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ABSTRACT 23 
Plants live in close association with microorganisms that can have beneficial or detrimental 24 
effects. The activity of bacteria in association with flowering plants has been extensively 25 
analysed. Bacteria use quorum-sensing as a way of monitoring their population density and 26 
interacting with their environment. A key group of quorum sensing molecules in Gram-27 
negative bacteria are the N-acylhomoserine lactones (AHLs), which are known to affect the 28 
growth and development of both flowering plants, including crops, and marine algae. Thus, 29 
AHLs have potentially important roles in agriculture and aquaculture. Nothing is known about 30 
the effects of AHLs on the earliest-diverging land plants, thus the evolution of AHL-mediated 31 
bacterial-plant- and algal interactions is unknown. In this paper, we show that AHLs can affect 32 
spore germination in a representative of the earliest plants on land, the Bryophyte moss 33 
Physcomitrella patens. Furthermore, we demonstrate that sporophytes of wild isolates of 34 
Physcomitrella patens are associated with AHL-producing bacteria. 35 
 36 
Introduction 37 
Plants do not exist in isolation in the environment, but interact with a wide array of organisms from all 38 
kingdoms including bacteria, fungi, animals and other plants. These interactions can have profound 39 
effects on plant fitness, growth and development. In addition to pathogenicity or parasitism, 40 
interactions between plants and other organisms can be beneficial. Examples include interactions 41 
between fungi and plants in the form of mycorrhizae and interactions between plants and bacteria 1–3. 42 
 43 
Interactions between plants and microorganisms have become more elaborate during plant evolution. 44 
Mycorrhizal interactions are beneficial in liverworts, one of the earliest diverging groups of land plants, 45 
where the association between liverworts and fungi boosts plant photosynthesis, growth, fitness and 46 
nitrogen/phosphorus uptake 4,5. In later-diverging plants including flowering plants, interactions with 47 
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microorganisms have increased in complexity. For example, in legumes (Fabaceae, including beans 48 
and pulses) plant root cells are surrounded by a group of proteobacteria (Rhizobia) and form a 49 
symbiotic root nodule 6 while actinobacteria from the Frankia genus can form nodules with a wide 50 
range of plant families 7,8. The bacteria gain carbon from the plant, while the plant gains nitrogen from 51 
the bacteria. Not all plant-bacterial interactions are so highly specialised: many bacteria in the 52 
rhizosphere contribute to plant productivity and gain from plants in return 9. 53 
 54 
It has become clear that flowering plants can respond to bacterial signalling molecules that alter plant 55 
growth and development, representing inter-kingdom interaction 10,11. The perception of bacteria by 56 
plants is of significant importance in terms of monitoring their surroundings and thus being able to 57 
respond accordingly to enhance their chances of survival 12.  58 
 59 
A key way in which bacteria communicate with one another is via diffusible quorum sensing (QS) 60 
molecules that are used to monitor and respond to population density within a colony or biofilm 13–19. 61 
One well-characterised subset of QS molecules that affect plants behaviour are the N-acylhomoserine 62 
lactones (AHLs) 11,12,20–24.  AHLs are produced by Gram-negative bacteria 25 and are key for the control 63 
of multiple gene expression in a coordinated manner within a population 25–27.  64 
 65 
AHLs vary in their structure in nature with a wide range of acyl chain lengths, from four to eighteen 66 
carbons, and level of saturation. Furthermore, at the third carbon position (C3), different substitutions 67 
can also occur whereby the molecule can either be unsubstituted, contain a ketone group (oxo) or a 68 
hydroxyl group (OH). These structural differences contribute to their specific impact on gene 69 
expression 28,29.  70 
 71 
A wide range of Gram-negative plant-associated bacteria produce AHLs and some non-producers are 72 
still able to sense and respond to the presence of these molecules using luxR-solo AHL receptor proteins 73 
30,31. The ability of plants to detect and respond to the presence of AHLs may be a result of their 74 
coevolution with AHL-producing bacteria. Plant perception of AHLs may provide an evolutionary 75 
advantage over their associated microbial community, especially if the bacteria are pathogenic, 76 
enabling the plants to detect increasing bacterial populations and alter the QS outcome 32. Plant 77 
responses to AHLs are dependent on the structure and concentration of the AHL encountered and can 78 
be positive or negative in terms of growth 33,34. Plant-bacterial interaction often occurs in the 79 
rhizosphere where roots in the soil come into contact with AHLs in varying concentrations due to 80 
bacterial growth 21,35,36. Flowering plants respond to these bacterial compounds and even absorb them 81 
from the surrounding environment 37. The role of QS in legume nodule formation seems to vary 82 
depending on the combination of plant and bacterium under investigation (reviewed in 34).  83 
 84 
Certain plant species produce AHL mimics that induce a premature quorum-sensing response in 85 
bacteria that serves to protect the plant from pathogens, or aid establishment of symbiotic relationships 86 
38–42. Conversely, plants can produce anti-QS molecules and use “quorum quenching” to interfere with 87 
bacterial QS signalling mechanisms preventing transcription of specific gene sets, thus averting the 88 
synthesis of virulence factors by pathogenic bacteria 43,44. The exact mechanisms by which plants 89 
