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Research in Context 

Systematic Review 

Authors reviewed relevant literature using PubMed and Google Scholar. Key studies that 

generated and validated polygenic risk scores (PRS) for clinical and pathologic AD were cited. 

PRS scores have been increasingly used in the literature but clinical utility continues to be 

questioned. 

Interpretation 

In the current research landscape concerning PRS clinical utility in the AD space, there is room 

for model improvement and our hypothesis was that a PRS with integrated risk for AD 

biomarkers could yield a better model for cognitive decline. 

Future Directions 

This study serves as proof-of-concept that encourages future study of integrated PRS across 

disease markers and utility in taking an A/T/N (amyloidosis, tauopathy and neurodegeneration) 

focused approach to genetic risk for cognitive decline and AD. 

 

Abstract  

INTRODUCTION: We developed a novel polygenic risk score (PRS) based on the A/T/N 

(amyloid plaques (A), phosphorylated tau tangles (T), and neurodegeneration (N)) framework 

and compared a PRS based on clinical AD diagnosis to assess which was a better predictor of 

cognitive decline. METHODS: We used summary statistics from genome wide association 

studies of cerebrospinal fluid amyloid-β (Aβ42) and phosphorylated-tau (ptau181), left 

hippocampal volume (LHIPV), and late-onset AD dementia to calculate PRS for 1181 

participants in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Individual PRS were 
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averaged to generate a composite A/T/N PRS. We assessed the association of PRS with 

baseline and longitudinal cognitive composites of executive function and memory. RESULTS: 

The A/T/N PRS showed superior predictive performance on AD biomarkers and executive 

function decline compared to the clinical AD PRS. DISCUSSION: Results suggest that 

integration of genetic risk across AD biomarkers may improve prediction of disease progression. 

 

1. Introduction  

Alzheimer’s disease (AD) currently affects roughly 5.7 million people in the United 

States[1]. By 2025, it is expected that 7.1 million people will be affected [1], highlighting the 

urgency for progress in AD-focused research. AD is highly heritable, with as much as 79% 

shared heritable risk reported in twin studies [2], although the genetic architecture is complex 

including notable polygenicity. Phenotypically, AD includes a long prodrome in which 

neuropathology begins to accumulate decades before cognitive symptoms can be detected [3, 

4]. For that reason, early detection is critical to prevent progression of the disease [5, 6]. A 

combined screening approach that integrates biomarker, genomic, and clinical information will 

likely be required to optimize early identification and prevention of AD progression [7, 8].  

Polygenic risk scores (PRS) represent a tool for early AD risk detection; however, 

studies that used PRS to predict AD case/control status reported predictive accuracy (AUCmax) 

of less than 83% [9-12], and the clinical utility of PRS beyond the APOE locus have been 

questioned [12, 13]. A wealth of genetic data from genome-wide association studies (GWAS) 

have become available in recent years [14], and incorporation of additional genetic data may 

represent a strategy to improve PRS predictive ability. In 2010, the largest GWAS of AD 

involved ~16,000 participants [15], compared to the recently completed AD GWAS that included 

~600,000 participants [16]. This increase in GWAS data have enabled an increase in the 

number of single nucleotide polymorphisms (SNPs) used to calculate AD genetic risk scores. 
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Some of the first PRS studies used as few as 5 SNPs to calculate AD risk, compared to 205,068 

SNPs in a more recent study [17]. Despite the progress made in genomic studies of AD, PRS 

continue to show limited power, and innovative analytical strategies from novel perspectives are 

required if PRS are going to attain clinical utility.  

Improvement for PRS may come from GWAS of AD endophenotypes which focus on 

neuropathological features of the disease. In fact, in vivo biomarkers of AD neuropathology 

have become a central feature used to identify cognitively normal individuals who are at the 

greatest risk of cognitive decline [4, 18]. Additionally, the National Institute on Aging and 

Alzheimer’s Association released a research framework for AD in which the pathological 

accumulation of amyloid plaques (A), neurofibrillary tangles composed of tau (T), and 

neurodegeneration (N) are recommended to be included in diagnostic categories of AD used for 

research [19]. While this A/T/N framework has emerged in studies of preclinical disease, it has 

not been integrated into PRS for AD despite the availability of GWAS summary statistics for 

autopsy and in vivo measures of A/T/N [20, 21]. Indeed, a previous study suggested that shared 

genetic drivers for hippocampal volume (a marker of neurodegeneration) and AD may exist [22]. 

