered a flexible model of ion channels [57], which we142

here refer to as the Omnimodel. This model uses 8 parameters to describe how the dynamics of currents through143

non-inactivating potassium channels depend on membrane voltage (Fig. 3a). For various choices of its parameters θ,144

it can capture 350 specific models in publications describing this channel type, cataloged in the IonChannelGenealogy145

(ICG) database [56]. We aimed to identify these ion channel parameters θ for each ICG model, based on 11 features146

of the model’s response to a sequence of 5 voltage clamp protocols, resulting in a total of 55 different characteristic147

features per model (Fig. 3b, see Methods for details).148

Because this model’s output is a typical format for functional characterization of ion channels both in simulations149

[56] and in high-throughput electrophysiological experiments [58–60], the ability to rapidly infer different parameters150

for many separate experiments is advantageous. Existing approaches for fitting deterministic models based on151

numerical optimization [57, 60] must repeat all computations anew for a new experiment or data point (Fig. 3c).152

However, for SNPE the only heavy computational tasks are carrying out simulations to generate training data, and153

training the neural network. We therefore reasoned that by training a network once using a large number of154

simulations, we could subsequently carry out rapid ‘amortized’ parameter inference on new data using a single pass155

through the network (Fig. 3d) [61, 62]. To test this idea, we used SNPE to train a neural network to infer the posterior156

from any data x. To generate training data, we carried out 1 million Omnimodel simulations, with parameters randomly157

chosen across ranges large enough to capture the models in the ICG database [56]. SNPE was run using a single round,158

i.e. it learned to perform inference for all data from the prior (rather than a specific observed datum). Generating these159

simulations took around 1000 CPU-hours and training the network 150 CPU-hours, but afterwards a full posterior160

distribution could be inferred for new data in less than 10 ms.161

As a first test, SNPE was run on simulation data, generated by a previously published model of a non-inactivating162

potassium channel [63] (Fig. 3b). Simulations of the Omnimodel using parameter sets sampled from the obtained163
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Figure 3. Inference on a database of ion-channel models. (a) We perform inference over the parameters of non-inactivating

potassium channel models. Channel kinetics are described by steady-state activation curves,∞gate, and time-constant curves, τgate.
(b) Observation generated from a channel model from ICG database: normalized current responses to three (out of five)

voltage-clamp protocols (action potentials, activation, and ramping). Details in [56]. (c) Classical approach to parameter identification:

inference is optimized on each datum separately, requiring new computations for each new datum. (d) Amortized inference: an

inference network is learned which can be applied to multiple data, enabling rapid inference on new data. (e) Posterior distribution

over eight model parameters, θ1 to θ8. (f) Traces obtained by sampling from the posterior in (e). Purple: traces sampled from

posterior, i.e. with high posterior probability. Magenta: trace from parameters with low probability. (g) Observations (green) and

traces generated by posterior samples (purple) for four models from the database.
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posterior distribution (Fig. 3e) closely resembled the input data on which the SNPE-based inference had been carried164

out, while simulations using ‘outlier’ parameter sets with low probability under the posterior generated current165

responses that were markedly different from the data xo (Fig. 3f). Taking advantage of SNPE’s capability for rapid166

amortized inference, we further evaluated its performance on all 350 non-inactivating potassium channel models167

in ICG. In each case, we carried out a simulation to generate initial data from the original ICG model, used SNPE to168

calculate the posterior given the Omnimodel, and then generated a new simulation x using parameters sampled from169

the posterior (Fig. 3f). This resulted in high correlation between the original ICG model response and the Omnimodel170

response, in every case (>0.98 for more than 90% of models, see Supplementary Fig. 6). However, this approach was171

not able to capture all traces perfectly, as e.g. it failed to capture the shape of the onset of the bottom right model in172

Fig. 3g. Additional analysis of this example revealed that this example is not a failure of SNPE, but rather a limitation173

of the Omnimodel. Thus, SNPE can be used to reveal limitations of candidate models and aid the development of174

more verisimilar mechanistic models.175

Calculating the posterior for all 350 ICG models took only a few seconds, and was fully automated, i.e. did not176

require user interactions. These results show how SNPE allows fast and accurate identification of biophysical model177

parameters on new data, and how SNPE can be deployed for applications requiring rapid automated inference,178

such as high-throughput screening-assays, closed-loop paradigms (e.g. for adaptive experimental manipulations or179

stimulus-selection), or interactive software tools.180

Hodgkin–Huxley model: stronger constraints from additional data features181

The Hodgkin–Huxley (HH) model [5] of action potential generation through ion channel dynamics is a highly influential182

mechanistic model in neuroscience. A number of algorithms have been proposed for fitting HH models to electrophys-183

iological data [25, 30, 31, 64–67], but [with the exception of 68] these approaches do not attempt to estimate the full184

posterior. Given the central importance of the HH model in neuroscience, we sought to test how SNPE would cope185

with this challenging non-linear model.186

As previous approaches for HH models concentrated on reproducing specified features [e.g. the number of spikes,187

65], we also sought to determine how various features provide different constraints. We considered the problem of188

inferring 8 biophysical parameters in a HH single-compartment model, describing voltage-dependent sodium and189

potassium conductances and other intrinsic membrane properties (Fig. 4a, left). We simulated the neuron’s voltage190

response to the injection of a square wave of depolarizing current, and defined the model output x used for inference191

as the number of evoked action potentials along with 6 additional features of the voltage response (Fig. 4a, right,192

details in Methods). We first applied SNPE to observed data xo created by simulation from the model, calculating193

the posterior distribution using all 7 features in the observed data (Fig. 4b). The posterior contained the ground194

truth parameters in a high probability-region, as in previous applications, indicating the consistency of parameter195

identification. The variance of the posterior was narrower for some parameters than for others, indicating that the196

7 data features constrain some parameters strongly (such as the potassium conductance), but others only weakly197

(such as the adaptation time constant). Additional simulations with parameters sampled from the posterior closely198

resembled the observed data xo , in terms of both the raw membrane voltage over time and the 7 data features (Fig. 4c,199

purple and green). Parameters with low posterior probability (outliers) generated simulations that markedly differed200

from xo (Fig. 4c, magenta).201

Genetic algorithms are commonly used to fit parameters of deterministic biophysical models [28, 29, 31, 69].202

While genetic algorithms can also return multiple data-compatible parameters, they do not perform inference (i.e.203

find the posterior distribution), and their outputs depend strongly on user-defined goodness-of-fit criteria. When204

comparing a state-of-the-art genetic algorithm [Indicator Based Evolutionary Algorithm, IBEA, 31, 70, 71] to SNPE,205

we found that the parameter-settings favoured by IBEA produced simulations whose summary features were as206

similar to the observed data as those obtained by SNPE high-probability samples (Supplementary Fig. 9). However,207

high-scoring IBEA parameters were concentrated in small regions of the posterior, i.e. IBEA did not identify the full208

space of data-compatible models.209

To investigate how individual data features constrain parameters, we compared SNPE-estimated posteriors based210

1) solely on the spike count, 2) on the spike count and 3 voltage-features, or 3) on all 7 features of xo . As more features211

were taken into account, the posterior became narrower and centered more closely on the ground truth parameters212

(Fig. 4d, Supplementary Fig. 7). Posterior simulations matched the observed data only in those features that had been213
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Figure 4. Inference for single compartment Hodgkin–Huxley model. (a) Circuit diagram describing the Hodgkin–Huxley model

(left), and simulated voltage-trace given a current input (right). 3 out of 7 voltage features are depicted: (1) number of spikes, (2)

mean resting potential and (3) standard deviation of the pre-stimulus resting potential. (b) Inferred posterior for 8 parameters given

7 voltage features. (c) Traces (left) and associated features f (right) for the desired output (observation), the mode of the inferred

posterior, and a sample with low posterior probability. The voltage features are: number of spikes sp, mean resting potential rpot,

standard deviation of the resting potential σrpot, and the first 4 voltage moments, mean m1, standard deviation m2, skewness m3 and

kurtosis m4. Each feature is normalized by σf PRIOR, the standard deviation of the respective feature of simulations sampled from the

prior. (d) Partial view of the inferred posteriors (4 out of 8 parameters) given 1, 4 and 7 features (full posteriors over 8 parameters in