perceive AHLs is currently unknown, but these molecules can affect the activity of endogenous plant 90 
signalling, such as calcium signalling 45,46, G-protein signalling 47,48, stress signalling and metabolism 91 
23,49 and hormone signalling 22 causing downstream effects on plant growth. 92 
 93 
In plants, AHL perception induces a “primed” state, regulating plant immunity 12. Tomato plants 94 
(Solanum lycopersicum) became resistant to Alternaria alternata, a pathogenic fungus, following co-95 
culture with wild-type Serratia liquefacians bacteria, whereas no induced resistance occurred 96 
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following the growth of a corresponding Serratia AHL-deficient mutant 50. In the model plant 97 
Arabidopsis thaliana, resistance against both bacterial and fungal pathogens was observed following 98 
the exogenous application of synthetic AHLs 12. However, it is not just plant immunity that is affected 99 
by QS signal molecules: AHLs also affect plant growth, development and physiology. Addition of 100 
AHL to plants modifies protein profiles by inducing changes in gene expression 45,51, altering the 101 
formation of roots 11,20–23, including the promotion of adventitious root growth 24. Plant-growth-102 
promoting bacteria employ QS systems which aid with the colonisation of the rhizosphere, providing 103 
benefit for both bacteria and host plant 52,53. The ecology of rhizosphere bacterial populations on S. 104 
lycopersicum is modulated by AHLs produced by bacteria a significant distance away, due to the 105 
movement of the compounds through the rhizosphere via diffusion 14,54. Furthermore, there are 106 
potential beneficial effects of the by-products of AHL degradation. Exogenous application of 107 
homoserine lactones, and homoserine, the degradation products of AHLs, to bean roots increased the 108 
stomatal conductance of the plants, which in turn led to enhanced mineral nutrient availability, 109 
benefiting both the host plant and rhizosphere-associated bacteria 55. 110 
 111 
Plant-produced compounds, such as strigolactones and alkamides, share structural similarity to the 112 
bacteria-generated AHL molecules. Consequently, it is not surprising that QS molecules impose effects 113 
on the growth and development of plants, as both alkamides and strigolactones are known to induce a 114 
number of morphological responses, including changes in root architecture 21. An intact homoserine 115 
lactone ring structure is not always required for plants to detect AHLs 33.  116 
 117 
All plants on land arose from aquatic ancestors: the appearance of plants on land was a key evolutionary 118 
transition. Relatively little is known about the effects bacteria have on development in ancient plant 119 
lineages 56. The earliest land plants were small and in close contact with their substrate (and associated 120 
microorganisms) over the whole of their anatomy rather than just via their roots. The earliest-diverging 121 
lineage of land plants, the spore-bearing mosses, liverworts and hornworts (Bryophytes) play a key 122 
role in ecology as carbon sinks in peat bogs and permafrosts 57 and have been used by humans for their 123 
absorptive and medicinal properties for thousands of years 58–60.  124 
 125 
The microbiome of Sphagnum moss harbours diverse bacteria and is substantially different from that 126 
of flowering plants with the potential to enable plant- and ecosystem adaptation to climate change 56,61–127 
63. The microbiomes of a co-occurring epiphytic moss (Pterygynandrum filiforme) and its flowering 128 
plant host (Acer pseudoplatanis) show distinct characteristics 64. Moreover, different moss species 129 
from different habitats possess distinct microbiomes with some overlap in properties and function 65,66. 130 
 131 
Whether bacterial signalling molecules can directly affect developmental processes in non-flowering 132 
plants is largely unknown. A symbiotic bacterium (Methylobacterium) from the moss Funaria 133 
hygrometrica exerted a cytokinin-like effect on moss development, enabling formation of buds, and 134 
promoted filament growth via cell division 67,68. Evidence from marine seaweeds (macroalgae), which 135 
share a common ancestor with land plants, demonstrates that AHLs from algal-associated bacteria can 136 
affect algal growth, development and cell behaviour 69–72. Motile, reproductive spores of the green 137 
seaweed Ulva sense and are attracted to AHLs produced by bacterial biofilms, which influence spore 138 
settlement and swimming rate 71–73 and cause activation of calcium signaling in the spores 72. AHLs 139 
from Shewanella and Sulfitobacter inhibit early development of the green seaweed Ulva from spores 140 
and synthetic N-dodecanoyl-L-homoserine lactone (C12-HSL) inhibits early Ulva development at 141 
concentrations above 5µM 69. AHLs (N-butanoyl-L-homoserine lactone (C4-HSL) and N-hexanoyl-L-142 
homoserine lactone (C6-HSL)) from Shewanella promote reproductive carpospore release in the red 143 
seaweed Gracilaria dura at micromolar concentrations 70. 144 
 145 
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We therefore hypothesised that AHLs might affect development in early-diverging land plants. In this 146 
paper, we show that synthetic AHLs can promote spore germination in the model moss species 147 
Physcomitrella patens 74,75 in a lab-based assay. Moreover, sporophytes from wild isolates of 148 
Physcomitrella patens are associated with AHL-producing bacteria, suggesting these bacteria may 149 
influence spore germination in the environment through the production of AHL signal molecules. 150 
 151 
Results 152 
 153 
AHLs promote Physcomitrella spore germination at sub-micromolar concentrations 154 
but inhibit spore germination at concentrations above 1µM. 155 