Thus, integrating the common and independent genetic drivers of clinical AD and A/T/N could 

produce models with higher predictive capacity for cognitive decline in late life.  

We set out to determine how PRS for CSF biomarkers of AD (amyloid and ptau181), 

hippocampal volume, and clinical AD relate to biomarkers of AD and longitudinal cognitive 

performance. We then developed a novel composite PRS using the A/T/N framework to 

integrate genetic risk for AD biomarkers, hippocampal volume, and clinical AD diagnosis into a 

single score (A/T/N PRS). We compared the predictive capabilities of the A/T/N score to a PRS 

score for clinical AD and hypothesized that the A/T/N PRS would serve as a more predictive 

genetic risk profile compared to a PRS for clinical AD alone.  
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2. Methods 

2.1 Participants 

Participants were drawn from the Alzheimer's Disease Neuroimaging Initiative database 

(ADNI; adni.loni.usc.edu) launched in 2003 as a public-private partnership. The ADNI, ADNI-GO 

and ADNI-2 studies enrolled more than 1,500 participants, aged 55–90 years, excluding serious 

neurological disease, other than AD, and history of brain lesion, head trauma, or psychoactive 

medication use (for full inclusion/exclusion criteria see http://www.adni-info.org). Written 

informed consent was obtained from all participants at each site, and analysis of ADNI's publicly 

available database was approved by our local Institutional Review Board prior to data analysis. 

We accessed publicly available participant data from ADNI on July 12, 2018. ADNI 

enrollment criteria are outlined in the ADNI protocol 

(http://www.adniinfo.org/Scientists/AboutADNI.aspx). For the cognitive analyses, we included all 

participants who had genomic data and longitudinal cognitive (memory and executive function) 

data, yielding a sample size of 1,181 participants. From this sample, 1,086 subjects also had 

brain MRI data and were included in neuroimaging analyses. CSF biomarker data was available 

for 826 participants of those whom had genomic and cognitive data. Demographics of 

participants with genetic and cognitive data are shown in Table 1. 

 

2.2 CSF collection and assays for Aβ42 and ptau181 

The ADNI protocol for CSF collection and quantification of Aβ42 and ptau181 biomarkers 

has been detailed previously, and used the multiplex xMAP Luminex platform [23, 24]. For this 

study, the UPenn master data set that was available on the ADNI website was downloaded. The 

first biomarker measurement for each participant was used as a continuous variable in statistical 

models.  
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2.3 Diagnostic criteria 

Full details of these diagnostic criteria have been previously published [25]. Briefly, 

Normal Cognition (NC) participants had a Mini-Mental State Exam [26] (MMSE) score between 

24-30 (inclusive), a Clinical Dementia Rating (CDR) of 0, and were non-depressed. Mild 

Cognitive Impairment (MCI) participants scored between 24-30 (inclusive) on the MMSE, had a 

memory complaint or objective memory loss as measured by the Wechsler Memory Scale-

Revised (WMS-R) Logical Memory II, a CDR of 0.5, and absence of impairments significant 

enough to fit criteria for dementia. An AD diagnosis required MMSE scores between 20-26 

(inclusive), a CDR score of 0.5-1.0 and meeting probable AD criteria [27]. 

 

2.4 Brain Imaging  

The ADNI neuroimaging protocol has been reported in detail elsewhere [28]. Images for 

the current study included original uncorrected 1.5T (ADNI-1) and 3.0T (ADNI-2, ADNI-GO) T1-

weighted high-resolution three-dimensional structural data. Cortical reconstruction and 

volumetric segmentation were performed with the FreeSurfer image analysis suite version 4.3 in 

ADNI-1 and 5.1 in ADNI-2 [29-31] (http://surfer.nmr.mgh.harvard.edu/). FreeSurfer processing in 

ADNI has been described in detail elsewhere [32]. FreeSurfer scans were assigned a quality 

control (QC) value of pass, fail or partial [33]. We excluded all scans that did not have a pass 

QC value. We used left hippocampal volume as our primary neuroimaging outcome 

measurement and included a measurement of intracranial volume (ICV) and scanner strength 

as covariates in all volumetric analyses, with volumetric measurements defined in FreeSurfer 

[34].  