Supplementary Fig. 7). (e) Traces for posterior modes given 1, 4 and 7 features. Increasing the number of features leads to posterior

traces that are closer to the observed data. (f) Observations from Allen Cell Types Database (green) and corresponding mode

samples (purple). Posteriors in Supplementary Fig. 8.

used for inference (e.g. applying SNPE to spike counts alone identified parameters that generated the correct number214

of spikes, but for which spike timing and subthreshold voltage time course were off, Fig. 4e). For some parameters,215

such as the potassium conductance, providing more data features brought the peak of the posterior (the posterior216

mode) closer to the ground truth and also decreased uncertainty. For other parameters, such as VT , a parameter217

adjusting the spike threshold [65], the peak of the posterior was already close to the correct value with spike counts218
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Figure 5. Identifying network models underlying an experimentally observed pyloric rhythm in the crustacean

stomatogastric ganglion. (a) Simplified circuit diagram of the pyloric network from the stomatogastric ganglion. Thin connections

are fast glutamatergic, thick connections are slow cholinergic. (b) Extracellular recordings from nerves of pyloric motor neurons of

the crab Cancer borealis [74]. Numbers indicate some of the used summary features, namely cycle period (1), phase delays (2), phase
gaps (3), and burst durations (4) (see Methods for details). (c) Posterior over 24membrane and 7 synaptic conductances given the

experimental observation shown in panel b (8 parameters shown, full posterior in Supplementary Fig. 10). Inset: magnified marginal

posterior for the synaptic strengths AB to LP neuron vs. PD to LP neuron. (d) Identifying directions of sloppiness and stiffness. Two

samples from the posterior both show similar network activity as the experimental observation (top left and top right), but have very

different parameters (purple dots in panel c). Along the high-probability path between these samples, network activity is preserved

(trace 1). When perturbing the parameters orthogonally off the path, network activity changes abruptly and becomes non-pyloric

(trace 2).

alone, but adding additional features reduced uncertainty. While SNPE can be used to study the effect of additional219

data features in reducing parameter uncertainty, this would not be the case for methods that only return a single220

best-guess estimate of parameters. These results show that SNPE can reveal how information from multiple data221

features imposes collective constraints on channel and membrane properties in the HH model.222

We also inferred HH parameters for 8 in vitro recordings from the Allen Cell Types database using the same current-223

clamp stimulation protocol as in our model [72, 73] (Fig. 4f, Supplementary Fig. 8). In each case, simulations based224

on the SNPE-inferred posterior closely resembled the original data (Fig. 4f). We note that while inferred parameters225

differed across recordings, some parameters (the spike threshold, the density of sodium channels, the membrane226

reversal potential and the density of potassium channels) were consistently more strongly constrained than others227

(the intrinsic neural noise, the adaptation time constant, the density of slow voltage-dependent channels and the leak228

conductance) (Supplementary Fig. 8). Overall, these results suggest that the electrophysiological responses measured229

by this current-clamp protocol can be approximated by a single-compartment HH model, and that SNPE can identify230

the admissible parameters.231

Crustacean stomatogastric ganglion: sensitivity to perturbations232

We next aimed to demonstrate how the full posterior distribution obtained with SNPE can lead to novel scientific233

insights. To do so, we used the pyloric network of the stomatogastric ganglion (STG) of the crab Cancer borealis, a234

well-characterized neural circuit producing rhythmic activity. In this circuit, similar network activity can arise from235

vastly different sets of membrane and synaptic conductances [7]. We first investigated whether data-consistent sets236

of membrane and synaptic conductances are connected in parameter space, as has been demonstrated for single237

neurons [75], and, second, which compensation mechanisms between parameters of this circuit allow the neural238

system to maintain its activity despite parameter variations. While this model has been studied extensively, answering239

these questions requires characterizing higher-dimensional parameter spaces than those accessed previously. We240
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demonstrate how SNPE can be used to identify the posterior distribution over both membrane and synaptic con-241

ductances of the STG (31 parameters total) and how the full posterior distribution can be used to study the above242

questions at the circuit level.243

For some biological systems, multiple parameter sets give rise to the same system behavior [7, 17, 76–79]. In244

particular, neural systems can be robust to specific perturbations of parameters [79–81], yet highly sensitive to others,245

properties referred to as sloppiness and stiffness [3, 15, 82, 83]. We studied how perturbations affect model output246

using a model [7] and data [74] of the pyloric rhythm in the crustacean stomatogastric ganglion (STG). This model247

describes a triphasic motor pattern generated by a well-characterized circuit (Fig. 5a). The circuit consists of two248

electrically coupled pacemaker neurons (anterior burster and pyloric dilator, AB/PD), modeled as a single neuron, as249

well as two types of follower neurons (lateral pyloric (LP) and pyloric (PY)), all connected through inhibitory synapses250

(details in Methods). Eight membrane conductances are included for each modeled neuron, along with 7 synaptic251

conductances, for a total of 31 parameters. This model has been used to demonstrate that virtually indistinguishable252

activity can arise from vastly different membrane and synaptic conductances in the STG [7, 17].253

We applied SNPE to an extracellular recording from the STG of the crab Cancer borealis [74] which exhibited pyloric254

activity (Fig. 5b), and inferred the posterior distribution over all 31 parameters based on 18 salient features of the255

voltage traces, including cycle period, phase delays, phase gaps, and burst durations (features in Fig. 5B, posterior256

in Fig. 5c, posterior over all parameters in Supplementary Fig. 10, details in Methods). Consistent with previous257

reports, the posterior distribution has high probability over extended value ranges for many membrane and synaptic258

conductances. To verify that parameter settings across these extended ranges are indeed capable of generating the259

experimentally observed network activity, we sampled two sets of membrane and synaptic conductances from the260

posterior distribution. These two samples have widely disparate parameters from each other (Fig. 5c, purple dots,261

details in Methods), but both exhibit activity highly similar to the experimental observation (Fig. 5d, top left and top262

right).263

We then investigated the geometry of the parameter space producing these rhythms [16, 17]. First, we wanted to264

identify directions of sloppiness, and we were interested in whether parameter settings producing pyloric rhythms265

form a single connected region, as has been shown for single neurons [75], or whether they lie on separate ‘islands.’266

Starting from the two above parameter settings showing similar activity, we examined whether they were connected267

by searching for a path through parameter space along which pyloric activity was maintained. To do this, we268

algorithmically identified a path lying only in regions of high posterior probability (Fig. 5c, white, details in Methods).269

Along the path, network output was tightly preserved, despite a substantial variation of the parameters (voltage trace270

1 in Fig. 5d, Supplementary Fig. 11a,c). Second, we inspected directions of stiffness by perturbing parameters off271

the path. We applied perturbations that yield maximal drops in posterior probability (see Methods for details), and272

found that the network quickly produced non-pyloric activity (voltage trace 2, Fig. 5d) [82]. In identifying these paths273

and perturbations, we exploited the fact that SNPE provides a differentiable estimate of the posterior, as opposed to274

parameter search methods which provide only discrete samples.275

Overall, these results show that the pyloric network can be robust to specific perturbations in parameter space,276

but sensitive to others, and that one can interpolate between disparate solutions while preserving network activity.277

This analysis demonstrates the flexibility of SNPE in capturing complex posterior distributions, and shows how the278

differentiable posterior can be used to study directions of sloppiness and stiffness.279

Predicting compensation mechanisms from posterior distributions280

Experimental and computational studies have shown that stable neural activity can be maintained despite variable281

circuit parameters [7, 87, 88]. This behavior can emerge from two sources [87]: either, the variation of a certain282

parameter barely influences network activity at all, or alternatively, variations of several parameters influence network283

activity, but their effects compensate for one another. Here, we investigated these possibilities by using the posterior284

distribution over membrane and synaptic conductances of the STG.285

We begin by drawing samples from the posterior and inspecting their pairwise histograms (i.e. the pairwise286

marginals, Fig. 6a, posterior over all parameters in Supplementary Fig. 10). Consistent with previously reported results287

