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Abstract 
Cryo-electron microscopy (cryoEM) is becoming the preferred method for resolving protein 
structures. Low signal-to-noise (SNR) in cryoEM images reduces the confidence and throughput 
of structure determination during several steps of data processing, resulting in impediments 
such as missing particle orientations. Denoising cryoEM images can not only improve 
downstream analysis but also accelerate the time-consuming data collection process by 
allowing lower electron dose micrographs to be used for analysis. Here, we present 
Topaz-Denoise, a deep learning method for reliably and rapidly increasing the SNR of cryoEM 
images and cryoET tomograms. By training on a dataset composed of thousands of 
micrographs collected across a wide range of imaging conditions, we are able to learn models 
capturing the complexity of the cryoEM image formation process. The general model we present 
is able to denoise new datasets without additional training. Denoising with this model improves 
micrograph interpretability, enabling us to solve the first 3D single particle closed and partially 
open structures of clustered protocadherin, an elongated particle with previously-elusive views. 
We then show for the first time that low dose collection, enabled by Topaz-Denoise, improves 
downstream analysis in addition to reducing data collection time. We also present the first 
general 3D denoising model for cryoET. Topaz-Denoise and pre-trained general models are 
now included in Topaz. We expect that Topaz-Denoise will be of broad utility to the cryoEM 
community for improving micrograph and tomogram interpretability and accelerating analysis. 
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Introduction 
Visualization of micrographs from cryo-electron microscopy (cryoEM) of biological specimens is 
primarily limited by the phase contrast of proteins, the low electron dose conditions required due 
to radiation damage accrued by the proteins, and the thickness of the ice. As researchers push 
towards smaller and smaller proteins, these issues hinder downstream analyses because these 
proteins become increasingly difficult to distinguish from noise. Certain orientations of large, 
non-globular proteins can also have low signal, leading to missing views. The typical 
signal-to-noise ratio (SNR) of a cryoEM micrograph is estimated to be only as high as 0.1 1, 
amongst the lowest in any imaging field, and no ground truth exists. Nonetheless, several steps 
during collection and processing of micrographs in single particle cryoEM rely on properly 
human-inspecting micrographs, identifying particles, and examining processed data. 
Conventional cryoEM methods for improving contrast in micrographs include downsampling, 
bandpass filtering, and Wiener filtering 2,3. However, these methods do not address the specific 
noise properties of micrographs and often do not provide interpretable results, which 
increasingly hinders attempts to resolve small and non-globular proteins4,5.  

At the same time, there is a push in the field to fund large research facilities for 
high-throughput cryoEM. These and smaller facilities are moving towards the synchrotron model 
of data collection and need to increase their throughput to meet rising demand. One approach 
to speed up collection would be to collect shorter micrograph exposures. However, reducing 
total dose would exacerbate SNR-related analysis problems. Better micrograph denoising 
provides the opportunity to reduce total dose and increase collection throughput without 
compromising interpretability or downstream results. 

Image denoising has long been a topic of significant interest in the computer vision and 
signal processing community6, but has recently seen a surge in interest from the machine 
learning community. Advances in deep neural networks have enabled substantial improvements 
in image restoration and inpainting (i.e. filling in missing pixels) by learning complex, non-linear 
priors over the applied image domain. However, these methods require ground truth images to 
provide supervision for learning the denoising model 7,8, and are hence limited to domains where 
ground truth is available. To overcome this barrier, Lehtinen et al.9 presented a general machine 
learning (ML) framework, called Noise2Noise, for learning denoising models from paired noisy 
images rather than paired noisy and ground truth images. This method has been followed by 
several others for learning denoising models without ground truth 10–12. These methods offer new 
approaches for training deep neural network models for denoising in challenging domains. In 
cryoEM, neural network denoising software has only just started to emerge for 
dataset-by-dataset cryo-electron tomogram (cryoET) denoising 13,14 and single particle 
micrograph denoising 15. However, there have not been any systematic evaluations of these 
methods to date nor have pre-trained general denoising models been developed. 

Here, we develop Topaz-Denoise, the first large-scale, publicly available denoising 
models for cryoEM and cryoET. Conventional cryoEM and cryoET denoising methods are 
ad-hoc filters that do not model the complex image generative process. To address this, our 
goal is to learn the denoising process directly from data. However, deep denoising models 
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typically require ground truth signal which is not available in cryoEM. We make the key insight 
that the individual movie frames collected by modern direct detector devices (DDD) are many 
independent observations of the same underlying signal and, hence, can be used to learn 
denoising models directly via the Noise2Noise framework. Trained on thousands of micrographs 
from DDD - K2, Falcon II, and Falcon III - across a variety of imaging conditions, these general 
models (also called pre-trained models) provide robust denoising without the need to train on a 
dataset-by-dataset basis. We test and compare these denoising models on several micrographs 
of typical particles and of small particles, study improvements in SNR, and use denoising 
combined with Topaz particle picking 16 to obtain the first 3D single particle cryoEM structures of 
clustered protocadherin, an elongated particle with previously-elusive views and a previously 
unseen conformation. We also show, for the first time, that denoising enables more rapid data 
collection by allowing micrographs to be collected with a lower electron total dose (10%–25% 
typical exposure times) without sacrificing interpretability or downstream processing. Shorter 
exposure times allow for higher throughput microscope usage, which reduces research cost and 
increases research efficiency. Additionally, we develop the first general 3D denoising model for 
cryoET tomograms, trained on dozens of cryoET tomograms, and show that our general 
denoising model performs comparably to models trained on a dataset-by-dataset basis. These 
models are integrated into Topaz allowing easy access to the community, along with the 
denoising framework that allows users to train their own cryoEM and cryoET denoising models. 

Topaz-Denoise source code is freely available as part of Topaz 
(http://topaz.csail.mit.edu ) and can be installed through Anaconda, Pip, Docker, Singularity, and 
SBGrid 17, and is now integrated into  CryoSPARC18, Relion 19, Appion 20 and Scipion 21. As with 
Topaz, Topaz-Denoise is designed to be modular and can easily be integrated into other 
cryoEM software suites. Topaz-Denoise includes several pre-trained models and the ability for 
the user to train their own models. Topaz-Denoise 2D training and inference runs efficiently on a 
single GPU computer, while 3D training and inference runs efficiently on multi-GPU systems. 
Both 2D and 3D denoising are integrated into the standalone Topaz GUI to assist with 
command generation.  
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Results 

1. Denoising with Topaz improves micrograph interpretability and SNR 
We develop a general cryoEM micrograph denoising model by training a neural network using 
the Noise2Noise framework on dozens of representative datasets of commonly used imaging 
conditions (Figure 1, Methods). By learning the denoising model directly from data, we avoid 
making specific assumptions about the noise-generating process leading to superior denoising 
performance. 
 
Denoising with Topaz improves micrograph interpretability by eye on several datasets and 
improves SNR measurements in quantitative analyses. Our model correctly smoothes 
background areas while preserving structural features better than conventional methods (i.e. 
affine or low-pass filtering) (Figure 1, Supplemental Figures 1-4). Given this known smoothing 
behavior of micrograph areas containing primarily noise, we find that denoising allows for 
identification of structured background features from noise. Figure 1 shows two micrographs 
where the background areas between particles are flattened after denoising, while 
Supplemental Figure 5 shows microtubules with known small proteins in background areas 
properly retained after denoising. Our denoising model has the combined advantage of reducing 
ambiguity as to whether the background of a micrograph is generally free from contamination, 
allowing researchers to identify small and/or low density particle views, for example as applied 
to micrographs from Mao et al.22 (Supplemental Figure 6,7). In these types of scenarios, visual 
assessment of denoised micrographs compared to raw micrographs increases protein density 
confidence, increases confidence of background content, and reduces eye strain for 
researchers. 
 
