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Abstract 27 

Selecting goals and successfully pursuing them in an uncertain and dynamic environment is an 28 
important aspect of human behaviour. In order to decide which goal to pursue at what point in time, 29 
one has to evaluate the consequences of one’s actions over future time steps by forward planning. 30 
However, when the goal is still temporally distant, detailed forward planning can be prohibitively 31 
costly. One way to select actions at minimal computational costs is to use heuristics. It is an open 32 
question how humans mix heuristics with forward planning to balance computational costs with goal 33 
reaching performance. To test a hypothesis about dynamic mixing of heuristics with forward 34 
planning, we used a novel stochastic sequential two-goal task. Comparing participants’ decisions 35 
with an optimal full planning agent, we found that at the early stages of goal-reaching sequences, in 36 
which both goals are temporally distant and planning complexity is high, on average 42% (SD = 37 

19%) of participants’ choices deviated from the agent’s optimal choices. Only towards the end of the 38 
sequence, participant’s behaviour converged to near optimal performance. Subsequent model-based 39 
analyses showed that participants used heuristic preferences when the goal was temporally distant 40 
and switched to forward planning when the goal was close. 41 

Author summary 42 

When we pursue our goals, there is often a moment when we recognize that we did not make the 43 
progress that we hoped for. What should we do now? Persevere to achieve the original goal, or 44 
switch to another goal? Two features of real-world goal pursuit make these decisions particularly 45 
complex. First, goals can lie far into an unpredictable future and second, there are many potential 46 

goals to pursue. When potential goals are temporally distant, human decision makers cannot use an 47 
exhaustive planning strategy, rendering simpler rules of thumb more appropriate. An important 48 
question is how humans adjust the rule of thumb approach once they get closer to the goal. We 49 
addressed this question using a novel sequential two-goal task and analysed the choice data using a 50 
computational model which arbitrates between a rule of thumb and accurate planning. We found that 51 
participants’ decision making progressively improved as the goal came closer and that this 52 
improvement was most likely caused by participants starting to plan ahead.  53 

Introduction 54 

Decisions of which goal to pursue at what point in time are central to everyday life [1-3]. Typically, 55 
in our dynamic environment, the outcomes of our decisions are stochastic and one cannot predict 56 
with certainty whether a  preferred goal can be reached. Often, our environment also presents 57 
alternative goals that may be less preferred but can be reached with a higher probability than the 58 
preferred goal. For example, when working towards a specific dream position in a career, it may turn 59 

out after some time that the position is unlikely to be obtained, while another less preferred position 60 
can be secured. The decision to make is whether one should continue working towards the preferred 61 
position, or switch goals and secure the less preferred position. The risk when pursuing the preferred 62 
position is to lose out on both positions. This decision dilemma ‘should I risk it and go after a big 63 
reward or play it safe and gain less?’ is typical for many decisions we have to make in real life. 64 

Critically, for many such decisions, these binary choices do not emerge suddenly and unexpectedly, 65 

but the decision maker is typically confronted with such decisions after some prolonged period of 66 

time working towards enabling different options. 67 

How would one choose one’s actions during such a prolonged goal-reaching decision making 68 
sequence? One way, if the rules of the dynamic environment and its uncertainties are known, is to use 69 
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forward planning to always choose the actions which maximize the gain (see [4, 5] reviewing 70 

cognitive processes of forward planning). This would be the way one would program an optimal 71 
agent in a game or experimental task environment. This approach is often used in cognitive 72 
neuroscience to model the mechanism of how humans make decisions in temporally extended goal-73 
reaching scenarios, (e.g. [6-9]). 74 

However, the implicit assumption made in these decision-making models, namely that humans use 75 
detailed forward planning and compute the probabilities of reaching the goals, is difficult to justify, 76 
because of the involved computational complexity. In a stochastic environment, forward planning in 77 
artificial agents is typically achieved via sampling many possible policies (sequences of actions) 78 
which requires substantial computing power that scales exponentially with the number of future 79 
actions. In particular, when one is still temporally far from the goal, the computational burden of 80 

simulating trajectories into the future is the largest, while the usefulness of the resulting action 81 
selection is minimal: intuitively, in stochastic and sufficiently complex environments, anything may 82 
yet happen on the long way to the goal so the gain of planning ahead at high cost may be small. The 83 
importance of the balance between the benefits and its costs to better understand human decision 84 
making became a recent research focus, e.g., [10-14]. The question is how one can select actions over 85 
long stretches of time, without being exposed to the computational burden of forward planning or 86 
similar dynamic programming schemes.  87 

One obvious way to select actions at minimal computational costs is to use heuristics that do not 88 
require forward planning towards a goal [15, 16], e.g. to always select the action towards a hard to 89 
achieve and highly rewarded goal. Clearly, this and other heuristics come with the drawback that they 90 

can be substantially suboptimal when close to the goal. For example, blindly working toward a hard 91 
to achieve goal would ignore the risk of not reaching any goal. Another solution is to use habit-like 92 
strategies to avoid computational costs [17]. However, habits are typically useful only when one 93 
encounters exactly the same situation or context repeatedly, while goal reaching in uncertain 94 
environments as presented here, often requires flexible behavioural control. 95 

It is an open question how humans select their actions when the potentially reachable goals are still 96 
far away and forward planning is complex. We hypothesized that people use a mixture of two 97 
approaches to achieve an acceptable balance between outcome and computational costs. This mixture 98 
changes with temporal distance to the goal: when far from the goal, people use a prior goal 99 
preference to make their decision about which action to take. With this approach, one assumes that 100 

one will eventually reach the preferred goal and selects the action that, if one looked backward in 101 

time from the reached goal, is the most instrumental. When coming closer to the goal, one expects 102 
that the influence of the goal preference should be progressively superseded by computationally more 103 
expensive action selection using forward planning to optimally reach the preferred goal or, failing 104 

that one, to pursue policies to reach an alternative goal.  105 

To test whether participants used such an approach, we employed a novel behavioural task where 106 
participants were placed in a dynamic and stochastic sequential decision task environment that 107 
emulated reaching goals over an extended time period. In miniblocks of 15 trials, participants had to 108 
make decisions to reach one or two goals, where reaching both goals was rewarded more than 109 

reaching only one. In each miniblock, it was also possible, if blindly trying to obtain the higher 110 

reward, to not reach any goal and not obtain any reward. While participants pass through the 111 

miniblock, both the remaining trials to the end of the miniblock and the complexity of forward 112 
planning decrease. This enables us to test and model whether participants switch from using 113 
heuristics to forward planning during goal-reaching. To analyse the behavioural data of 89 114 
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participants and test hypotheses, we used stochastic variational inference, which provided posterior 115 

beliefs about the goal strategy preference of each participant, among other free model parameters. 116 
We show that the heuristic goal strategy preference parameter is key to explain participants’ choices 117 
when temporally distant from the goal, and how, when progressing towards a goal, this goal strategy 118 
preference interacts with optimal forward planning to achieve near-optimal performance.  119 

Methods 120 

Participants 121 

Eighty-nine participants took part in the experiment (58 women, mean age = 24.8, SD = 7.1). 122 
Reimbursement was a fixed amount of 8€ or class credit plus a performance-dependent bonus (mean 123 

bonus = 3.88€, SD = 13.6).  The study was approved by the Institutional Review Board of the 124 
Technische Universität Dresden and conducted in accordance to ethical standards of the Declaration 125 
of Helsinki. All participants were informed about the purpose and the procedure of the study and 126 
gave written informed consent prior to the experiment. All participants had normal or corrected-to-127 
normal vision. 128 

Table 1. Glossary of abbreviations 129 

Abbreviation Explanation  

A, B Basic offers 

Ab, aB Mixed offers 

𝑃𝑡𝑠𝑡
𝐴 A-points in trial t 

𝑃𝑡𝑠𝑡
𝐵 B-points in trial t 

g1 One-goal-choice = Sequential strategy choice = Choice that maximizes 

point difference   

g2 Two-goal-choice = Parallel strategy choice = Choice that minimizes point 

difference 

G1 One-goal-success = One point scale above threshold after 15 trials 

G2 Two-goal-success = Both scales above threshold after 15 trials 

Q(s,a)  Action value = Expected future reward of a choice 

QG(s,a)

  

Goal choice value = Expected future reward of a goal strategy choice 

DEV Differential expected value = QG (s, g2) - QG (s, g1) 

Experimental Task 130 

The experiment included a training phase of 10 miniblocks, followed by the main experiment 131 
comprising 60 miniblocks. The 60 miniblocks in the main experiment were subdivided into three 132 
sessions of 20 miniblocks between which participants could make a self-determined pause. A 133 

miniblock consisted of 𝑇 = 15 trials in which participants had to accept or reject presented offers to 134 

collect A-points (𝑃𝑡𝑠𝑡
𝐴) and B-points (𝑃𝑡𝑠𝑡

𝐵, see Table 1 for a glossary of abbreviations). If 135 
participants reached the threshold of 10 points for either A- or B-point scale after 15 trials, they 136 

received a reward of 5 cents. If participants reached the threshold for both point scales, they received 137 
a reward of 10 cents. If none of the two thresholds was reached, no additional reward was provided. 138 
In total, each participant completed 150 training trials and 900 trials in the main experiment.   139 
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Each trial started with a response phase lasting until a response was made, but not more than 3 s (Fig 140 

1, A). The current amount of A-points and B-points was visualized by two vertical bars flanking the 141 
stimulus display. Horizontal white lines marked the threshold of 10 points. At the top of the screen, a 142 
grey timeline informed the participants about the remaining trials in the miniblock. The current offer 143 
was displayed at the bottom centre, and the two choice options were presented in the centre of the 144 
screen by the framed words ‘accept’ and ‘wait’. Participants could accept an offer by an upwards 145 
keypress and reject the offer by a downwards keypress. If participants did not respond within 3 s the 146 
trial was aborted, and a message was displayed reminding the participant to pay attention. If 147 
participants missed the response deadline more than 5 times in the whole main experiment, 50 cents 148 
were subtracted from their final payoff (mean number of timeouts = 1.34, SD = 1.7). After the 149 
response phase, feedback was displayed for 1.5 s. Response feedback included a change in colour of 150 
the frame around the selected response from white to green. Additionally, the gain or loss of points 151 

was visualized by colouring the respective area on the bar either green or red. After 15 trials, 152 
feedback for the miniblock was displayed for 4 s informing the participants whether they won 5, 10 153 
or 0 cents. Code for experimental control and stimulus presentation was custom written in Matlab 154 
(MathWorks) with extensions from the Psychophysics toolbox [18]. 155 