 

2.5 Neuropsychological Testing  

The ADNI neuropsychological protocol, including calculation of episodic memory and 

executive function composite measures, has been reported previously [35, 36]. Memory (ADNI-
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MEM) and executive function (ADNI-EF) composite scores were used for this study. ADNI-MEM 

included a composite z-score based on item-level data from Rey Auditory Verbal Learning Test, 

Mini-Mental State Examination (MMSE), AD Assessment Scale-Cognitive Test, and Logical 

Memory I and II. ADNI-EF included item-level data from Trail Making Test Parts A and B, Digit 

Symbol, Digit Span Backward, Animal Fluency, Vegetable Fluency, and Clock Drawing Test. 

 

Genotyping and Genetic Quality Control Procedures 

 ADNI genotyping was performed using the Illumina Human610-Quad BeadChip (ADNI-

1), the HumanOmniExpress BeadChip (ADNI-GO/2), or the Illumina Omni 2.5M WGS platform 

(Illumina, Inc., San Diego, CA). Quality control was performed using PLINK [37] 

(http://pngu.mgh.harvard.edu/purcell/plink) with a 95% threshold for genotyping efficiency 

applied and a minimum minor allele frequency of 0.01. SNPs outside of Hardy-Weinberg 

equilibrium (p<1x106) were removed. Participants were excluded if they had a call rate <99%, if 

there was an inconsistency between reported and genetic sex, or if relatedness to another 

sample was established (Pihat > 0.4), in which case one participant was selected to remain in 

the dataset at random (9 samples removed). Imputation was performed on the Michigan 

Imputation Server (https://imputationserver.sph.umich.edu/index.html) using the HRC r1.1.2016 

reference panel. Population structure was analyzed using the fastStructure software package 

[38].  

 

2.6 Polygenic Risk Score Calculation 

We utilized data from a GWAS for CSF biomarkers published by Deming and colleagues 

[20]. The original data for this study was collected from 3,146 individuals across nine cohort 

studies, including ADNI. After removing ADNI participants [N=390 (ADNI-1), 397 (ADNI-2)], the 
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GWAS was re-run using data from 2,359 participants in the remaining seven cohorts. Summary 

results of the re-analyses excluding ADNI participants are available in Supplementary Materials. 

A GWAS for clinical AD using data from the International Genomics of Alzheimer’s 

Project (IGAP)[39, 40] was re-run excluding 441 ADNI participants (55,931 participants 

remained across the Alzheimer’s Disease Genetic Consortium (ADGC), the Cohorts for Heart 

and Aging Research in Genomic Epidemiology (CHARGE) Consortium, the European 

Alzheimer’s Disease Initiative (EADI) and the Genetic and Environmental Risk in Alzheimer’s 

Disease (GERAD) Consortium). Summary results of the re-analysis are presented in 

Supplementary Materials. 

Publicly available summary statistics from a UK Biobank GWAS of brain imaging 

phenotypes that included 8,428 participants [21] was utilized to generate ADNI participant PRS 

for left hippocampal volume.  

PRS were calculated for each outcome in PLINK 1.9 using the scoring function 

(https://www.cog-genomics.org/plink/1.9/) based on summary statistics from overlapping SNPs 

in the ADNI cohort and the GWAS studies detailed above. The number of overlapping SNPs to 

calculate PRS are shown in Supplemental Table 1. We calculated PRS scores using a linkage 

disequilibrium threshold of 0.25 and physical distance of 200kb for clumping to select 

independent SNPs. A significance threshold of 0.01 was used for index SNPs, with a secondary 

significance threshold of 0.5 for clumped SNPs. Scores were generated including and excluding 

the APOE region, defined as 1MB up and downstream of the gene (chromosome 19, position 

44,409,039 to 46,412,650). The PRS for CSF Aβ42 was multiplied by -1 to align a higher risk 

score with decreased CSF Aβ42 (and increased brain Aβ42 concentration). Scores were rank 

inverse-normal transformed to place them on the same scale [41]. Individual scores were 

averaged to generate a composite A/T/N score.  