We quantitatively assess denoising performance by measuring the SNR of raw micrographs, 
micrographs denoised with our model, and micrographs denoised with conventional methods. 
We chose to measure SNR using real cryoEM micrographs because the denoising models were 
trained on real micrographs generated under real-world conditions that no software accurately 
simulates. Due to the lack of ground truth in cryoEM, SNR calculations are estimates (Methods). 
We manually annotated paired signal and background regions on micrographs from 10 different 
datasets (Supplemental Figure 8). We then calculated the average SNR (in dB) for each method 
using these regions23. We present a comparison of four different denoising model architectures 
(affine, FCNN, U-net (small), and U-net) trained with L1 and L2 losses on either the small or 
large datasets (Supplemental Table 1). Note that the L2 affine filter is also the Wiener filter 
solution. We find only minor differences between L1 and L2 models, with L1 loss being slightly 
favored overall. Furthermore, we find that the training dataset is important. Intriguingly, the 
affine, FCNN, and U-net (small) models all perform better than the full U-net model when trained 
on the small dataset and perform better than the same models trained on the large dataset. The 
best performing model overall, however, is the full U-net model trained on the large dataset. 
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This model also outperforms conventional low-pass filtering denoising on all datasets except for 
one, where they perform equivalently (EMPIAR-10005 24). 
 
A summary comparison is presented in Table 1, where we report SNR results on each dataset 
for the best overall performing low-pass filter (16x binning) with the L2 U-net trained on the large 
dataset and the L1 affine model trained on the small dataset. Our pre-trained U-net model 
improves SNR by >2 dB on average over low-pass filtering and improves SNR by roughly 20 dB 
(100 fold) over the raw micrographs. The model generalizes well across different imaging 
conditions, improving SNR on micrographs collected on K2, Falcon II, and Falcon III cameras as 
well as micrographs collected in super-resolution and counting modes. 
 
To explore the broadness of our general U-net denoising model, we applied the model to 
several samples across several non-DDD cameras from two screening microscopes and 
analyzed them visually (Supplemental Figure 9). The pixelsizes for these datasets are about 
twice that of the training data and camera hardware binning by two has also been applied. 
Despite the differing noise characteristics of these cameras relative to the DDD cameras used 
for training the U-net denoising model, our general denoising model performs well. We see 
improvements similar to those noted above. Background is reasonably smoothed while the 
contrast of protein densities is greatly increased in the proteasome and two apoferritin 
micrographs. The glutamate dehydrogenase micrograph shows slight artifacts around some 
proteins, but contrast is substantially improved and denoising allows for clear identification of 
particle aggregates. These improvements demonstrate that our pre-trained denoising model 
even generalizes well to micrographs collected on screening microscopes and may enable 
increased cryoEM screening efficiency. 

2. Denoising with the general model enables more complete picking of 
difficult particle projections 
We denoised micrographs of particles with particularly difficult-to-identify projections, clustered 
protocadherin (EMPIAR-10234 25), to test whether denoising enables these views and others to 
be picked more completely than without denoising. Figure 2 shows a representative micrograph 
before and after denoising. Before denoising, many particle top-views were indistinguishable by 
eye from noise (Figure 2a, left inset). After denoising, top-views in particular became readily 
identifiable (Figure 2a, right inset and circled in green). 
 
We manually picked 1,023 particles while attempting to balance the percentage of side, oblique, 
and top-views of the particle in our picks. Using these picks, we trained a Topaz16 picking model 
as described in the Methods. The resulting model was used to infer a total of 23,695 particles 
after CryoSPARC18 2D classification, 3D heterogeneous refinement to identify two 
conformations, and 3D homogeneous refinement on each conformation (Figure 2b, right). A 
closed conformation consisting of 13,392 particles confirmed the previous structure obtained 
using sub-tomogram alignment (EMD-9197)25. A new, yet unseen partially open conformation 
consisting of 8,134 particles was obtained (Figure 2b, yellow map), which exhibits a dislocation 
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on one end of the dimer and an increased twist of the whole structure relative to the closed 
conformation. In comparison, using only the raw micrographs for initial manual picking, the data 
owner picked 1,540 particles to train a Topaz model as described in Brasch et al.25 that inferred 
10,010 particles in the closed conformation after CryoSPARC 2D classification and 3D 
refinement (Figure 2, left). Using Topaz-Denoise to help identify particles manually enabled us 
to resolve a novel conformation of clustered protocadherin from single particles, resulted in 
2.15x more real particles picked, and substantially increased the percentage of top- and 
oblique-views (Figure 2c, Supplemental Figure 10). 
 
Interestingly, CryoSPARC ab-initio reconstruction using a minimal set of denoised particles is 
less reliable than using the same set of raw particles (Supplemental Figure 11). Four or five of 
the six ab-initio reconstructions using the raw particles resulted in the correct overall structure, 
while only one of the six ab-initio reconstructions using the denoised particles resulted in the 
correct overall structure. 

3. Denoising with the general model enables shorter exposure imaging 
We simulated short exposure times at the microscope by truncating frames of several datasets 
used during frame alignment and summed to the first 10%, 25%, 50%, and 75% of the frames. 
These datasets were collected with a total dose of between 40 and 69 e-/Å2. We denoised each 
short exposure with our general U-net model and compared both visually and quantitatively to 
low-pass filtering and to the raw micrographs without denoising. 
 
Figure 3 shows denoised and low-pass filtered example micrographs of each subset along with 
the raw micrographs. Visual analysis and our SNR analysis suggests that between 10% and 
25% of the exposure time is comparable to the full, raw micrographs (Figure 3 , Supplemental 
Figure 12 for FFT, Supplemental Figures 13-16). This corresponds to between 4.0 and 16.7 
e-/Å2. 3D reconstructions of frame titrations of identical apoferritin particles from 19jan04d 
suggests that a total dose of about 16.7 e-/Å2 is required for accurate CTF estimation 
(Supplemental Figure 17). Remarkably, reconstructions from these low-dose particle stacks 
reach resolutions surpassing that of the full dose particle stacks. This suggests that 
Topaz-Denoise can enable low-dose collection, particle identification, and thus high-resolution 
reconstruction in practice. Furthermore, roughly double the electron dose is required for 
low-pass filtering to match the SNR of our neural denoised micrographs. This could allow a 
factor of two or more savings in exposure time. Such a significant reduction in exposure time 
substantially increases the efficiency of cryoEM collection sessions, allowing for microscopes to 
operate at higher throughput. 
 
To account for real-world collection overhead, we tested the optimal exposure dose for 
19jan04d (~17 e-/Å2) compared to a normal exposure dose (~66 e-/Å2) on both a Titan Krios + 
Gatan K2 system and a Titan Krios + Gatan K3 system for a typical stage shift collection (1 
exposure per hole) and a typical image shift collection (4 exposures per hole). Table 2 shows 
the results. On the K2 system with stage shift collection, using the optimal exposure dose is 
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about 65% more efficient than using the normal exposure dose (178 exposures per hour 
compared vs. 108). With image shift collection, using the optimal exposure dose is about 57% 
more efficient than using the normal exposure dose (190 exposures per hour compared vs. 
121). On the K3 system with stage shift collection, using the optimal exposure dose is about 
25% more efficient than using the normal exposure dose (242 exposures per hour compared vs. 
195). With image shift collection, using the optimal exposure dose is about 15% more efficient 
than using the normal exposure dose (273 exposures per hour compared vs. 237). These 
results show that using the Topaz-Denoise general model to optimize exposure dose can allow 
for on the order of 1,000 more exposures per day to be collected on K2 and K3 systems. 

4. Generalized 3D cryoET tomogram denoising markedly improves 
contrast, SNR, and interpretability  
We converted the 2D Noise2Noise framework used in the previous sections to 3D for the 
purpose of creating a pre-trained general denoising model for cryo-electron tomograms 
(Methods). To train a general denoising model, we split 32 aligned cryoET tilt-series from FEI 
Titan Krios + Gatan K2 BioQuantum systems of cellular and reconstituted biological 
environments into even/odd frame tilt-series, binned each tilt-series by 2, reconstructed each 
tilt-series, and trained the neural network for over one month (Methods). The average pixelsize 
of the trained model, called Unet-3d-10a in the Topaz-Denoise package, is 10 angstroms. To 
further increase the broadness of 3D denoising in Topaz-Denoise, we trained a second general 
3D denoising model called Unet-3d-20a using the same data as the Unet-3d-10a model, except 
with all training tomograms binned by another factor of 2 in Fourier space (ie. 20 Å pixelsize 
tomograms). Both general 3D denoising models are included in Topaz-Denoise. 
 
