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Abstract 
Cryo-electron microscopy (cryoEM) is becoming the preferred method for resolving protein 
structure. Low signal-to-noise (SNR) in cryoEM images reduces the confidence and throughput 
of structure determination during several steps of data processing, resulting in impediments 
such as missing particle orientations. Denoising cryoEM images can not only improve 
downstream analysis but also accelerate the time-consuming data collection process by 
allowing lower electron dose micrographs to be used for analysis without compromising 
structural interpretability. Here, we present Topaz-Denoise, a deep learning method for reliably 
increasing the SNR of cryoEM images in seconds. By training on a dataset composed of 
thousands of micrographs collected across a wide range of imaging conditions, we are able to 
learn models capturing the complexity of the cryoEM image formation process. While this 
general idea has been deployed successfully in natural imaging, protein threading, and 
proteomics, it has yet to be applied systematically in cryoEM where the lack of ground truth 
signal has been a long-standing limitation. To address this, we make the key insight that forming 
paired, independent micrographs from even and odd camera movie frames enables us to train 
denoising models without observing ground truth signal. We demonstrate that our denoising 
model improves SNR by roughly 100x over raw micrographs and 1.8x over other methods. 
Notably, we show that denoising with our general model enables solving the first 3D single 
particle structure of clustered protocadherin, an elongated particle with previously-elusive views. 
Topaz-Denoise and pre-trained general models are now included in Topaz 
(​https://github.com/tbepler/topaz​), a free and open-source software package that focuses on 
particle picking, and has been integrated into the Appion cryoEM suite. We expect that 
Topaz-Denoise will be of broad utility to the cryoEM community for improving micrograph 
interpretability and accelerating analysis.  
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Introduction 
Visualization of micrographs from cryo-electron microscopy (cryoEM) of biological specimens is 
primarily limited by the phase contrast of proteins, the low electron dose conditions required due 
to radiation damage accrued by the proteins, and the thickness of the ice. As researchers push 
towards smaller and smaller proteins, these issues hinder downstream analysis because these 
proteins become increasingly difficult to distinguish from noise. Certain orientations of larger, 
non-globular proteins can also have low signal, leading to missing views. The typical 
signal-to-noise ratio (SNR) of a cryoEM micrograph is estimated to be as high as 0.1 ​1​, amongst 
the lowest in any imaging field, and no ground truth exists. Several steps during collection and 
processing of micrographs in single particle cryoEM rely on properly human-inspecting 
micrographs, identifying particles, and examining processed data. Conventional cryoEM 
methods for improving contrast in micrographs include downsampling, bandpass filtering, and 
Wiener filtering ​2,3​. However, these methods do not address the specific noise properties of 
micrographs and often do not provide interpretable results, which is increasingly becoming an 
issue as researchers attempt to resolve small and non-globular proteins​4,5​. 

Image denoising has long been a topic of significant interest in the machine learning 
community​6–8​. Advances in deep neural networks have enabled substantial improvements in 
image restoration and inpainting (i.e. filling in missing pixels) by learning complex, non-linear 
priors over the applied image domain. However, these methods require ground truth images to 
provide supervision for learning the denoising model ​9,10​, and is hence limited to domains where 
ground truth is available. To overcome this barrier, Lehtinen et al.​11​ presented a general 
machine learning (ML) framework, called Noise2Noise, for learning denoising models from 
paired noisy images rather than paired noisy and ground truth images. This method has been 
followed by several others for learning denoising models without ground truth ​12–14​. These 
methods offer new approaches for training deep neural network models for denoising in 
challenging domains. In cryo-EM, neural network denoising software has only just started to 
emerge for dataset-by-dataset tomogram denoising ​15,16​ and single particle micrograph 
denoising ​17​. However, there have not been any systematic evaluation of these methods to date 
nor general denoising models developed. 

Here, we develop Topaz-Denoise, the first large-scale, publicly available denoising 
models for cryoEM. Conventional cryoEM denoising methods are ad-hoc filters that do not 
model the complex image generative process. However, deep denoising models typically 
require ground truth signal which is not available in cryoEM. We make the key insight that the 
individual movie frames collected by modern microscope cameras are many independent 
observations of the same underlying signal and, hence, can be used to learn denoising models 
directly via the Noise2Noise framework. Trained on thousands of micrographs across a variety 
of imaging conditions, these models provide robust denoising without the need to train on a 
dataset-by-dataset basis. We test and compare these denoising models on several micrographs 
of typical particles and of small particles, study improvements in SNR, and use denoising 
combined with Topaz particle picking ​18​ to obtain the first 3D single particle cryoEM structure of 
clustered protocadherin, an elongated particle with previously-elusive views. We also show, for 
the first time, that denoising enables more rapid data collection by allowing micrographs to be 
collected with a lower electron total dose (10%–25% typical exposure times) without sacrificing 
interpretability or downstream processing. Shorter exposure times allow for higher throughput 
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microscope usage, which reduces research cost and increases research efficiency. These 
models are integrated into Topaz allowing easy access to the community. 