Previous studies have shown that AHLs at concentrations of 1-10µM can promote root growth in the 156 
model flowering plant Arabidopsis (Jin et al., 2012; Liu et al., 2012; vonRad et al., 2008; Zhao et al.,  157 
2015). In algae, AHLs at 2-10µM can promote spore release 70 or reduce the progress of growth and 158 
development from spores 69. We tested the effect of a range of AHLs with different carbon N-acyl 159 
chains lengths at 0.1µM and 1µM concentrations on the spore germination of the model moss 160 
Physcomitrella patens. All AHLs (C4-HSL to C12-HSL) induce a significantly faster spore 161 
germination rate compared to a solvent-only control (Figure 1). C4-HSL and C6-HSL show a similar 162 
promotion of germination at both 0.1µM and 1µM concentrations (Figure 1A, B). C8-HSL appears to 163 
have slightly more germination-promoting activity than the shorter chain AHLs and is more potent at 164 
1µM than 0.1µM (Figure 1C). C10-HSL and C12-HSL are the most potent germination-promoting 165 
AHLs, being more effective at 0.1µM than at 1µM concentration (Figure 1D, E). 166 
In Arabidopsis, 50-100µM concentrations of AHLs inhibit root growth 21,45,48 while in the seaweed 167 
Ulva spore germination and early development is reduced with just 5µM AHLs 69. We tested the effects 168 
of a range of AHLs at 5µM on Physcomitrella spore germination and found that AHLs could inhibit 169 
spore germination (Figure 2A). The effect appeared strongest with C10-HSL, which also inhibited 170 
germination at 10µM, in a dose-dependent manner (Figure 2B). Taken together, these data show that 171 
AHLs, particularly those with longer chain length, accelerate spore germination when at low (≤1µM) 172 
concentrations and inhibit spore germination at higher (5-10µM) concentrations. 173 
 174 
Chain length and side group substitution affect the activity of AHLs against 175 
Physcomitrella spore germination. 176 
To investigate whether changing the side group of the AHL had an effect on biological activity, we 177 
assayed the spore-germination-promoting activity of C4-C12 AHLs, namely the N-acyl version (as 178 
before) and also the 3-oxo (3-O) and 3-hydroxy (3-OH) substituted forms. Our “snapshot” data (Figure 179 
3A) indicated potential differences in potency between the different side chains, particularly for AHLs 180 
with longer carbon chain. To investigate these differences further, we assayed spore germination in the 181 
presence of 3-OH and 3-O substitutions of the C10 and C12 HSLs, which consistently through this 182 
study showed some of highest activity, over a range of concentrations from 2nM to 1µM (summarised 183 
in Figure 3B; data in Supplemental Figure 1). The N-acyl variants of C10- and C12-HSL showed the 184 
greatest spore germination-promoting activity at 2-10nM (Figure 3B; Supplemental Figure 1A and 185 
1D). 3-OH-C10-HSL variant showed greatest spore germination promotion at 10nM whereas the 3-186 
OH-C12-HSL showed similar spore germination-promotion from 10nM-1µM, slightly higher at 1µM 187 
(Figure 3B; Supplemental Figure 1B and 1E). The 3-O variants of C10- and C12-HSL showed greatest 188 
spore germination-promoting activity at 0.1µM concentration, indicating somewhat reduced potency 189 
compared to the other two types of AHLs (Figure 3B; Supplemental Figure 1C and 1F). These data 190 
demonstrate that both chain length and side group substitution can affect the biological activity of 191 
exogeneously-applied synthetic HSLs on Physcomitrella spore germination. 192 
 193 
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 194 
Sporophytes from wild isolates of Physcomitrella are associated with multiple species 195 
of bacteria, some of which produce AHLs.  196 
To determine whether the observed effects of synthetic AHLs on Physcomitrella patens spore 197 
germination in a lab-based assay might have relevance to wild populations found in the environment, 198 
sporulating Physcomitrella plants were firstly collected from 3 different locations in the UK with a 199 
view to determine the bacterial populations associated with them and the ability of these bacteria to 200 
produce AHLs.  A total of 12 plants were selected from each sampled location and the sporophyte from 201 
each plant was isolated to enable isolation of its associated bacteria (a consortium from each 202 
sporophyte). Bacterial consortia were obtained from 30 out of 36 sporophytes. Each individual 203 
sporophyte’s (assumed mixed) bacterial populations were taken through multiple rounds of streaking 204 
to isolate individual strains associated with Physcomitrella. To identify each strain, a fragment of the 205 
16S rRNA gene was amplified from genomic DNA and sequenced. Our sampling of bacteria associated 206 
with Physcomitrella sporophytes identified largely Proteobacteria from the class Gamma-207 
proteobacteria. Bacteria of the genus Pseudomonas were found at all 3 sites (at least 5 different 208 
species), as was Stenotrophomonas (2 species). Serratia (2 species) were isolated from 2 sites and 209 
Acinetobacter, Aeromonas and Rahnella were each recovered from a single site. The gram-positive 210 
bacteria Microbacterium (Actinobacteria) and Bacillus (Firmicutes) were each found at a single site 211 
(Table 1).  212 
For an initial survey of whether the isolated bacterial consortia from each sporophyte could produce 213 
AHLs, consortia were analysed by a mass-spectrometry (LC-MS/MS) approach, which demonstrated 214 
that consortia from all three locations could produce AHLs although these were detected to only a 215 
limited extent from the Lindley site (Table 2). 216 
To determine whether the individual bacteria isolated from wild Physcomitrella could produce 217 
detectable AHLs, cultures of the Gram-negative bacterial isolates were subjected to AHL analysis by 218 
LC-MS/MS. Just under half of the bacterial isolates from each of Chew Valley and Stocks reservoir 219 