Participants were presented with four different offers (A, B, Ab, and aB) that occurred with equal 156 
probability on each trial of the miniblock (see Fig 1, B). We call A or B basic offers and Ab or aB 157 
mixed offers. Accepting basic offers increased the corresponding point count, whereas accepting 158 
mixed offers transferred a single point from one scale to the other. The basic offers introduce a 159 
stochastic base rate of points, which allows participants to accumulate enough points on one or both 160 
point scales. In contrast, mixed offers allow us to identify participants’ intention to reach a state in 161 

which either both point scales are above threshold ( 𝑃𝑡𝑠𝑇
𝐴  ≥  10 and 𝑃𝑡𝑠𝑇

𝐵 ≥ 10) or only one point 162 

scale is above threshold (e.g.  𝑃𝑡𝑠𝑇
𝐴 <  10 and 𝑃𝑡𝑠𝑇

𝐵 ≥ 10;  see below for more details). Rejecting an 163 
offer did not have any effect on the current point count. All participants received the same sequence 164 
of offers. We generated pseudorandomized lists for the training phase and for the three main 165 
experimental phases such that the frequency of offers reflected an equal offer occurrence probability 166 
in every list. We associated each offer with a coloured symbol to facilitate fast recognition.  167 

Three different conditions modulated the difficulty to reach both thresholds by varying the number of 168 
initial points (Fig 1, C). We chose the number of initial points such that an optimal agent’s 169 
probability of reaching both thresholds was 75% in easy, 35% in medium and 7% in hard. The 170 

agent’s goal reaching performance for each initial point configuration was based on 10,000 simulated 171 
miniblocks with uniform offer probability (see below how we define the optimal agent). The same 172 

sequence of start conditions was presented to all participants. Pseudorandomized lists with a balanced 173 
frequency of initial point configurations were generated for the training phase and for the three main 174 
experimental phases. Note that the observed agent behaviour in the results section deviates from what 175 

we expected based on the experimental parametrization process. These discrepancies arise because 176 
we used random offer sequences (offers with equal probability) for experimental parametrization, but 177 
one specific offer sequence for the actual experiment. For example, in some miniblocks there were 178 
only few basic offers (see S1-4 Fig for details about the used offer sequence). 179 
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 180 

Fig 1. Experimental task. (A) Depiction of trial timeline and stimulus features. Participants 181 
performed miniblocks of 15 trials in which they collected points to reach either one or two goals, 182 
rewarding them with additional 5 or 10 Cents. Each trial started with a decision phase (maximum 3s) 183 
in which participants had to accept or reject a presented offer. Depending on the offer, accepting 184 
increased or decreased A- and B-points. The current amount of points was displayed by two grey 185 
bars flanking the stimulus screen. In the feedback phase (1.5s), gained points were displayed as a 186 
green area and lost points as a red area on the bar. The horizontal lines crossing the bars indicated the 187 

threshold for reaching goal A and goal B. After 15 trials, feedback for the miniblock was displayed 188 
(4s) informing the participant about the reward gained. (B) Summary of offer types and their effect 189 
on point count. Offers occurred with equal probability in each trial of the miniblock. Basic offers (A 190 
and B) increased either A or B points. Mixed offers (Ab and aB) added one point on one side but 191 
subtracted one point on the other side. Only accepting an offer had an effect on points. (C) Three 192 
different conditions modulated the difficulty to reach both thresholds by varying the number of initial 193 
points. Using an optimal agent, we chose the number of initial points, such that the agent’s 194 
probability of reaching both thresholds (G2-success) was 75% in easy, 35% in medium and 7% in 195 
hard. 196 

Choice classification  197 

In order to maximize reward, it was key for the participants to decide whether they should pursue the 198 

A- and B-goal in a sequential or in a parallel manner. A parallel strategy, i.e. balancing the two point 199 
scales, increases the likelihood that both goals (G2, see Table 1) will be reached at the end of the 200 
miniblock, but at the risk of failing. A sequential strategy, i.e. first secure one goal, then focus on the 201 
second one, might increase the likelihood to reach at least one goal (G1) within 15 trials, but 202 
decreases the likelihood to achieve G2.     203 

To obtain a trial-wise measure of the pursued goal strategy, choices were classified based on the 204 
current point difference and the offer. Choices that minimized the difference between points were 205 

classified as two-goal-choice (𝑎𝑡  =  𝑔2), reflecting the intention to fill both bars using a parallel 206 

strategy. Choices that maximized the difference between points were classified as one-goal-choice 207 

(𝑎𝑡 = 𝑔1), reflecting the intention to pursue G1, or the intention to maintain one bar above threshold 208 
if G1-success has already been attained (see S1 Table). For example, if a participant has 8 A-points 209 
and 6 B-points and the current offer is Ab, accepting would be a g1-choice, whereas waiting would 210 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2019. ; https://doi.org/10.1101/838425doi: bioRxiv preprint 

https://doi.org/10.1101/838425
http://creativecommons.org/licenses/by/4.0/


 

 
7 

be a g2-choice. Conversely, for an aB offer, accepting would be a g2-choice and waiting a g1-choice. 211 

If the difference between points (𝑃𝑡𝑠𝑡
𝐴 – 𝑃𝑡𝑠𝑡

𝐵) is 1 and the offer is aB, g-choice is not defined 212 
because the absolute point difference would not be changed. This also applies to the mirrored case, 213 

where the difference between points (𝑃𝑡𝑠𝑡
𝐴 – 𝑃𝑡𝑠𝑡

𝐵) is -1 and the offer is Ab. Note that, due to the 214 
experimental design, response (accept/wait) and g-choice (g2/g1) were weakly correlated (r = 0.21). 215 
Furthermore, g-choice classification is only defined for the mixed offers (Ab and aB). The basic 216 
offers (A and B) are not informative with respect to the participants’ pursued goal strategy. 217 
Importantly, all trial-level analysis will be restricted to trials which can be related to g-choices. 218 

Task model 219 

Here we will formulate the task in an explicit mathematical form, which will help us  clarify what 220 

implicit assumptions we make in the behavioural model [19]. We define a miniblock of the two-goal 221 
task as a tuple 222 

(𝑇, 𝑆, 𝑂, 𝑅, 𝐴, 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑜𝑡 , 𝑎𝑡), 𝑝(𝑜𝑡), 𝑝(𝑟𝑡|𝑠𝑡)) (1) 

where 223 

 𝑇 =  15 denotes the number of trials in a miniblock, hence 𝑡 = 1, … , 15. 224 

 𝑆 = {0, … , 20}2 denotes the set of task states, corresponding to the point scale of the two 225 

point types (A, and B). Hence, a state 𝑠𝑡 in trial 𝑡 is defined as a tuple consisting of point 226 

counts along the two scales, 𝑠𝑡 = (𝑃𝑡𝑠𝑡
𝐴, 𝑃𝑡𝑠𝑡

𝐵). 227 

 𝑂 = {𝐴, 𝐵, 𝐴𝑏, 𝐵𝑎} denotes the set of four offer types, where the upper case letters denote an 228 
increase in points of a specific type and the lower case letters subtraction of points. 229 

 𝑅 = {𝑅0, 𝑅𝐿 , 𝑅𝐻} = (0, 5, 10) denotes the set of rewards. 230 

 𝐴 = {0, 1} denotes the set of choices, where 0 corresponds to rejecting an offer and 1 to 231 
accepting an offer. 232 

 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑜𝑡, 𝑎𝑡) denotes state transitions which are implemented in a deterministic manner 233 

as 𝑠𝑡+1 = 𝑠𝑡 + 𝑎𝑡 ∗ 𝑚(𝑜𝑡), where 𝑚(𝑜𝑡) maps offer types into the point changes on the two 234 
point scales. 235 

 𝑝(𝑜𝑡 = 𝑖) =
1

4
 (for ∀ 𝑖 ∈ 𝑂) denotes a uniform distribution from which the offers are 236 

sampled. 237 

 𝑝(𝑟𝑡|𝑠𝑡) denotes the state and trial dependent reward distribution defined as 238 

𝑝(𝑟𝑡 = 𝑅0|𝑠𝑡) = 1, for ∀𝑡 < 𝑇 
𝑝(𝑟𝑇 = 𝑅𝐿|𝑃𝑡𝑠𝑇

𝐴 ≥ 10 ⊕  𝑃𝑡𝑠𝑇
𝐵 ≥ 10) = 1 

𝑝(𝑟𝑇 = 𝑅𝐻|𝑃𝑡𝑠𝑇
𝐴 ≥ 10 ∧  𝑃𝑡𝑠𝑇

𝐵 ≥ 10) = 1 
Note that in the experiment the participants are exposed to a pseudo-random sequence of offers, 239 
meaning that within one experimental block all participants observed the same sequence of offers 240 
pre-sampled from this uniform distribution (see S1-4 Fig. for additional information about the used 241 

offer sequence). For simulations and parameter estimates we use the same pseudo-random sequence 242 

of observations, hence in each trial 𝑡 of a specific block 𝑏 offers are selected from a predefined 243 

sequence 𝑜1:𝑇
1:𝐵 = (𝑜1

1, … , 𝑜𝑇
1 , … , 𝑜1

𝐵, … , 𝑜𝑇
𝐵), initially generated from a uniform distribution.   244 

Behavioural model 245 
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To build a behavioural model, we assume that participants have learned the task representation 246 

through the training session and initial instruction. Hence, the behavioural model is represented by 247 
the following tuple  248 

(𝑇, 𝑆, 𝑂, 𝑅𝜅 , 𝐴, 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑜𝑡, 𝑎𝑡), 𝑝(𝑜𝑡), 𝑝(𝑟𝑡|𝑠𝑡)) (2) 

where 249 

 𝑇, 𝑆, 𝑂, 𝐴, 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑜𝑡, 𝑎𝑡), 𝑝(𝑜𝑡), 𝑝(𝑟𝑡|𝑠𝑡) are defined the same way as in the task model. 250 

 𝑅𝜅 = {0, 5, 10 ⋅ 𝜅} denotes an agent-specific valuation of the rewarding states. Although the 251 
instructions for the experimental task clearly explained that participants receive a specific 252 

monetary reward depending on the final state reached during a miniblock, we considered a 253 
potential biased estimate of the ratio between G2 and G1 monetary rewards, quantified with 254 

the free model parameter 𝜅 ∈ [0, 2]. In other words, we assumed that the participants might 255 
overestimate or underestimate the value of a G2-success, relative to a G1-success.  256 

Importantly, the process of action selection corresponds to following a behavioural policy that 257 
maximises expected value during a single miniblock. We classified as G2-success miniblocks in 258 

which both point scales were above threshold after the final trial ( 𝑃𝑡𝑠𝑇
𝐴  ≥  10 and 𝑃𝑡𝑠𝑇

𝐵 ≥ 10). We 259 

classified as G1-success miniblocks in which only one point scale was above threshold (e.g.  𝑃𝑡𝑠𝑇
𝐴 <260 

 10 or 𝑃𝑡𝑠𝑇
𝐵 ≥ 10).  261 

In what follows we derive the process of estimating choice values and subsequent choices based on 262 

dynamic programming applied to a finite horizon Markov decision process ([20]; for experimental 263 
studies see also [9, 21]).  264 

Forward Planning  265 

We start with a typical assumption used in reinforcement learning, namely that participants choose 266 

actions with the goal to maximize future reward.  Starting from some state 𝑠𝑡  at trial 𝑡, offer 𝑜𝑡, and 267 

following a behavioural policy 𝜋 we define an expected future reward as 268 

𝑉[𝑠𝑡, 𝑜𝑡|𝜋] =  ∑ 𝛾𝑘−𝑡−1𝐸[𝑟𝑘|𝑠𝑡, 𝑜𝑡, 𝜋]