All studies were approved by the institutional review board (IRB) of each participating 

location. Data sharing was carried out within the guidelines of IRB protocols.   
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2.7 Statistical Analyses 

Data were analyzed using R (version 3.5.1, https://www.r-project.org). All associations 

were run on each of the four individual PRS (ie, clinical AD, Aβ42, ptau, and LHIPV) and on the 

combined A/T/N PRS. Linear regression models assessing PRS score associations with CSF 

biomarkers (ptau181, Aβ42) covaried for age, sex, years of education, and CSF measurement 

batch. Linear regression models that evaluated PRS associations with left hippocampal volume 

(LHIPV) covaried for age, sex, years of education, baseline intracranial volume, and strength of 

magnet used for brain image acquisition. A binary logistic regression model assessed PRS 

associations with last available diagnosis (AD compared to NC, MCI diagnosed participants 

were excluded), and covaried for age, sex, and years of education.  

We also assessed associations between PRS and baseline and longitudinal cognitive 

performance. A linear regression model covaried for age, sex, and years of education assessed 

associations between PRS and baseline cognition (memory and executive function). A mixed 

effects linear regression model assessed associations between PRS and longitudinal cognition 

(memory and executive function). Fixed effects in the model included age, sex, years of 

education and an interaction term for PRS x interval representing years between visits and 

baseline. Random effects included the intercept and interval term (slope expressed as years 

from the baseline visit). The pseudo R2 reported was the marginal coefficient of determination 

associated with the fixed effects of the model. A Bonferroni correction was applied to account 

for all 40 models tested in this study (8 outcomes x 5 PRS scores) and results that remained 

statistically significant after correction are indicated. 

PRS performance was measured using p-value significance and adjusted R2 values to 

compare the variance explained across PRS and overall models. For mixed effects models, the 

marginal coefficient of determination is reported as pseudo R2. Sensitivity analyses were 

performed excluding individuals diagnosed with clinical AD or excluding clinically diagnosed AD 
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and MCI participants. Additionally, all PRS were generated including and excluding the APOE 

region. Sex interactions on all outcomes were also investigated, and if overall interactions were 

found, sex-stratified analyses were performed.  

 

3. Results 

3.1 PRS Validation 

The predictive performance of PRS on CSF Aβ42 were compared. Not surprisingly, the 

CSF Aβ42 PRS was negatively associated with measured CSF Aβ42 levels, indicating a higher 

CSF Aβ42 PRS is associated with higher brain Aβ42 burden. The CSF Aβ42 PRS model explained 

4.6% of the variance in CSF Aβ42 levels (Supplemental Table 2, p=4.1E-06). The association 

remained significant after removing the APOE region (p=6.5E-04, R2=0.035) and when 

restricting the sample to cognitively normal and MCI individuals (p=3.7E-05, R2=0.045). Notably, 

the A/T/N score was the best predictor of CSF Aβ42, with the model explaining 7.6% of the 

variance (Supplemental Figure 1, p=6.8E-12) and this score was predictive of CSF Aβ42 in 

normal cognition controls (p=1.1E-03, R2=0.076).  

CSF Ptau PRS showed a significant positive association with CSF ptau181 

concentrations (Supplemental Table 3, R2=0.038, p=0.003), however this association did not 

meet the Bonferroni threshold for all 40 models tested. This association remained significant 

after excluding the APOE region (p=0.01, R2=0.046) and after exclusion of AD participants 

(p=1.1E-03, R2=0.059). Again, the A/T/N PRS showed the strongest association with CSF 

ptau181 concentrations compared to other scores, where a higher A/T/N PRS was associated 

with higher CSF ptau levels (p=8.3E-06, R2=0.051).  

We also validated the hippocampal volume PRS, whereby a higher PRS for left 

hippocampal volume was associated with greater left hippocampal volume at baseline and the 

model explained 22.2% of variance in the LHIPV data (Supplemental Table 4, p=8.9E-04). 
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Notably, this association was significant after excluding the APOE region. The PRS for clinical 

AD (calculated using a subset of the original IGAP data), and CSF Aβ42 PRS were also 

significantly associated with baseline left hippocampal volume. The clinical AD PRS score 

showed the strongest association and accounted for the highest variance in this outcome 

(R2=0.223, p=3.0E-04), although all PRS had similar effect sizes (R2 ranging from 0.215 to 

0.223).  