produced detectable AHLs, while no AHLs were detected from the bacteria from Lindley. 220 
Representatives of N-acyl, 3-O and 3-OH from C4 to C10 chain length were detected (Figure 4). 221 
Overall, the most frequently detected AHLs were C6-HSL and 3-O-C8-HSL. The most frequently 222 
detected AHL in bacteria from Chew Valley was 3-OH-C10-HSL, whereas that from Stocks was 3-O-223 
C6-HSL.  224 
Taken together, these data show that some of the bacteria associated with Physcomitrella sporophytes 225 
from different geographical locations can produce a range of AHLs. 226 
 227 
Discussion 228 
Our experiments show for the first time that synthetic AHLs can affect the spore germination of an 229 
early diverging land plant, the bryophyte Physcomitrella patens, in a lab-based assay. Low (<1µM) 230 
concentrations of AHLs promote spore germination whilst higher concentrations (5-10µM) inhibit 231 
spore germination. In general, AHLs with longer chain length (C8-C12) have a more potent effect than 232 
C4-C6 AHLs and side-group substitutions change the potency of germination-promoting activity with 233 
3-O and 3-OH substitutions generally showing a slight reduction in potency. 234 
The inhibitory effect of higher concentrations of AHLs is reminiscent of their effect in the green 235 
seaweed Ulva where >5µM AHLs can inhibit the early development and growth of new plants from 236 
zoospores 69. Higher concentrations (25-125µM) of long-chain AHLs can also inhibit Ulva spore 237 
swimming speed to promote settlement with 3-O substitutions showing the greatest inhibition 71. The 238 
effect of sub-micromolar concentrations AHLs was not investigated in these experiments.  239 
In land plants, the effect of AHLs on germination of the desiccation-resistant dispersal units, namely 240 
spores (in Bryophytes, Lycophytes and ferns) or seeds (in Gymnosperms and Angiosperms) is not well 241 
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studied. So far, a single study shows that priming of winter wheat (Triticum aestivum L.) seeds with 242 
C6-HSL (~9ng AHL per seed) improves their germination and subsequent growth, development and 243 
biomass production 76. Thus, a potential role in germination control for AHLs is present across plant- 244 
and algal taxa, although whether this is as a result of convergent or divergent evolution is unknown. 245 
AHLs have a range of effects on post-germination development and growth in seed plants. For 246 
example, 1-10µM of 3O-C6-HSL and 3O-C8-HSL, and 10µM C4-HSL, C6-HSL, C8-HSL can 247 
increase Arabidopsis primary root elongation 22,45,47,48,51 while >10µM of C10-C14 AHLs inhibit 248 
primary root growth in Arabidopsis seedlings 21,48. Moreover C10 and C12 AHLs promote root 249 
branching and increases root hair formation at 12-96µM 21. Inhibitory effects of AHLs on the 250 
Arabidopsis root involve changes in cell division and differentiation 21. This biphasic pattern (growth 251 
stimulation of Arabidopsis primary root at low concentrations, growth inhibition at higher 252 
concentrations) is reminiscent of what we see with Physcomitrella spore germination (Figures 1-3). In 253 
general, longer-chain AHLs (C10, C12) have more potent effects, as we saw with Physcomitrella spore 254 
germination in this paper, although the concentrations required for an effect in Arabidopsis are higher 255 
(³1µM) than in Physcomitrella (2nM-1µM). In barley, 10µM C6-HSL promotes seedling growth 35. 256 
Several studies hint at the molecular mechanisms underlying the effects of AHLs on Arabidopsis root 257 
growth. Transcriptome- and qRT-PCR approaches coupled with mutant studies implicate several 258 
transcription factors in the response, including AtMYB44 51, in addition to G-protein signalling 47,48 259 
and calmodulin/calcium signalling 45,46. Interestingly, a role for changes in intracellular calcium 260 
signalling has also been implicated in Ulva spore settlement, which is also affected by AHLs 77. 261 
 262 
There is considerable overlap between the bacteria we isolated from Physcomitrella sporophytes and 263 
the bacteria found in assocated with the peat moss Sphagnum 56 in which Pseudomonas, Rahnella, 264 
Serratia, Stenotrophomonas and Microbacterium are all present but Aeromonas and Acinetobacter 265 
were not detected. No Bacillus was detected in Sphagnum, although Paenibacillus (Firmicutes) was, 266 
along with additional Beta-proteobacteria, Bacteroidetes, and Actinobacteria 56. 267 
The bacteria isolated from mosses are generally different from those isolated from Ulva: predominantly 268 
Alpha-proteobacteria and Bacteroidetes, although Microbacterium has been isolated from all three 269 
species 78–80. Most of the genera of Gamma-proteobacteria isolated (Pseudomonas, Serratia, 270 
Acinetobacter, Aeromonas) are AHL producers 26,81–84. However, it is important to note that only a 271 
small fraction (<1%) of all bacteria that exist in a particular environment can be grown in the lab on 272 
standard growth media 85 so there may be many other AHL-producing bacteria associated with 273 
Physcomitrella in the wild. 274 
Single-species AHL analysis showed that, as expected, many of the Pseudomonas isolates, most of the 275 
Serratia isolates and one of the Aeromonas isolates produced AHLs (Figure 4). Moreover, an isolate 276 
of Stenotrophomonas from each of the Chew Valley and Stocks reservoir sites also produced AHLs: 277 
this genus has not previously been found to make AHLs as it normally makes DSF-type quorum 278 
sensing molecules 86 which also induce growth promoting traits on plants 87. Two Pseudomonas 279 
fluorescences isolates from the Stocks reservoir showed AHL production even though, to our 280 
knowledge, no stains from this species have been reported before to produce these QS molecules. 281 