Topaz-Denoise source code is freely available as part of Topaz 
(​http://​topaz.csail.mit.edu ​) and can be installed through Anaconda, Pip, Docker, Singularity, and 
SBGrid ​19​, and is now integrated into Appion ​20​. As with Topaz, Topaz Denoise is designed to be 
modular and can easily be integrated into other cryoEM software suites. Topaz Denoise 
includes several pre-trained models and the ability for the user to train their own models. Topaz 
Denoise training and inference runs efficiently on a single GPU computer and is provided 
together with the standalone Topaz GUI to assist with command generation. 

 

Methods 

Training dataset preparation 
To train the denoising model, we collected a large dataset of micrograph frames from public 
repositories​21​ and internal datasets at the New York Structural Biology Center (NYSBC), as 
described in Supplementary Table 1. These micrograph frames were collected under a large 
variety of imaging conditions and contain data collected on FEI Krios, FEI Talos Arctica, and 
JEOL CRYOARM300 microscopes with Gatan K2 and FEI Falcon II cameras at both 
super-resolution (K2) and counting modes and at many defocus levels. Including several 
microscopes, cameras, and datasets allows for robust denoising parameters to be modelled 
across common microscope setups. 

We form two general aggregated datasets, one we call “Large” and one called “Small”. 
The “Large” dataset contains micrographs from all individual datasets. To roughly balance the 
contribution of the individual datasets in these aggregate datasets, we randomly select up to 
200 micrographs from each individual dataset for inclusion rather than all micrographs. The 
Small dataset contains micrographs from individual datasets selected by eye based on the 
denoising performance of individually-trained U-net denoising models.  

The Noise2Noise framework requires paired noisy observations of the same underlying 
signal. We generate these pairs by splitting the micrograph frames into even/odd frames which 
represent independent observations. These even/odd micrograph frames are then summed 
directly to form the paired observations. Because micrographs are typically motion corrected 
before summing and this motion correction procedure can change the noise distribution of the 
micrographs, we also form aligned, summed micrograph pairs by aligning the even/odd 
micrograph frames with MotionCor2 ​22​ using 5 by 5 patches and b-factor of 100. This resulted in 
1,929 paired micrographs for the Small dataset and 3,439 paired micrographs for the Large 
dataset. 

Model architectures 
We adopt a U-Net model architecture ​23​ similar to that used by Lehtinen et al.​11​ except that the 
input and output feature maps are 1-dimensional (n=1 to match monochrome micrographs) and 
we replace the first two width 3 convolutional layers of Lehtinen et al. with a single width 11 
convolutional layer. This model contains five max pooling downsampling blocks and five 
nearest-neighbor upsampling blocks with skip connections between down- and up-sampling 
blocks at each spatial resolution. We refer to this as the U-net model. For comparison, we also 
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consider a smaller U-net model with only 3 downsampling and upsampling blocks which we 
refer to as the U-net (small) model. We also compare with a fully convolutional neural network 
consisting of three convolutional layers of width 11x11 with 64 filters each and leaky rectified 
linear unit activations, termed FCNN, and an affine model with a single convolutional filter of 
width 31x31. 
 

Loss functions and the Noise2Noise framework 
The Noise2Noise framework takes advantage of the observation that we can learn models that 
recover statistics of the noise distribution given paired noisy observations of the same 
underlying signal. Given a ground truth signal, ​y​, we observe images of this signal that have 
been corrupted by some probabilistic noise process, . Given paired noisy oise(y)x ~ N  
observations for matched signals,  and , we can learn a function that oise(y)xa ~ N  oise(y)xb ~ N  
recovers statistics of this distribution. This is accomplished by finding parameters of the 
denoising function, ​f​ with parameters , such that the error between the denoised sample θ )f (xa  
and raw are minimized. The form of this error function determines what statistics of the noisexb  
distribution we learn to recover. Given a dataset, ​X​, containing many such image pairs, 
minimizing the L2 error over paired samples​, 

,  rgmin  E [ ||f (x ) x ||  ]a θ x ,x  ~ Xz b
a −  b

2
2  

finds ​f​ with mean-seeking behaviour. Minimizing the L1 error over paired samples, 
,rgmin  E [ ||f (x ) x ||  ]a θ x ,x  ~ Xz b

a −  b
 
1  

finds ​f​ with median-seeking behaviour. Finally, minimizing the L0 error over paired samples, 
,rgmin  E [ ||f (x ) x ||  ]a θ x ,x  ~ Xz b

a −  b
 
0  

finds ​f​ with mode-seeking behaviour. This last objective is not differentiable and requires a 
smoothing term to minimize with standard gradient descent. We refer the reader to Lehtinen et 
al.​11​ for details on this training objective.  
 

Training details 
For neural networks, weights are initialized using the default initialization in PyTorch ​24​. For affine 
models, weights are initialized to zero. All models are trained using the Adagrad variant of 
stochastic gradient descent​24​ with a learning rate of 0.001 for 100 epochs. We train on 800 by 
800 patches randomly sampled from each micrograph using a minibatch size of 4. As data 
augmentation during, these patches are randomly rotated and mirrored. Images are first 
normalized at the whole micrograph level by subtracting the mean pixel intensity and dividing by 
the standard deviation of the pixel intensities. Models were trained on a single NVIDIA V100 
GPU with 32 GB of VRAM. Training took about 15 hours per model. 
 