[89], many parameters seem only weakly constrained and only weakly correlated (Fig. 6b). However, this observation288

does not imply that the parameters of the network do not have to be finely tuned: pairwise marginals are averages289

over many network configurations, where all other parameters may take on diverse values, which could disguise that290
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Figure 6. Predicting compensation mechanisms in the stomatogastric ganglion. (a) Inferred posterior. We show a subset of

parameters which are weakly constrained (full posterior in Supplementary Fig. 10). Pyloric activity can emerge from a wide range of

maximal membrane conductances, as the 1D and 2D posterior marginals cover almost the entire extent of the prior. (b) Correlation

matrix, based on the samples shown in panel a. Almost all correlations are weak. Ordering of membrane and synaptic conductances

as in Supplementary Fig. 10. (c) Conditional distributions given a particular circuit configuration: for the plots on the diagonal, we

keep all but one parameter fixed. For plots above the diagonal, we keep all but two parameters fixed. The remaining parameter(s)

are narrowly tuned, tuning across parameters is often highly correlated. When conditioning on a different parameter setting (right

plot), the conditional posteriors change, but correlations are often maintained. (d) Conditional correlation matrix, averaged over 500

conditional distributions like the ones shown in panel c. Black squares highlight parameter-pairs within the same model neuron. (e)

Consistency with experimental observations. Top: maximal conductance of the fast transient potassium current and the maximal

conductance of the hyperpolarization current are positively correlated for all three neurons. This has also been experimentally

observed in the PD and the LP neuron [84]. Bottom: the maximal conductance of the hyperpolarization current of the postsynaptic

neuron can compensate the strength of the synaptic input, as experimentally observed in the PD and the LP neuron [85, 86]. The

boxplots indicate the maximum, 75% quantile, median, 25% quantile, and minimum across 500 conditional correlations for different

parameter pairs. Face color indicates mean correlation using the colorbar shown in panel b.

each individual configuration is finely tuned. Indeed, when we sampled parameters independently from their posterior291

histograms, the resulting circuit configurations rarely produced pyloric activity, indicating that parameters have to be292

tuned relative to each other (Supplementary Fig. 12). This analysis also illustrates that the (common) approach of293

independently setting parameters can be problematic: although each parameter individually is in a realistic range, the294

network as a whole is not [90]. Finally, it shows the importance of identifying the full posterior distribution, which is295

far more informative than just finding individual parameters and assigning error bars.296

In order to investigate the need for tuning between pairs of parameters, we held all but two parameters constant297

at a given consistent circuit configuration (sampled from the posterior), and observed the network activity across298

different values of the remaining pair of parameters. We can do so by calculating the conditional posterior distribution299

(details in Methods), and do not have to generate additional simulations (as would be required by parameter search300

methods). Doing so has a simple interpretation: when all but two parameters are fixed, what values of the remaining301

two parameters can then lead to the desired network activity? We found that the desired pattern of pyloric activity302
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can emerge only from narrowly tuned and often highly correlated combinations of the remaining two parameters,303

showing how these parameters can compensate for one another (Fig. 6c). When repeating this analysis across multiple304

network configurations, we found that these ‘conditional correlations’ are often preserved (Fig. 6c, left and right). This305

demonstrates that pairs of parameters can compensate for each other in a similar way, independently of the values306

taken by other parameters. This observation about compensation could be interpreted as an instance of modularity, a307

widespread underlying principle of biological robustness [91].308

We calculated conditional correlations for each parameter pair using 500 different circuit configurations sampled309

from the posterior (Fig. 6d). Compared to correlations based on the pairwise marginals (Fig. 6b), these conditional310

correlations were substantially stronger. They were particularly strong across membrane conductances of the same311

neuron, but primarily weak across different neurons (black boxes in Fig. 6d).312

Finally, we tested whether the conditional correlations were in line with experimental observations. For the PD313

and the LP neuron, it has been reported that overexpression of the fast transient potassium current (IA) leads to a314

compensating increase of the hyperpolarization current (IH), suggesting a positive correlation between these two315

currents [84, 92]. These results are qualitatively consistent with the positive conditional correlations between the316

maximal conductances of IA and IH for all three model neurons (Fig. 6e top). In addition, using the dynamic clamp, it317

has been shown that diverse combinations of the synaptic input strength and the maximal conductance of IH lead318

to similar activity in the LP and the PD neuron [85, 86]. Consistent with these findings, the non-zero conditional319

correlations reveal that there can indeed be compensation mechanisms between the synaptic strength and the320

maximal conductance of IH of the postsynaptic neuron (Fig. 6e bottom).321

Overall, we showed how SNPE can be used to study parameter dependencies, and how the posterior distribution322

can be used to efficiently explore potential compensation mechanisms. We found that our method can predict323

compensation mechanisms which are qualitatively consistent with experimental studies. We emphasize that these324

findings would not have been possible with a direct grid-search over all parameters: defining a grid in a 31-dimensional325

parameter space would require more than 231 >2 billion simulations, even if one were to use the coarsest-possible326

grid with only 2 values per dimension.327

Discussion328

How can we build models which give insights into the causal mechanisms underlying neural or behavioral dynamics?329

The cycle of building mechanistic models, generating predictions, comparing them to empirical data, and rejecting330

or refining models has been of crucial importance in the empirical sciences. However, a key challenge has been the331

difficulty of identifying mechanistic models which can quantitatively capture observed phenomena. We suggest that a332

generally applicable tool to constrain mechanistic models by data would expedite progress in neuroscience. While333

many considerations should go into designing a model that is appropriate for a given question and level of description334

[2, 3, 93, 94], the question of whether and how one can perform statistical inference should not compromise model335

design. In our tool, SNPE, the process of model building and parameter inference are entirely decoupled. SNPE can be336

applied to any simulation-based model (requiring neither model nor summary features to be differentiable) and gives337

full flexibility on defining a prior. We illustrated the power of our approach on a diverse set of applications, highlighting338

the potential of SNPE to rapidly identify data-compatible mechanistic models, to investigate which data-features339

effectively constrain parameters, and to reveal shortcomings of candidate-models.340

Finally, we used a model of the stomatogastric ganglion to show how SNPE can identify complex, high-dimensional341

parameter landscapes of neural systems. We analyzed the geometrical structure of the parameter landscape and342

confirmed that circuit configurations need to be finely tuned, even if individual parameters can take on a broad range343

of values. We showed that different configurations are connected in parameter space, and provided hypotheses for344

compensation mechanisms. These analyses were made possible by SNPE’s ability to estimate full parameter posteriors,345

rather than just constraints on individual parameters, as is common in many statistical parameter-identification346

approaches.347

Related work348

SNPE builds on recent advances in machine learning, and in particular in density-estimation approaches to likelihood-349

free inference [35–37, 95, 96], reviewed in [38]. We here scaled these approaches to canonical mechanistic models350

of neural dynamics, and provided methods and software-tools for inference, visualization, and analysis of the351
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resulting posteriors (e.g. the high-probability paths and conditional correlations presented here). The idea of learning352

inference networks on simulated data can be traced back to regression-adjustment methods in ABC [32, 97]. [35]353

first proposed to use expressive conditional density estimators in the form of deep neural networks [40, 55], and354

to optimize them sequentially over multiple rounds with cost-functions derived from Bayesian inference principles.355

Compared to commonly used rejection-based ABC methods [98, 99], such as MCMC-ABC [33], SMC-ABC [34, 100],356

Bayesian-Optimization ABC [101], or ensemble methods [102, 103], SNPE approaches do not require one to define357

a distance function in data space. In addition, by leveraging the ability of neural networks to learn informative358

features, they enable scaling to problems with high-dimensional observations, as are common in neuroscience359

and other fields in biology. We have illustrated this capability in the context of receptive field estimation, where a360

convolutional neural network extracts summary features from a 1681 dimensional spike-triggered average. Alternative361

likelihood-free approaches include synthetic likelihood methods [104–110], moment-based approximations of the362

posterior [111, 112], inference compilation [113, 114], and density-ratio estimation [115]. For some mechanistic363

models in neuroscience (e.g. for integrate-and-fire neurons), likelihoods can be computed via stochastic numerical364

approximations [66, 116, 117] or model-specific analytical approaches [64, 118–121].365