Unexpectedly, none of the individual isolates from Lindley produced AHLs (Figure 4) despite several 282 
attempts, suggesting that they have either lost the ability to produce these molecules or, under the in 283 
vitro growth conditions used, they only make AHLs below the lower limit of detection for the LC-284 
MS/MS system used. 285 
 286 
In summary, we have characterised for the first time the effect of bacterial quorum sensing molecules, 287 
AHLs, on the developmen of a non-flowering land plant, the moss Physcomitrella patens. AHLs 288 
promote Physcomitrella spore germination at sub-micromolar concentrations, but inhibit germination 289 
at higher concentrations, in a biphasic pattern reminiscent of the AHL effect on root growth in 290 
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flowering plants. We have shown that a range of bacteria, some of which produce AHLs, are associated 291 
with Physcomitrella sporophytes isolated from the wild. Future research could include a metagenomic 292 
analysis to identify all bacteria (including those that are uncultivatable) associated with Physcomitrella, 293 
work with mutant strains of bacteria deficient in AHL production, analysis of calcium signalling in 294 
moss spores upon AHL application, isolation of moss mutant strains that cannot respond to AHLs, or 295 
transcriptomic/proteomic analysis of moss spores treated with AHLs. 296 
 297 
Materials and Methods 298 
 299 
Moss spore germination assays 300 
Germination assays were carried out as in 88. Briefly, spores from at least 3 age-matched sporophytes 301 
were used within each assay with three sporophytes’ worth of spores used for every 10 Petri dishes 302 
(9 cm diameter). Sporophytes were bleached in groups of two to three in 1 ml 25% Parozone™ (Jeyes 303 
Group, Thetford, UK) for 10 min and then washed three times in 1 ml sterile distilled water (10 min 304 
each) in a sterile flow cabinet. The sporophytes were then crushed in 100–200 µl of sterile water to 305 
release the spores. Spores were diluted down in sufficient sterile distilled water to allow plating of 306 
500 µl of spore solution per Petri dish. Spores were plated on cellophane-overlaid BCD moss growth 307 
medium (1mM MgSO4, 1.84mM KH2PO4, 10mM KNO3, 45µM FeSO4.7H2O, plus 1:1000 Hoagland’s 308 
A-Z Trace Element Solution), supplemented with 5 mM CaCl2 and 5 mM ammonium tartrate. 309 
Cellophane discs (A.A. Packaging Ltd, Preston, UK) were autoclaved wet and individually between 310 
sheets of filter paper for 15 min at 121°C, before use. Each data point included data from more than 311 
one plate and a minimum of 500 spores.  312 
 313 
Isolation of wild Physcomitrella patens 314 
Physcomitrella patens growing wild in the UK was isolated from 3 sites: Chew Valley Lake (Somerset; 315 
ST5814 6053), Stocks Reservoir (Yorkshire; SD742562) and Lindley (Yorkshire; 44/217414). A small 316 
area of moss containing ~40 individual sporulating plants each harbouring a single sporophyte was 317 
collected, and kept moist during transport to the lab, where samples were refrigerated prior to 318 
sporophyte harvesting. 319 
 320 
Isolation and purification of bacteria  321 
Initially, 12 sporophytes from each location were placed on individual Luria broth (LB)-agar plates 322 
and bacteria were allowed to grow out from the sporophyte for 2 days at 28˚C in the dark (lower 323 
temperatures favoured growth of fungal contamination). The majority of sporophytes were associated 324 
with bacteria that could be grown on LB-agar, giving rise to bacterial consortia. These consortia were 325 
further purified by taking them through 3-4 rounds of streaking (giving rise to multiple single colonies) 326 
as appropriate, growing on LB-agar at 28˚C overnight to obtain multiple pure bacterial isolates 327 
(identifiable by morphology and colour) for gDNA isolation, sequence identification and AHL 328 
detection. Stock plates for each strain were generated from a single colony and colonies from these 329 
plates were inoculated into liquid culture to make permanent glycerol stocks in 25% glycerol, 75% LB. 330 
 331 
Bacterial identification 332 
Bacterial isolates were identified to genus-, or where possible species-level. Bacterial cultures were 333 
grown in LB from single colonies and genomic DNA was extracted using a Qiagen Blood and Tissue 334 
DNeasy kit (Qiagen, Hilden, Germany) following the manufacturer’s instructions. Partial 16S rDNA 335 
fragments (~2kb) were amplified from 10-30ng of genomic DNA by PCR using the forward primer 336 
27F (AGA GTT TGA TCC TGG CTC AG) and reverse primer 1522R (AAG GAG GTG ATC CAG 337 
CCG CA). PCR was carried out using Velocity proofreading DNA polymerase (Bioline) according to 338 
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manufacturer’s instructions. The PCR cycling conditions were a denaturation of 94˚C for 2 min 339 
followed by 30 cycles of 94˚C for 30 sec, 58 ˚C for 30 sec and 72˚C for 1 min, then a final extension 340 
of 72˚C for 5 min. PCR products were purified using a GeneJET PCR purification kit (Thermo Fisher) 341 
and were sequenced using both the forward and reverse primers via capillary sequencing on an 342 
ABI3730 machine (Applied BioSystems). Raw sequence reads viewed in SnapGene version 1.4 and 343 
were trimmed and refined by eye from the peak trace where necessary. Where possible, forward and 344 
reverse sequences were aligned and combined to generate a single consensus sequence. Sequences 345 
were analysed by BLASTN 89 and the closest matches recorded. 346 
 347 
AHL analysis of bacteria 348 
Bacterial cultures were grown in 5 ml of LB for 24 hr at 30°C with shaking at 200 rpm. For each 349 
sample, 1ml of filter sterilized supernatant was spiked with 5 µl of a 10µM solution of a deuterated 350 
AHL internal standard (d9-C5-AHL in MeOH). After solvent extraction (x3) with 0.5 ml aliquots of 351 