𝑇

𝑘=𝑡+1

 (3) 

where 𝛾 denotes a discount rate and 𝐸[𝑟𝑘| 𝑠𝑡, 𝑜𝑡 , 𝜋] denotes expected reward at some future time step 269 

𝑘. The behavioural policy sets the state-action probability 𝜋(𝑎𝑡, … , 𝑎𝑇|𝑠𝑡, … , 𝑠𝑇−1) over the current 270 
and future trials. Hence, we can obtain the expected reward as 271 

𝐸[𝑟𝑘|𝑠𝑡, 𝜋] =  ∑ 𝑟𝑘𝑝(𝑟𝑘|𝑠𝑡, 𝜋)

𝑟𝑘

 (4) 

where 272 
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𝑝(𝑟𝑘|𝑠𝑡, 𝜋) = ∑ ∑ 𝑝(𝑟𝑘|𝑠𝑘) ∏ 𝑝(𝑠𝜏|𝑠𝜏−1, 𝑜𝜏−1, 𝑎𝜏−1)

𝑘

𝜏=𝑡+1

𝑝(𝑜𝜏−1)𝜋(𝑎𝜏−1|𝑠𝜏−1 )

𝑎𝑡:𝑘−1𝑠𝑡+1:𝑘

 (5) 

Note that we use 𝑠𝑡+1:𝑘, and 𝑎𝑡:𝑘−1 to denote a tuple of sequential variables, hence 𝑥𝑚:𝑛 =273 

(𝑥𝑚, … , 𝑥𝑛). The key step in deriving the behavioural model was to find the policy which maximises 274 
the expected future reward, that is, the expected state-offer value. In practice, one obtains the optimal 275 
policy as  276 

𝜋∗ = argmax
𝜋

𝑉[𝑠𝑡, 𝑜𝑡|𝜋] (6) 

We solve the above optimization problem using the backward induction method of dynamic 277 
programming. The backward induction algorithm is defined in the following iterative steps:  278 

(i) set the value of final state 𝑠𝑇 as the reward obtained in that state 𝑉[𝑠𝑇|𝜋∗] =279 

∑ 𝑟𝑇𝑟𝑇∈𝑅_𝜅 𝑝(𝑟𝑇|𝑠𝑇) 280 

(ii) compute state-offer-action value as  𝑄(𝑠𝑘, 𝑜𝑘, 𝑎𝑘) = 𝛾 ∑ 𝑉[𝑠𝑘+1|𝜋∗]𝑝(𝑠𝑘+1|𝑠𝑘, 𝑜𝑘 , 𝑎𝑘)𝑠𝑘+1
 281 

(iii) set optimal choice for given state-offer pair as 𝑎𝑘
∗ =  argmax𝑎 𝑄(𝑠𝑘, 𝑜𝑘, 𝑎) 282 

(iv) define the expected value of state 𝑠𝑘 under optimal policy 𝜋∗ as 283 

𝑉[𝑠𝑘|𝜋∗] = ∑ 𝑄(𝑠𝑘, 𝑜𝑘 , 𝑎𝑘
∗ )𝑝(𝑜𝑘)𝑜𝑘

  284 

(v) repeat steps (ii) – (iv) until 𝑘 = 𝑡 285 

Hence, for a fixed value of the reward ratio (𝜅) an optimal choice at trial 𝑡 corresponds to  286 

𝑎𝑡
∗ = argmax

𝑎
𝑄(𝑠𝑡, 𝑜𝑡, 𝑎) (7) 

We will define the optimal agent as an agent who has a correct representation of the reward ratio 287 

(𝜅 = 1) and does not discount future reward (𝛾 = 1). We illustrate in Fig 2 the Q-value to accept, 288 

estimated for the case of the optimal agent in an example trial (𝑃𝑡𝑠𝑡
𝐴 = 8,  𝑃𝑡𝑠𝑡

𝐵 = 11,  𝑜𝑡 = 𝐴𝑏). 289 
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 290 

Fig 2. Illustration of the state space and associated expected future reward for the optimal 291 

agent (𝜸 = 1, 𝜿 = 1). The black arrow shows a hypothetical transition in the state space. In trial 14 292 
the participant has 9 A-points and 11 B-points (marked by the black cross) and accepts an offer Ab, 293 

gaining one A-point and losing one B-point (g2-choice). In the resulting state, both thresholds are 294 
reached; thus, the value of that state is 10 Cents. Similarly, the action that leads to that state has an 295 
associated Q-value of 10 Cents. In this example the agent would just have to wait in the last trial (15) 296 
to gain a 10 cents reward.  297 

Response likelihood 298 

Participants might compute expected values by mentally simulating and comparing sequences of 299 
actions towards the end of the miniblock. To illustrate the benefits of planning we consider the 300 
following example: There are 3 trials left in the current miniblock, and the participant has 9 A-points 301 
and 9 B-points (10 is threshold), and she receives offer Ab. Planning would, for example, allow to 302 

compute the probabilities for G2 when choosing either wait or accept. By waiting the participant 303 
would enter the second last trial with 9 A-points and 9 B-points.  Receiving offer A or B in the 304 
second last trial (0.5 probability) followed by the complementary offer A or B in the last trial (0.25 305 
probability) would grant G2. When choosing accept, the participant will have in the second last trial 306 

10 A-points and 8 B-points. Consequently, she would need two consecutive B-offers (0.25 *0.25 307 
probability) to achieve G2. Hence, by planning ahead one would conclude that wait gives the highest 308 
probability for a G2-success. 309 

Still, planning an arbitrary number of future steps is complex and unrealistic. Hence, we make an 310 
assumption that the process of optimal action selection described above is perturbed by noise 311 

(planning noise, and response noise) which we quantify in the form of a parameter 𝛽, denoting 312 

response precision. Hence, this precision parameter is critical to characterize the participants’ 313 
reliance on forward planning. Since the difference in expected future rewards of a g1- or g2- choice 314 

is high when the goal is close (S5 Fig), 𝛽 is able to selectively capture g-choice performance at the 315 
end of the miniblock. Furthermore, instead of an elaborate planning process participants might use a 316 

simpler heuristic when deciding which action to select. We capture this heuristic in form of an 317 
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additional offer-state-action function ℎ(𝑜𝑡, 𝑠𝑡, 𝑎𝑡, 𝜃) which evaluates choices relative to possible 318 
goals. We describe this heuristic evaluation below. Overall, we can express the response likelihood 319 

(the probability that a participant makes choice 𝑎𝑡 ) as  320 

𝑝(𝑎𝑡|𝛽, 𝜃, 𝛾, 𝜅) = 𝑠(𝛽𝑄(𝑜𝑡, 𝑠𝑡, 𝑎𝑡, 𝛾, 𝜅) + ℎ(𝑜𝑡, 𝑠𝑡, 𝑎𝑡, 𝜃)) (8) 

where 𝑠(𝑥) denotes the softmax function. 321 

Choice heuristic 322 

The choice heuristic is defined relative to the current offer 𝑜𝑡, current state 𝑠𝑡, and possible choices 323 

𝑎𝑡. Importantly, we will interpret the choice heuristic in terms of participants’ biases towards 324 
approaching both goals in a sequential or parallel manner. Hence, it is more intuitive to define the 325 
choice heuristic as choice biases relative to the goals, and not accept-reject choices. The choice 326 
heuristic is defined as follows  327 

ℎ(𝑜𝑡, 𝑠𝑡, 𝑎𝑡, 𝜃) =  {
∞, 𝑓𝑜𝑟 𝑜𝑡 ∈ {𝐴, 𝐵}, 𝑎𝑛𝑑 𝑎𝑡 = 1

𝜃, 𝑓𝑜𝑟, 𝑜𝑡 ∈ {𝐴𝑏, 𝐵𝑎}, 𝑎𝑛𝑑 𝑎𝑡 ≡ 𝑔2
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (9) 

where 𝑎𝑡 ≡ 𝑔2 denotes choices (accept or reject) which can be classified as g2-choices (see 328 
subsection Choice classification for details). In summary, a choice which reduces the point difference 329 

(𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵), for the given offer and the current state, is classified as g2-choice and choice which 330 

increases the point difference as g1-choice. Essentially, the strategy preference parameter 𝜃 reflects 331 
participants’ preference for pursuing a sequential (negative values) or parallel (positive values) 332 
strategy. For example, some participants might have a general tendency to pursue goals in a parallel 333 

manner, independent of the actual 𝑄-values. Conversely, participants may prefer a more cautious 334 
sequential approach. Note that we expected this parameter to make the most significant contribution 335 
to participants’ deviation from optimal behaviour, reflecting their reliance on decision heuristics early 336 
in the miniblock.  337 

Finally, for those choices which can be classified as g2- or g1-choices, we can express the response 338 

likelihood in a simplified form, in terms of free model parameters 𝛽, 𝜃, 𝛾, 𝜅 (Table 2). We refer to the 339 

difference between Q-values for g-choice as the differential expected value (𝐷𝐸𝑉),  340 

𝐷𝐸𝑉 =  𝑄𝐺(𝑎𝑡 = 𝑔2) − 𝑄𝐺(𝑎𝑡 = 𝑔1) (10) 

Using 𝐷𝐸𝑉, we defined the probability of making a g2-choice as  341 

𝑝(𝑔2) = 𝜎(𝛽 ∙ 𝐷𝐸𝑉(𝛾, 𝜅) + 𝜃) (11) 

where 𝜎(𝑥) =
1

1+𝑒−𝑥  denotes the logistic function. Note that the probability of g1-choice becomes 342 

𝑝(𝑔1) = 1 − 𝑝(𝑔2).  343 
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Table 2. Summary of four free model parameters, the variables, the transformations used to map 344 

values to unconstrained space and their function in modelling participant behaviour.  345 

Name Variable Transform Function 

Precision 𝛽 𝑥1 = ln 𝛽 
Captures the impact of 𝐷𝐸𝑉, derived by 

forward planning, on action selection 

Strategy preference 𝜃 𝑥2 = 𝜃 
Heuristic preference of pursuing a parallel 

(𝜃 > 0 ) or sequential (𝜃 < 0) strategy, 
independent of the actual 𝐷𝐸𝑉 

Discount rate 𝛾 𝑥3 = ln
𝛾

1 − 𝛾
 

Temporal discounting of 𝐷𝐸𝑉 by the factor 
𝛾𝑇−𝑡, where 𝑇 − 𝑡 is the number of 

remaining trials 

Reward ratio 𝜅 𝑥4 = ln
𝜅

2 − 𝜅
 

Accounts for the possibility that 
participants may overweight (𝜅 > 1) or 

underweight (𝜅 < 1) the actual reward for 
G2-success relative to G1-success. 

