
Variance Component Score Test (VCST)

We start with the variance component model (a.k.a. the random e↵ect model), which is widely used
in statistical genetics for genetic association studies [10, 16, 26, 66]. We use the same nomenclature
where Y 2 Rp is a p-dimensional phenotype and X 2 Rd is genotype. However, our method is
general and can be applied elsewhere. Given a paired sample containing n observations {yi,xi}

n
i=1,

we consider the following multidimensional variance component model [10]:

yik = µik + gk(xi) + ✏ik, (1)

where yik is the k-th element of yi, gk is a nonparametric function in a reproducing kernel Hilbert
space (RKHS) associated with kernel k(x,x0) = h�(x),�(x0)i, µik is the o↵set term, and ✏ik is the
error term. (1) can be rewritten in matrix form:

Y = µ + G + ✏, (2)

where Y 2 Rn⇥p is the phenotypic matrix of the n observations (subjects) with i-th row y
|
i ,

µ = (µ1, . . . , µp) ⌦ 1n is a matrix of o↵sets (1n is an n ⇥ 1 vector of ones), G 2 Rn⇥p is the matrix
of the aggregate genetic e↵ects, and ✏ 2 Rn⇥p is a matrix of residual e↵ects. We have the following
distributional assumptions:

vec(G) ⇠ N (0,⌃g ⌦ K), vec(✏) ⇠ N (0,⌃✏ ⌦ In), (3)

where vec(·) is the matrix vectorization operator that converts a matrix into a vector by stacking
its columns, ⌦ is the Kronecker product of matrices, In denotes an n ⇥ n identity matrix, ⌃g is
the genetic covariance matrix, ⌃✏ is the residual covariance matrix, and K is the kernel matrix
with ij-th element [K]ij = k(xi,xj). For example, in the context of statistical genetics, K denotes
identity-by-state (IBS) kernel [17,67,68], where [K]ij represents the relatedness between individual
i and j.

To test whether Y and X are associated (whether Y is heritable if X is the genotype), we can
test the variance components as H0 : tr(⌃g) = 0 versus H1 : tr(⌃g) > 0 using the following score
test statistic derived from model (1):

Ŝn(K,L) =
1

n2
tr(KHnLHn) �

1

n3
tr(HnL)tr(HnK), (4)

where tr(·) computes the trace of a matrix, L = Y⌃̂
�2

Y Y
| and Hn = In �

1
n1n1

|
n, and ⌃̂Y is

the empirical covariance matrix of Y . The derivation details are provided in the Supplementary
Information. The exact fraction of phenotype variability attributed to genetic variation is defined as
heritability. There are various ways to define heritability for a multivariate phenotype (e.g., [10,54]).
We adopt the definition by Ge et al. [10] that closely related to the VCST and subsumes the
definition of the heritability for the univariate phenotype, which can be calculated as follows [10]:

h2 =
tr(⌃g)

tr(⌃g) + tr(⌃✏)
. (5)

Kernel Independence Test (KIT)

Kernel independence tests are a class of nonparametric methods which are also widely used for
genetic association studies [22,28]. Here we briefly review the Hilbert-Schmidt Independence Crite-
rion (HSIC)-based independence test [22], which provides a general framework for many association
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tests [25]. Let Fy be a RKHS associated with the kernel function l(y,y0) = h (y), (y0)i. HSIC
tests H0 : PY X = PXPY versus H1 : PY X 6= PXPY by testing H0 : I = 0 versus H1 : I > 0, where
I is defined as follows:

I = EXY EX0Y 0 [k(X, X 0)l(Y, Y 0)] + EXEX0EY EY 0 [k(X, X 0)l(Y, Y 0)]

� 2EXY [EX0 [k(X, X 0)]EY 0 [l(Y, Y 0)]]. (6)

Given paired data of n subjects, an unbiased estimator of I is the following [69]:

În(K,L) =
1

n(n � 3)

⇥
tr(K̃L̃) +

1
|
nK̃1n1

|
nL̃1n

(n � 1)(n � 2)
�

21|
nK̃L̃1n

n � 2

⇤
, (7)

where K̃ = K�diag(K) and similarly for L̃ and Lij = l(yi,yj). To test for statistical independence,

one can use characteristic kernels, e.g., the radial basis function Kij = exp
⇣

kxi�xjk2

�2

⌘
, such that I

can be zero only when X and Y are independent [70].