As expected, the clinical AD PRS showed the strongest association with AD diagnosis 

(Supplemental Table 5, p=7.4E-08, R2=0.111) and remained significant after exclusion of the 

APOE region (p=1.3E-03, R2=0.079). The ATN and CSF Aβ42 PRS were also significantly 

associated with AD diagnosis and remained significant after APOE region exclusion, however 

the CSF Aβ42 PRS association did not remain significant after Bonferroni correction. 

 

3.2 PRS Association with Baseline Cognition 

 Higher A/T/N PRS and clinical AD PRS were significantly associated with lower baseline 

executive function in ADNI (Table 2, Supplemental Figure 2; A/T/N p=0.004, R2=0.115; 

Clinical AD p=0.02, R2=0.112), and these PRS models accounted for 11.2-11.4% of variability in 

baseline executive function but did not meet the Bonferroni correction threshold. These 

associations were not significant after exclusion of the APOE region but remained significant 

after exclusion of AD participants. It is noteworthy that the CSF Aβ42 PRS model also showed a 

nominal association with baseline executive function (p=0.04). 

The clinical AD and A/T/N PRS were associated with baseline memory performance 

(Table 3, Supplemental Figure 3; A/T/N p=0.048, R2=0.093; Clinical AD p=6.8E-05, R2=0.102), 

and remained significant after excluding AD participants from the analysis. However, the 

associations were not statistically significant when excluding the APOE region and the A/T/N 

PRS associations did not meet the Bonferroni p-value threshold. LHIPV PRS was also 

nominally associated with baseline memory (p=0.049, R2=0.093). 
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3.3 PRS Performance on Longitudinal Cognition 

 The A/T/N PRS showed the strongest association with longitudinal executive function, 

where a higher score was associated with a faster decline in executive function, and this 

association remained statistically significant when removing the APOE region or excluding AD 

participants (Table 4, Figure 1; A/T/N p=4.6E-07, R2=0.125; A/T/N excluding APOE p=2.4E-04, 

A/T/N excluding AD p=2.3E-07). Clinical AD, CSF Aβ42, and CSF ptau PRS models were also 

significantly associated with longitudinal executive function (Clinical AD p=1.9E-04, R2=0.116; 

CSF Aβ42 p=0.005, R2=0.118; CSF ptau p=3.6E-04, R2=0.117). However, no PRS was 

associated with change in executive function when restricting the sample to participants with 

normal cognition at baseline.  

 The A/T/N PRS also showed a significant association with longitudinal memory, where a 

higher score was associated with a greater rate of memory decline and the association 

remained statistically significant when removing the APOE region or removing AD participants 

from the analyses (Table 5, Figure 2; A/T/N p=1.6E-09, R2=0.118; A/T/N excluding APOE 

p=1.2E-05, A/T/N excluding AD p=1.5E-09). Higher clinical AD, CSF Aβ42, and CSF ptau PRS 

were significantly associated with greater decline in memory performance, none of which 

remained statistically significant when the sample was restricted to individuals with normal 

cognition at baseline.  

In additional sensitivity analyses, we did not observe any sex interactions with PRS on 

the baseline or longitudinal cognition outcomes detailed above (Supplemental Table 6).  
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4. Discussion 

We found that the A/T/N PRS with combined genetic risk for CSF ptau181, CSF Aβ42, 

LHIPV, and clinical AD was a strong predictor of biomarker levels during the preclinical stages 

of AD, and a better predictor of longitudinal executive function compared to a PRS for late-onset 

clinical AD. The A/T/N PRS also performed comparably to the clinical AD PRS on baseline 

cognitive measures (memory, executive function) and longitudinal memory performance. 

Together, our findings suggest that utilizing the A/T/N framework by combining genetic risk for 

AD with genetic risk for AD biomarkers yields a better fitting prediction model, particularly in the 

earliest stages of disease. 

As more GWAS data for AD endophenotypes have become available, it was important 

that we validate whether PRS for A/T/N are truly predictive of biomarkers in this independent 

dataset. All PRS were validated for their respective outcomes, and importantly, we found that 

combining PRS across A/T/N provided a more robust predictor of the individual AD biomarkers. 

It could be the case that genetic variants with small effects have functional impact across 

biomarkers, positioning a composite A/T/N score to capture more genetic overlap between 

biomarkers and amplify relevant signals for associations. As sample sizes continue to increase 

in genetic studies of amyloid, tau, and hippocampal atrophy in late-life, it is quite likely that the 

sensitivity of these PRS will continue to improve. Currently, the scores appear to provide a small 

boost in sensitivity to early deposition of pathology. 