Our approach is already finding its first applications in neuroscience–for example, [122] have used a variant of366

SNPE to constrain biophysical models of retinal neurons, with the goal of optimizing stimulation approaches for367

neuroprosthetics. Concurrently with our work, [123] developed an alternative approach to parameter identification368

for mechanistic models, and showed how it can be used to characterize neural population models which exhibit369

specific emergent computational properties. Both studies differ in their methodology and domain of applicability370

(see descriptions of underlying algorithms in our [36, 37] and their [124] prior work), as well in the focus of their371

neuroscientific contributions. Both approaches share the overall goal of using deep probabilistic inference tools to372

build more interpretable models of neural data. These complementary and concurrent advances will expedite the373

cycle of building, adjusting and selecting mechanistic models in neuroscience.374

Finally, a complementary approach to mechanistic modeling is to pursue purely phenomenological models, which375

are designed to have favorable statistical and computational properties: these data-driven models can be efficiently376

fit to neural data [18–24, 41, 43] or to implement desired computations [125]. Although tremendously useful for a377

quantitative characterization of neural dynamics, these models typically have a large number of parameters, which378

rarely correspond to physically measurable or mechanistically interpretable quantities, and thus it can be challenging379

to derive mechanistic insights or causal hypotheses from them (but see e.g. [126–128]).380

Use of summary features381

When fitting mechanistic models to data, it is common to target summary features to isolate specific behaviors,382

rather than the full data. For example, the spike shape is known to constrain sodium and potassium conductances383

[28, 29, 65]. When modeling population dynamics, it is often desirable to achieve realistic firing rates, rate-correlations384

and response nonlinearities [123, 129], or specified oscillations [7]. In models of decision making, one is often385

interested in reproducing psychometric functions or reaction-time distributions [130]. Choice of summary features386

might also be guided by known limitations of either the model or the measurement approach, or necessitated by the387

fact that published data are only available in summarized form. Several methods have been proposed to automatically388

construct informative summary features [131–133]. SNPE can be applied to, and might benefit from the use of389

summary features, but it also makes use of the ability of neural networks to automatically learn informative features390

in high-dimensional data. Thus, SNPE can also be applied directly to raw data (e.g. using recurrent neural networks391

[36]), or to high-dimensional summary features which are challenging for ABC approaches (Fig. 2). In all cases, care is392

needed when interpreting models fit to summary features, as choice of features can influence the results [131–133].393

Applicability and limitations394

A key advantage of SNPE is its general applicability: it can be applied whenever one has a simulator that allows to395

stochastically generate model outputs from specific parameters. Furthermore, it can be applied in a fully ‘black-box396

manner’, i.e. does not require access to the internal workings of the simulator, its model equations, likelihoods or397

gradients. It does not impose any other limitations on the model or the summary features, and in particular does not398

require them to be differentiable. However, it also has limitations: first, current implementations of SNPE scale well to399

high-dimensional observations (∼1000s dims, also see [37]), but scaling SNPE to even higher-dimensional parameter400
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spaces (>30) is challenging (note that previous approaches were generally limited to dim< 10). Given that the difficulty401

of estimating full posteriors scales exponentially with dimensionality, this is an inherent challenge for all approaches402

that aim at full inference (in contrast to just identifying a single, or a few heuristically chosen parameter fits). Second,403

while it is a long-term goal for these approaches to be made fully automatic, our current implementation still requires404

choices by the user: as described in Methods, one needs to choose the type of the density estimation network, and405

specify settings related to network-optimisation, and the number of simulations and inference rounds. These settings406

depend on the complexity of the relation between summary features and model parameters, and the number of407

simulations that can be afforded. In the documentation accompanying our code-package, we provide examples and408

guidance. For small-scale problems, we have found SNPE to be robust to these settings. However, for challenging,409

high-dimensional applications, SNPE might currently require substantial user interaction. Third, the power of SNPE410

crucially rests on the ability of deep neural networks to perform density estimation. While deep nets have had ample411

empirical success, we still have an incomplete understanding of their limitations, in particular in cases where the412

mapping between data and parameters might not be smooth (e.g. near phase transitions). Fourth, when applying413

SNPE (or any other model-identification approach), validation of the results is of crucial importance, both to assess414

the accuracy of the inference procedure, as well as to identify possible limitations of the mechanistic model itself.415

In the example applications, we used several procedures for assessing the quality of the inferred posteriors. One416

common ingredient of these approaches is to sample from the inferred model, and search for systematic differences417

between observed and simulated data, e.g. to perform posterior predictive checks [36, 37, 100, 134, 135] (Fig. 2g,418

Fig. 3f,g, Fig. 4C, and Fig. 5d). There are challenges and opportunities ahead in further scaling and automating419

simulation-based inference approaches. However, in its current form, SNPE will be a powerful tool for quantitatively420

evaluating mechanistic hypotheses on neural data, and for designing better models of neural dynamics.421
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Methods432

Code availability433

Code implementing SNPE is available at http://www.mackelab.org/delfi/.434

Simulation-based inference435

To perform Bayesian parameter identification with SNPE, three types of input need to be specified:436

1. A mechanistic model. The model only needs to be specified through a simulator, i.e. that one can generate a437

simulation result x for any parameters θ. We do not assume access to the likelihood p(x|θ) or the equations438

or internals of the code defining the model, nor do we require the model to be differentiable. This is in439

contrast to many alternative approaches (including [123]), which require the model to be differentiable and to440

be implemented in a software code that is amenable to automatic differentiation packages. Finally, SNPE can441

both deal with inputs x which resemble ‘raw’ outputs of the model, or summary features calculated from data.442

2. Observed data xo of the same form as the results x produced by model simulations.443

3. A prior distribution p(θ) describing the range of possible parameters. p(θ) could consist of upper and lower444

bounds for each parameter, or a more complex distribution incorporating mechanistic first principles or445

knowledge gained from previous inference procedures on other data.446

For each problem, our goal was to estimate the posterior distribution p(θ|xo). To do this we used SNPE [35–37].447

Setting up the inference procedure required three design choices:448

1. A network architecture, including number of layers, units per layer, layer type (feedforward or convolutional),449

activation function and skip connections.450

2. A parametric family of probability densities qψ(θ) to represent inferred posteriors, to be used as conditional451

density estimator. We used either a mixture of Gaussians (MoG) or a masked autoregressive flow (MAF) [40]. In452

the former case, the number of components K must be specified; in the latter the number of MADES (Masked453

Autoencoder for Distribution Estimation) nMADES. Both choices are able to represent richly structured, and454

multimodal posterior distributions.455

3. A simulation budget, i.e. number of rounds R and simulations per round Nr .456

We emphasize that SNPE is highly modular, i.e. that the the inputs (data, the prior over parameter, the mechanistic457

model), and algorithmic components (network architecture, probability density, optimization approach) can all be458

modified and chosen independently. This allows neuroscientists to work with models which are designed with459

mechanistic principles—and not convenience of inference—in mind. Furthermore, it allows SNPE to benefit from460

advances in more flexible density estimators, more powerful network architectures, or optimization strategies.461

With the problem and inference settings specified, SNPE adjusts the network weights φ based on simulation results,462

so that p(θ|x) ≈ qF (x,φ)(θ) for any x. In the first round of SNPE simulation parameters are drawn from the prior p(θ). If463

a single round of inference is not sufficient, SNPE can be run in multiple rounds, in which samples are drawn from the464

version of qF (xo ,φ)(θ) at the beginning of the round. After the last round, qF (xo ,φ) is returned as the inferred posterior on465

parameters θ given observed data xo . If SNPE is only run for a single round, then the generated samples only depend466

on the prior, but not on xo : in this case, the inference network is applicable to any data (covered by the prior ranges),467

and can be used for rapid amortized inference.468

SNPE learns the correct network weights φ by minimizing the objective function
∑

j L(θj , xj) where the simulation469

with parameters θj produced result xj . For the first round of SNPE L(θj , xj) = − log qF (x,φ), while in subsequent rounds470

a different loss function accounts for the fact that simulation parameters were not sampled from the prior. Different471

choices of the loss function for later rounds result in SNPE-A [35], SNPE-B [36] or SNPE-C algorithm [37]. To optimize472

the networks, we used ADAM with default settings [136].473

15 of 39

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 7, 2020. ; https://doi.org/10.1101/838383doi: bioRxiv preprint 

http://www.mackelab.org/delfi/
https://doi.org/10.1101/838383


The details of the algorithm are below:474

Algorithm 1: SNPE

Input: simulator with (implicit) density p(x|θ), observed data xo , prior p(θ), density family qψ , neural network