Connections between VCST and KIT

Now we discuss the similarities and di↵erences between VCST and KIT. Supplementary Table 2
displays the test statistics and null distributions of VCST and KIT.

Test statistic It can be seen from Supplementary Table 2 that the biased statistics of VCST and

KIT are identical to each other, if setting  (y) = ⌃̂
�1

Y y. The unbiased test statistics of VCST and
KIT di↵er. This is because VCST tests for random e↵ects but assumes that the covariate inducing
the random e↵ect (X) and the corresponding kernel matrix (K) are fixed while KIT assumes X is
random, leading to di↵erent ways to correct for the bias.

Null distribution Let ⌘j (⌘̂j) be the eigenvalues (empirical) of the covariance of �(X) and let

�i (�̂j) be the eigenvalues (empirical) of the covariance of  (Y ). As shown in Table ??, the null
distributions for VCST and KIT have exactly the same forms, except that VCST uses ⌘̂j while KIT
uses ⌘j . This is also because of their respective fixed or random X assumptions. In practice, because

�i and ⌘j are both unknown, we need to replace them with �̂i and ⌘̂i. Therefore, the empirical null
distributions of VCST and KIT are identical if only given n paired examples. However, they are
inherently di↵erent because the null distribution of KIT is derived from asymptotic theory, while
the null distribution of VCST is derived from the Gaussian error terms in the variance component
model (2). This subtle di↵erence is significant when using unpaired data, which is described as
follows.

Unpaired data The main di↵erence between VCST and KIT is that X (K) is considered fixed
or random respectively. When given unpaired data, VCST cannot make use of the unpaired data
of X due to the fixed X assumption, while KIT can benefit from unpaired data of both X and Y .
More specifically, unpaired data can only be used to improve the estimation of �i in VCST but
they can be used to improve the estimation of both ⌘j and �i in KIT.

Semi-paired Association Test

In this section, we present our SAT method that incorporates unpaired data to improve test power.
In addition to the n paired data, suppose we also have access to an unpaired sample {xi}

N
i=n+1 and

an unpaired sample {yi}
M
i=n+1. Without loss of generality, we assume N = M and replace M with
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N for notational simplicity. We will show two ways that unpaired data can improve the association
test: 1) better control of type I error by improving the estimation of null distributions and 2)
improved test power by devising a new test statistic under the intrinsic low-dimension assumption
of high-dimensional data. We show how unpaired data are used for both VCST and KIT, resulting
in two variants of our method, SAT-fx and SAT-rx.

Enhancing Type I Error Control. To calculate p-values, we need to estimate the parameters
�i and ⌘j in the null distributions from empirical data. Because �i and ⌘j are the eigenvalues of
the covariance of  (Y ) and �(X), respectively, the estimation does not require paired Y and X
examples. Therefore, we can readily make use of unpaired data to obtain more accurate estimation
of �i or ⌘j involved in the null distribution.

For SAT-fx, we add unpaired Y data to estimate the covariance of  (Y ) and its eigenvalues �i
from both paired and unpaired data {yi}

N
i=1, while ⌘j should be estimated from only {xi}

n
i=1 in the

paired sample. For SAT-rx, we can further incorporate unpaired X data and use all the X data
{xi}

N
i=1 to estimate ⌘j .

The following theorem shows that 1) the empirical null distribution convergences to the true
(asymptotic) distribution and 2) the variance of the empirical null distribution converges to the
variance of the true (asymptotic) null distribution with rate 1/

p
m, where m is the sample size of

available data for estimating �i and ⌘j .

Theorem 1 (Informal). Let Ǐ =
P1

i=1

P1
j=1 �i⌘j(z

2
ij � 1) and Ǐm =

Pm
i=1

Pm
j=1 �̂i⌘̂j(z

2
ij � 1).