 346 

Optimal agent comparison and general data analysis  347 

We compared participant behaviour with simulated behaviour of an optimal agent. To summarize, we 348 
denote the optimal agent as the agent which has a correct representation of the reward function 349 

(𝜅 = 1), does not discount future rewards (𝛾 = 1), is not biased in favour of any choice (𝜃 =  0), 350 

and who generates deterministic g-choices based on 𝐷𝐸𝑉-values (corresponding to 𝛽 → ∞ in the 351 
response likelihood, that is, the argmax operator). The optimal agent deterministically accepts A and 352 
B offers. 353 

When simulating agent behaviour to evaluate successful goal reaching, the agent received the same 354 
sequence of offers and initial conditions as the participants. Analysis on the level of g-choices was 355 
performed by registering instances in which the g-choice of a participant differed from the g-choice 356 

the optimal agent would have made in the same context (𝑃𝑡𝑠𝑡
𝐴, 𝑃𝑡𝑠𝑡

𝐵, 𝑜𝑡, 𝑡). Trials with A or B offers 357 
and trials in which G2 had already been reached, were excluded from the g-choice analysis.  358 

The goal of this comparison between summary measures of both optimal agent and participants was 359 

two-fold: First, we used this comparison to visualize deviations from optimality and motivate the 360 
model-based analysis which was used to test the hypothesis that a shift from heuristics to forward 361 

planning may explain these deviations. Second, plotting suboptimal g-choices instead of g-choices 362 
(Fig. 4) makes behaviour between participants more comparable. Plotting the proportion of g-choices 363 
averaged across participants would have been mostly uninformative because the significance of a g-364 

choice depends on the current state, which is a consequence of the individual history of past choices 365 
within a miniblock. By registering deviations from an optimal reference point, we circumvent this 366 

state dependence of g-choices.  367 

We used a sign test as implemented in the “sign_test” function of python’s “Statsmodels”[22] 368 
package to test whether participants total reward and success rates differed significantly from the 369 

optimal agent’s deterministic performance. We reported the p-value and the m-value 𝑚 = (𝑁(+) −370 

𝑁(−))/2, where 𝑁(+) is the number of values above 0 and 𝑁(−) is the number of values below 371 
and. To test for learning effects (in the main experimental phase), we used mixed effects models as 372 
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implemented in R [23] with the “lm4” package [24]. Intercepts and slopes were allowed to vary 373 

between participants. p-values were obtained using the “lmerTest” package [25]. 374 

Hierarchical Bayesian data analysis 375 

To estimate the free model parameters (Table 2) that best match the behaviour of each participant, we 376 
applied an approximate probabilistic inference scheme over a hierarchical parametric model, so-377 
called stochastic variational inference (SVI) [26].  378 

As a first step, we define a generic (weakly informative) hierarchical prior over unconstrained space 379 
of model parameters. In Table 2 we summarize the roles of free model parameters of our behavioural 380 
model and the corresponding transforms that we used to map parameters into an unconstrained space. 381 

We use 𝒙𝑛 to denote a vector of free and unconstrained model parameters corresponding to the nth 382 

participant. Similarly,  𝝁 and 𝝈 will denote hyperpriors over group mean and variance for each free 383 
model parameter. We can express the hierarchical prior in the following form 384 

𝜇𝑖 ∼ 𝑁(𝑚𝑖, 𝑠𝑖) (12) 

𝜎𝑖 ∼ 𝐶+(0, 1) (13) 

𝑥𝑖
𝑛 ∼ 𝑁(𝜇𝑖, 𝜆𝜎𝑖) (14) 

for 𝑖 ∈ [1, … , 𝑑], and 𝑛 ∈ [1, . . , 𝑁] (15) 

where 𝐶+(0,1) denotes a Half-Cauchy prior with scale 𝑠 = 1, 𝑑 number of parameters, and 𝑁 385 
number of participants. Note that by using this form of a hierarchical prior we make an explicit 386 
assumption that parameters defining the behaviour of each participant are centred on the same mean 387 
and share the same prior uncertainty. Hence, both the prior mean and uncertainty for each parameter 388 
are defined at the group level. Furthermore, the hyper-parameters of the prior 389 

𝜂 = (𝑚1, … , 𝑚4, 𝑠1, … , 𝑠4, 𝜆) are also estimated from the data (Empirical Bayes procedure) in parallel 390 

to the posterior estimates of latent variables 𝜃 = (𝜇1, … , 𝜇4, 𝜎1, … , 𝜎4, 𝒙1, … , 𝒙𝑁). For more details, 391 
see supporting information (S1 Notebook). 392 

The behavioural model introduced above defines the response likelihood, that is, the probability of 393 
observing measured responses when sampling responses from the model, condition on the set of 394 

model parameters (𝒙1, … , 𝒙𝑁). The response likelihood can be simply expressed as a product of 395 

response probabilities over all measured responses 𝐴 = (𝒂1, … , 𝒂𝑁), presented offers 𝑂 =396 
(𝒐1, … , 𝒐𝑁), and states (point configurations) visited by each participant 𝑆 = (𝒔1, … , 𝒔𝑁) over the 397 
whole experiment 398 

𝑝(𝐴|𝑂, 𝑆, 𝒙1, … , 𝒙𝑁) = ∏ ∏ ∏ 𝑝(𝑎𝑏,𝑡
𝑛 |𝑠𝑏,𝑡

𝑛 , 𝑜𝑏,𝑡
𝑛 , 𝒙𝑛)

𝑇

𝑡=1

𝑀

𝑏=1

𝑁

𝑛=1

  (16) 

where b denotes experimental block, and t a specific trial within the block.  399 
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To estimate the posterior distribution (per participant) over free model parameters, we applied the 400 

following approximation to the true posterior 401 

𝑝(𝒙1, … , 𝒙𝑁 , 𝝁, 𝝈| 𝐴, 𝑆, 𝑂) ≈ 𝑄(𝝁, 𝝈) ∏ 𝑄(𝒙𝑛)

𝑁

𝑛

 (17) 

𝑄(𝝁, 𝝈) =  
1

𝜎1 … 𝜎𝑑
𝒩2𝑑(𝒛; 𝝁𝑔, 𝚺𝑔) for 𝒛 = (𝜇1, … , 𝜇𝑑, ln 𝜎1 , … , ln 𝜎𝑑) (18) 

𝑄(𝒙𝑛) =  𝒩𝑑(𝒙𝑛;  𝝁𝑥
𝑛, 𝚺𝑥

𝑛) (19) 

Note that the approximate posterior captures posterior dependencies between free model parameters 402 

(in the true posterior) on both levels of the hierarchy using the multivariate normal and multivariate 403 
log-normal distributions. However, for practical reasons, we assume statistical independence between 404 
different levels of the hierarchy, and between participants. Independence between participants is 405 
justified by the structure of both response likelihood (responses are modelled as independent and 406 
identically distributed samples from conditional likelihood) and hierarchical prior (a priori statistical 407 
independence between model parameters for each participant). 408 

Finally, to find the best approximation of the true posterior given the functional constraints of our 409 
approximate posterior, we minimized the variational free energy F[Q] with respect to the parameters 410 
of the approximate posterior. 411 

− ln 𝑝(𝐴|𝑆, 0) = 𝐹[𝑄] − 𝐷𝐾𝐿(𝑄||𝑝) ≤ 𝐹[𝑄] =  f(𝝁𝑔, 𝚺𝑔, 𝝁𝑥
1 , 𝚺𝑥

1, … , 𝝁𝑥
𝑁 , 𝚺𝑥

𝑁) (20) 

𝐹[𝑄] = ∫ d𝒙1 … d𝒙𝑁d𝝁d𝝈𝑄(𝝁, 𝝈) ∏ 𝑄(𝒙𝑛)

𝑁

𝑛

ln
𝑄(𝝁, 𝝈) ∏ 𝑄(𝒙𝑛)𝑁

𝑛

𝑝(𝐴|𝑂, 𝑆, 𝒙1, … , 𝒙𝑁)𝑝(𝒙1, … , 𝒙𝑁 , 𝝁, 𝝈) 
 (21) 

The optimization of the variational free energy F[Q] is based on the SVI implemented in the 412 
probabilistic programing language Pyro [27] and the automatic differentiation module of PyTorch 413 
[28], an open source deep learning platform.  414 

As a final remark, we would like to point out that it is possible to use a different hierarchical prior 415 

[29], different parametrization of the hierarchical model [30] or different factorization of the 416 
approximate posterior (e.g., mean-field approximation). However, through extensive comparison of 417 
posterior estimates on simulated data, we have determined that the presented hierarchical model and 418 
the corresponding approximate posterior provide the best posterior estimate of free model parameters 419 
among the set of parametric models we tested (S1 Notebook). 420 

Results 421 

To investigate how the balance between computationally costly forward planning and heuristic 422 

preferences changes as a function of temporal distance from the goals, participants performed 423 

sequences of actions in a novel sequential decision-making task. The task employed a two-goal 424 
setting, where participants had to decide between approaching the two goals in a sequential or in a 425 
parallel manner. We first performed a standard behavioural analysis, followed by a model-based 426 
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approach showing that participants use a mixture of strategy preference and forward planning to 427 

select their action.  428 

Standard behavioural analysis 429 

We first analysed the general performance of all participants and – for each miniblock and trial – 430 
compared it to the behaviour of an optimal agent possessing perfect knowledge of the task and 431 
performing full forward planning to derive an optimal policy that maximizes total reward. The 432 
motivation of this comparison was to detect differences between how the optimal agent and 433 
participants perform the task. These differences will motivate our model-based analysis below. To 434 
compute and compare optimal vs individual policies, all participants and the agent received exactly 435 
the same sequence of offers and start conditions. The difference in total reward between participants 436 

and agent was significant (m = -35.5, p < 0.001), where participants earned 388.5 Cents (SD = 13.6) 437 
and the agent earned 405 Cents. As expected, both participants and agent earned more money in the 438 
easy condition than in the medium condition and least in the hard condition (Fig 3, A, C). In the easy 439 
and medium condition, the agent earned significantly more than the participants (easy: M = 8.7 440 
Cents, SD = 8.4, m = -33, p < 0.001; medium: M = 7.2 Cents, SD = 7.0, m = -30, p < 0.001). In the 441 
hard condition, the total reward did not differ significantly between the participants and agent, m = 442 
0.5, p > 0.99 (Fig 3, E). These results show that participant performance was generally close to the 443 
optimal agent but differed significantly in the easy and medium condition. 444 

Next, we analysed participants’ goal reaching success and compared it to the optimal agent. There 445 
were three possible outcomes in a miniblock: Achieving G1 (goal A or B), achieving G2 (A & B) or 446 

fail (neither A nor B). The main experiment comprised 20 miniblocks of each difficulty level 447 
modulating difficulty to reach G2. As expected, participants reached on average G2 more often in the 448 
easy (M = 71%, SD = 8%) than in the medium condition (M = 25%, SD = 6%), m = 44.5, p < 0.001. 449 
In the hard condition, participants reached G2 in only 1% (SD = 2%) of the miniblocks. Participants 450 
failed to reach any goal in 2% (SD = 3%) of the miniblocks in the medium and in 6 % (SD = 5%) of 451 
the miniblocks in the hard condition. They never failed in the easy condition (Fig 3, B). The agent 452 
reached G2 in 80% in the easy, in 30% in the medium and in 0% in the hard condition (Fig 3, D). 453 
Note that G2 cannot be reached in all miniblocks. We simulated all possible choice sequences (n = 454 
2^15) for a given miniblock and evaluated whether G2 was theoretically possible.  According to 455 
these simulations, 90% G2 performance can be reached in the easy, 35% in the medium and 5% in 456 
the hard condition. 457 