Similarly, the A/T/N PRS appeared to provide more sensitivity to risk of executive 

function decline, particularly when including participants across the clinical spectrum of AD. In 

contrast, the clinical AD PRS appeared to perform comparably to the A/T/N score in predicting 

memory performance, suggesting that the current polygenic predictors of clinical AD may be 

particularly sensitive to memory dysfunction. Given that many of the cohorts included in the AD 

GWAS studies come from memory clinics across the country, it is not surprising to see such 

robust associations with memory performance. However, when the APOE region is excluded 
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the A/T/N score remains significantly associated with memory decline while the clinical AD 

score does not, suggesting that the A/T/N score may provide genetic prediction above and 

beyond the APOE region in the context of memory decline. However, the clinical utility of the 

additional sensitivity provided by the A/T/N PRS in non-memory domains remains to be 

determined. 

It is notable that the associations we observed with biomarkers of neuropathology and 

longitudinal cognitive decline explained variance above and beyond APOE, which has been a 

limitation of previous PRS analyses [42]. Certainly, APOE is a critical genetic component in AD, 

but AD remains a complex polygenic trait including many genetic effects with small effect sizes. 

Pooling across these small effects does appear to provide a score that shows more robust 

associations than reliance on the top genetic signal alone. 

Previous work has shown that the clinical AD PRS derived from IGAP summary statistics 

was predictive of bilateral hippocampal volume in a Brazilian youth cohort [43], aligning with the 

clinical AD PRS association with left hippocampal volume demonstrated in this study. Together, 

these results may suggest that genetic drivers of hippocampal volume are influential throughout 

life. This association also fits with previous literature which reported a PRS for late-onset AD 

was associated with hippocampal function, as measured by functional magnetic resonance 

imaging (fMRI) [44]. Few studies to date have tested PRS associations with late life cognitive 

change, and results have been mixed [45, 46].  

A strength of our chosen validation set was the wealth of clinical and genetic data 

including more than 1,100 participants. However, the GWAS summary statistics and the present 

analyses were sampled from highly-educated, Non-Hispanic White populations and 

generalizability of findings to more diverse groups is limited. PRS analyses can capture the 

common genetic risk for disease, however other disease contributors such as rare variants, 

gene-gene and gene-environment interactions may not be as accurately modeled. Larger 

sample sizes for GWAS of endophenotypes in particular would improve power of PRS models. 
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In their current form, PRS models of CSF biomarkers explain a small portion of the variance, 

suggesting substantial gains could be reached as sample sizes grow.  

Overall, this study suggests an integration of genetic components in the A/T/N 

framework can be used to explain a greater percentage of variability in longitudinal cognition 

data compared to previously published genetic risk scores for late-onset clinical AD. Importantly, 

the calculated A/T/N PRS was significantly associated with longitudinal cognition in the absence 

of the APOE region, suggesting a greater degree of genetic risk for cognitive decline can be 

captured above and beyond APOE. Future PRS development should employ endophenotype-

specific approaches to predict cognitive trajectories.   
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Table 1. Cohort demographics and summary statistics 

Participants with genetic 
and cognitive data 

Clinical Diagnosis 
Total 

(N=1182) P Normal 
Cognition 

(n=336) 

Mild Cognitive 
Impairment 

(n=640) 

Alzheimer’s 
Disease  
(n=205) 

Age at baseline, years 75.3 ± 5.4 73.6 ± 7.5 75.6 ± 7.8 74.4 ± 7.1 0.72 

Female, no. (%) 161 (48) 250 (39) 88 (43) 499 (42) 0.03 

Education, years 16.3 ± 2.7 15.9 ± 2.9 15.0 ± 3.0 15.9 ± 2.9 7.4E-7 

APOE-ε4 carrier 90 (27%) 313 (49%) 138 (67%) 541 (46%) 6.1E-24 

Baseline Memory  1.0 ± 0.5 0.1 ± 0.7 -0.9 ± 0.6 0.2 ± 0.9 7.9E-178 

Baseline Executive Function 0.8 ± 0.5 0.2 ± 0.8 -0.9 ± 0.6 0.2 ± 1.0 1.2E-97 
Values are presented as mean±standard deviation, unless otherwise indicated. Boldface indicates P < 0.05. 