F (x,φ), number of rounds R , simulation count for each round Nr

randomly initialize φ

p̃1(θ) := p(θ)

N := 0

for r = 1 to R do

for i = 1 ...Nr do

sample θN+i ∼ p̃r (θ)

simulate xN+i ∼ p(x|θN+i )
N ← N + Nr

train φ← arg min
φ

N∑
j=1

L(θj , xj)

p̃r (θ) := qF (xo ,φ)(θ)

return qF (xo ,φ)(θ)

475

Linear-nonlinear encoding models476

We used a Linear-Nonlinear (LN) encoding model (a special case of a generalized linear model, GLM, [18, 20, 41–44]) to

simulate the activity of a neuron in response to a univariate time-varying stimulus. Neural activity zi was subdivided in

T = 100 bins and, within each bin i , spikes were generated according to a Bernoulli observation model,

zi ∼ Bern(η(v>i f + β)),

where vi is a vector of white noise inputs between time bins i − 8 and i , f a length-9 linear filter, β is the bias, and477

η(·) = exp(·)/(1 + exp(·)) is the canonical inverse link function for a Bernoulli GLM. As summary features, we used478

the total number of spikes N and the spike-triggered average 1
N

Vz, where V = [v1, v2, ... , vT ] is the so-called design479

matrix of size 9× T . We note that the spike-triggered sum Vz constitutes sufficient statistics for this GLM, i.e. that480

selecting the STA and N together as summary features does not lead to loss of model relevant information over the481

full input-output dataset {V, z}. We used a Gaussian prior with zero mean and covariance matrix Σβ = σ2(F>F)−1
,482

where F encourages smoothness by penalizing the second-order differences in the vector of parameters [137].483

For inference, we used a single round of 10000 simulations, and the posterior was approximated with a Gaussian484

distribution (θ ∈ R10, x ∈ R10
). We used a feedforward neural network with two hidden layers of 50 units each. We485

used a Polya Gamma Markov Chain Monte Carlo sampling scheme [45] to estimate a reference posterior.486

In Fig. 2d, we compare the performance of SNPE with two classical ABC algorithms, rejection ABC and Sequential487

Monte Carlo ABC as a function of the number of simulations. We report the relative error in Kullback-Leibler divergence,488

which is defined as:489

DKL(pMCMC (θ|x) || p̂(θ|x))

DKL(pMCMC (θ|x) || p(θ))
, (1)

and which ranges between 0 (perfect recovery of the posterior) and 1 (estimated posterior no better than the prior).490

Here, pMCMC (θ|x) is the ground-truth posterior estimated via Markov Chain Monte Carlo sampling, p̂(θ|x) is the491

estimated posterior via SNPE, rejection ABC or Sequential Monte Carlo ABC, and p(θ) is the prior.492

For the spatial receptive field model of a cell in primary visual cortex, we simulated the activity of a neuron

depending on an image-valued stimulus. Neural activity was subdivided in bins of length ∆t = 0.025s and within each

bin i , spikes were generated according to a Poisson observation model,

zi ∼ Poiss(η(v>i h + β)),
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where vi is the vectorized white noise stimulus at time bin i , h a 41× 41 linear filter, β is the bias, and η(·) = exp(·) is
the canonical inverse link function for a Poisson GLM. The receptive field h is constrained to be a Gabor filter:

h(gx , gy ) = g exp

(
−x ′2 + r 2y ′2

2σ2

)
cos
(
2πfx ′ − φ

)
x ′ = (gx − x) cosψ − (gy − y) sinψ

y ′ = (gx − x) sinψ + (gy − y) cosψ

σ =

√
2 log 2

2πf

2w + 1

2w − 1
,

where (gx , gy ) is a regular grid of 41× 41 positions spanning the 2D image-valued stimulus. The parameters of the493

Gabor are gain g , spatial frequency f , aspect-ratio r , width w , phase φ (between 0 and π), angle ψ (between 0 and494

2π) and location x , y (assumed within the stimulated area, scaled to be between −1 and 1). Bounded parameters495

were transformed with a log-, or logit-transform, to yield unconstrained parameters. After applying SNPE, we back-496

transformed both the parameters and the estimated posteriors in closed form, as shown in Fig. 2. We did not497

transform the bias β.498

We used a factorizing Gaussian prior for the vector of transformed Gabor parameters

[ log g , log f , log r , logw , l0,π(φ), l0,2π(ψ), l−1,1(x), l−1,1(y) ],

where transforms l0,π(X ) = log(X/(2π − X )), l0,2π(X ) = log(X/(π − X )), l−1,1(X ) = log((X + 1)/(1 − X )) ensured the499

assumed ranges for the Gabor parameters φ,ψ, x , y . Our Gaussian prior had zero mean and standard deviations500

[0.5, 0.5, 0.5, 0.5, 1.9, 1.78, 1.78, 1.78]. We note that a Gaussian prior on a logit-transformed random variable logitX with501

zero mean and standard deviation around 1.78 is close to a uniform prior over the original variable X . For the bias β,502

we used a Gaussian prior with mean −0.57 and variance 1.63, which approximately corresponds to an exponential503

prior exp(β) ∼ Exp(λ) with rate λ = 1 on the baseline firing rate exp(β) in absence of any stimulus.504

The ground-truth parameters for the demonstration in Fig. 2 were chosen to give an asymptotic firing rate of 1Hz505

for 5 minutes stimulation, resulting in 299 spikes, and a signal-to-noise ratio of −12dB.506

As summary features, we used the total number of spikes N and the spike-triggered average 1
N

Vz, where V =507

[v1, v2, ... , vT ] is the stimulation video of length T = 300/∆t = 12000. As for the GLM with a temporal filter, the508

spike-triggered sum Vz constitutes sufficient statistics for this GLM.509

For inference, we applied SNPE-A with in total 2 rounds: an initial round serves to first roughly identify the510

relevant region of parameter space. Here we used a Gaussian distribution to approximate the posterior from 100000511

simulations each. A second round then used a mixture of 8 Gaussian components to estimate the exact shape of the512

posterior from another 100000 simulations (θ ∈ R9, x ∈ R1682
). We used a convolutional network with 5 convolutional513

layers with 16 to 32 convolutional filters followed by two fully connected layers with 50 units each. The total number of514

spikes N within a simulated experiment was passed as an additional input directly to the fully-connected layers of the515

network. Similar to the previous GLM, this model has a tractable likelihood, so we use MCMC to obtain a reference516

posterior.517

We applied this approach to extracelullar recordings from primary visual cortex of alert mice obtained using silicon518

microelectrodes in response to colored-noise visual stimulation. Experimental methods are described in [51].519