When comparing participants’ goal reaching success with the agent, we found that, on average, there 458 
was a consistent pattern of deviations in the easy and medium conditions (Fig 3, F). In the easy 459 

condition, participants reached G2 on average 9% (SD = 8%) less often than the agent (m = -33, p < 460 
0.001), but reached G1 9% (SD = 8%) more often (m = 33, p < 0.001). In the medium condition, 461 
participants reached G2 on average 6% (SD = 6%) less often than the agent (m = -26, p < 0.001) but 462 

reached G1 4% (SD = 7%) more often (m = 16.5, p < 0.001). While the agent never failed, 463 
participants had a 2% (SD = 3%) fail rate (m = 11.5, p < 0.001). In the hard condition, participants 464 

reached G2 on average 0.6% (SD = 1.6%) more often than the agent (m = 5.5, p < 0.001). G1 (m = -465 
7, p = 0.087) and fail-rate (m = 3.5, p = 0.42) did not differs significantly between participants and 466 
agent. In summary, these differences in successful goal reaching between participants and the agent 467 

explains the difference in accumulated total reward: Participants obtained less reward than the agent 468 
because on average they missed some of the opportunities to reach G2 in the easy and medium 469 

condition and sometimes even failed to achieve any goal in the medium and hard condition. 470 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2019. ; https://doi.org/10.1101/838425doi: bioRxiv preprint 

https://doi.org/10.1101/838425
http://creativecommons.org/licenses/by/4.0/


 

 
16 

 471 

Fig 3. Standard analyses of total reward and comparison to the optimal agent. (A) Average total 472 
reward across participants. The three conditions are colour-coded (easy = red, medium = green, blue 473 
= hard) and the average over conditions is shown in grey.  Error bars depict the standard deviation 474 
(SD). (B) Proportion of successful goal-reaching averaged across participants, for each of the three 475 
conditions. We plot the proportion of reaching, at the end of a miniblock, a single goal (G1), both 476 
goals (G2), or no goal (fail). The fourth block of bars in grey represents the proportions averaged 477 
over all three conditions. Error bars depict SD. (C) Simulated total reward of the optimal agent. (D) 478 
The goal-reaching proportions of the optimal agent. (E) Average difference between participants and 479 
agent with error bars depicting SD. (F) Averaged difference of proportion success between 480 
participants and agent with error bars depicting SD. One can see that the average goal-reaching 481 

proportions of participants were close to the agent’s proportions. However, participants, on average, 482 
reached G2 less often than the agent. Asterisks indicate differences significantly greater than zero 483 

(Sign-test, * ≙ p < 0.05, ** ≙ p < 0.01, *** ≙ p < 0.001). 484 

How can these differences in goal-reaching success be explained? To address this, we used the 485 
mixed-offer trials to identify which strategy a participant was pursuing in a given trial and compared 486 
the strategy choice to what the agent would have done in this trial. We classified strategy choices as 487 

evidence either of a parallel or a sequential strategy. With the parallel strategy (g2), participants make 488 
choices to pursue both goals in a parallel manner, while with a sequential strategy (g1), participants 489 

make choices to reach first a single goal and then the other. We inferred that participants used a g2-490 

choice for a specific mixed-offer trial when the difference between the points of the two bars was 491 
minimized, while we inferred a g1-choice when the difference between points was maximized (see 492 
Methods). We categorized a participant’s g2-choice as suboptimal when the optimal agent would 493 
have made a g1-choice in a specific trial and vice versa. Fig 4, A-D shows the proportions of 494 

suboptimal g-choices in mixed-offer trials. In the easy condition, participants made barely any 495 
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suboptimal g2-choice (mean = 0%, SD = 0.001%), but 29% (SD = 10%) suboptimal g1-choices (Fig 496 

4, A). This means that participants, on average, preferred a sequential strategy more often than would 497 
have been optimal. In the medium condition participants made on average 6% (SD = 3%) suboptimal 498 
g2-choices and 28% (SD = 11%) suboptimal g1-choices. Similar to the easy condition, participants, 499 
on average, preferred a sequential strategy where a parallel strategy would have been optimal. In the 500 
hard condition, this pattern reversed. Participants made on average 40% (SD = 12%) suboptimal g2-501 
choices, relative to the agent, and 11% (SD = 6%) suboptimal g1-choices. Participants’ suboptimal g-502 
choices were also reflected in goal reaching success. In the easy and medium condition, suboptimal 503 
g1-choices, relative to the agent, resulted in a higher proportion of reaching G1, and a lower 504 
proportion of reaching G2. In the hard condition, suboptimal g2-choices led to occasional fails and a 505 
tiny margin of reaching G2. However, despite suboptimal g2-choices, participants still reached G1 in 506 
93% (SD = 6%) of the miniblocks.  507 

As the first test of our prediction that participants tend to use more forward planning when 508 
temporally proximal to the goal, we analysed suboptimal decisions as a function of trial time. As 509 
expected, suboptimal decisions, relative to the agent, decreased over trial time (Fig 4, B). While in 510 
the first trial, 42% (SD = 19%) of participants’ g-choices deviated from the agent’s g-choices, 511 
participant behaviour converged to almost optimal performance towards the end of the miniblock, 512 
with only 4% deviating g-choices (SD = 7%). We also simulated a random agent that accepts all 513 
basic A or B offers but guesses on mixed offers (S6-7 Fig). S7 Fig B shows that the random agent 514 
makes approximately 50 % suboptimal g-choices across all trials in the miniblock. That means 515 
participants used non-random response strategies, i.e. planning or heuristics, since their pattern of 516 
suboptimality across trials deviated from the straight-line pattern of the random agent. 517 

In the hard condition, the number of suboptimal g2-choices similarly decreased, but not in the easy 518 
and medium condition (Fig 4, C). The number of suboptimal g1-choices decreased across trials in the 519 
easy and medium, but not in hard condition (Fig 4, D). Note that in easy and the medium conditions, 520 
opportunities to make suboptimal g2-choices are generally scarce, because the difference between 521 

action values  𝐷𝐸𝑉 = 𝑄𝐺(𝑔2) − 𝑄𝐺(𝑔1) was mostly positive, which means that a g2-choice was 522 
mostly optimal. Similarly, in the hard condition, as there was a low number of opportunities to make 523 
suboptimal g1-choices, there was no clear decrease in the number of suboptimal g1-choices. 524 

Although these findings of diminishing suboptimal choices over the course of miniblocks may be 525 
explained by the participants’ initial employment of a suboptimal heuristic, there is an alternative 526 

explanation because we used an optimal agent, which uses a max operator to select its action: If this 527 
agent computes, by using forward planning, a tiny advantage in expected reward of one action over 528 
the other, the agent will always choose in a deterministic fashion the action with the slightly higher 529 
expected reward. Therefore, at the beginning of the miniblock, where the distance to the final trial is 530 

largest, the difference between goal choice values  𝐷𝐸𝑉 =  𝑄𝐺(𝑔2) −  𝑄𝐺(𝑔1) (S5 Fig) is close to 0. 531 
The reason for this is that a single g2-choice at the beginning of the miniblock does not increase the 532 
probability for G2-success by much. However, when only few trials are left, a single g2-choice might 533 

make the difference between winning or losing G2. Since 𝐷𝐸𝑉𝑠 are close to 0 at the initial trials we 534 
cannot exclude the possibility yet that participants actually may have used optimal forward planning 535 
just like the agent but did not use a max operator. Instead, participants may have sampled an action 536 

according to the computed probabilities of each action to reach the greater reward in the final trial. 537 
Such a sampling procedure to select actions would also explain the observed pattern of diminishing 538 
suboptimal g-choices over the miniblock (Fig. 4 B-C). To answer the question, whether there is 539 
actually evidence that participants use heuristics, when far from the goal, even in the presence of 540 

probabilistic action selection of participants, we now turn to a model-based analysis. 541 
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 542 

Fig 4. (A) Proportions of suboptimal g1-choices (g1) and suboptimal g2-choices (g2), averaged over 543 
participants. Participants tend to make suboptimal g1-choices in the easy and medium condition 544 
while this pattern reverses in the hard condition. Error bars depict SD. Conditions are colour coded. 545 
(B) Suboptimal g-choices as a function of trial averaged over participants. Shaded areas depict SD. 546 
(C) Suboptimal g2-choices as a function of trial averaged over participants. (D) Suboptimal g1-547 
choices as a function of trial averaged over participants. In both C and D, one can see that 548 
participants made more suboptimal g-choices at the beginning of the miniblock than close to the final 549 
trial. Shaded areas depict SD. 550 

Model-based behavioural analysis  551 

To infer the contributions of participants’ forward planning and heuristic preferences, we conducted a 552 

model-based analysis. If we find that participants’ strategy preference 𝜃 is smaller or larger than zero, 553 
we can conclude that participants indeed used a heuristic component to complement any forward 554 

planning. This is especially relevant for choices early in the miniblock as 𝐷𝐸𝑉 values are typically 555 
close to zero. Indeed, when inferring the four parameters for all 89 participants using hierarchical 556 
Bayesian inference, we found that participants’ g-choices were influenced by a heuristic strategy 557 
preference in addition to a forward planning component (Fig 5, A). For 74 out of 89 participants, we 558 

found that the 90% credibility interval (CI) of the posterior over strategy preference did not include 559 

zero. 68 of these participants had a positive strategy preference, meaning they preferred an overall 560 

strategy of pursuing both goals in parallel. Six of these participants had a negative strategy 561 
preference, meaning they preferred to pursue both goals sequentially. The median group 562 
hyperparameter of strategy preference was 0.55 (90% CI = [0.47, 0.63]). For example, a participant 563 

with this median strategy preference, in a mixed-offer trial where 𝐷𝐸𝑉 = 0, would make a g2-choice 564 

with 63% probability, whereas a participant without a strategy preference bias, i.e.  𝜃 = 0, would 565 
make a g2-choice with 50% probability. After the experiment, we had asked participants whether 566 
they used any specific strategies to solve the task and to give a verbal description of the used 567 
strategy. Reports reflected three main patterns: Pursuing one goal after the other (sequential strategy), 568 

promoting both goals in a balanced way (parallel strategy), and switching between sequential and 569 

parallel strategy, depending on context (mixed strategy). Reported strategies are in good qualitative 570 

agreement with the estimated strategy preference parameter (S8 Fig), supporting our interpretation of 571 
this parameter. Notably, the task instructions, given to the participants prior to the experiment, did 572 
not point to any specific heuristic (S1 Text). Altogether, the non-zero strategy preference in 83% of 573 
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participants indicates that suboptimal decisions within a miniblock (see Fig 4) are not only caused by 574 

probabilistic sampling for action selection, but also by the use of a heuristic strategy preference.  575 

As expected, we found that the 𝐷𝐸𝑉 (see Table 1) derived by forward planning influenced action 576 

selection (median group hyperparameter of the inferred precision 𝛽 = 1.82, 90% CI = [1.45, 2.3], Fig 577 
5, B). For example, a hypothetical participant with parameters similar to the group hyperparameters 578 