To evaluate the resulting general 3D denoising model, we applied the model to one tomogram 
from each of the datasets used in the training and compared the results to models trained 
specifically on each test tomogram (‘self-trained’), in addition to low-pass filtered tomograms 
(Supplemental Table 2). Comparisons were made both by SNR calculations using even/odd 
tomograms (Supplemental Table 2, Methods), and visually. Our pre-trained 3D U-net model 
(Unet-3d-10a) improves SNR by >3 dB over raw tomograms and improves SNR by about 1 dB 
on average over the best low-passed tomograms. Self-trained models showed only a marginal 
improvement in SNR over Unet-3d-10a. Figure 4a and Supplemental Video 1 show a visual 
comparison of one of the yeast tomograms used for training and testing. The Unet-3d-10a and 
self-trained models show a marked improvement in contrast and detail of ribosomes, RNA, ER 
proteins, mitochondrial transmembrane proteins, and aggregates over the raw and low-passed 
tomograms, while flattening background similar to the 2D U-net model for micrographs. 
 
We next applied the Unet-3d-10a model to a sample unlike those it was trained on in several 
respects: an 80S ribosome single particle unbinned tomogram with a pixelsize of 2.17 Å and 
defocus of 4 microns, over four times less than the average pixelsize and half the average 
defocus of the tomograms used for training. A visual comparison of the applied model along 
with binned and Gaussian low-pass filtered tomograms is shown in Figure 4b and Supplemental 
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Video 2. As with the previous 2D and 3D Topaz-Denoise general model results, the 
Unet-3d-10a model properly flattens background while increasing contrast of proteins relative to 
binning and low-pass filters. The increased contrast without tomogram resampling allows for 
visual delineation of objects of interest while retaining their higher-resolution information, and 
does not require ad-hoc parameter adjustment or training required by filtering methods more 
complicated than low-pass filtering. Furthermore, we show that applying a Gaussian filter after 
denoising further increases contrast, but at the expense of higher resolution information (Figure 
4b and Supplemental Video 2, last tomogram). This may be useful if researchers wish to further 
increase contrast and do not require all frequencies to be visualized. 
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Discussion 

CryoEM has long been hampered by the ability for researchers to confidently identify protein 
particles in all represented orientations from behind sheets of noise. Several bottlenecks in the 
general cryoEM workflow may preclude protein structure determination due to low SNR, such as 
differentiating protein from noise during picking, picking homogeneous subsets of particles, 
picking sufficient numbers of particles in all represented orientations, and obtaining a sufficient 
number of particles for 3D refinement. The initial stages of de novo protein structure 
determination are particularly affected by these issues. 

To ameliorate these potentially critical issues, we present Topaz-Denoise, a Noise2Noise-based 
convolutional neural network for learning and removing noise from cryoEM images and cryoET 
tomograms (section 1). By employing a network trained on dozens of datasets to account for 
varying sample, microscope, and collection parameters, we achieve robust general denoising 
for cryoEM. We show empirically that our U-net denoising models result in higher SNR relative 
to affine models and low-pass filters. Topaz-Denoise enables visual identification of low SNR 
particle views, as exemplified by the clustered protocadherin dataset where denoising allows for 
more representative and complete 3D reconstructions, significantly more particles picked, and a 
never-before-seen conformation. This newly identified, partially 'open' conformation strongly 
suggest the possibility that assembly of protocadherin cis-dimers are preformed on membranes 
allowing rapid assembly of lattices and triggering of an avoidance signal when two cell surfaces 
with identical protocadherin complements come into contact. Increased confidence in particle 
identification using Topaz-Denoise, as shown in a particularly difficult case in results section 2, 
enables novel structures to be obtained from cryoEM data due to substantially increased 
particle picking completeness. Moreover, due to the considerable increase in SNR of denoised 
single particle micrographs, exposure time may be reduced without sacrificing the ability to pick 
particles reliably or perform downstream processing, thus enabling an increase in collection 
efficiency (section 3). Finally, implementing the same Noise2Noise-based network in 3D 
enables denoising of cryo-electron tomograms in minutes. As shown in both cellular tomograms 
and single particle tomograms in section 4, the 3D general denoising model in Topaz-Denoise 
properly smooths areas without signal and increases contrast of areas with signal without 
reducing the visual resolvability of features. This results in substantially higher SNR features 
both visually and quantitatively. Together, the U-net model for cryoEM and the Unet-3d models 
for cryoET in Topaz-Denoise offer superior denoising capabilities that are broadly applicable 
across instruments and sample types. 
 
Conceptually, the Noise2Noise method as applied to micrographs in Topaz-Denoise trains a 
neural network to transform each denoised half-micrograph into the paired raw half-micrograph, 
and performs this training over thousands of half-micrograph pairs. We note that this is 
effectively learning an SNR maximizing transformation.. This follows from the relationship 
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between the SNR of a micrograph and the correlation coefficient between paired independent 
measurements, which has been known and used in cryoEM since at least 1975 1,26. This 
relationship, SNR = CCC/(1-CCC), where CCC is the correlation coefficient, has direct 
connection with the Noise2Noise objective in which we seek to find a transformation of the 
micrograph such that the error between transformed micrographs and the paired independent 
micrograph is minimized. In particular, the choice of L2 loss can be motivated through direct 
connection with the correlation. When both the denoised micrograph and raw micrograph are 
normalized to have mean zero and standard deviation one, the mean squared error (MSE) and 
correlation coefficient (CCC) are related by MSE = 2 - 2*CCC. This suggests a direct link 
between the MSE objective and  SNR under the framework of Frank & Al-Ali 26. 
 
Practically in our experience, because the general models were trained on large datasets from 
popular DDDs (Gatan K2, FEI Falcon II, and FEI Falcon III), these models provide the best 
visual results on comparable DDDs. For micrographs from microscopes and detectors used in 
the training dataset, we find that denoising typical featureful objects, such as proteins, 
continuous carbon, carbon/gold edges, and crystalline ice, increases their visual contrast, while 
denoising amorphous objects such as vitrified water results in visual flattening (Figure 1b,c, 
Supplemental Figure 12 for FFTs). Micrographs from non-DDD cameras still fare well compared 
to DDDs in our experience (Supplemental Figure 9) despite differing physical characteristics of 
the microscopes and detectors. This suggests that the general U-net model in Topaz-Denoise is 
robust to micrographs collected on equipment outside of the training dataset. Since non-DDD 
cameras are often used on screening microscopes, denoising these micrographs may increase 
screening throughput by allowing for more rapid analysis of micrographs, thereby increasing the 
efficiency of grid preparation steps. These results highlight three of the main advantages of our 
general denoising model: 1) users do not have to spend additional time training specific 
denoising models using their data, 2) for cameras that do not record frames, such as most 
screening microscope systems, acquiring data for training is not practical, thus a general 
denoising model is greatly prefered, and 3) the general model enables real-time denoising 
during data collection because denoising takes only seconds per micrograph. 
 
The 3D cryoET denoising model included in Topaz-Denoise, and the framework which allows 
users to train their own models, may allow for improved data analysis not only in the cryoET 
workflow, but also the cryoEM workflow. In cryoET, researchers are often exploring 
densely-packed, unique 3D structures that are not repetitive enough to allow for sub-volume 
alignment to increase the SNR. The 3D denoising model shown here and included in the 
software increases the SNR of tomograms, which as a consequence may make manual and 
automated tomogram segmentation 27 easier and more reliable. In single particle cryoEM, we 
anticipate that the 3D denoising model and models trained on half-maps may be used to 
denoise maps during iterative alignment, as has previously been shown to be useful after 
alignment28. In our experience, training models on half-maps performs a form of local b-factor 
correction on the full map, which may allow for more reliable and accurate iterative mask 
generation during single particle alignment. 
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Models generated using Topaz-Denoise, including the provided general models, may be 
susceptible to the hallucination problem in neural networks29. Details in denoised micrographs or 
tomograms may exhibit imprints of encodings from the datasets used for training. Practically, 
this means that denoised particles should not be relied on for reconstruction as demonstrated in 
Supplemental Figure 11. We suspect that the issue here is two-fold: 1) cryoEM/ET refinement 
and reconstruction software assume noise distributions typical of raw data, not denoised data, 
and 2) denoised particles may present hallucinated information from the denoising model that is 
not detectable by visual inspection. For these reasons, we recommend that Topaz-Denoise 
models be used to assist with visualization and object identification, then the objects of interest 
be extracted and processed from raw micrographs/tomograms. Misuse of Topaz-Denoise and 
other opaque augmentations of raw data may result in subtle and difficult-to-detect forms of 
hallucinated signal 30,31. 