Comparison with Sequential Monte Carlo (SMC) ABC520

In order to illustrate the competitive performance of SNPE, we obtained a posterior estimate with a classical ABC521

method, Sequential Monte Carlo (SMC) ABC [34, 49]. Likelihood-free inference methods from the ABC family require a522

distance function d(xo , x) between observed data xo and possible simulation outputs x to characterize dissimilarity523

between simulations and data. A common choice is the (scaled) Euclidean distance d(xo , x) = ||x− xo ||2. The Euclidean524

distance here was computed over 1681 summary features given by the spike-triggered average (one per pixel) and a525

single summary feature given by the ‘spike count’. To ensure that the distance measure was sensitive to differences in526

both STA and spike count, we scaled the summary feature ‘spike count’ to account for about 20% of the average total527

distance (other values did not yield better results). The other 80% were computed from the remaining 1681 summary528

features given by spike-triggered averages. To showcase how this situation is challenging for ABC approaches, we529

generated 10000 input-output pairs (θi , xi ) ∼ p(x|θ)p(θ) with the prior and simulator used above, and illustrate the 10530
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STAs and spike counts with closest d(xo , xi ) in Supplementary Fig. 3a. Spike counts were comparable to the observed531

data (299 spikes), but STAs are noise-dominated and the 10 ‘closest’ underlying receptive fields (orange contours) show532

substantial variability in location and shape of the receptive field. If even the ‘closest’ samples do not show any visible533

receptive field, then there is little hope that even an appropriately chosen acceptance threshold will yield a good534

approximation to the posterior. These findings were also reflected in the results from SMC-ABC with a total simulation535

budget of 106
simulations (Fig. 3b). The estimated posterior marginals for ‘bias’ and ‘gain’ parameters show that the536

parameters related to the firing rate were constrained by the data xo , but marginals of parameters related to shape537

and location of the receptive field did not differ from the prior, highlighting that SMC-ABC was not able to identify the538

posterior distribution. The low correlations between the ground-truth receptive field and receptive fields sampled539

from SMC-ABC posterior further highlight the failure of SMC-ABC to infer the ground-truth posterior (Fig. 3c). Further540

comparisons of neural-density estimation approaches with ABC-methods can be found in the studies describing the541

underlying machine-learning methodologies [35, 37, 109].542

Ion channel models543

We simulated non-inactivating potassium channel currents subject to voltage-clamp protocols as:

IK = ḡKm(V − EK),

where V is the membrane potential, ḡK is the density of potassium channels, EK is the reversal potential of potassium,

and m is the gating variable for potassium channel activation. m is modeled according to the first-order kinetic

equation

dm

dt
=

m∞(V )−m

τm(V )
,

where m∞(V ) is the steady-state activation, and τm(V ) the respective time constant. We used a general formulation

of m∞(V ) and τm(V ) [57], where the steady-state activation curve has 2 parameters (slope and offset) and the time

constant curve has 6 parameters, amounting to a total of 8 parameters (θ1 to θ8):

m∞(V ) =
1

1 + e−θ1V+θ2

τm(V ) =
θ4

e−[θ5(V−θ3)+θ6(V−θ3)2] + e [θ7(V−θ3)+θ8(V−θ3)2]
.

Since this model can be used to describe the dynamics of a wide variety of channel models, we refer to it as Omnimodel.544

We modeled responses of the Omnimodel to a set of five voltage-clamp protocols described in [56]. Current545

responses were reduced to 55 summary features (11 per protocol). Summary features were coefficients to basis546

functions derived via Principal Components Analysis (PCA) (10 per protocol) plus a linear offset (1 per protocol) found547

via least-squares fitting. PCA basis functions were found by simulating responses of the non-inactivating potassium548

channel models to the five voltage-clamp protocols and reducing responses to each protocol to 10 dimensions549

(explaining 99.9% of the variance).550

To amortize inference on the model, we specified a wide uniform prior over the parameters: θ1 ∈ U(0, 1), θ2 ∈551

U(−10., 10.), θ3 ∈ U(−120., 120.), θ4 ∈ U(0., 2000), θ5 ∈ U(0., 0.5), θ6 ∈ U(0, 0.05), θ7 ∈ U(0., 0.5), θ8 ∈ U(0, 0.05).552

For inference, we trained a shared inference network in a single round of 106
simulations generated by sampling553

from the prior (θ ∈ R8, x ∈ R55
). The density estimator is a masked autoregressive flow (MAF) [40] with five MADES554

with [250,250] hidden units each.555

We evaluated performance on 350 non-inactivating potassium ion channels selected from IonChannelGenealogy556

(ICG) by calculating the correlation coefficient between traces generated by the original model and traces from the557

Omnimodel using the posterior mode.558

Single-compartment Hodgkin–Huxley neurons559

We simulated a single-compartment Hodgkin–Huxley type neuron with channel kinetics as in [65],

Cm
dV

dt
= gl(El − V ) + ḡNam

3h(ENa − V ) + ḡKn
4(EK − V ) + ḡMp(EK − V ) + Iinj + ση(t)

dq

dt
=

q∞(V )− q

τq(V )
, q ∈ {m, h, n, p},
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where V is the membrane potential, Cm is the membrane capacitance, gl is the leak conductance, El is the membrane560

reversal potential, ḡc is the density of channels of type c (Na
+
, K

+
, M), Ec is the reversal potential of c , (m, h, n, p) are the561

respective channel gating kinetic variables, and ση(t) is the intrinsic neural noise. The right hand side of the voltage562

dynamics is composed of a leak current, a voltage-dependent Na
+
current, a delayed-rectifier K

+
current, a slow563

voltage-dependent K
+
current responsible for spike-frequency adaptation, and an injected current Iinj. Channel gating564

variables q have dynamics fully characterized by the neuron membrane potential V , given the respective steady-state565

q∞(V ) and time constant τq(V ) (details in [65]). Two additional parameters are implicit in the functions q∞(V ) and566

τq(V ): VT adjusts the spike threshold through m∞, h∞, n∞, τm, τh and τn; τmax scales the time constant of adaptation567

through τp(V ) (details in [65]). We set ENa = 53mV and EK = −107mV, similar to the values used for simulations in568

Allen Cell Types Database (http://help.brain-map.org/download/attachments/8323525/BiophysModelPeri.pdf).569

We applied SNPE to infer the posterior over 8 parameters (ḡNa, ḡK, gl, ḡM, τmax, VT , σ, El), given 7 voltage features570

(number of spikes, mean resting potential, standard deviation of the resting potential, and the first 4 voltage moments,571

mean, standard deviation, skewness and kurtosis).572

The prior distribution over the parameters was uniform,

θ ∼ U
(
plow, phigh

)
,

where plow = [0.5, 10−4, 10−4, 10−4, 50, 40, 10−4, 35] and phigh = [80, 15, 0.6, 0.6, 3000, 90, 0.15, 100]. These ranges are573

similar to the ones obtained in [65].574

For inference in simulated data, we used a single round of 100000 simulations (θ ∈ R8, x ∈ R11
). The density575

estimator was a masked autoregressive flow (MAF) [40] with five MADES with [50,50] hidden units each.576

For the inference on in vitro recordings from mouse cortex (Allen Cell Types Database, https://celltypes.brain-map.577

org/data), we selected 8 recordings corresponding to spiny neurons with at least 10 spikes during the current-578

clamp stimulation. The respective cell identities and sweeps are: (518290966,57), (509881736,39), (566517779,46),579

(567399060,38), (569469018,44), (532571720,42), (555060623,34), (534524026,29). For each recording, SNPE-B was run580

for 2 rounds with 125000 Hodgkin–Huxley simulations each, and the posterior was approximated by a mixture of two581

Gaussians. In this case, the density estimator was composed of two fully connected layers of 100 units each.582

Comparison with genetic algorithm583

We compared SNPE posterior with a state-of-the-art genetic algorithm (Indicator Based Evolutionary Algorithm IBEA,

[70, 71] from the BluePyOpt package [31]), in the context of the Hodgkin-Huxley model with 8 parameters and 7

features (Supplementary Fig. 9). For each Hodgkin-Huxley model simulation i and summary feature j , we used the

following objective score:

εij =

∣∣∣∣xij − xoj
σj

∣∣∣∣ , j = 1, ..., 7,

where xij is the value of summary feature j for simulation i , xoj is the observed summary feature j , and σj is the584

standard deviation of the summary feature j computed across 1000 previously simulated datasets. IBEA outputs the585

hall-of-fame, which corresponds to the 10 parameter sets with the lowest sum of objectives
∑7

j εij . We ran IBEA with586

100 generations and an offspring size of 1000 individuals, corresponding to a total of 100000 simulations.587

Circuit model of the crustacean stomatogastric ganglion588

We used extracellular nerve recordings made from the stomatogastric motor neurons that principally comprise the589

triphasic pyloric rhythm in the crab Cancer borealis [74]. The preparations were decentralized, i.e. the axons of the590

descending modulatory inputs were severed. The data was recorded at a temperature of 11
◦
C. See [74] for full591

experimental details.592

We simulated the circuit model of the crustacean stomatogastric ganglion by adapting a model described in [7].