(𝜃 =  0.55 and 𝛽 =  1.82), when encountering a 𝐷𝐸𝑉 = 0.5, would make a g2-choice with 82% 579 

probability. Increasing 𝐷𝐸𝑉 by 1 would increase the g2-choice probability to 96%. In contrast, a 580 

participant with low precision but the same median strategy preference (𝜃 =  0.55 and 𝛽 =  0.5), 581 

when encountering a 𝐷𝐸𝑉 = 0.5, would make a g2-choice with 69% probability. Increasing 𝐷𝐸𝑉 by 582 
1 would increase g2-choice probability to 79%. We found evidence only for weak discounting of 583 
future rewards, as for most participants the inferred discount was close to 1 (median of the inferred 584 

discount parameter 𝛾 = 0.984, 90% CI = [0.978, 0.988], Fig 5, C). We found that some participants 585 
used a reward ratio different from the objective value of 1 (CI not containing 1). Twelve participants 586 
had a reward ratio greater than 1 and 17 participants had a reward ratio smaller than 1. However, the 587 

median group hyperparameter of the inferred reward ratio was close to the objective value of 1 (𝜅 = 588 
1.05, 90% CI = [0.99, 1.11], Fig 5, D). A reward ratio of 1.2 means, that participants behaved as if 589 
the value of achieving G2 would be 2.4 times the value of achieving G1(when in reality the reward is 590 
only double as high). While strategy preference has its greatest influence during the first few trials of 591 

a miniblock, the reward ratio has an influence only when forward planning, i.e. changes the 𝐷𝐸𝑉, 592 
and will therefore affect action selection most during the final trials of a miniblock. In addition, we 593 
found only low posterior correlation between the strategy preference and reward ratio parameter, 594 

indicating that these two parameters model distinct influences on goal reaching behaviour. 595 

 596 

Fig 5. Summary of inferred parameters of the four-parameter model for all 89 participants. We 597 
show histograms of the median of the posterior distribution, for each participant. Solid red lines 598 

indicate the median of the group hyperparameter posterior estimate with dashed lines indicating 90% 599 

credibility intervals (CI). (A) Histogram of strategy preference parameter 𝜃. (B) Histogram of 600 

precision parameter 𝛽 (last bin containing values > 8). (C) Histogram of discount parameter 𝛾. (D) 601 

Histogram of reward ratio parameter 𝜅. 602 

To show that our model with constant parameters is able to capture a dynamic shift from heuristic 603 

decision making to forward planning we conducted two sets of simulations where we systematically 604 

varied the response precision β and the strategy preference parameter θ. First, we simulated 605 

behaviour where we varied β between 0.25 and 3 with θ, 𝛾, and 𝜅 sampled from their fitted 606 

population mean (S1-2 Movie). S2 Movie, B shows that the higher 𝛽, the fewer suboptimal g-choices 607 

are made towards the end of the miniblock. Second, we simulated behaviour where we varied θ 608 

varied between -1 and 1 with 𝛽, 𝛾, and 𝜅 sampled from their fitted population mean (S3-4 Movie). S4 609 
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Movie, B shows that a change in θ affects the number of suboptimal g-choices made at the beginning 610 

but not at the end of the miniblock. These two results support the argument that the θ parameter is 611 

able to capture heuristic decision making at the beginning of the miniblock while the 𝛽 parameter is 612 

able to capture planning behaviour at the end of the miniblock. The reason for this interaction 613 

between parameter effect and trial number is that differential expected value (𝐷𝐸𝑉) computed by 614 

forward planning is close to zero at the beginning of the miniblock but increases towards the end of 615 

the miniblock (S5 Fig). For small 𝐷𝐸𝑉𝑠, the influence of 𝛽 on choice probability is marginal; 616 

therefore, the relative influence of the strategy preference parameter θ is high, and behaviour is 617 

explained by using the heuristic. For higher trial numbers, i.e. closer to the end of the miniblock, 618 

𝐷𝐸𝑉𝑠 tend to be high so that the influence of the response precision 𝛽 is high, and the relative 619 

influence of θ is low; therefore, towards the end of the miniblock behaviour is explained by forward 620 

planning with a shift in between, depending on the dynamics of the 𝐷𝐸𝑉. We also implemented a 621 

model with changing parameters over trials and compared it to the constant model. Parameters were 622 

fit separately for three partitions of the miniblock, i.e. early (trials 1- 5), middle (trials 6-10) and late 623 

trials (11-15). Model comparisons showed that this model with changing parameters had lower model 624 

evidence compared to the model with constant parameters (S9 Fig).We interpret these results as 625 

further evidence that the described constant parameterization is sufficient to describe a hidden shift 626 

from using a heuristics to forward planning.  627 

Finally, as an additional test of the hypothesis that participants rely more on heuristic preferences 628 

when the goal is temporally distant, we conducted a multiple regression analysis (Fig 6, A). To do 629 

this, we divided the data into the first (first 7 trials) and the second half (last 8 trials) of miniblocks, 630 

and computed, for each participant the proportion of g2-choices in the mixed-offer trials. We fitted, 631 

across participants, these proportions of g2-choices against 6 regressors: strategy preference, 632 

precision, discount rate, reward ratio, a dummy variable coding for the first and second miniblock 633 

half and interaction between strategy preference and miniblock half. We found a significant 634 

interaction between strategy preference and miniblock-half (p < 0.001), demonstrating that strategy 635 

preference is more predictive for the proportion of g2-choices in the first half of the miniblock than in 636 

the second half. Fig 6, B visualizes the interaction effect showing that the slope of the marginal 637 

regression line for the first half of the miniblock is greater than the slope of the marginal regression 638 

line for the second half of the miniblock. This finding provides additional evidence that participants 639 

rely on heuristic preferences when the goal is temporally far away but use differential expected 640 

values (𝐷𝐸𝑉) derived by forward planning when the goal is closer.  641 
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 642 

Fig 6. Strategy preference is more predictive for participant’s proportion of g2-choices in the 643 
first than in the second half of the miniblock. (A) Linear regression of proportion g2-choice 644 
against parameters from the four-parameter model, a dummy variable coding for miniblock-half and 645 
interaction between miniblock-half and strategy preference. The significant interaction term supports 646 
the hypothesis that the influence of strategy preference on g2-choice proportion is greater in the first 647 
than in the second half of the miniblock. Error bars represent SE. Asterisks indicate coefficients 648 

significantly different from 0 (t-test, * ≙ p < 0.05, ** ≙ p < 0.01, *** ≙ p < 0.001). (B) Strategy 649 
preference plotted against the proportion of g2-choices in the first half of the miniblock (black) and 650 
in the second half of the miniblock (red). Solid lines represent marginal regression lines. 651 

In addition, we conducted model comparisons, posterior predictive checks and parameter recovery 652 
simulations to test whether our model is an accurate and parsimonious fit to the data. First, we 653 

compared variants of our model, where we fixed individual parameters (S9 Fig). Adding 𝜃 and 𝛽 654 
increased model evidence, confirming their importance in explaining participant behaviour. The 655 

three-parameter model (𝜃, 𝛽, 𝜅) had the highest model evidence among all 16 models. Adding 𝛾 did 656 
not increase model evidence. This result is consistent since we found only little evidence for 657 
discounting when fitting the parameters, see Fig. 5C. To test whether participants used condition-658 
specific response strategies (e.g., use heuristics in the easy and hard but plan forward in the medium 659 

difficult condition) we estimated model parameters separately for conditions. However, the 660 
condition-wise model had lower model evidence compared to the conjoint model, indicating that 661 
participants use a condition-general approach to arbitrate between using a heuristic and planning 662 
ahead. Second, we simulated data using the group mean parameters as inferred from the participants’ 663 
data and compared it to the observed data. Visual inspection shows that both the simulated 664 

performance pattern (S10 Fig) and the simulated frequency of suboptimal g-choices (S11 Fig) closely 665 
resemble the experimentally observed patterns (Fig. 3 and 4). Third, we simulated data using 666 
participants’ posterior mean and tested whether we could reliably infer parameters (S1 Notebook). 667 

Results showed that the inferred 𝛽, 𝜃 and 𝜅 align with the true parameter value, but simulation-based 668 

calibration [31] suggests that estimates of 𝛾 are biased. Taken together, our model provides a good fit 669 

to the data, where the data are informative about the three parameters 𝛽, 𝜃 and 𝜅. 670 
 671 
We also tested whether participants showed learning effects in the main experimental phase. In a first 672 
linear model, the depended variable was the total reward and the predictor was the experimental 673 
block number (miniblock 1-20, miniblock 21-40, miniblock 41-60). The analysis revealed a 674 
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significant but small main effect of experiment block (𝛽 = 5.4, SE = 0.5, p < 0.001). In a second 675 
logistic model the dependent variable was suboptimal goal choice (1 = suboptimal, 0 = optimal) and 676 
the predictor was experiment block. The second analysis revealed a significant but small main effect 677 

of experiment block on the probability to make a suboptimal g-choice (𝛽 = -0.084, SE = 0.02, p < 678 

0.001). Furthermore, we fitted the three parameter model (𝜃, 𝛽, 𝜅) separately for experiment blocks. 679 
Model comparisons revealed that the experiment block-wise model had lower model evidence 680 
compared to the conjoint model (S9 Fig.).  681 
 682 
As a final control analysis, we used logistic regression to establish how the absolute difference 683 
between A- and B-points affects goal choice as a function of the number of trials remaining in the 684 
miniblock. If participants rely on a fixed strategy preference when far from the goal, there should be 685 
no effect of absolute score difference on goal choice at the start of miniblocks. In this model the 686 

depended variable was goal choice (1 = g2, 0 = g1) and the predictors were absolute score difference 687 

(|𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵| ∈ [0. .15]), miniblock-half (1 = trial 1-7, 0 = trial 8-15) and the interaction term 688 
absolute score difference*miniblock-half. There was a significant main effect of absolute score 689 

difference (𝛽 = 0.14, SE = 0.008, p < 0.001) and miniblock-half (𝛽 = 0.29, SE = 0.039, p < 0.001). 690 
Importantly, the analysis revealed a significant interaction between miniblock-half and absolute score 691 

difference (𝛽 = -0.2, SE = 0.013, p < 0.001). This means that goal choice was more affected by the 692 
absolute score difference in the second half the miniblock compared to the first half. The analysis 693 
supports our conclusion that participants relied on a heuristic strategy preference when far from the 694 
goal.  695 

Discussion 696 

In the current study, we investigated how humans change the way they decide what goal to pursue 697 
while approaching two potential goals. To emulate real life temporally extended decision making 698 
scenarios of goal pursuit, we used a novel sequential decision making task. In this task environment, 699 
decisions of participants had deterministic consequences, but the options given to participants on 700 
each of the 15 trials were stochastic. This meant that especially during the first few trials, participants 701 
could not predict with certainty what goal was achievable. Using model-based analysis of 702 
behavioural data we find that most participants, during the initial trials, relied on computationally 703 
inexpensive heuristics and switched to forward planning only when closer to the final trial.  704 