acidified ethyl acetate (0.1% (v/v) AcOH in EtOAc), combined extracts were dried under vacuum and 352 
stored at -20° prior to analysis. Dried samples were re-dissolved in 50µl of MeOH and 5.0µl of each 353 
sample injected for analysis. 354 
For the analysis by LC-MS/MS, chromatography was achieved using a Shimadzu series 10AD LC 355 
system. The LC column, maintained at 40°C, was a Phenomenex Gemini C18 (3.0 µm, 100 x 3.0 mm). 356 
Mobile phases A and B were 0.1% (v/v) formic acid in water and methanol respectively. The flow rate 357 
throughout the chromatographic separation was 450µL/min. The binary gradient initially began at 10% 358 
B for 1.0 min, increased linearly to 50% B over 0.5 min, then to 99% B over 4.0 min. This composition 359 
remained for 1.5 min, decreased to 10% B over 0.1 min, and stayed at this composition for a 2.9 min 360 
period of re-equilibration. 361 
For the MS detection of eluting AHLs, an Applied Biosystems Qtrap 4000 hybrid triple-quadrupole 362 
linear ion trap mass spectrometer equipped with an electrospray ionisation (ESI) interface was used. 363 
Analysis was conducted with the MS operating in positive electrospray (+ES) multiple reaction 364 
monitoring (MRM) mode, screening the LC eluent for specific unsubstituted, 3-O and 3-OH AHLs 365 
with even numbered acyl chain length from 4-14 carbons long, and the deuterated internal standard, 366 
comparing the retention time of detected analytes with authentic synthetic standards. 367 
 368 
 369 
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A) C4-HSL promotes germination of P. patens spores. Z-tests indicated significant differences in 632 
germination between treated and untreated spores on days 3 and 11 (P >|t| 0.0002).  633 
B) C6-HSL promotes germination of P. patens spores. Z tests indicated significant differences in 634 
germination between treated and untreated spores on days 3 and 11 (P >|t| 0.0002). Treatment with the 635 
lower concentration of 0.1µM was more effective in promoting germination on days 3 and 11 when 636 
compared to 1µM.  637 
C) C8-HSL promotes germination of P. patens spores. Z tests indicated significant differences in 638 
germination % between treated and untreated spores on days 3, 7 and 11 (P >|t| 0.0002).  639 
D) C10-HSL promotes P. patens spore germination. Z tests indicated significant differences in 640 
germination % between treated and untreated spores on days 3, 7 and 11 (P >|t| 0.0002). Treatment 641 
with the lower concentration of 0.1µM was significantly more effective in promoting germination on 642 
days 3 and 7 when compared to 1µM.  643 
E) C12-HSL promotes P. patens spore germination. Z tests indicated significant differences in 644 
germination % between treated and untreated spores on days 3, 7 and 11 (P >|t| 0.0002). Treatment 645 
with the lower concentration of 0.1µM was significantly more effective in promoting germination on 646 
days 3 and 7 when compared to 1µM.  647 
In all experiments, final germination efficiency was not affected with all treatments achieving a final 648 
germination of over 95%. Representative of more than 5 biological repeats. Error bars represent ± 649 
SEM. 650 
 651 
Figure 2. N-acyl HSLs inhibit Physcomitrella spore germination at concentrations above 1µM. 652 
A) C4-C12 N-acyl HSLs were tested on P. patens spores at a concentration of 5µM (light grey bars) 653 
compared to a solvent-matched control (dark grey bar). A snapshot of data at day 4 is shown: all chain 654 
lengths reduce germination. Significant differences between control and treatment are seen with a Z-655 
test for C4-HSL (p=0.0007), C8-HSL (p=0.0324), C10-HSL (p<0.0002) and C12-HSL(p=0.0324) but 656 
not C6-HSL (p=0.0629). * p<0.05, *** p<0.001. Error bars represent ±SEM. n>700 spores for each 657 
data point. Representative of at least 3 biological repeats. 658 
 659 
B) C10-HSL inhibits P. patens spore germination in a dose-dependent manner. C10-HSL was tested 660 
at 5µM and 10µM concentration against a solvent control. Significant differences are seen with a Z-661 
test between control and both 5µM and 10µM C10-HSL on day 8, 9 and 11 (p<0.0002); 5µM and 662 
10µM C10-HSL are also significantly different from each other on day 8 (p<0.0002), day 9 (p<0.0002) 663 
and day 11 (p=0.0056). Error bars represent ±SEM. n>500 spores for each data point. Representative 664 
of 3 biological repeats. 665 
 666 
 667 
Figure 3. Side chain substitutions affect AHL activity during Physcomitrella spore germination. 668 
A) 0.1µM of each HSL (N-acyl, 3-O or 3-OH) for C4-C12 chain length was tested against solvent 669 
control for effects on spore germination. A “snapshot” of germination on day 3 is shown. Asterisks 670 
represent significant (*p<0.05; **p<0.01) differences between a treatment and solvent control using a 671 
Kruskal-Wallis test and a Dunn’s post-hoc test. Generally, longer chain AHLs stimulate germination 672 
more, and AHLs without or with 3-O substitutions appear more potent than those with 3-OH 673 
substitutions at this concentration. 674 
B) Summary of the optimal concentrations of AHLs for promoting Physcomitrella spore germination: 675 
full data is shown in Supplemental Figure 1. 676 
 677 
Figure 4. AHLs detected in bacterial isolates from Chew Valley and Stocks Reservoir. No AHLs 678 
were detected from individual Lindley isolates for which we obtained high quality sequence. Numerical 679 
values on the legend scale are of peak area for detected analytes. A positive detection of an AHL was 680 
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considered as a chromatographic peak that has a signal to noise ratio of at least 5, displaying a peak 681 
retention time that matched that of authentic AHL synthetic standards. 682 
 683 
  684 
 685 
 686 
  687 
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 688 