1) As m ! 1, Ǐm converges in distribution to Ǐ.
2) For all PXY , E(Ǐm) = E(Ǐ) and V(Ǐm) converges in probability to V(Ǐ) with rate 1/

p
m.

The theorem is developed for SAT-rx and a similar theorem for SAT-fx can be considered as a
special case of the above theorem. From the theorem, we can see that if only using paired data,
m = n; if further using unpaired data, m = N . Because N > n, incorporating unpaired data to
estimate �i and ⌘j leads to lower estimation error and provides more accurate estimation of the
null distribution. The proof details of Theorem 1 are given in Section 6 of the Supplementary
Information.

Improving Test Power Unpaired data contribute to a better estimation of the null distri-
bution, resulting in better control of type I error. It can also improve test power. Specifically, if
X or Y data (approximately) lie in a low-dimensional space, we show that unpaired data can be
used to construct a new test statistic with improved test power. To devise the new test statistics,
we first learn the low-dimensional space of X or Y by applying the kernel Principal Component
Analysis (PCA) algorithm on both paired and unpaired data. Second, we project the paired data
to the learned low-dimensional space and obtain the test statistics of our SAT-fx and SAT-rx by
estimating the test statistics of VCST and KIT on the projected data. Due to the use of the kernel
trick, calculating the test statistic of SAT-fx and SAT-rx requires only the kernel matrices KN and
LN which are calculated on all the data, paired and unpaired.

In SAT-fx, because we do not consider X as random as does VCST, we can only incorporate
unpaired Y data to learn the low-dimensional structure of Y . In SAT-rx, we further use unpaired
data X to learn the low-dimensional space of X. The proposed new test statistics of SAT-fx and
SAT-rx have the same form as that of VCST (4) and KIT (7), respectively. We only need to change
the kernel matrices in the test statistics. Specifically, the new test statistic for SAT-fx is defined as
Ŝn(K,L0), where

L
0 = L̄

|
U⇤

�1
y U

|
L̄. (8)
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In L
0, L̄ is the matrix comprised of the first n columns of LN , U = (u1, · · · ,urY ) and ⇤y =

diag(�̂1, · · · , �̂rY ) are the top rY eigenvectors and eigenvalues of LN .
Similarly, the new test statistic of SAT-rx that considers X as random is În(K0,L0), where

K
0 = K̄

|
V⇤

�1
x V

|
K̄. (9)

In K
0, K̄ is the matrix composed of the first n columns of KN , V = (v1, · · · ,vrX ) and ⇤x =

diag(⌘̂1, · · · , ⌘̂rX ) are the top rX eigenvectors and eigenvalues of KN . The asymptotic null distri-
butions of the proposed Ŝ

0
n and Î 0n have the same forms as the null distributions of Ŝn and În,

but using only the top eigenvalues {�i}
rY
i=1 and {⌘j}

rX
j=1, respectively. The derivation details are

provided in Section 7 of the Supplementary Information.
The following theorem shows that the power of the new test statistic of SAT-rx is greater than

the classical one that only uses paired data.

Theorem 2 (Informal). Assuming that data from X and Y lie in a low-dimensional manifold,
the test power of the proposed SAT-rx is higher than that of the KIT method, which only uses paired
data.

SAT-fx follows similar properties as SAT-rx and can be considered as a special case of SAT-rx.
The proof details of Theorem 2 are given in Section 8 of the Supplementary Information.
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Table 1: A description of the phenotypes measured in the Uganda cohort.