Table 2. PRS associations with baseline executive function performance. 
  

No APOE NC/MCI 

N = 845 

NC 

N = 336 

PRS Score Beta P Adj R2 P P P 

A/T/N -0.14 0.004 0.115 0.100 1.56E-04* 0.187 

Clinical AD -0.06 0.019 0.112 0.602 7.81E-04* 0.472 

CSF AB42 -0.05 0.044 0.111 0.187 0.066 0.524 

CSF Ptau -0.05 0.088 0.110 0.168 0.064 0.220 

LHIPV -0.01 0.763 0.108 0.769 0.210 0.767 

Boldface indicates P < 0.05. *P<1.25E-03 Bonferroni threshold. N=1,182 unless noted otherwise. No APOE denotes 

PRS excluding APOE region results. NC/MCI and NC indicate sensitivity analysis results with the denoted diagnostic 

groups (as assessed at baseline). 
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Table 3. PRS associations with baseline memory performance. 
  

No APOE NC/MCI 

N = 845 

NC 

N = 336 

PRS Score Beta P Adj R2 P P P 

A/T/N -0.09 0.048 0.093 0.761 0.049 0.072 

Clinical AD -0.10 6.79E-05* 0.102 0.107 1.58E-05* 0.881 

CSF AB42 -0.04 0.072 0.093 0.335 0.148 0.243 

CSF Ptau -0.01 0.593 0.090 0.970 0.990 0.127 

LHIPV 0.05 0.049 0.093 0.050 0.163 0.187 

Boldface indicates P < 0.05. *P<1.25E-03 Bonferroni threshold. N=1,182 unless noted otherwise. No APOE denotes 

PRS excluding APOE region results. NC/MCI and NC indicate sensitivity analysis results with the denoted diagnostic 

groups (as assessed at baseline). 

Table 4. PRS associations with longitudinal executive function performance. 
  

No APOE NC/MCI 

N = 845 

NC 

N = 336 

PRS Score Beta P Pseudo R2 P P P 

A/T/N -0.06 4.62E-07* 0.125 2.40E-04* 2.27E-07* 0.455 

Clinical AD -0.02 1.93E-04* 0.116 0.083 6.90E-05* 0.794 

CSF AB42 -0.02 0.005 0.118 0.039 0.005 0.081 

CSF Ptau -0.02 3.61E-04* 0.117 0.002 9.00E-04* 0.689 

LHIPV -0.01 0.346 0.112 0.352 0.207 0.908 

Boldface indicates P < 0.05. *P<1.25E-03 Bonferroni threshold. N=1,182 unless noted otherwise. No APOE denotes 

PRS excluding APOE region results. NC/MCI and NC indicate sensitivity analysis results with the denoted diagnostic 

groups (as assessed at baseline). 
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Table 5. PRS associations with longitudinal memory performance. 
  

No APOE NC/MCI 

N = 845 

NC 

N = 336 

PRS Score Beta P Pseudo R2 P P P 

A/T/N -0.05 1.63E-09* 0.118 1.15E-05* 1.53E-09* 0.971 

Clinical AD -0.02 1.69E-05* 0.117 0.065 1.16E-05* 0.474 

CSF AB42 -0.02 1.31E-03 0.110 0.020 1.47E-03 0.895 

CSF Ptau -0.02 2.55E-04* 0.108 1.3E-03 1.31E-03 0.790 

LHIPV -0.01 0.044 0.105 0.044 0.014 0.749 

Boldface indicates P < 0.05. *P<1.25E-03 Bonferroni threshold. N=1,182 unless noted otherwise. No APOE denotes 

PRS excluding APOE region results. NC/MCI and NC indicate sensitivity analysis results with the denoted diagnostic 

groups (as assessed at baseline). 

 

 

Figure 1. A/T/N PRS score association with 

annual change in executive function. The A/T/N 

model accounted for 12.5% of variability in annual 

executive function change and showed a 

significant association with longitudinal change in 

executive function (p=4.62E-07).  
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Figure 2. A/T/N PRS score association with 

annual change in memory performance. The 

A/T/N model accounted for 11.8% of variability 

in annual memory performance change, and 

showed a significant association with 

longitudinal change in memory performance 

(p=1.63E-09).  
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