Inference details 
Given a trained denoising model, we denoise full size micrographs. When operating on a GPU, 
RAM constraints may require denoising to be performed in patches. Here, we denoise in 
patches of 4,000 by 4,000 pixels. In order to avoid artifacts that can occur at the patch edges 
when stitched together, we include padding of 500 pixels around each patch when denoising. 
Whole micrographs are first normalized by subtracting the mean and dividing by the standard 
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deviation of the pixel intensities. The pixel intensities of the denoised micrograph are then 
restored by multiplying by the standard deviation and adding back the mean. Given the trained 
denoising model, inference is fast. We are able to denoise 4k by 4k K2 images at a speed of 
about 3 seconds/micrograph on a single NVIDIA 1080 Ti.  
 

Signal-to-noise quantification 
We quantify the SNR of raw micrographs and processed micrographs based on paired labeled 
signal and background regions. To this end, we hand labeled 20 signal and paired background 
regions across up to 10 micrographs from each dataset. We sought to label a variety of signal 
regions and to select paired background regions as close as possible to each signal region. 
Labeling was performed with reference to low-pass filtered micrographs in order to prevent any 
possible bias towards our denoising models. Given ​N​ signal, background region pairs, , , xxsi  b

i  
indexed by ​i​, we calculate the mean and variance of each background region,  and .μbi vbi

  
From this, the signal for each region pair is defined as  where  is the mean μ  μ )si = ( s

i −  b
i 2 μsi  

of signal region ​i​. We then calculate the average SNR in dB for the regions, 

,NR og (s ) log (v )S = N
10 ∑

N

i=1
l 10

i −  10
i  

which is reported for each dataset given raw and denoised micrographs. 

Short exposure micrograph processing 
To quantify our ability to improve interpretability of low electron dose micrographs, we selected 
between five and ten random micrographs for the four datasets presented (EMPIAR-10234, 
18sep08d, 19jan04d, and 19may10e). Micrographs from each dataset were split into five 
frame-fractionated subsets using IMOD’s newstack program​25​ to simulate short exposures: 10%, 
25%, 50%, 75%, and 100%. Frames were aligned with Motioncor2 using 5x5 patches and dose 
weighting. For each dataset, SNR quantification was performed as previously described. 

Short exposure apoferritin processing 
To quantify downstream results from frame titration, 100 random independently frame-aligned 
fractionated micrographs of 19jan04d were prepared as using Motioncor2 without dose 
weighting. CTF estimation of the resulting 500 frame aligned micrographs was performed using 
CTFFind4 ​26​ from within Appion ​20​. 9,373 particles were picked from the micrographs using the 
first 10% of frames, an initial model was created in Cryosparc, and the particles were refined 
through homogeneous refinement. The same particle picks and initial model were then used to 
extract and process the 25%, 50%, 75%, and 100% subsets through de novo homogeneous 
refinement while retaining each independent micrograph CTF estimation. 3DFSC​27​ plots were 
then generated from the results. 

EMPIAR-10234 clustered protocadherin single particle processing 
We processed the EMPIAR-10234 clustered protocadherin dataset in two seperate ways to test 
the whether picking in denoised micrographs was advantageous: First by using the particle 
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picks provided by the data owner, and second by manually picking on the denoised 
micrographs. 

The picking method used by the data owner are described in Brasch et al.​28​ Briefly, 
1,540 particles were manually picked by the data owner from 87 raw micrographs and used to 
train a Topaz picking model, resulting in 14,569 particles. The following reconstruction workflow 
was performed in CryoSparc v2 ​29​ using C1 symmetry in every step and using frame-summed 
particles for consistency. 2D classification was performed three times to remove obvious 
non-particle classes, resulting in 13,739 particles. Ab-initio reconstruction with 2 classes was 
performed, resulting in one good class with 10,010 particles. Homogeneous refinement was 
performed resulting in the final reconstruction. 

The picking method we used is as follows. Frame-summed micrographs were denoised 
with the Topaz-Denoise v0.2.1 L2 model, proprocessed with `topaz preprocess` while binning 
by a factor of 4, and 1,023 particles were manually picked ​not​ by the data owner from 215 
denoised micrographs. A Topaz picking model was trained using the particle coordinates on raw 
micrographs, resulting in 59,273 particles. The following reconstruction workflow was performed 
in CryoSparc v2 using C1 symmetry in every step and using frame-summed particles for 
consistency. 2D classification was performed three times to remove obvious non-particle 
classes, resulting in 44,303 particles. Ab-initio reconstruction with 2 classes was performed, 
resulting in one good class with 23,695 particles. Heterogeneous refinement with 2 classes was 
performed, resulting in one good class with 16,049 particles. Homogeneous refinement was 
performed resulting in the final reconstruction. 

Clustered protocadherin low particle number single particle processing 
Denoising and picking were performed as described in the previous section. Then 1,000 random 
particles were chosen and processed through CryoSparc v2 ab-initio reconstruction six times 
using the raw particles and six times using the particles denoised by the v0.2.1 L2 model. 
Comparisons between the full 3D map and each set of six ab-initio models were made in UCSF 
Chimera ​30​. 

Results 

1. Denoising with Topaz improves micrograph interpretability and SNR 
We develop a general cryoEM micrograph denoising model by training a neural network using 
the Noise2Noise framework on dozens of representative datasets of commonly used imaging 
conditions (Figure 1, Methods). By learning the denoising model directly from data, we avoid 
making specific assumptions about the noise-generating process leading to superior denoising 
performance. 
 