As cryoEM and cryoET continue to expand into adjacent fields, researchers new to micrograph 
and tomogram data analysis will benefit from improved methods for visualization and 
interpretation of these low SNR data. Topaz-Denoise provides a bridge to these researchers, in 
addition to assisting those experienced in cryoEM and cryoET. We expect Topaz-Denoise to 
become a standard component of the micrograph analysis pipeline due to its performance, 
modularity, and integration into CryoSPARC, Relion, Appion, and Scipion. 
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Methods 

Training dataset preparation for 2D denoising models 
To train the denoising models, we collected a large dataset of micrograph frames from public 
repositories32 and internal datasets at the New York Structural Biology Center (NYSBC), as 
described in Supplemental Table 3. These micrograph frames were collected under a large 
variety of imaging conditions and contain data collected on FEI Krios, FEI Talos Arctica, and 
JEOL CRYOARM300 microscopes with Gatan K2, FEI Falcon II, and FEI Falcon III DDD 
cameras at both super-resolution (K2) and counting modes and at many defocus levels. 
Including several microscopes, cameras, and datasets allows for robust denoising parameters 
to be modelled across common microscope setups. 

We form two general aggregated datasets, one we call “Large” and one called “Small”. 
The “Large” dataset contains micrographs from all individual datasets. To roughly balance the 
contribution of the individual datasets in these aggregate datasets, we randomly select up to 
200 micrographs from each individual dataset for inclusion rather than all micrographs. The 
Small dataset contains micrographs from individual datasets selected by eye based on the 
denoising performance of individually-trained U-net denoising models.  

The Noise2Noise framework requires paired noisy observations of the same underlying 
signal. We generate these pairs by splitting the micrograph frames into even/odd frames which 
represent independent observations. These even/odd micrograph frames are then summed 
directly to form the paired observations. Because micrographs are typically motion corrected 
before summing and this motion correction procedure can change the noise distribution of the 
micrographs, we also form aligned, summed micrograph pairs by aligning the even/odd 
micrograph frames with MotionCor2 33 using 5 by 5 patches and a b-factor of 100. This resulted 
in 1,929 paired micrographs for the Small dataset and 3,439 paired micrographs for the Large 
dataset. 

Model architectures 
We adopt a U-Net model architecture 34 similar to that used by Lehtinen et al.9 except that the 
input and output feature maps are 1-dimensional (n=1 to match monochrome micrographs) and 
we replace the first two width 3 convolutional layers of Lehtinen et al. with a single width 11 
convolutional layer (Supplemental Figure 18) similar to other convolutional neural networks 
used in cryoEM16. This model contains five max pooling downsampling blocks and five 
nearest-neighbor upsampling blocks with skip connections between down- and up-sampling 
blocks at each spatial resolution. We refer to this as the U-net model. For comparison, we also 
consider a smaller U-net model with only 3 downsampling and upsampling blocks which we 
refer to as the U-net (small) model. We also compare with a fully convolutional neural network 
consisting of three convolutional layers of width 11x11 with 64 filters each and leaky rectified 
linear unit activations, termed FCNN, and an affine model with a single convolutional filter of 
width 31x31. 
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Loss functions and the Noise2Noise framework 
The Noise2Noise framework takes advantage of the observation that we can learn models that 
recover statistics of the noise distribution given paired noisy observations of the same 
underlying signal. Given a ground truth signal, y, we observe images of this signal that have 
been corrupted by some probabilistic noise process, . Given paired noisy oise(y)x ~ N  
observations for matched signals,  and , we can learn a function that oise(y)xa ~ N  oise(y)xb ~ N  
recovers statistics of this distribution. This is accomplished by finding parameters of the 
denoising function, f with parameters , such that the error between the denoised sample θ )f (xa  
and raw are minimized. The form of this error function determines what statistics of the noisexb  
distribution we learn to recover. Given a dataset, X, containing many such image pairs, 
minimizing the L2 error over paired samples, 

,  rgmin  E [ ||f (x ) x ||  ]a θ x ,x  ~ Xz b
a −  b

2
2  

finds f with mean-seeking behaviour. Minimizing the L1 error over paired samples, 
,rgmin  E [ ||f (x ) x ||  ]a θ x ,x  ~ Xz b

a −  b
 
1  

finds f with median-seeking behaviour. Finally, minimizing the L0 error over paired samples, 
,rgmin  E [ ||f (x ) x ||  ]a θ x ,x  ~ Xz b

a −  b
 
0  

finds f with mode-seeking behaviour. This last objective is not differentiable and requires a 
smoothing term to minimize with standard gradient descent. We refer the reader to Lehtinen et 
al.11 for details on this training objective. In practice, the errors of denoising both  and arexa xb  
used for training.  
 

Training details 
For neural networks, weights are initialized using the default initialization in PyTorch 35. For affine 
models, weights are initialized to zero. All models are trained using the Adagrad variant of 
stochastic gradient descent24 with a learning rate of 0.001 for 100 epochs. We train on 800 by 
800 patches randomly sampled from each micrograph using a minibatch size of 4. As data 
augmentation, these patches are randomly rotated and mirrored. In order to avoid interpolation 
artifacts, images are only rotated by 90, 180, or 270 degrees. Images are first normalized at the 
whole micrograph level by subtracting the mean pixel intensity and dividing by the standard 
deviation of the pixel intensities. Models were trained on a single NVIDIA V100 GPU with 32 GB 
of VRAM. Training took about 15 hours per model. 
 

Inference details 
Given a trained denoising model, we denoise full size micrographs. When operating on a GPU, 
RAM constraints may require denoising to be performed in patches. Here, we denoise in 
patches of 4,000 by 4,000 pixels. In order to avoid artifacts that can occur at the patch edges 
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when stitched together, we include padding of 500 pixels around each patch when denoising. 
We note that this padding approach perfectly resolves patch edge effects when the padding is 
at least as large as half the receptive field of the model. Whole micrographs are first normalized 
by subtracting the mean and dividing by the standard deviation of the pixel intensities. The pixel 
intensities of the denoised micrograph are then restored by multiplying by the standard deviation 
and adding back the mean. Given the trained denoising model, inference is fast. We are able to 
denoise 4k by 4k K2 images at a speed of about 3 seconds/micrograph on a single NVIDIA 
1080 Ti.  
 

Micrograph scaling for figure visualization 
In order to properly scale the pixel intensities between raw and denoised micrographs for 
visualization, we scale each micrograph to be relative to the intensities of the 16x low-pass 
filtered micrograph. This is achieved by subtracting the mean and dividing by the standard 
deviation of the pixel intensities in the low-pass filtered micrograph. This ensures that the 
relative signal levels are identical between all processed versions of the micrograph. 
Furthermore, to convert these into 256-bit values for display, we bin the real number pixel 
intensities into uniformly spaced buckets between -4 and 4. 

Signal-to-noise quantification 
We quantify the SNR of raw micrographs and processed micrographs in two ways: 1) based on 
paired labeled signal and background regions, and 2) using two independent measurements of 
the same signal. For the first method, we hand-labeled 20 signal and paired background regions 
across up to 10 micrographs from each dataset. We sought to label a variety of signal regions 
and to select paired background regions as close as possible to each signal region. Labeling 
was performed with reference to low-pass filtered micrographs in order to prevent any possible 
bias towards our denoising models. Given N signal, background region pairs, , indexed , xxsi  b

i  

by i, we calculate the mean and variance of each background region,  and . From this,μb
i vbi

  
the signal for each region pair is defined as  where  is the mean of signal μ  μ )si = ( s

i −  b
i 2 μs

i  
region i. We take the mean over the signal region to be the signal in order to reduce noise and 
because we sought to label small, uniform signal regions. We then calculate the average SNR 
in dB for the regions, 

,NR og (s ) log (v )S = N
10 ∑

N

i=1
l 10

i −  10 b
i  

which is reported for each dataset given raw and denoised micrographs. This is equivalent to 
ten times the log of the SNR. We report SNR this way for consistency with the denoising 
literature. 