Figure 1. 689 
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 690 

Figure 2 691 
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692 
Figure 3.  693 
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694 
Figure 4.  695 
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Bacterial 
Isolate  

GenBank accession(s) 
of closest hit(s) 

% 
match Identification GenBank 

accession 
Chew Valley Lake    
CV1.1.1 CP017964.1 100 Pseudomonas protegens MH379708 
CV2.1.2 CP013913.1 >99 Serratia fonticola MH379709 
CV2.2.1 MF872588.1; KX982223.1; AB859734.1; JF742664.1; AY800383.1 100 Acinetobacter sp. MH379710 
CV2.2.2W CP013913.1 >99 Serratia fonticola MH379711 
CV2.2.2Y CP025262.1 100 Pseudomonas sp.  MH379712 
CV2.3.2 CP013913.1 >99 Serratia fonticola MH379713 
CV3.3.2Y LT616972.1; FN678353.1 100 Pseudomonas baetica MH379714 
CV4.1B KT825741.1; KT767824.1; KC139422.1 100 Pseudomonas sp.  MH379715 
CV4.1.2AW CP011354.1 >99 Serratia fonticola  MH379716 
CV4.2.2B CP013913.1 100 Serratia fonticola MH379717 
CV5.2.1 CP023956.1, CP013913.1, CP011254.1 100 Serratia fonticola  MH379718 
CV6.3 CP013184.1; CP017964.1; CP022097.2 100 Pseudomonas protegens  MH379719 
CV7.2 CP011254.1 100 Serratia fonticola MH379720 
CV8.1 JQ086574.1 >99 Pseudomonas putida MH379721 
CV8.2 JQ086574.1 >99 Pseudomonas putida MH379722 
CV8.4 CP031338.1;  CP031422.1 100 Microbacterium oxydans MN073508 
CV9.1 FN678353.1 100 Pseudomonas baetica MH379723 
CV9.2 CP023272.1 100 Pseudomonas lurida MH379724 
CV10.1 KT932956.1 >99 Stenotrophomonas maltophilia MH379725 
CV10.2 CP022097.2; CP017964.1; AP014522.1; CP003190.1;  100 Pseudomonas sp.  MH379726 
CV10.3 KT 932956.1; CP023271.1 100 Stenotrophomonas maltophilia MH379727 
CV10.4 CP013913.1, CP011254.1 >99 Serratia fonticola MH379728 
CV11.1 CP028568.1 100 Aeromonas hydrophila MH379729 
CV11.2 CP026228.1 >99 Aeromonas sp. MH379730 
CV11.3 KX871891.1 >99 Acinetobacter guillouiae MH379731 
CV12.1 CP022097.2; CP017964.1; AP014522.1; CP003190.1;  100 Pseudomonas sp.  MH379732 
CV12.2 CP023271.1 100 Stenotrophomonas sp. MH379733 
Stocks Reservoir    
S2.1 KT695833.1; KJ601751.1; AM419154.2; AB680969.1 100 Pseudomonas sp. MH379734 
S3.1 MG269607.1; KY457749.1; KT695833.1; KT767690.1 199 Pseudomonas sp. MH379735 
S5.1 KJ601736.1 >99 Pseudomonas sp. MH379736 
S6.1.1 MG269607.1; KY457749.1; KT695833.1; KT767690.1 100 Pseudomonas sp. MH379737 
S8.1 KC951918.1 >99 Serratia grimesii MH379738 
S8.2 MG461471.1 100 Pseudomonas fluorescens MH379739 