Denoising with Topaz improves micrograph interpretability by eye on several datasets and 
improves SNR measurements in a quantitative analysis. Our model correctly smoothes 
background areas while preserving structural features better than conventional methods (i.e. 
affine or low-pass filtering) (Figure 1, Supplemental Figures 1-4). Given this known smoothing 
behavior of micrograph areas containing primarily noise, we find that denoising allows for 
identification of structured background features from noise. Figure 1 shows two micrographs 
where the background areas between particles are flattened after denoising, while 
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Supplemental Figure 5 shows microtubules with known small proteins in background areas 
properly retained after denoising. Our denoising model has the combined advantage of reducing 
ambiguity as to whether the background of a micrograph is generally free from contamination, 
allowing researchers to identify small and/or low density particle views, for example as applied 
to micrographs from Mao et al.​31​ (Supplemental Figure 6,7). In these types of scenarios, visual 
assessment of denoised micrographs compared to raw micrographs increases protein density 
confidence, increases confidence of background content, and reduces the eye strain for 
researchers. 
 
We quantitatively assess denoising performance by measuring the SNR of raw micrographs, 
micrographs denoised with our model, and micrographs denoised with conventional methods. 
To this end, we manually annotated paired signal and background regions on micrographs from 
10 different datasets (Supplemental Figure 8). We then calculated the average SNR (in dB) for 
each method using these regions​32​. We present a comparison of four different denoising model 
architectures (affine, FCNN, U-net (small), and U-net) trained with L1 and L2 losses on either 
the small or large datasets (Supplemental Table 2). We find only minor differences between L1 
and L2 models, with L1 loss being slightly favored overall. Furthermore, we find that the training 
dataset is important. Intriguingly, the affine, FCNN, and U-net (small) models all perform better 
than the full U-net model when trained on the small dataset and perform better than their 
equivalents trained on the large dataset. The best performing model overall, however, is the full 
U-net model trained on the large dataset. Furthermore, we find that this model outperforms 
conventional low-pass filtering denoising on all datasets except for one, where they perform 
equivalently (EMPIAR-10005). 
 
A summary comparison is presented in Table 1, where we report SNR results on each dataset 
for the best overall performing low-pass filter (16x binning) with the L2 U-net trained on the large 
dataset and the L1 affine model trained on the small dataset. Our pretrained U-net improves 
SNR by >2 dB on average over low-pass filtering and improves SNR by roughly 20 dB (100 fold) 
over the raw micrographs. Furthermore, the model generalizes well across different imaging 
parameters, improving SNR on micrographs collected on K2 and Falcon III cameras as well as 
micrographs collected in super-resolution and counting modes. 

2. Denoising enables shorter exposure imaging 
To simulate shorter exposure times at the microscope, we truncated frames of several datasets 
used during frame alignment and summed to the first 10%, 25%, 50%, and 75% of the frames. 
These datasets were collected with a total dose of between 40 and 69 e-/Å​2​. We denoised each 
short exposure with our general U-net model and compare both visually and quantitatively to 
low-pass filtering and to the raw micrographs without denoising. 
 
Figure 2 shows denoised and lowpass filtered example micrographs of each subset along with 
the raw micrographs. Visual analysis and our SNR analysis suggests that between 10% and 
25% of the exposure time is comparable to the full, raw micrographs (Figure 2 ​, Supplemental 
Figure 9 for FFTs​, Supplemental Figures 10-12). This corresponds to between 4.0 and 16.7 
e-/Å​2​. 3D reconstructions of frame titrations of identical apoferritin particles from 19jan04d 
suggests that a total dose of about 16.7 e-/Å​2​ is required for accurate CTF estimation 
(Supplemental Figure 13). Furthermore, roughly double the electron dose is required for 
low-pass filtering to match the SNR of our neural denoised micrographs. This could allow a 
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factor of two or more savings in exposure time. Such a significant reduction in exposure time 
substantially increases the efficiency of cryoEM collection sessions, allowing for microscopes to 
operate at higher throughput. 

3. Denoising enables picking of difficult particle projections 
We denoised micrographs of particles with particularly difficult-to-identify projections, clustered 
protocadherin (EMPIAR-10234) to test whether denoising enables these views to be picked 
more completely than without denoising. Figure 3 shows a representative micrograph before 
and after denoising (​Supplemental Figure 9 for FFTs)​. Before denoising, many particle 
top-views were indistinguishable by eye from noise (Figure 3a, inset). After denoising, top-views 
in particular became readily identifiable (Figure 3a, inset and circled in green). 
 
We manually picked 1,023 particles while attempting to balance the percentage of side, oblique, 
and top-views of the particle in our picks. Using these picks, we trained a Topaz picking model 
as described in the Methods. The resulting model was used to infer a total of 16,049 particles 
after CryoSparc 2D classification and 3D heterogeneous refinement. Using only the raw 
micrographs for initial manual picking, the data owner picked 1,540 particles to train a Topaz 
model as described in Brasch et al.​28​ that inferred 10,010 particles after CryoSparc 2D 
classification and 3D refinement. Using denoised micrographs allowed us to pick over 60% 
more real particles and substantially increase the percentage of top- and oblique-views. 
 