For the second, independent method of calculating SNR, we adopt the approach of 
Frank and Al-Ali 26 in which the SNR is estimated from two independent measurements of the 
same signal using the relationship  where p is the cross-correlation coefficientNR p/(1 )S =  − p  
between the two measurements. We use this to measure the SNR of denoising by splitting 
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micrographs into even and odd frames, frame aligning each independently, denoising the odd 
frame micrograph and then calculating the correlation between the denoised odd frame 
micrograph and the raw even frame micrograph. Based on this, we report the SNR in dB as 

NR 10log (p/(1 ))S =  10 − p  
where p is now the cross-correlation between the denoised odd frame micrograph and the raw 
even frame micrograph. An advantage of this SNR calculation over our estimate above is that it 
considers all pixels in the micrograph and does not require labeling signal and background 
regions. The disadvantage is that it requires paired measurements and, therefore, can only be 
calculated for datasets where we have the raw frames. We also cannot calculate the SNR of the 
complete micrograph. 

SNR quantification for cryo-electron tomograms is performed using the second method, 
where a ~1,000x1,000x150 pixel sub-volume of each tomogram containing biological objects is 
used to calculate SNR. 

Short exposure micrograph processing 
To quantify our ability to improve interpretability of low electron dose micrographs, we selected 
between five and ten random micrographs for the four datasets presented (EMPIAR-10234, 
18sep08d, 19jan04d, and 19may10e). Micrographs from each dataset were split into five 
frame-fractionated subsets using IMOD’s newstack program36 to simulate short exposures: 10%, 
25%, 50%, 75%, and 100%. Frames were aligned with Motioncor2 using 5x5 patches and dose 
weighting. For each dataset, SNR quantification was performed using the second method 
described above. For this quantification, micrographs were split into even and odd frames. The 
odd frames were then dose fractionated into 10%, 17.5%, 25%, 37.5%, and 50% of the 
full-micrograph total doses (rounded down to the nearest frame) and denoised. These low-dose 
denoised micrographs were compared with their corresponding full-dose even frame micrograph 
to calculate the SNR. The full-micrograph total doses for EMPIAR-10234, 18sep08d, 19jan04d, 
and 19may10e are 67.12 e-/Å2 , 39.6 e-/Å2 , 69.46 e-/Å2 , and 64.44 e-/Å2, respectively. 

Short exposure apoferritin processing 
To quantify downstream results from frame titration, 100 random independently frame-aligned 
fractionated micrographs of 19jan04d were prepared using Motioncor2 without dose weighting. 
CTF estimation of the resulting 500 frame aligned micrographs was performed using 
CTFFind4 37 from within Appion 20. 9,373 particles were picked from the micrographs using the 
first 10% of frames (the first 1 second of the exposures), an initial model was created in 
CryoSPARC, and the particles were refined through homogeneous refinement. The same 
particle picks and initial model were then used to extract and process the 25%, 50%, 75%, and 
100% subsets through de novo homogeneous refinement while retaining each independent 
micrograph CTF estimation. 3DFSC38 plots were then generated from the results. 
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Optimized Krios K2, K3 exposure time test 
To quantify impacts on collection time using exposure doses optimized with Topaz-Denoise, we 
set up several collection sessions on FEI Titan Krios + Gatan K2 and FEI Titan Krios + Gatan 
K3 systems running Leginon collection. For each system, we used an apoferritin grid with 
1.2/1.3 hole spacing, 300 mesh and collected four datasets to mimic common collection 
parameters: one with one normal exposure (~66 e-/Å2) and one focus per hole, one with one 
optimized exposure (~17 e-/Å2) and one focus per hole, one with four normal exposures (~66 
e-/Å2) and one focus per hole, and one with four optimized exposures (~17 e-/Å2) and one focus 
per hole. On the K2 system, normal exposures took 10 seconds and optimized exposures took 
2.5 seconds. On the K3 system, normal exposures took 2.5 seconds and optimized exposures 
took 0.65 seconds. Before each exposure was collected, the stage was set to settle for 1 
second. Collection for each condition lasted 20-30 minutes to account for average overhead 
time during collection (focusing, stage movement, camera readout, etc.). Collection times were 
then extrapolated to exposures per hour and exposures per day. Additional overhead such as 
LN2 re-filling and targeting optimal sample areas were not taken into account. 

EMPIAR-10234 clustered protocadherin single particle processing 
We processed the EMPIAR-10234 clustered protocadherin dataset in two seperate ways to test 
the whether picking in denoised micrographs was advantageous: First by using the particle 
picks provided by the data owner, and second by manually picking on the denoised 
micrographs. 

The picking method used by the data owner is described in Brasch et al.25 Briefly, 1,540 
particles were manually picked by the data owner from 87 raw micrographs and used to train a 
Topaz16 picking model, resulting in 14,569 particles. The following reconstruction workflow was 
performed in CryoSPARC v2 18 using C1 symmetry in every step and using frame-summed 
particles for consistency. 2D classification was performed three times to remove obvious 
non-particle classes, resulting in 13,739 particles. Ab-initio reconstruction with 2 classes was 
performed, resulting in one good class with 10,010 particles. Homogeneous refinement was 
performed resulting in the final reconstruction. 

The picking method we used is as follows. Frame-summed micrographs were denoised 
with the Topaz-Denoise v0.2.1 L2 model, proprocessed with `topaz preprocess` while binning 
by a factor of 4, and 1,023 particles were manually picked not by the data owner from 215 
denoised micrographs. A Topaz16 picking model was trained using the particle coordinates on 
raw micrographs, resulting in 59,273 particles. The following reconstruction workflow was 
performed in CryoSPARC v2 using C1 symmetry in every step and using frame-summed 
particles for consistency. 2D classification was performed three times to remove obvious 
non-particle classes, resulting in 44,303 particles. Ab-initio reconstruction with 2 classes was 
performed, resulting in one good class with 23,695 particles. Heterogeneous refinement with 2 
classes was performed, resulting in two classes with different conformations. 2D classification 
and heterogeneous refinement with these two classes and a junk class were performed, 
resulting in 13,392 particles in the closed conformation and 8,134 particles in the partially open 
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conformation. Homogeneous refinement was performed on each class, resulting in the final 
reconstructions. UCSF Chimera 39 was used to render the final reconstructions. 

Clustered protocadherin low particle number single particle processing 
Denoising and picking were performed as described in the last paragraph of the previous 
section. Then 1,000 random particles were chosen and processed through CryoSPARC v2 
ab-initio reconstruction six times using the raw particles and six times using the particles 
denoised by the v0.2.1 L2 model. Comparisons between the full 3D map and each set of six 
ab-initio models were made in UCSF Chimera 39. 

Cryo-electron tomography and 3D denoising 
Saccharomyces uvarum (S.uvarum) was grown to log phase in YPD media, applied to freshly 
glow discharged carbon/copper 200 mesh Quantifoil grids, back blotted with the Leica GP, and 
plunge-frozen into liquid ethane. Grids were clipped and loaded into a Helios NanoLab 650 dual 
beam. Milling protocol followed previously published methods40 yielding lamellae ranging in 
thickness between ~100-150nm. Tomograms were collected with a FEI Titan Krios equipped 
with an energy filter and a Gatan K2 BioQuantum operated in counting mode with the following 
parameters: energy filter 30eV slit, ~18 μm defocus, 6.08 Å pixelsize, -48.0° to 48.0° tilt with a 
2° increment, total dose of ~60 e-/Å2 . Tomograms were collected with a bi-directional scheme 
with an unreleased hybrid track/predict method 41 implemented in Leginon 42. Raw frames were 
aligned with MotionCor2 33 and split into even/odd pairs before summation. Whole tilt-series were 
aligned with Appion-Protomo 43,44, then split into even/odd frame tilt-series, and reconstructed 
with Tomo3D45,46 weighted back-projection, yielding even/odd half tomograms. Thirty two 
tomograms of cellular and reconstituted environments collected on FEI Titan Krios + Gatan K2 
BioQuantum systems with an average pixelsize of 5.2 Å (range: 1.8 - 6 Å) and defocus of 9 μm 
(range: 4 - 18 μm) were used for training the pre-trained general denoising models, which was 
performed in parallel across seven Nvidia GTX 1080 GPUs. Training the model for 
binned-by-two tomograms (Unet-3d-10a) took over one month and training the model for 
binned-by-four tomograms (Unet-3d-20a) took ten days. Denoising a 3GB binned-by-two 
tomogram takes about five minutes on an Nvidia RTX Titan GPU and an Nvidia RTX 2080 Ti 
GPU in parallel. Tomography Figures and Supplemental Videos were made with Imod 36. 
 