We inferred the transition from a heuristic action selection to action selection based on forward 705 

planning using a model parameter that captured participants’ preference for pursuing both goals 706 
either in a sequential or parallel manner. This strategy preference had its strongest impact for the first 707 
few trials, when participants, due to the stochasticity of future offers, could not predict well which of 708 
the two available actions in a mixed trial would enable them to maximize their gain. This can be seen 709 
from Eq. 11 where two terms contribute to making a decision: the term containing the differential 710 

expected value (𝐷𝐸𝑉) and the strategy preference 𝜃. In our computational model, the 𝐷𝐸𝑉 is the 711 
difference between the expected value of a sequential strategy choice and a parallel strategy choice. 712 

The 𝐷𝐸𝑉 enables the agent to choose actions which maximize the average reward gain in a 713 

miniblock (see methods). Critically, this 𝐷𝐸𝑉 is typically close to 0 in the first few trials, i.e. there is 714 
high uncertainty on what action is the best one. In this situation, the strategy preference mostly 715 

determines the action selection of the agent. In our model, we computed the 𝐷𝐸𝑉 by using forward 716 
planning, where the agent hypothetically runs simulations through all remaining future trials until the 717 
end of a miniblock, i.e. to the 15

th
 trial. The number of state space trajectories to be considered in 718 

these simulations scales exponentially with the number of remaining trials – and so does in principle 719 
the computational costs needed to simulate these trajectories. Therefore, full forward planning would 720 
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be both prohibitively costly and potentially useless when the deadline is far away, rendering simpler 721 

heuristics [16] the more appropriate alternative.  722 

It is an open question what heuristic participants actually used. In our model, the strategy preference 723 
parameter simply quantifies a preference for a parallel or sequential strategy and biases a 724 
participant’s action selection accordingly. This may mean that participants had a prior expectation 725 
whether they are going to reach G2 or just G1. Given this prior, participants could choose their action 726 
without any forward planning. In other words, to select an action in a mixed trial, participants simply 727 
assumed that they are going to reach, for example, G2. This simplifies action selection tremendously 728 
because, under the assumption that G2 will be reached, the optimal action is to use the parallel 729 
strategy at all times. To an outside observer, a participant with a strong preference for a parallel 730 
strategy may be described as overly optimistic, as this participant would choose g2-choices even if 731 

reaching G2 is not very likely, e.g. in the hard condition. Conversely, a participant with a strong 732 
preference for a sequential strategy may be described as too cautious, e.g. because that participant 733 
chooses one-goal actions in the easy condition (see S12 Fig for two example participants). 734 
Importantly, the difference in total reward between the agent and the participants is only about 5% 735 
(see Fig 3, E). This means that even though participants used a potentially suboptimal strategy 736 
preference, the impact on total reward is not that large. This is because, as we have shown, later in 737 

the miniblock, when 𝐷𝐸𝑉𝑠 become larger and are more predictive of what goal can be reached, 738 
participants choose their actions accordingly. Although we do not quantify the relative costs of full 739 
forward planning versus the observed mixture of heuristic and forward planning, we assume that an 740 
average loss of 5% of the earnings is small as compared to the reduction of computational costs when 741 
using heuristics.  742 

There were two important features of our sequential decision making task: The first was that we used 743 
a rather long series of 15 trials to model multiple goal pursuit, where typically sequential decision 744 
making tasks would use fewer trials, e.g. 2 in the two-step task [32] with common values around  5 745 
[21] to 8 trials [7, 8] per miniblock. The reason why we chose a rather large number of trials is that 746 
this effectively precluded the possibility that participants can plan forward and ensure that 747 
participants were exposed at least to some initial trials where they had to rely on other information 748 
than forward planning. This initial period when participants have to select actions without an accurate 749 
estimate of the future consequences of these actions is potentially most interesting for studying meta-750 
decisions about how we use heuristics when detailed information about goal reaching probabilities is 751 

scarce. It is probably in this period of uncertainty during goal reaching, when internal beliefs and 752 
preferences have their strongest influence. 753 

The second important feature of our task was that participants had to prioritize between two goals. 754 
This is a departure from most sequential decision making tasks, where there is typically a single goal, 755 

e.g. to collect a minimum number of points, where the alternative is a fail [7]. In our task, 756 
participants could reach one of two goals, which enables addressing questions about how participants 757 
select and pursue a specific goal, see also [9]. Our findings complement work investigating  758 
behavioural strategies for pursuing multiple goals, e.g. [33], showing that pursuit strategies depend 759 
on environmental characteristics, subjective preferences and changes in context when getting closer 760 

to the goal. In line with our findings, a recent study [34] showed that decisions whether to redress the 761 

imbalance between two assets or to focus on a distinct asset during sequential goal pursuit were best 762 

fit by a dynamic programming model with a limited time horizon of 7.5 trials (20 trials would be the 763 
optimum). In future research, the pursuit of multiple goals in sequential decision making tasks may 764 
also be a basis for addressing questions about cognitive control during goal-reaching, e.g. how 765 
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participants regulate the balance between stable maintenance and flexible updating of goal 766 

representations [35]. 767 

Another important factor when modelling the use of forward planning is that complexity and time 768 
can, in principle be dissociated. For example, a temporally distant goal might have only low planning 769 
complexity because one must consider only a few decision sequences leading to the goal. 770 
Conversely, a temporally proximate goal might have high planning complexity because of a large 771 
number of potential actions sequences that may lead to the goal. In future research, by testing 772 
sequential tasks with varying branching factor (number of potential actions in each trial) one could 773 
selectively test how time to goal and planning complexity influence the arbitration of forward 774 
planning and the use of heuristics. 775 

It is unclear what mechanism made participants actually use a strategy preference different from zero 776 
in our task. It is tempting to assume that participants might have used their usual approach, which 777 
they might apply in similar real-life situations, to select their goal strategies when the computational 778 
costs of forward planning are high and the prediction accuracy is low. In other words, participants 779 
who had a preference for a parallel strategy might either show a tendency towards working on 780 
multiple goals at the same time or entertain the belief that tasks should be approached with an 781 
optimistic stance. Conversely, participants with a preference for a sequential strategy might have 782 
made good experiences with using a more cautious approach and would tend to pursue one goal after 783 
the other.  784 

We would like to note that the proposed model does not explicitly model the arbitration between 785 

forward planning and heuristic decision making. The computational model to fit participant 786 
behaviour uses at its core full forward planning as the optimal agent does. The effect of strategy 787 
preference just changes the action selection result, but the underlying computation to determine the 788 

𝐷𝐸𝑉 is still based on forward planning. Clearly, if a real agent used our model, this agent would not 789 
save any computations because forward planning is still used for all trials. The open question is how 790 
an agent makes a meta-decision to not use goal-directed forward planning but to rely on heuristics 791 
and other cost-efficient action selection procedures [11]. To make this meta-decision, an agent cannot 792 

rely on the 𝐷𝐸𝑉 because this value is computed by forward planning. An alternative way would be to 793 
use an agent’s prior experience to decide that the goal is still too temporally distant to make an 794 
informed decision with an acceptable computational cost. Such a meta-decision would depend on 795 
several factors, e.g. the relevance of reaching G2, intrinsic capability and motivation of planning 796 

forward, or a temporal distance parameter which signals urgency to start planning forward. In the 797 
future we plan to develop such meta-decision-making models and predict the moment at which 798 

forward planning takes over the action selection process. 799 

It is also possible that participants use, apart from simple heuristics, other approximate planning 800 
strategies to reduce computational costs. For example, one could sample only a subset of sequences 801 
to compute value estimates. Indeed, in another study it was found that participants prune a part of the 802 
decision tree in response to potential losses, even if this pruning was suboptimal [36]. Another 803 

important point is that the planning process itself might be error-prone and therefore value 804 
calculations over longer temporal horizons may be noisier. This could presumably account for 805 

temporal modulations of the precision parameter β. In future work one could test for evidence of 806 
alternative planning algorithms that allow to sample subsets of (noisy) forward planning trajectories 807 
to further delineate how humans deal with computational complexity in goal-directed decision 808 
scenarios.   809 
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Taken together, the present research shows that over prolonged goal-reaching periods, individuals 810 

tend to behave in a way that approaches the behaviour of an optimal agent, with noticeable 811 
differences early in the goal-reaching period, but nearly optimal behaviour when the goal is close.  It 812 
also highlights the potential of computational modelling to infer the decision parameters individuals 813 
use during different stages of sequential decision-making. Such models may be a promising means to 814 
further elucidate the dynamics of decision-making in the pursuit of both laboratory and everyday life 815 
goals.     816 
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 900 

Supporting information 901 

S1 Table. Classification of accept-wait responses into either two-goal-choices (g2) or one-goal-902 
choices (g1). 903 

Offer Points  Response Classification  

Ab 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 > 1  accept g1 

Ab 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 > 1  wait g2 

Ab 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 < −1  accept g2 

Ab 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 < −1  wait g1 

Ab 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 = 1  accept g1 

Ab 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 = 1  wait g2 

Ab 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 = −1  accept nan 

Ab 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 = −1  wait nan 

Ab 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 = 0  accept g1 

Ab 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 = 0  wait g2 

aB 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 > 1  accept g2 

aB 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 > 1  wait g1 

aB 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 < −1  accept g1 

aB 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 < −1  wait g2 

aB 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 = 1  accept nan 

aB 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 = 1  wait nan 

aB 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 = −1  accept g1 

aB 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 = −1  wait g2 

aB 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 = 0  accept g1 

aB 𝑃𝑡𝑠𝑡
𝐴 − 𝑃𝑡𝑠𝑡

𝐵 = 0  wait g2 
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 904 

 905 

S1 Fig. Occurrence of offer types across all 900 trials. 906 

 907 

S2 Fig. Occurrence of offer types binned with respect to trial. 908 

 909 

S3 Fig. Occurrence of offer types binned with respect to miniblock. 910 
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 911 

S4 Fig. Occurrence of offer types binned with respect to miniblock and difficulty. 912 

 913 

  914 

S5 Fig. Average absolute (A) and signed (B) differential expected value (𝑫𝑬𝑽) per trial and 915 
condition. Discount and reward ratio had been fixed (𝛾 = 1,  𝜅 = 1). Average absolute 𝐷𝐸𝑉𝑠 at the 916 
beginning of the miniblock are smaller than in the end, indicating the relative importance of decisions 917 
close to the final trial of miniblocks. Conditions are colour coded. The shaded areas represent SD. 918 
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 919 

S6 Fig.  Simulated goal success and total reward of a random agent that always accepts basic 920 

offers but guesses for mixed offers (𝜽 = 𝟎, 𝜷 → 𝟎, 𝜸 = 𝟏, 𝜿 = 𝟏). (A) Average total reward across 921 
agent instances (n =1000). (B) Proportion of successful goal-reaching, averaged across agent 922 
instances, for each of the three conditions. We plot the proportion of reaching, at the end of a 923 
miniblock, a single goal (G1), both goals (G2), or no goal (fail). The random agent achieves fewer 924 
G2-successes in easy and medium than the participants but fails more often in medium and hard. The 925 
three conditions are colour-coded (easy = red, medium = green, blue = hard) and the average over 926 
conditions is shown in grey. Error bars depict SD. 927 