Figure 3b shows the resulting 3D structured using raw particles. The tertiary features of the 
EC-domains are better-resolved in the particles picked using the U-net denoising model, and 
the angular particle coverage is more filled in and complete (Figure 3c, Supplemental Figure 
14). The side-views allow the data owner to more accurately interpret how the symmetry of the 
cadherin dimers is broken upon interaction compared to the previous sub-tomogram average 
model in Brasch et al.​28​ Interestingly, CryoSparc ab-initio reconstruction using a minimal set of 
denoised particles is less reliable than using the same set of raw particles (Supplemental Figure 
15). Four or five of the six ab-initio reconstructions using the raw particles resulted in the correct 
overall structure, while only one of the six ab-initio reconstructions using the denoised particles 
resulted in the correct overall structure 

Conclusion 
CryoEM has long been hampered by the ability for researchers to confidently identify protein 
particles in all represented orientations from behind sheets of noise. Several bottlenecks in the 
general cryoEM workflow may preclude protein structure determination due to low SNR, such as 
differentiating protein from noise during picking, picking homogeneous subsets of particles, 
picking sufficient numbers of particles in all represented orientations, and obtaining a sufficient 
number of particles for 3D refinement. The initial stages of ​de novo​ protein structure 
determination are particularly affected by these issues. To ameliorate these potentially critical 
issues, we present Topaz-Denoise, a Noise2Noise convolutional neural network for learning 
and removing significant noise information from cryoEM images. By employing a network 
trained on dozens of datasets to account for varying sample, microscope, and collection 
parameters, we show and provide robust general denoising models. We show empirically that 
our U-net denoising models result in higher SNR relative to affine models and low-pass filters. 
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Topaz-Denoise enables visual identification of low SNR particle views, as exemplified by the 
clustered protocadherin dataset where denoising allowed for a more representative and 
complete 3D reconstruction. Moreover, due to the considerable increase in SNR of denoised 
single particle micrographs, exposure time may be reduced without sacrificing the ability to pick 
particles reliably, thus enabling an increase in collection efficiency. We expect micrograph 
denoising in Topaz to become a standard component of the micrograph analysis pipeline due to 
its performance and modularity. 
 

Code availability statement 
Source code for Topaz Denoise is publicly available as part of Topaz (v0.2.0 and above) on 
GitHub at ​https://github.com/tbepler/topaz​. Topaz is installable through Anaconda, Pip, Docker, 
Singularity, SBGrid, and source. Topaz is licensed under the GNU General Public License v3.0. 

Data availability statement 
The general models used in this manuscript are included as options in Topaz Denoise. Over 
100 NYSBC dataset frames used for some of the models have been deposited to 
EMPIAR-XXXXX. The clustered protocadherin model from manual picking on denoised 
micrographs has been deposited to EMD-YYYY. 

Acknowledgements 
The authors wish to thank Simons Electron Microscopy Center (SEMC) OPs for many of the test 
datasets used in training and the authors of EMPIAR entries XXXXX, YYYYY, … for additional 
training datasets. The authors thank Dr. Julia Brasch for sharing her processing experience with 
EMPIAR-10234. The authors wish to thank Sargis Dallakyan for integrating Topaz Denoise into 
Appion. The authors wish to thank Anchi Cheng, Mykhailo Kopylov, Bridget Carragher, and 
Clinton Potter for helpful discussions. 
 
T.B. and B.B. were supported by NIH grant R01-GM081871. A.J.N. was supported by a grant 
from the NIH National Institute of General Medical Sciences (NIGMS) (F32GM128303). The 
cryoEM work was performed at SEMC and National Resource for Automated Molecular 
Microscopy located at NYSBC, supported by grants from the Simons Foundation (SF349247), 
NYSTAR, and the NIH NIGMS (GM103310) with additional support from the Agouron Institute 
(F00316) and NIH (OD019994). 

Author contributions 
T.B., A.J.N., and B.B. conceived of this project. T.B. developed and implemented the models. 
T.B. and A.J.N. processed and analyzed the data and model results. T.B. and A.J.N. processed 

8 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 12, 2019. ; https://doi.org/10.1101/838920doi: bioRxiv preprint 

https://github.com/tbepler/topaz
https://doi.org/10.1101/838920


 

and analyzed single particle results. T.B., A.J.N., and B.B. designed the experiments and wrote 
the manuscript. 

  

9 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 12, 2019. ; https://doi.org/10.1101/838920doi: bioRxiv preprint 

https://doi.org/10.1101/838920


 

 
Figure 1 | ​Illustration of the training framework and comparison of denoising methods on two example 

micrographs. ​(a)​ The Noise2Noise method requires paired noisy observations of the same underlying 

signal. We generate these pairs from movie frames collected in the normal cryoEM process, because 

each movie frame is an independent sample of the same signal. These are first split into even/odd movie 

frames. Then, each is processed and summed independently following standard micrograph processing 

protocols. The resulting even and odd micrographs are denoised with the denoising model (denoted 

here as ​f ​). Finally, to calculate the loss, the odd denoised micrograph is compared with the raw even 

micrograph and vice versa. ​(b) ​ Micrograph from EMPIAR-10025 split into four quadrants showing the 

raw micrographs, lowpass filtered micrograph by a binning factor of 16, and results of denoising with 

our affine and U-net models. Particles become clearly visible in the lowpass filtered and denoised 

micrographs, but the U-net denoising shows strong additional smoothing of background noise. A detail 

view of the micrograph is highlighted in blue and helps to illustrate the improved background smoothing 

provided by our U-net denoising model. ​(c)​ Micrograph from EMPIAR-10261 split into the U-net 
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denoised and raw micrographs along the diagonal. Detail views of five particles and one background 

patch are boxed in blue. The Topaz U-net reveals particles and reduces background noise. 