The tomogram denoising model uses a U-net architecture identical to the 2D U-net presented 
above, except that the 2D convolutions are replaced with 3D convolutions to operate on the 
tomogram voxel grids and the first convolutional kernel width is 7 voxels rather than 11. Training 
and inference methods are otherwise identical except for the patch size, which is set to 96 for 
tomograms to fit in GPU RAM. 
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Code availability statement 
Source code for Topaz-Denoise is publicly available as part of Topaz (v0.2.0 and above for 2D 
denoising, v0.2.4 and above for 3D denoising) on GitHub at https://github.com/tbepler/topaz. 
Topaz is installable through Anaconda, Pip, Docker, Singularity, SBGrid, and source. Topaz is 
licensed under the GNU General Public License v3.0. 

Data availability statement 
The general models used in this manuscript are included as options in Topaz-Denoise. Over 
100 NYSBC dataset frames used for some of the models have been deposited to 
EMPIAR-XXXXX. The closed and partially open clustered protocadherin maps have been 
deposited to EMD-22060 and EMD-22059, respectively. The apoferritin maps for 10%, 25%, 
50%, 75%, and 100% of the total dose have been deposited to EMD-22052, EMD-22053, 
EMD-22056, EMD-22057, and EMD-22058, respectively. 
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Figure 1: Training framework and denoising visual comparisons 

 
Figure 1 | Illustration of the training framework and comparison of denoising methods on two example 

micrographs. (a) The Noise2Noise method requires paired noisy observations of the same underlying 

signal. We generate these pairs from movie frames collected in the normal cryoEM process, because 

each movie frame is an independent sample of the same signal. These are first split into even/odd movie 
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frames. Then, each is processed and summed independently following standard micrograph processing 

protocols. The resulting even and odd micrographs are denoised with the denoising model (denoted 

here as f ). Finally, to calculate the loss, the odd denoised micrograph is compared with the raw even 

micrograph and vice versa. (b)  Micrograph from EMPIAR-10025 split into four quadrants showing the 

raw micrographs, low-pass filtered micrograph by a binning factor of 16, and results of denoising with 

our affine and U-net models. Particles become clearly visible in the low-pass filtered and denoised 

micrographs, but the U-net denoising shows strong additional smoothing of background noise. A detail 

view of the micrograph is highlighted in blue and helps to illustrate the improved background smoothing 

provided by our U-net denoising model. (c) Micrograph from EMPIAR-10261 split into the U-net 

denoised and raw micrographs along the diagonal. Detail views of five particles and one background 

patch are boxed in blue. The Topaz U-net reveals particles and reduces background noise. 
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Table 1: Denoising SNR comparisons 

Method 

EMPIAR datasets NYSBC K2 datasets NYSBC Falcon III datasets 

Overall 1026147 1000524 1002548 
Protocad
herin 

18sep08
d 19jan04d 

19may10
e 18aug17l 

18sep06
d 18sep19l 

Affine (Topaz) 5.49 1.29 0.72 4.83 4.51 8.87 12.02 10.65 6.90 9.15 6.44 

U-net (Topaz) 7.17 1.72 1.07 5.94 6.06 8.43 13.07 15.17 7.37 13.24 7.92 

Low-pass 5.19 -0.12 -0.40 4.22 3.53 6.87 9.99 9.04 6.95 8.71 5.40 

Raw -17.14 -20.13 -24.15 -14.47 -15.40 -11.73 -5.44 -6.33 -3.64 -5.63 -12.41 

Table 1  | Comparison of micrograph denoising methods based on estimated SNR (in dB, larger is better). 

SNR was estimated from 20 paired signal and background regions selected for each dataset. In each 

column, the best performing model is highlighted. We report denoising results on aligned micrographs 

for the NYSBC K2 and Falcon III datasets. All datasets were collected in electron counting modes, except 

for 18sep06d which was collected using Falcon III integrating mode. Our U-net denoising model 

performs best overall and is best on all except for the 19jan04d dataset where our affine denoising 

model slightly outperforms it. We report low-pass filtering by a binning factor of 16 on all datasets, 

which we found to give better SNR overall compared to Gaussian low-pass filtering.   
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Figure 2: General denoising model makes picking elusive views possible 

 
Figure 2 | Denoising with the general model in Topaz improves interpretability and picking of difficult 

particle projections. (a) A raw micrograph (left) and Topaz-Denoised micrograph (right) of the clustered 

protocadherin dataset (EMPIAR-10234) with a top-view boxed out (insets). Denoising allows for 

top-views to be clearly identified (green circles, right) and subsequently used to increase the confidence 

and completion of particle picking. (b) Topaz picking training on raw micrographs using 1,540 manually 
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picked particles from the raw micrographs resulted in the reconstruction on the left. Topaz picking 

training on the raw micrographs using 1,023 manually picked particles from the denoised micrographs 

resulted in the reconstruction on the right. Manually picking on denoised micrographs resulted in 115% 

more particles in the 3D reconstruction, which allowed for classification into a closed (gray) and partially 

open (yellow; blue arrow showing disjoint) conformation. (c) 3D reconstruction particle distributions for 

(left) Topaz picking training on raw micrographs using 1,540 manually picked particles from the raw 

micrographs, and (right) Topaz picking training on the raw micrographs using 1,023 manually picked 

particles from the denoised micrographs. All particles from the two classes in (b, right) are shown (c, 

right). 3DFSC plots for the three maps shown here are in Supplemental Figure 14. 
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Figure 3: General denoising model allows for substantially shorter 
exposures 

  
Figure 3 | Denoising with the general model in Topaz enhances SNR of short exposure micrographs. (a) 

SNR (dB) calculated using the split-frames method (see Methods) as a function of electron dose in 

low-pass filtered micrographs by a binning factor of 16 (blue), affine denoised micrographs (orange), and 

U-net denoised micrographs (green) in the four NYSBC K2 datasets. Our U-net denoising model 

enhances the SNR of micrographs across almost all dosages in all four datasets. U-net denoising 

enhances SNR by a factor of 1.5x or more over low-pass filtering at 20 e-/A2. (b) Example section of a 

micrograph from the 19jan04d dataset of apoferritin, β-galactosidase, a VLP, and TMV (full micrograph 
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in Supplemental Figure 3,4) showing the raw micrograph, low-pass filtered micrograph, affine denoised 

micrograph, and U-net denoised micrograph over increasing dose. Particles are clearly visible at the 

lowest dose in the denoised micrograph and background noise is substantially reduced by Topaz 

denoising.  
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Table 2: Short exposure collection comparison 

 

Krios + K2 collection Krios + K3 collection 

Exposures per hour with 
1 exposure/hole 

Exposures per hour with 
4 exposures/hole 

Exposures per hour with 
1 exposure/hole 

Exposures per hour with 
4 exposures/hole 

Normal dose 
(~66 e-/Å2) 108 121 195 237 

Optimized dose 
(~17 e-/Å2) 178 190 242 273 

% increase in 
collection efficiency 65% 57% 25% 15% 

Table 2  | Comparison between normal dose exposures versus optimized dose exposures using typical 

high-resolution microscope systems and parameters.   

26 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 30, 2020. ; https://doi.org/10.1101/838920doi: bioRxiv preprint 

https://doi.org/10.1101/838920


 

Figure 4: 3D general denoising model increases contrast without sacrificing 
resolvability 
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Figure 4 | Denoising with the 3D general model in Topaz improves cellular and single particle tomogram 

interpretability. (a) Saccharomyces uvarum lamellae cryoET slice-through (collected at 6 Å pixelsize and 

18 microns defocus, then binned by 2). The general denoising model (Unet-3d-10a) is comparable 

visually and by SNR to the model trained on the tomogram’s even/odd halves (Self-trained). Both 

denoising models show an improvement in protein and membrane contrast over binning by 8 while 

confidently retaining features of interest, such as proteins between membrane bilayers. Both denoising 

models also properly smooth areas with minimal protein/membrane density compared to the binning by 

8. See Supplemental Video 1 for the tomogram slice-throughs. (b) 80S ribosomes as single particles 

(EMPIAR-10045; collected at 2.17 Å pixelsize and 4 microns defocus). The general denoising model 

(Unet-3d-10a) is markedly improved over binning by 8 and the ⅛ Nyquist Gaussian low-pass, both with 

smoothing background appropriately while increasing contrast and with retaining features of interest at 

high fidelity, such as the RNA binding pocket in all orientations. The same ⅛ Nyquist Gaussian low-pass 

applied to the denoised tomogram further improves contrast by suppressing high-frequencies that the 

user may deem unimportant. See Supplemental Video 2 for the tomogram slice-throughs.  
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Supplement 