The model is composed of three single-compartment neurons, AB/PD, LP, and PD, where the electrically coupled AB

and PD neurons are modeled as a single neuron. Each of the model neurons contains 8 currents, a Na+ current INa,

a fast and a slow transient Ca
2+
current ICaT and ICaS, a transient K

+
current IA, a Ca

2+
-dependent K

+
current IKCa, a

delayed rectifier K
+
current IKd, a hyperpolarization-activated inward current IH, and a leak current Ileak. In addition, the

model contains 7 synapses. As in [7], these synapses were simulated using a standard model of synaptic dynamics

[138]. The synaptic input current into the neurons is given by Is = gss(Vpost − Es), where gs is the maximal synapse

19 of 39

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 7, 2020. ; https://doi.org/10.1101/838383doi: bioRxiv preprint 

http://help.brain-map.org/download/attachments/8323525/BiophysModelPeri.pdf
https://celltypes.brain-map.org/data
https://celltypes.brain-map.org/data
https://celltypes.brain-map.org/data
https://doi.org/10.1101/838383


conductance, Vpost the membrane potential of the postsynaptic neuron, and Es the reversal potential of the synapse.

The evolution of the activation variable s is given by

ds

dt
=

s(Vpre)− s

τs

with

s(Vpre) =
1

1 + exp((Vth − Vpre)/δ)
and τs =

1− s(Vpre)

k−
.

Here, Vpre is the membrane potential of the presynaptic neuron, Vth is the half-activation voltage of the synapse, δ sets593

the slope of the activation curve, and k− is the rate constant for transmitter-receptor dissociation rate.594

As in [7], two types of synapses were modeled since AB, LP, and PY are glutamatergic neurons whereas PD is595

cholinergic. We set Es = −70mV and k− = 1/40ms for all glutamatergic synapses and Es = −80mV and k− = 1/100596

ms for all cholinergic synapses. For both synapse types, we set Vth = −35mV and δ = 5mV.597

For each set of membrane and synaptic conductances, we numerically simulated the rhythm for 10 seconds with598

a step size of 0.025ms. To make the model stochastic, at each time step, we added Gaussian noise with a standard599

deviation of 0.001mV to the input of each neuron.600

We applied SNPE to infer the posterior over 24 membrane parameters and 7 synaptic parameters, i.e. 31 pa-601

rameters in total. The 7 synaptic parameters were the maximal conductances gs of all synapses in the circuit,602

each of which is varied uniformly in logarithmic domain from 0.01 nS to 1000 nS, with an exception of the synapse603

from AB to LP, which is varied uniformly in logarithmic domain from 0.01 nS to 10000 nS. The membrane param-604

eters were the maximal membrane conductances for each of the neurons. The membrane conductances were605

varied over an extended range of previously reported values [7], which led us to the uniform prior bounds plow =606

[0, 0, 0, 0, 0, 25, 0, 0]mS cm−2
and phigh = [500, 7.5, 8, 60, 15, 150, 0.2, 0.01]mS cm−2

for the maximal membrane conduc-607

tances of the AB neuron, plow = [0, 0, 2, 10, 0, 0, 0, 0.01]mS cm−2
and phigh = [200, 2.5, 12, 60, 10, 125, 0.06, 0.04]mS cm−2

608

for the maximal membrane conductances of the LP neuron, and plow = [0, 0, 0, 30, 0, 50, 0, 0]mS cm−2
and phigh =609

[600, 12.5, 4, 60, 5, 150, 0.06, 0.04]mS cm−2
for the maximal membrane conductances of the PY neuron. The order of610

the membrane currents was: [Na, CaT, CaS, A, KCa, Kd, H, leak].611

We used the 15 summary features proposed by [7], and extended them by 3 additional features. The features612

proposed by [7] are 15 salient features of the pyloric rhythm, namely: cycle period T (s), AB/PD burst duration dbAB (s),613

LP burst duration dbLP (s), PY burst duration dbPY (s), gap AB/PD end to LP start ∆tesAB-LP (s), gap LP end to PY start ∆tesLP-PY614

(s), delay AB/PD start to LP start ∆tssAB-LP (s), delay LP start to PY start ∆tssLP-PY (s), AB/PD duty cycle dAB, LP duty cycle dLP,615

PY duty cycle dPY, phase gap AB/PD end to LP start ∆φAB-LP, phase gap LP end to PY start ∆φLP-PY, LP start phase φLP,616

and PY start phase φPY. Note that several of these values are only defined if each neuron produces rhythmic bursting617

behavior. In addition, for each of the three neurons, we used one feature that describes the maximal duration of its618

voltage being above −30mV. We did this as we observed plateaus at around −10mV during the onset of bursts, and619

wanted to distinguish such activity traces from others. If the maximal duration was below 5ms, we set this feature to 5620

ms. To extract the summary features from the observed experimental data, we first found spikes by searching for621

local maxima above a hand-picked voltage threshold, and then extracted the 15 above described features. We set the622

additional 3 features to 5ms.623

We used SNPE to infer the posterior distribution over the 18 summary features from experimental data. For624

inference, we used a single round with 18.5 million samples, out of which 174,000 samples contain bursts in all625

neurons. We therefore used these 174,000 samples with well defined summary features for training the inference626

network (θ ∈ R31, x ∈ R18
). The density estimator was a masked autoregressive flow (MAF) [40] with five MADES with627

[200,400] hidden units each. The synaptic conductances were transformed into logarithmic space before training and628

for the entire analysis.629

Previous approaches for fitting the STG circuit [7] first fit individual neuron features and reduce the number of630

possible neuron models [25], and then fit the whole circuit model. While powerful, this approach both requires the631

availability of single-neuron data, and cannot give access to potential compensation mechanisms between single-632

neuron and synaptic parameters. Unlike [7], we apply SNPE to directly identify the full 31 dimensional parameter space633

without requiring experimental measurements of each individual neuron in the circuit. Despite the high-dimensional634

parameter space, SNPE can identify the posterior distribution using 18 million samples, whereas a direct application635
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of a full-grid method would require 4.65 · 1021
samples to fill the 31 dimensional parameter space on a grid with five636

values per dimension.637

Finding paths in the posterior638

In order to find directions of robust network output, we searched for a path of high posterior probability. First, as in639

[7], we aimed to find 2 similar model outputs with disparate parameters. To do so, we sampled from the posterior and640

searched for 2 parameter sets whose summary features were within 0.1 standard deviations of all 174,000 samples641

from the observed experimental data, but that had strongly disparate parameters from each other. In the following,642

we denote the obtained parameter sets by θs and θg .643

Second, in order to identify whether network output can be maintained along a continuous path between these 2644

samples, we searched for a connection in parameter space lying in regions of high posterior probability. To do so, we645

considered the connection between the samples as a path and minimize the following path integral:646

L(γ) =

∫ 1

0

− log(pθ|x(γ(s))|xo) ‖γ̇(s)‖ ds. (2)

To minimize this term, we parameterized the path γ(s) using sinusoidal basis-functions with coefficients αn,k :

γ(s) =


∑K

k=1 α1,k · sin(πks)
.
.
.∑K

k=1 αN,k · sin(πks)

+


∑2K

k=K+1 α1,k · sin2(πks)
.
.
.∑2K

k=K+1 αN,k · sin2(πks)

+ (1− s) · θs + sθg

These basis functions are defined such that, for any coefficients αn,k , the starting and end points of the path are exactly

the two parameter sets defined above:

γ(0) = θs γ(1) = θg

With this formulation, we have framed the problem of finding the path as an unconstrained optimization problem over647

the parameters αn,k . We can therefore minimize the path integral L using gradient descent over αn,k . For numerical648

simulations, we approximated the integral in equation 2 as a sum over 80 points along the path and use 2 basis649

functions for each of the 31 dimensions, i.e. K = 2.650

In order to demonstrate the sensitivity of the pyloric network, we aimed to find a path along which the circuit

output quickly breaks down. For this, we picked a starting point along the high-probability path and then minimize

the posterior probability. In addition, we enforced that the orthogonal path lies within an orthogonal disk to the

high-probability path, leading to the following constrained optimization problem:

min
θ

log(p(θ|x)) s.t. nT∆θ = 0

where n is the tangent vector along the path of high probability. This optimization problem can be solved using the

gradient projection method [139]:

∆θ = − P(∇ log(p(θ|x)))√
(∇ log(p(θ|x)))TP(∇ log(p(θ|x)))

with projection matrix P = 1 − 1
nT n

nnT
and 1 indicating the identity matrix. Each gradient update is a step along651

the orthogonal path. We let the optimization run until the distance along the path is 1/27 of the distance along the652

high-probability path.653

Identifying conditional correlations654

In order to investigate compensation mechanisms in the STG, we compared marginal and conditional correlations.655

For the marginal correlation matrix in Fig. 6b, we calculated the Pearson correlation coefficient based on 1.26million656

samples from the posterior distribution p(θ|x). To find the 2-dimensional conditional distribution for any pair of657

parameters, we fixed all other parameters to values taken from an arbitrary posterior sample, and varied the remaining658

2 on an evenly spaced grid with 50 points along each dimension, covering the entire prior space. We evaluated the659

posterior distribution at every value on this grid. We then calculated the conditional correlation as the Pearson660

correlation coefficient over this distribution. For the 1-dimensional conditional distribution, we varied only 1 parameter661

and kept all others fixed. Lastly, in Fig. 6d, we sampled 500 parameter sets from the posterior, computed the respective662

conditional posteriors and conditional correlation matrices, and took the average over the conditional correlation663

matrices.664
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Supplementary material938

Supplementary figures939

940

Supplementary Figure 1. Comparison between SNPE-estimated posterior and reference posterior (obtained via

MCMC) on LN model. (a) Posterior mean ± one standard deviation of temporal filter (receptive field) from SNPE posterior
(SNPE, blue) and reference posterior (MCMC, yellow). (b) Full covariance matrices from SNPE posterior (left) and reference

(MCMC, right).
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Supplementary Figure 2. Full posterior for LN model. In green, ground-truth parameters. Marginals (blue lines) and 2D

marginals for SNPE (contour lines correspond to 95% of the mass) and MCMC (yellow histograms).
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950

Supplementary Figure 3. SMC-ABC posterior estimate for Gabor GLM receptive field model. (a) Spike-triggered

averages (STAs) and spike counts with closest distance d(xo , xi ) to the observed data xo out of 10000 simulations with θi
sampled from the prior. Spike counts are comparable to the observed data (xo : 299 spikes), but receptive fields (contours)

are not well constrained. (b) Results for SMC-ABC with 106 simulations total. Histograms of 1000 particles (orange) returned

in the final iteration of SMC-ABC, compared to prior (red contour lines) and ground-truth parameters (green). Distributions

over (log-/logit-)transformed parameters, axis limits scaled to mean ± 3 standard deviations of the prior. (c) Correlations
between ground-truth receptive field and receptive fields sampled from SMC-ABC posterior (orange), SNPE posterior (blue),

reference MCMC posterior (yellow) and prior (red). The SNPE-estimated receptive fields are almost as good as those of the

reference posterior, the SMC-ABC estimated ones no better than the prior.
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Supplementary Figure 4. Full posterior for Gabor GLM receptive field model. SNPE posterior estimate (blue lines)

compared to reference posterior (MCMC, histograms). Ground-truth parameters used to simulate the data in green. We

depict the distributions over the original receptive field parameters, whereas we estimate the posterior as a Gaussian

mixture over transformed parameters, see Methods for details. We find that a (back-transformed) Gaussian mixture with

four components approximates the posterior well in this case.
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Supplementary Figure 5. Full posterior for Gabor LN receptive field model on V1 recordings. We depict the

distributions over the receptive field parameters, derived from the Gaussian mixture over transformed-parameters (see

Methods for details).
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973

Supplementary Figure 6. Summary results on ICG channel models, and comparison with direct fits. We generate

predictions either with the posterior mode (blue) or with parameters obtained by directly fitting steady-state activation and

time-constant curves (yellow). We calculate the correlation coefficient (CC) between observation and prediction. The

distribution of CCs is similar for both approaches.
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Supplementary Figure 7. Full posteriors for Hodgkin-Huxley model for 1, 4 and 7 features. Images show the pairwise

marginals for 7 features. Each contour line corresponds to 68% density mass for a different inferred posterior. Light blue

corresponds to 1 feature and dark blue to 7 features.
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Supplementary Figure 8. Full posteriors for Hodgkin-Huxley model on 8 different recordings from Allen Cell Type

Database. Images show the pairwise marginals for 7 features. Each contour line corresponds to 68% density mass for a

different inferred posterior.
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989

Supplementary Figure 9. Comparison between SNPE posterior and IBEA samples for Hodgkin-Huxley model with 8

parameters and 7 features. (a) Full SNPE posterior distribution. Ground truth parameters in green and IBEA 10 parameters

with highest fitness (‘hall-of-fame’) in orange. (b) Blue contour line corresponds to 68% density mass for SNPE posterior. Light

orange corresponds to IBEA sampled parameters with lowest IBEA fitness and dark orange to IBEA sampled parameters with

highest IBEA fitness. This plot shows that, in general, SNPE and IBEA can return very different answers– this is not surprising,

as both algorithms have different objectives, but this highlights that genetic algorithms do not in general perform statistical

inference. (c) Traces for samples with high probability under SNPE posterior (purple), and for samples with high fitness under

IBEA objective (hall-of-fame; orange traces). (d) Features for the desired output (observation), the mode of the inferred

posterior (purple) and the best sample under IBEA objective (orange). Each voltage feature is normalized by σf PRIOR, the

standard deviation of the respective feature of simulations sampled from the prior.
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1001

Supplementary Figure 10. Full posterior for the stomatogastric ganglion over 24 membrane and 7 synaptic

conductances. The first 24 dimensions depict membrane conductances (top left), the last 7 depict synaptic conductances

(bottom right). All synaptic conductances are logarithmically spaced. Between two samples from the posterior with high

posterior probability (purple dots), there is a path of high posterior probability (white).
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1007

Supplementary Figure 11. Identifying directions of sloppiness and stiffness in the pyloric network of the

crustacean stomatogastric ganglion. (a) Minimal and maximal values of all summary statistics along the path lying in

regions of high posterior probability, sampled at 20 evenly spaced points. Summary statistics change only little. The

summary statistics are scaled with the standard deviation of the 170,000 bursting samples in the created dataset. (b)

Summary statistics sampled at 20 evenly spaced points along the orthogonal path. The summary statistics show stronger

changes than in panel a and, in particular, often could not be defined because neurons bursted irregularly, as indicated by an

‘x’ above barplots. (c) Minimal and maximal values of the circuit parameters along the path lying in regions of high posterior

probability. Both membrane conductances (left) and synaptic conductances (right) vary over large ranges. Axes as in panel

(d). (d) Circuit parameters along the orthogonal path. The difference between the minimal and maximal value is much

smaller than in panel (c).
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Supplementary Figure 12. Evaluating circuit configurations in which parameters have been sampled

independently (a) Factorized posterior, i.e. posterior obtained by sampling each parameter independently from the

associated marginals. Many of the pairwise marginals look similar to the full posterior shown in Supplementary Fig. 10, as

the posterior correlations are low. (b) Samples from the factorized posterior– only a minority of these samples produce

pyloric activity, highlighting the significance of the posterior correlations between parameters. (c) Left: summary features for

500 samples from the posterior. Boxplot for samples where all summary features are well-defined (80 % of all samples).

Right: summary features for 500 samples from the factorized posterior. Only 23 % of these samples have well-defined

summary features. The summary features from the factorized posterior have higher variation than the posterior ones.

Summary features are normalized using the mean and standard deviation of all samples in our training dataset obtained

from prior samples. The boxplots indicate the maximum, 75% quantile, median, 25% quantile, and minimum. The green ‘x’

indicates the value of the experimental data (the observation, shown in figure 5B).
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