 
 
 
 
 

Method 

EMPIAR datasets NYSBC K2 datasets NYSBC Falcon3 datasets 

Overall 10261 10005 10025 
Protocad
herin 

18sep08
d 19jan04d 

19may10
e 18aug17l 

18sep06
d 18sep19l 

Affine (Topaz) 5.49 1.29 0.72 4.83 4.51 8.87 12.02 10.65 6.90 9.15 6.44 

U-net (Topaz) 7.17 1.72 1.07 5.94 6.06 8.43 13.07 15.17 7.37 13.24 7.92 

Low-pass 5.19 -0.12 -0.40 4.22 3.53 6.87 9.99 9.04 6.95 8.71 5.40 

Raw -17.14 -20.13 -24.15 -14.47 -15.40 -11.73 -5.44 -6.33 -3.64 -5.63 -12.41 

Table 1 ​ | Comparison of denoising methods based on estimated SNR (in dB, larger is better). SNR was 
estimated from 20 paired signal and background regions selected for each dataset. In each column, the 
best performing model is highlighted. We report denoising results on aligned micrographs for the NYSBC 
K2 and Falcon3 datasets. All datasets were collected in electron counting modes, except for 18sep06d 
which was collected using Falcon III integrating mode. Our U-net denoising model performs best overall 
and is best on all except for the 19jan04d dataset where our affine denoising model slightly outperforms 
it. We report low-pass filtering by a binning factor of 16 on all datasets, which we found to give better 
SNR overall compared to Gaussian low-pass filtering.  
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Figure 2​ | Denoising in Topaz enhances SNR of short exposure micrographs. ​(a) ​SNR (dB) as a function of 

electron dose in low-pass filtered micrographs by a binning factor of 16 (blue), and U-net denoised 

micrographs (orange) in the four NYSBC K2 datasets. Our U-net denoising model enhances the SNR of 

micrographs across almost all dosages in all four datasets. SNR can be enhanced by a factor of 1.5x or 

more at 20 e-/A ​2​. ​(b) ​Example section of a micrograph from the 19jan04d dataset of apoferritin, 

β-galactosidase, and TMV (full micrograph in Supplemental Figure 3,4) showing the raw micrograph, 

low-pass filtered micrograph, and U-net denoised micrograph over increasing dose. Particles are clearly 

visible at the lowest dose in the denoised micrograph and background noise is substantially reduced by 

Topaz denoising. 
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Figure 3​ | Denoising in Topaz improves interpretability and picking of difficult particle projections. ​(a)​ A 

raw micrograph (left) and Topaz denoised micrograph (right) of the clustered protocadherin dataset 

(EMPIAR-10234) with a top-view boxed out (insets). Denoising allows for top-views to be clearly 

identified (green circles, right) and subsequently used to increase the confidence of particle picking. ​(b) 

Topaz picking training on raw micrographs using 1,540 manually picked particles from the raw 

micrographs resulted in the reconstruction on the left. Topaz picking training on the raw micrographs 

using 1,023 manually picked particles from the denoised micrographs resulted in the reconstruction on 

the right. Manually picking on denoised micrographs resulted in 60% more particles in the 3D 

reconstruction. ​(c)​ Particle distributions for each reconstruction. 3DFSC plots are shown in Supplemental 

Figure 14. 
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Supplement 

Supplemental Table 1: Training datasets 

Dataset Name 
Number of 
Micrographs Description 

NYSBC zero defocus 671 NYSBC ladder dataset collected at zero defocus 

NYSBC ice images 900 NYSBC micrographs taken of vitreous ice 

EMPIAR-10025 196 T20S proteasome 

EMPIAR-10005 499 TRPV1 dataset taken on a K2 direct electron detector 

EMPIAR-10210 170 mouse MDA5-dsRNA filaments 

EMPIAR-10243 142 heparin-induced 2N4R tau filaments 

EMPIAR-10244 642 RNA polymerase II transcribing a nucleosome 

EMPIAR-10248 971 Apoferritin by CRYOARM300 with cold-FEG 

EMPIAR-10249 596 
Horse liver alcohol dehydrogenase movies obtained using Talos Arctica operating at 200 
kV equipped with a K2 

EMPIAR-10250 181 
Human methemoglobin movies obtained using Talos Arctica operating at 200 kV equipped 
with a K2 

EMPIAR-10252 153 
Catalytic subunit of protein kinase A bound to ATP, manganese, and IP20 movies obtained 
using Talos Arctica operating at 200 kV equipped with a K2 

EMPIAR-10257 295 NDH the complex I-like molecule of photosynthesis 

EMPIAR-10258 199 LRRC8A-DCPIB in MSP1E3D1 nanodiscs 

EMPIAR-10259 198 apo-LRRC8A in MSP2N2 nanodiscs 

EMPIAR-10261 1461 ProTx2-bound Nav1.7 VSD2-NavAb chimeric channel 

EMPIAR-10031 512 MAVS CARD C1 filaments, Falcon2 direct electron detector 

EMPIAR-10061 397 beta-galactosidase in complex with a cell-permeant inhibitor 

EMPIAR-10028 600 Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine 

Small 1929 
Contains micrographs from datasets: EMPIAR-10005, -10025, -10061, -10244, -10249, 
-10250, -10252, -10257, -10258, and -10261 