 928 

S7 Fig. Simulated suboptimal g-choices of a random agent that always accepts basic offers but 929 

guesses for mixed offers (𝜽 = 𝟎, 𝜷 → 𝟎, 𝜸 = 𝟏, 𝜿 = 𝟏). (A) Proportions of suboptimal g1-choices 930 
(g1) and suboptimal g2-choices (g2), averaged over agent instances (n =1000). The random agent 931 
makes many suboptimal g1-choices in the easy and medium and many suboptimal g2-choices in the 932 

hard conditions. Summing together g1 and g2 yields approximately 50% suboptimal g-choices. (B) 933 

Suboptimal g-choices as a function of trial averaged over agent instances. The random agent makes 934 
approximately 50% suboptimal g-choices across all trials in the miniblock. If participants use non-935 
random response strategies, i.e. planning or heuristics, their pattern of suboptimality across trials 936 

should deviate from the straight-line pattern of the random agent. (C) Suboptimal g2-choices as a 937 
function of trial averaged over agent instances. (D) Suboptimal g1-choices as a function of trial 938 
averaged over agent instances. Summing together g1 (D) and g2 (C) yields approximately 50% 939 
suboptimal g-choices across trials.  Error bars and shaded areas depict SD. Conditions are colour 940 
coded.  941 
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 942 

S8 Fig. Qualitative comparison of participants' reported strategy use and fitted strategy 943 
preference parameter. Participants who reported the use of a sequential strategy had lower 944 
estimated strategy preference, including the most negative values, than participants who reported the 945 
use of a parallel strategy. Participants who reported mixed use of a parallel and sequential strategy 946 
had greater strategy preference than the sequential group but lower estimates than the parallel group. 947 
The plot shows 80 of 89 participants whose verbal reports matched with one of the three strategy 948 
categories.  949 

 950 

S9 Fig. Comparing Elbo (evidence lower bound) between different model variants. White 951 
numbers represent the rank from highest to lowest Elbo. Model comparisons showed that the three 952 

parameter model (𝜃, 𝛽, 𝜅) had the highest model evidence. Adding 𝛾 did not increase model evidence 953 

(𝑒𝑙𝑏𝑜𝜃𝛽𝜅 − 𝑒𝑙𝑏𝑜𝜃𝛽𝛾𝜅 = −44). Estimating model parameters separately for miniblock segments (trial 954 

1-5, trial 6-10, trial 11-15; prefix ‘s_’ in the figure) had lower model evidence compared to the 955 

winning model (𝑒𝑙𝑏𝑜𝜃𝛽𝜅 − 𝑒𝑙𝑏𝑜𝑠_𝜃𝛽𝜅 = −294). Estimating model parameters separately for 956 

conditions (easy, medium, hard; prefix ‘c’ in the figure) had lower model evidence compared to the 957 

winning model (𝑒𝑙𝑏𝑜𝜃𝛽𝜅 − 𝑒𝑙𝑏𝑜𝑐_𝜃𝛽𝜅 = −94). Estimating model parameters separately for 958 

experiment blocks (miniblock 1-20, miniblock 21-40, miniblock 41-60; prefix ‘b’ in the figure) had 959 

also lower model evidence compared to the winning model (𝑒𝑙𝑏𝑜𝜃𝛽𝜅 − 𝑒𝑙𝑏𝑜𝑠_𝜃𝛽𝜅 = −48). Bars in 960 

the plot depict Elbo averaged over the last 20 posterior samples.  961 
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 962 

S10 Fig.  Posterior predictive checks: Simulated goal success and total reward closely resemble 963 
observed participant behaviour. (A) Average total reward across samples (n = 1,000). (B) 964 

Proportion of successful goal-reaching, averaged across samples, for each of the three conditions. We 965 
plot the proportion of reaching, at the end of a miniblock, a single goal (G1), both goals (G2), or no 966 
goal (fail). The three conditions are colour-coded (easy = red, medium = green, blue = hard) and the 967 
average over conditions is shown in grey. Error bars depict SD. Data were generated using 1,000 968 
posterior samples from the group hyper parameters. 969 

 970 

S11 Fig.  Posterior predictive checks: Simulated suboptimal g-choices closely resemble 971 
observed participant behaviour. (A) Proportions of suboptimal g1-choices (g1) and suboptimal g2-972 
choices (g2), averaged over samples (n =1,000). (B) Suboptimal g-choices as a function of trial 973 
averaged over samples. (C) Suboptimal g2-choices as a function of trial averaged over samples. (D) 974 

Suboptimal g1-choices as a function of trial averaged over samples. Error bars and shaded areas 975 

depict SD. Conditions are colour coded. Data were generated using 1,000 posterior samples from the 976 

group hyper parameters. 977 

 978 

S12 Fig. Comparison of suboptimal g-choices between a low strategy preference and high 979 
strategy preference participant. The plot shows proportions of suboptimal g1-choices (g1) and 980 

suboptimal g2-choices (g2) (A) of the participant with the lowest fitted strategy preference (𝜃 =981 
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−0.36) and (B) of the participant with the highest fitted strategy preference (𝜃 = 1.84). The low 982 
strategy preference participant prefers a sequential strategy leading to suboptimal g1-choices in the 983 
easy and medium condition. The participant with a high strategy preference parameter prefers a 984 
parallel strategy, resulting in a few suboptimal g1-choices in easy in and medium but a large number 985 
of suboptimal g2-choices in the hard condition.  986 

S1 Text: Task instructions (translated from German)  987 

Dear participant,  988 
your task in this experiment is to reach goals. Within a block, consisting of 15 trials, you can either 989 
reach goal A, goal B or both goals at the same time. For one reached goal you will gain additional 5 990 
Cents and for two reached goals additional 10 Cents. Your task is to obtain as much money as 991 

possible.  992 

To reach goals, you must collect points. You can get points by accepting an offer. Some offers 993 
however, might have a negative effect on the state of a goal. Your task is to decide in every trial, 994 
whether to accept an offer or wait for the next offer. Press “up arrow” to accept an offer and “down 995 
arrow” to wait.  996 

Important: Please decide deliberately but speedily. If you decide too slowly, you will get a 997 
notification. After every 5 notifications, 50 Cents will be subtracted from your bonus-payout. (The 998 
experiment starts with a training phase, in which no money can be lost.)  999 

More about the goals: 1000 
Your goal progress will be represented by a bar, which is labelled with A or B. A goal counts as 1001 
achieved, if one of the bars reaches or surpasses the white horizontal mark. The goal state will be 1002 
evaluated after the end of the 15 trials.  1003 

More about the offers: 1004 
There are 4 different offers – A, B, Ab an aB. All offers have the same occurrence probability of 1005 
25%. The offers differ with respect to their effect on the goal state. A increases the A-bar by one 1006 
point. B increases the B-bar by one point. Ab increases the A-bar by one point and subtracts one 1007 
point from the B-bar. aB increases the B-bar by one point and subtracts 1 point from the A-bar.  1008 

Initial conditions: 1009 
At the beginning of the block, you already have some A- and B-points. The amount of initial points 1010 
varies from block to block.  1011 

S1 Movie. Simulated goal success and total reward where the precision parameter 𝜷 varies 1012 
between 0.25 and 3 with 𝜽, 𝜸, and 𝜿 sampled from their fitted population mean. (A) Average 1013 

total reward across agent instances (n =1,000). An increase in 𝛽 increases total reward obtained in the 1014 
easy and medium but decreases total reward in the hard condition. (B) Proportion of successful goal-1015 
reaching, averaged across agent instances, for each of the three conditions. We plot the proportion of 1016 
reaching, at the end of a miniblock, a single goal (G1), both goals (G2), or no goal (fail). An increase 1017 

in 𝛽 increases G2 success rate in easy and medium but also increases fail rate in medium and hard. 1018 
The three conditions are colour-coded (easy = red, medium = green, blue = hard) and the average 1019 

over conditions is shown in grey.  Error bars depict SD. 1020 

 1021 
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S2 Movie. Simulated suboptimal g-choices where the precision parameter 𝜷 varies between 1022 

0.25 and 3 with 𝜽, 𝜸, and 𝜿 sampled from their fitted population mean. (A) Proportions of 1023 
suboptimal g1-choices (g1) and suboptimal g2-choices (g2), averaged over agent instances (n 1024 

=1000). An increase in 𝛽 decreases suboptimal g1- and g2-choices. (B) Suboptimal g-choices as a 1025 

function of trial averaged over agent instances. The influence of 𝛽 and the associated decrease of 1026 
suboptimal g-choices successively increases towards the end of the miniblock. Suboptimal g-choices 1027 

in the first half of the miniblock are largely unaffected by the 𝛽 parameter. (C) Suboptimal g2-1028 

choices as a function of trial averaged over agent instances. An increase in 𝛽 decreases suboptimal 1029 
g2-choices late in the miniblock in medium and hard but not in easy.  (D) Suboptimal g1-choices as a 1030 

function of trial averaged over agent instances. An increase in 𝛽 decreases suboptimal g1-choices late 1031 
in the miniblock in easy and medium but not in hard.  Error bars and shaded areas depict SD. 1032 
Conditions are colour coded. 1033 

S3 Movie. Simulated goal success and total reward where the strategy preference parameter 𝜽 1034 

varies between -1 and 1 with 𝜷, 𝜸, and 𝜿 sampled from their fitted population mean. (A) 1035 
Average total reward across agent instances (n =1000). An increase in 𝜃 increases total reward 1036 
obtained in easy and medium but decreases total reward in hard. (B) Proportion of successful goal-1037 
reaching, averaged across agent instances, for each of the three conditions. We plot the proportion of 1038 
reaching, at the end of a miniblock, a single goal (G1), both goals (G2), or no goal (fail). An increase 1039 

in 𝜃 increases G2 success rate in easy and medium but also increases fail rate in medium and hard. 1040 
The three conditions are colour-coded (easy = red, medium = green, blue = hard) and the average 1041 
over conditions is shown in grey.  Error bars depict SD. 1042 

S4 Movie. Simulated suboptimal g-choices where the strategy preference parameter 𝜽 varies 1043 
between -1 and 1 with 𝜷, 𝜸, and 𝜿 sampled from their fitted population mean. (A) Proportions of 1044 
suboptimal g1-choices (g1) and suboptimal g2-choices (g2), averaged over agent instances (n 1045 

=1000). An increase in 𝜃 decreases suboptimal g1- choices and increases suboptimal g2-choices. 1046 
Suboptimal g1-choices decrease more in easy and medium than in hard. Suboptimal g2-choices 1047 
decrease more in hard than in easy and medium. (B) Suboptimal g-choices as a function of trial 1048 

averaged over agent instances. A change in 𝜃 affects the number of suboptimal g-choices made at the 1049 

beginning but not at the end of the miniblock.  For  𝜃 > 0 suboptimal g-choices further decrease, 1050 
because g2-choices are often optimal in easy and medium. (C) Suboptimal g2-choices as a function 1051 

of trial averaged over agent instances. An increase in 𝜃 increases suboptimal g2-choices early in the 1052 
miniblock, predominantly in the hard condition.  (D) Suboptimal g1-choices as a function of trial 1053 

averaged over agent instances. An increase in 𝜃 decreases suboptimal g1-choices early in the 1054 
miniblock, predominately in easy and medium.  Error bars and shaded areas depict SD. Conditions 1055 

are colour coded. 1056 

S1 Notebook. Parameter recovery simulations. 1057 
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