S9.1 MG461471.1; HE603509.1; HE603507.1; GU784939.1; 
NR126220.1 >99 Pseudomonas sp.  MH379740 

S9.2 KC951918.1 >99 Serratia grimesii MH379741 
S10.1 MG461471.1; NR126220.1 >99 Pseudomonas sp. MH379742 
S10.2 CP007597.1 >99 Stenotrophomonas rhizophila MH379743 
S11.1 LT907842.1 100 Pseudomonas fluorescens MH379744 

S11.2 MG461471.1; NR126220.1; HE603509.1; HE603507.1; 
GU784939.1;  >99 Pseudomonas sp. MH379745 

S12.1 KY606575.1 >99 Rahnella aquatilis MH379746 
S12.2 CP003403.1 >99 Rahnella aquatilis MH379747 
Lindley 
L1B KP267838.1; NR041952.1 >99 Pseudomonas abietaniphila MH379748 
L3.1 MG269614.1; MG738244.1; MG571730.1 >99 Pseudomonas sp. MH379749 

L6.1 KX588595.1; KT767887.1; KT767804.1; KR085861.1; 
KR085860.1; KR085772.1; JQ995152.1; KF147119.1; JF312957.1 100 Pseudomonas sp. MH379750 

L6.2 KY800458.1; CP007597.1 >99 Stenotrophomonas rhizophila MH379751 

L6.3 KX588595.1; KT767887.1; KT767804.1; KR085861.1; 
KR085860.1; KR085772.1; JQ995152.1; KF147119.1; JF312957.1 100 Pseudomonas sp.  MH379752 

L10.1 KY800458.1; CP007597.1 >99 Stenotrophomonas rhizophila MH379753 
L11.1 KP267838.1 >99 Pseudomonas abietaniphila MH379754 
L11.2 CP020383.1 >99 Bacillus cereus MH379755 

L12.1 MG269607.1; KY457749.1; KT695833.1; KM221362.1; 
KT767690.1 100 Pseudomonas sp. MH379756 

L12.3 KR153186.1; JN392005.1; KT150204.1; KC876035.1; 
KC709812.1; JN411483.1; HQ197382.1; FJ946999.1 100 Bacillus cereus MH379757 

 696 
Table 1. Identification of bacterial isolates from Chew Valley, Stocks Reservoir and Lindley 697 
using 16S rDNA sequencing. Closest hits by BLAST, percentage identity and identification are shown 698 
for each isolate, along with the newly assigned GenBank accession number for each isolate. 699 
  700 
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 701 
 702 

 Chew Valley (11 
sporophytes’ consortia) 

Stocks (11 sporophytes’ 
consortia) 

Lindley (8 sporophytes’ 
consortia) 

C4-HSL 2 0 0 
C6-HSL 0 7 0 
C8-HSL 8 1 0 
C10-HSL 0 0 0 
C12-HSL 0 0 0 
C14-HSL 0 0 0 
3-O-C4-HSL 0 0 0 
3-O-C6-HSL 0 7 0 
3-O-C8-HSL 1 1 0 
3-O-C10-HSL 0 0 0 
3-O-C12-HSL 0 0 0 
3-O-C14-HSL 0 1 0 
3-OH-C4-HSL 0 0 0 
3-OH-C6-HSL 0 2 1 
3-OH-C8-HSL 7 1 1 
3-OH-C10-HSL 8 1 1 
3-OH-C12-HSL 0 0 0 
3-OH-C14-HSL 0 0 0 

 703 

 704 

Table 2. Frequency of AHL detection in bacterial consortia. The number of times a particular AHL 705 
was detected in the consortium from a single isolated sporophyte is recorded. 706 
 707 
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