Large 3439 Contains micrographs from all individual datasets 

Supplemental Table 1 ​ | List of datasets included in model training. The individual datasets with 
number of micrographs from each and brief descriptions are provided in the first block. The 
second block describes the camera/imaging mode specific datasets. These are composed of all 
micrographs from subsets of the individual datasets. The last block describes the two general 
datasets. The “Small” dataset is composed of micrographs from a subset of the individual 
datasets that we found to give best performing models by eye. The “Large” dataset contains 
micrographs from all individual datasets. For the “Small” and “Large” datasets, individual 
datasets with more than 200 micrographs were subsampled to only include 200 images. This 
serves to approximately balance the contributions of each contained dataset. 
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Supplemental Table 2: SNR comparison for model architectures, loss 
functions, and training datasets 

Training 
Dataset 

Model 
architec
ture 

Objectiv
e 

EMPIAR datasets NYSBC K2 datasets NYSBC Falcon3 datasets 

Overall 10261 10005 10025 
Protoca
dherin 

18sep0
8d 

19jan04
d 

19may1
0e 

18aug1
7l 

18sep0
6d 

18sep1
9l 

Small 

Affine 

L1 5.49 1.29 0.72 4.83 4.51 8.87 12.02 10.65 6.90 9.15 6.44 

L2 5.28 1.04 0.40 4.64 4.33 8.64 11.88 10.43 6.89 9.02 6.25 

FCNN 

L1 5.45 1.25 -0.05 5.37 5.85 8.78 12.77 12.02 7.90 10.89 7.02 

L2 5.17 0.94 -0.59 4.82 5.67 8.62 12.31 11.30 7.76 10.29 6.63 

U-Net 
(small) 

L1 5.99 0.65 0.12 5.89 7.11 9.71 14.17 12.05 8.25 10.93 7.49 

L2 5.32 0.49 0.27 5.55 6.85 9.74 14.26 11.23 7.49 10.36 7.16 

U-Net 

L1 5.24 0.79 2.51 5.64 5.38 9.38 13.53 9.91 6.49 9.59 6.85 

L2 5.72 0.86 3.01 5.41 5.22 8.64 13.06 9.36 6.61 9.16 6.70 

Large 

Affine 

L1 4.30 -0.24 -1.09 3.76 3.36 7.23 11.34 9.32 6.56 8.45 5.30 

L2 4.26 -0.27 -1.15 3.74 3.33 7.20 11.32 9.32 6.57 8.46 5.28 

FCNN 

L1 4.69 -0.74 -1.57 3.95 5.25 7.36 11.93 10.26 8.04 9.72 5.89 

L2 3.78 -0.47 -1.57 3.76 4.79 6.81 11.21 10.15 7.34 9.62 5.54 

U-Net 
(small) 

L1 6.47 0.51 -1.00 5.18 4.82 7.04 12.29 13.62 8.04 10.83 6.78 

L2 6.00 0.84 -0.46 5.19 5.20 7.90 12.34 12.36 7.20 10.38 6.69 

U-Net 

L1 6.95 1.88 0.83 6.33 6.14 9.35 13.87 13.11 7.35 12.76 7.86 

L2 7.17 1.72 1.07 5.94 6.06 8.43 13.07 15.17 7.37 13.24 7.92 

Lowpass 

4 -5.28 -11.17 -11.92 -5.28 -6.08 -2.97 3.44 -1.04 -1.02 -0.29 -4.16 

8 0.30 -5.52 -5.89 -0.23 -0.89 2.03 7.84 4.30 2.87 4.57 0.94 

16 5.19 -0.12 -0.40 4.22 3.53 6.87 9.99 9.04 6.95 8.71 5.40 

32 3.92 1.89 0.08 1.65 1.63 8.25 10.13 8.58 1.90 7.92 4.59 

64 2.34 -2.22 -0.83 -3.25 5.60 5.18 11.12 10.23 6.58 -0.02 3.47 

Raw -17.14 -20.13 -24.15 -14.47 -15.40 -11.73 -5.44 -6.33 -3.64 -5.63 -12.41 

Supplemental Table 2 ​ | Comparison of denoising methods based on estimated SNR (in dB, 
larger is better). SNR was estimated from 20 paired signal and background regions selected for 
each dataset. In each column, the best performing model is highlighted. We report denoising 
results on aligned and dose weighted micrographs for the NYSBC K2 and Falcon3 datasets.All 
datasets were collected in electron counting modes, except for 18sep06d which was collected 
using Falcon III integrating mode. The U-net denoising model trained on the “Large” dataset 
with L2 loss performs best on average. For the low-pass filter baselines, the amount of filtering 
is reported in the “Objective” column. The SNR of the raw micrographs is reported in the last 
row.   
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Supplemental Figure 1: Comparison of denoising methods 