Supplemental Table 1: SNR comparison for model architectures, loss 
functions, and training datasets for the 2D denoising models 

Training 
Dataset 

Model 
architec
ture 

Objectiv
e 

EMPIAR datasets NYSBC K2 datasets NYSBC Falcon III datasets 

Overall 10261 10005 10025 
Protoca
dherin 

18sep0
8d 

19jan04
d 

19may1
0e 

18aug1
7l 

18sep0
6d 

18sep1
9l 

Small 

Affine 

L1 5.49 1.29 0.72 4.83 4.51 8.87 12.02 10.65 6.90 9.15 6.44 

L2 5.28 1.04 0.40 4.64 4.33 8.64 11.88 10.43 6.89 9.02 6.25 

FCNN 

L1 5.45 1.25 -0.05 5.37 5.85 8.78 12.77 12.02 7.90 10.89 7.02 

L2 5.17 0.94 -0.59 4.82 5.67 8.62 12.31 11.30 7.76 10.29 6.63 

U-Net 
(small) 

L1 5.99 0.65 0.12 5.89 7.11 9.71 14.17 12.05 8.25 10.93 7.49 

L2 5.32 0.49 0.27 5.55 6.85 9.74 14.26 11.23 7.49 10.36 7.16 

U-Net 

L1 5.24 0.79 2.51 5.64 5.38 9.38 13.53 9.91 6.49 9.59 6.85 

L2 5.72 0.86 3.01 5.41 5.22 8.64 13.06 9.36 6.61 9.16 6.70 

Large 

Affine 

L1 4.30 -0.24 -1.09 3.76 3.36 7.23 11.34 9.32 6.56 8.45 5.30 

L2 4.26 -0.27 -1.15 3.74 3.33 7.20 11.32 9.32 6.57 8.46 5.28 

FCNN 

L1 4.69 -0.74 -1.57 3.95 5.25 7.36 11.93 10.26 8.04 9.72 5.89 

L2 3.78 -0.47 -1.57 3.76 4.79 6.81 11.21 10.15 7.34 9.62 5.54 

U-Net 
(small) 

L1 6.47 0.51 -1.00 5.18 4.82 7.04 12.29 13.62 8.04 10.83 6.78 

L2 6.00 0.84 -0.46 5.19 5.20 7.90 12.34 12.36 7.20 10.38 6.69 

U-Net 

L1 6.95 1.88 0.83 6.33 6.14 9.35 13.87 13.11 7.35 12.76 7.86 

L2 7.17 1.72 1.07 5.94 6.06 8.43 13.07 15.17 7.37 13.24 7.92 

Low-pass 

4 -5.28 -11.17 -11.92 -5.28 -6.08 -2.97 3.44 -1.04 -1.02 -0.29 -4.16 

8 0.30 -5.52 -5.89 -0.23 -0.89 2.03 7.84 4.30 2.87 4.57 0.94 

16 5.19 -0.12 -0.40 4.22 3.53 6.87 9.99 9.04 6.95 8.71 5.40 

32 3.92 1.89 0.08 1.65 1.63 8.25 10.13 8.58 1.90 7.92 4.59 

64 2.34 -2.22 -0.83 -3.25 5.60 5.18 11.12 10.23 6.58 -0.02 3.47 

Raw -17.14 -20.13 -24.15 -14.47 -15.40 -11.73 -5.44 -6.33 -3.64 -5.63 -12.41 

Supplemental Table 1  | Comparison of denoising methods based on estimated SNR (in dB, 
larger is better). SNR was estimated from 20 paired signal and background regions selected for 
each dataset. In each column, the best performing model is highlighted. We report denoising 
results on aligned and dose weighted micrographs for the NYSBC K2 and Falcon III datasets.All 
datasets were collected in electron counting modes, except for 18sep06d which was collected 
using Falcon III integrating mode. The U-net denoising model trained on the “Large” dataset 
with L2 loss performs best on average. For the low-pass filter baselines, the amount of filtering 
is reported in the “Objective” column. The SNR of the raw micrographs is reported in the last 
row.   
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Supplemental Table 2: SNR comparison for model architectures and 
training datasets for the 3D denoising models 
 

Method 
19aug10b: 

Yeast lamella 

19jan20b: 
Cadherins on 

liposomes 
19jul11a: 

Yeast lamella 
19oct06a: 

Cellular lamella 

Raw (bin2) -11.12 -14.33 -9.27 -12.91 

Low-pass (2x) -9.04 -14.08 -6.71 -11.83 

Low-pass (4x) -8.44 -13.31 -5.03 -11.12 

Low-pass (8x) -12.34 -13.51 -8.63 -14.58 

Topaz (self-trained) -7.27 -11.55 -4.73 -9.78 

Topaz (Unet-3d-10a) -7.55 -11.66 -4.79 -10.00 

Supplemental Table 2  | Comparison of tomogram denoising methods by SNR (in dB). For each 
dataset, SNR was calculated following the independent signals method. Briefly, tomograms 
were split into even/odd frame tomograms, denoising methods were applied to the even frame 
tomograms and odd frame tomograms independently. Then, denoised even frame tomograms 
were compared to the raw odd frame tomograms to calculate SNR and vice versa for the 
denoised odd and raw even frame tomograms. These values were averaged together to give 
the reported SNRs. The Topaz U-net models trained on each tomogram (self-trained) achieves 
the best SNR in each case, but is only marginally better than the general pre-trained tomogram 
denoising model (Unet-3d-10a). Both models improve over low-pass filtering on all four 
examples.  
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Supplemental Table 3: Training datasets for the 2D denoising models 

Dataset Name 
Number of 
Micrographs Description 

NYSBC zero defocus 671 NYSBC ladder dataset collected at zero defocus; K2 counting 

NYSBC ice images 900 NYSBC micrographs taken of vitreous ice; K2 counting 

EMPIAR-1002548 196 T20S proteasome; K2 super-resolution 

EMPIAR-1000524 499 TRPV1; K2 counting 

EMPIAR-1021049 170 mouse MDA5-dsRNA filaments; Falcon III counting 

EMPIAR-1024350 142 heparin-induced 2N4R tau filaments; Falcon III counting 

EMPIAR-1024451 642 RNA polymerase II transcribing a nucleosome; K2 super-resolution 

EMPIAR-1024852 971 Apoferritin by CRYOARM300 with cold-FEG; K2 counting 

EMPIAR-102495 596 
Horse liver alcohol dehydrogenase movies obtained using Talos Arctica operating at 200 
kV equipped with a K2 

EMPIAR-102505 181 
Human methemoglobin movies obtained using Talos Arctica operating at 200 kV equipped 
with a K2 

EMPIAR-102525 153 
Catalytic subunit of protein kinase A bound to ATP, manganese, and IP20 movies obtained 
using Talos Arctica operating at 200 kV equipped with a K2 

EMPIAR-1025753 295 NDH the complex I-like molecule of photosynthesis; K2 super-resolution 

EMPIAR-1025854 199 LRRC8A-DCPIB in MSP1E3D1 nanodiscs; K2 super-resolution 

EMPIAR-1025954 198 apo-LRRC8A in MSP2N2 nanodiscs; K2 super-resolution 

EMPIAR-1026147 1461 ProTx2-bound Nav1.7 VSD2-NavAb chimeric channel; K2 counting 

EMPIAR-1003155 512 MAVS CARD C1 filaments, Falcon II counting 

EMPIAR-1006156 397 beta-galactosidase in complex with a cell-permeant inhibitor; K2 super-resolution 

EMPIAR-1002857 600 
Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine; Falcon II 
counting 

Small 1929 
Contains micrographs from datasets: EMPIAR-10005, -10025, -10061, -10244, -10249, 
-10250, -10252, -10257, -10258, and -10261 

Large 3439 Contains micrographs from all individual datasets 

Supplemental Table 3  | List of datasets included in model training. The individual datasets with 
number of micrographs from each and brief descriptions are provided in the first block. The 
second block describes the camera/imaging mode specific datasets. These are composed of all 
micrographs from subsets of the individual datasets. The last block describes the two general 
datasets. The “Small” dataset is composed of micrographs from a subset of the individual 
datasets that we found to give best performing models by eye. The “Large” dataset contains 
micrographs from all individual datasets. For the “Small” and “Large” datasets, individual 
datasets with more than 200 micrographs were subsampled to only include 200 images. This 
serves to approximately balance the contributions of each contained dataset.  
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Supplemental Figure 1: Comparison of denoising methods 

 
Supplemental Figure 1  | Figure 1b micrograph (pixel size: 0.6575 Å) processed in four different 
ways: Topaz affine denoising model, low-pass binning by Fourier cropping by a factor of 16 then 
padding, Gaussian low-pass filtering with a standard deviation of 8 pixels, and our Topaz U-net 
denoising model.  
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Supplemental Figure 2: Comparison of denoising methods on 
EMPIAR-10261 

 
Supplemental Figure 2  | Figure 1c micrograph (pixel size: 0.849 Å) processed in four different 
ways: Topaz affine denoising model, low-pass binning by Fourier cropping by a factor of 16 then 
padding, Gaussian low-pass filtering with a standard deviation of 8 pixels, and our Topaz U-net 
denoising model.  
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Supplemental Figure 3: Comparison of Topaz neural denoising models on 
19jan04d 

 
Supplemental Figure 3  | Comparison between denoising models on a micrograph (pixel size 
1.10 Å) of apoferritin, β-galactosidase, VLPs, and TMV. The raw image denoised with the affine 
model, FCNN model, U-net with mode-seeking L0 loss, U-net with median-seeking L1 loss, and 
U-net with mean-seeking L2 loss are shown.  
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Supplemental Figure 4: Comparison of low-pass binning on 19jan04d 

 
Supplemental Figure 4  | Comparison between low-pass binning by Fourier cropping. The raw 
micrograph in Supplemental Figure 3 is low-pass filtered by factors of 2, 4, 8, 16, 32, and 64.  
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Supplemental Figure 5: Denoising sample with known background 
contaminants 

 
Supplemental Figure 5  | Denoising raw micrographs (18sep15a) of microtubules with known 
background contaminant proteins, kinesin and tubulin. Topaz denoising appropriately 
accentuates features of the background proteins instead of smoothing them out.  
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Supplemental Figure 6: Denoising EMPIAR-10003 

 
Supplemental Figure 6  | Denoising of EMPIAR-10003 raw images (left) using the U-net model 
(right). Possible regions of proteins are particularly apparent in the top image.  
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Supplemental Figure 7: Comparison of backgrounds after denoising 

 
Supplemental Figure 7  | Denoising as a complementary method for analyzing background 
proteins and contamination in sample/grid preparations. Left: Three micrographs with nearly 
clean backgrounds (green insets). Middle: A micrograph of microtubules with known kinesin and 
tubulin background contaminant (blue inset). Right: Two micrographs from the EMPIAR-10003 
dataset with the centers magnified (orange insets). All micrographs are denoised using our 
Topaz U-net model. Insets are magnified by 2x. Scalebars are 100nm.  
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Supplemental Figure 8: Paired signal and background for SNR 
quantification 

 
Supplemental Figure 8  | Example micrographs from 19jan04d, 18sep08d, and the 
protocadherin dataset showing labeled signal (blue) and background (red) regions overlayed 
over low-pass filtered images. Signal and background regions were selected close together to 
match local background properties as best as possible to each signal region. 
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Supplemental Figure 9: Denoising micrographs from screening microscopes 

 
Supplemental Figure 9  | Hardware-binned-by-two micrographs from 120kV (T12) and 200kV 
(TF20) screening microscopes with TVIPS 4kTemCam-F416 scintillator-based cameras 
denoised with the general U-net model.  
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Supplemental Figure 10: Denoising improves manual picking completion 
for difficult particles 

 
Supplemental Figure 10  | 3DFSC plots of clustered protocadherin (EMPIAR-10234). (a) Using 
the particle picks reported in Brasch et al., 2019, resulting in 10,010 particles in the 3D 
reconstruction (Figure 2b, left). (b) Using the particle picks reported on in the Methods (from 
manually picking on denoised micrographs prior to Topaz picking training on raw micrographs), 
resulting in 13,392 particles in the class 1 3D reconstruction (Figure 2b, middle) and (c) 8,134 
particles in the class 2 3D reconstruction (Figure 2b, right).  
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Supplemental Figure 11: Denoised particles are less reliable for ab-initio 
model generation 

 
Supplemental Figure 11  | 1,000 random particles processed through CryoSPARC ab-initio 
reconstruction using raw particles (a) and denoised particles (b). 4 out of 6 reconstructions 
using raw particles result in the correct structure (a), while at best 1 out of 6 reconstructions 
using denoised particles result in the correct structure (b).  
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Supplemental Figure 12: Fourier transforms of raw and denoised 
micrographs 

 
Supplemental Figure 12  | Fourier transforms of previously shown raw and denoised 
micrographs (insets). Top: Figure 1b, EMPIAR-10025. Middle: Figure 1c, EMPIAR-10261. 
Bottom: Figure 3, 19jan04d. Arrows show the location of the ~3.7 Å ice ring.  
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Supplemental Figure 13: Short exposure detail of protocadherin 

 
Supplemental Figure 13  | Detail of protocadherin micrograph denoised and raw over 
increasing dose. 
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Supplemental Figure 14: Short exposure detail of 18sep08d (VLPs) 

 
Supplemental Figure 14 | Detail of 18sep08d micrograph denoised and raw over increasing 
dose. 
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Supplemental Figure 15: Short exposure detail of 19may10e 

 
Supplemental Figure 15  | Detail of 19may10e micrograph denoised and raw over increasing 
dose.  
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Supplemental Figure 16: Estimated raw vs estimated denoised SNRs of 
short exposure micrographs 

Supplemental Figure 16  | Plots of estimated raw SNR vs. estimated denoised SNR for short 
exposure micrographs accompanying Figure 3a. Micrographs were denoised with either a 16x 
low-pass filter (blue), the affine denoising model (orange), or our general purpose U-net model 
(green). SNRs were estimated using the split-frames method  described in the Methods.  
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Supplemental Figure 17: Short exposure 3D reconstructions of apoferritin 

 
Supplemental Figure 17  | 3DFSC plots of apoferritin particles fractionated by frames/exposure 
time: (a) 6.95 e-/Å2, (b)  16.67 e-/Å2, (c)  34.73 e-/Å2, (d)  51.40 e-/Å2, and (e) 69.50 e-/Å2.  
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Supplemental Figure 18: Model architectures 

 
Supplemental Figure 18  | Model architecture diagrams for the U-net (a), small U-net (b), and 
FCNN (b) models. (a) The U-net model consists of 5 convolutional and downsampling blocks 
followed by 5 convolutional and upsampling blocks. Skip connections link each downsampling 
block to the mirrored upsampling block (not shown). Each convolutional layer has 48 filters. (b) 
The small U-net model has 3 convolutional and downsampling blocks followed by 3 
convolutional and upsampling blocks. Skip connections link each downsampling block to the 
mirrored upsampling block (not shown). Each convolutional layer has 48 filters. (c) The FCNN 
model has three convolutional layers each of width 11 and 64 filters. 
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Supplemental Video 1: 3D denoising comparison of Saccharomyces 
uvarum lamellae 

https://drive.google.com/open?id=1-lwh0Ojr_NquzIILAHN50WyKiEHrykDu 
 
Supplemental Video 1  | Visual comparison of cryoET weighted back-projection tomogram 
slice-throughs of a yeast lamellae. The tilt images were binned by 2 prior to reconstruction. 
Top-left: The original tomogram without filters. Top-right: The original tomogram binned by 
another factor of 4 in Fourier space (total binning of 8). Bottom-left: The original tomogram 
denoised with a 3D denoising model trained on even/odd halves of the same tomogram. 
Bottom-right: The original tomogram denoised with Unet-3d-10a.  
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Supplemental Video 2: 3D denoising comparison of 80S ribosomes from 
EMPIAR-10045 

https://drive.google.com/open?id=1iS40Gem-MN2nNbt1S6MOo7O2vrN5GPTu 
 
Supplemental Video 2  | Visual comparison of cryoET weighted back-projection tomogram 
slice-throughs of single particle ribosomes. Left: The original tomogram without filters or binning. 
Middle: The original tomogram binned by a factor of 8 in Fourier space. Right: The original 
tomogram denoised with Unet-3d-10a. 
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