 
Supplemental Figure 1 ​ | Figure 2a micrograph (pixel size: 0.6575 Å) processed in four different 
ways: Topaz affine denoising model, low-pass binning by Fourier cropping by a factor of 16 then 
padding, Gaussian low-pass filtering with a standard deviation of 8 pixels, and our Topaz U-net 
denoising model.  
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Supplemental Figure 2: Comparison of denoising methods on 
EMPIAR-10261 

 
Supplemental Figure 2 ​ | Figure 2b micrograph (pixel size: 0.849 Å) processed in four different 
ways: Topaz affine denoising model, low-pass binning by Fourier cropping by a factor of 16 then 
padding, Gaussian low-pass filtering with a standard deviation of 8 pixels, and our Topaz U-net 
denoising model.  
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Supplemental Figure 3: Comparison of Topaz neural denoising models on 
19jan04d 

 
Supplemental Figure 3 ​ | Comparison between denoising models on a micrograph (pixel size 
1.10 Å) of apoferritin, β-galactosidase, and TMV. The raw image denoised with the affine model, 
FCNN model, U-net with mode-seeking L0 loss, U-net with median-seeking L1 loss, and U-net 
with mean-seeking L2 loss are shown.  
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Supplemental Figure 4: Comparison of lowpass binning on 19jan04d 

 
Supplemental Figure 4 ​ | Comparison between low-pass binning by Fourier cropping. The raw 
micrograph in Supplemental Figure 3 is low-pass filtered by factors of 2, 4, 8, 16, 32, and 64.  
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Supplemental Figure 5: Denoising sample with known background 
contaminants 

 
Supplemental Figure 5 ​ | Denoising raw micrographs (18sep15a) of microtubules with known 
background contaminant proteins, kinesin and tubulin. Topaz denoising appropriately 
accentuates features of the background proteins instead of smoothing them out.  
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Supplemental Figure 6: Denoising EMPIAR-10003 

 
Supplemental Figure 6 ​ | Denoising of EMPIAR-10003 raw images (left) using the U-net model 
(right). Possible regions of proteins are particularly apparent in the top image.  
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Supplemental Figure 7: Comparison of backgrounds after denoising 

 
Supplemental Figure 7 ​ | Denoising as a complementary method for analyzing background 
proteins and contamination in sample/grid preparations. Left: Three micrographs with nearly 
clean backgrounds (green insets). Middle: A micrograph of microtubules with known kinesin and 
tubulin background contaminant (blue inset). Right: Two micrographs from the EMPIAR-10003 
dataset with the centers magnified (orange insets). All micrographs are denoised using our 
Topaz U-net model. Insets are magnified by 2x. Scalebars are 100nm.  
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Supplemental Figure 8: Paired signal and background for SNR 
quantification 

 
Supplemental Figure 8 ​ | Example micrographs from 19jan04d, 18sep08d, and the 
protocadherin dataset showing labeled signal (blue) and background (red) regions overlayed 
over low-pass filtered images. Signal and background regions were selected close together to 
match local background properties as best as possible to each signal region. 
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Supplemental Figure 9: Fourier transforms of raw and denoised 
micrographs 

 
Supplemental Figure 9 ​ | Fourier transforms of previously shown raw and denoised 
micrographs (insets). Top: Figure 2a, EMPIAR-10025. Middle: Figure 2b, EMPIAR-10261. 
Bottom: Figure 3, 19jan04d. Arrows show the location of the ~3.7 Å ice ring.  
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Supplemental Figure 10: Short exposure detail of protocadherin 

 
Supplemental Figure 10 ​ | Detail of protocadherin micrograph denoised and raw over 
increasing dose. 
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Supplemental Figure 11: Short exposure detail of 18sep08d (VLPs) 

 
Supplemental Figure 11 ​| Detail of 18sep08d micrograph denoised and raw over increasing 
dose. 
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Supplemental Figure 12: Short exposure detail of 19may10e 

 
Supplemental Figure 12 ​ | Detail of 19may10e micrograph denoised and raw over increasing 
dose.  
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Supplemental Figure 13: Short exposure 3D reconstructions of apoferritin 

 
Supplemental Figure 13 ​ | 3DFSC plots of apoferritin particles fractionated by frames/exposure 
time: ​(a)​ 6.95 e-/Å​2​, ​(b) ​ 16.67 e-/Å​2​, ​(c) ​ 34.73 e-/Å​2​, ​(d) ​ 51.40 e-/Å​2​, and ​(e)​ 69.50 e-/Å​2​.  
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Supplemental Figure 14: Denoising improves manual picking completion 
for difficult particles 

 
Supplemental Figure 14 ​ | 3DFSC plots of clustered protocadherin (EMPIAR-10234). ​(a)​ Using 
the particle picks reported on in Brasch et al., 2019, resulting in 10,010 particles in the 3D 
reconstruction. ​(b)​ Using the particle picks reported on in the Methods (from manually picking on 
denoised micrographs prior to Topaz picking training on raw micrographs), resulting in 16,049 
particles in the 3D reconstruction.  
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Supplemental Figure 15: Denoised particles are less reliable for ab-initio 
model generation 

 
Supplemental Figure 15 ​ | 1,000 random particles processed through CryoSparc ab-initio 
reconstruction using raw particles ​(a)​ and denoised particles ​(b)​. 4 out of 6 reconstructions 
using raw particles result in the correct structure (a), while at best 1 out of 6 reconstructions 
using denoised particles result in the correct structure (b). 
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