Phenotype Category Description
SBP Blood pressure Systolic blood pressure
DBP Blood pressure Diastolic blood pressure
BMI Anthropometric index Body mass index
WHR Anthropometric index Waist-hip ratio
Weight Anthropometric index Weight
Height Anthropometric index Height
HC Anthropometric index Hip circumference
WC Anthropometric index Waist circumference
ALT Liver function Alanine aminotransferase test

Albumin Liver function Serum albumin test
ALP Liver function Alkaline phosphatase test
AST Liver function Aspartate aminotransferase test

Bilirubin Liver function Bilirubin
GGT Liver function Gamma-glutamyl transpeptidase test

Cholesterol Lipid test Total cholesterol
HDL Lipid test High-density lipoprotein
LDL Lipid test Low-density lipoprotein

Triglycerides Lipid test Triglycerides
HbA1c2 Glycemic control HbA1c2
WBC Blood factor White blood cell count
RBC Blood factor Red blood cell count

Hemoglobin Blood factor Hemoglobin
HCT Blood factor Hematocrit test
MCV Blood factor Mean corpuscular volume
MCH Blood factor Mean corpuscular hemoglobin
MCHC Blood factor Mean corpuscular hemoglobin concentration
RDW Blood factor Red blood cell distribution width
PLT Blood factor Platelet count
MPV Blood factor Mean platelet volume
NEUPr Blood factor Neutrophil percentage

LYMPHPr Blood factor Lymphocyte percentage
MONOPr Blood factor Monocyte percentage
EOSPr Blood factor Eosinophil percentage
BASOPr Blood factor Basophil percentage
EOS Blood factor Eosinophil count

LYMPH Blood factor Lymphocyte count
NEU Blood factor Neutrophil count

MONO Blood factor Monocyte count
BASO Blood factor Basophil count

S4. Comparison of VCST and KIT

Table 2 compares the test statistics and null distributions of VCST and KIT.
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Table 2: Comparison of VCST and KIT. TS: Test Statistic. ND: Null distribution.

Unbiased TS Unbiased ND Biased TS Biased ND Unpaired X Unpaired Y
VCST Ŝn(K,L) �i⌘̂j(z2ij � 1) 1

n2 tr(KHnLHn) �i⌘̂jz2ij 7 3

KIT În(K,L) �i⌘j(z2ij � 1) 1
n2 tr(KHnLHn) �i⌘jz2ij 3 3

S5. Derivation of VCST Test Statistic Ŝn and the Null Dis-

tribution

Let us define ~y = (Y11, . . . , Yn1, . . . , Y1p, . . . , Ynp)|, ~µ = (µ1, . . . , µp)|⌦1n, ~✏ = (✏11, . . . , ✏n1, . . . , ✏1p,

. . . , ✏np)|, and ~G = (G11, . . . , Gn1, . . . , G1p, . . . , Gnp)|, we can write the multivariate variance com-
ponent model (Eq. 4 in the main text) as

~y = ~µ+ ~G +~✏, (3)

where ~G ⇠ N (0,⌃g ⌦ K), ~✏ ⇠ N (0, ⌃̃✏), and ⌃̃✏ = ⌃✏ ⌦ In. Therefore, we have ~y ⇠ N (~µ,V),
where V = ⌃g ⌦K+ ⌃̃✏. The corresponding restricted maximum likelihood (REML) is

LREML = �1

2
log |V|� 1

2
log |(Ip ⌦ 1n)

|
V

�1(Ip ⌦ 1n)|�
1

2
(~y � ~µ)|V�1(~y � ~µ). (4)

According to previous studies [11, 12], the score statistic evaluated at H0 can be defined as

Ŝn = tr

✓
@LREML

@⌃g

◆ ��
⌃g=0,µi=µ̂i,⌃✏=⌃̂Y

=
1

2

�
(~y � ~µ)|⌃̃

�1
✏

(Ip ⌦K)⌃̃
�1
✏

(~y � ~µ)� tr(P0(Ip ⌦K))
 
|
µi=µ̂i,⌃✏=⌃̂Y

, (5)

where P0 = ⌃̃
�1
✏

� ⌃̃
�1
✏

(Ip ⌦ 1n)((Ip ⌦ 1n)|⌃̃
�1
✏

(Ip ⌦ 1n))�1(Ip ⌦ 1n)|⌃̃
�1
✏

|⌃✏=⌃̂Y
. Equivalently,

Ŝn can be reformulated as follows

Ŝn(K,L) =
1

2n2
tr(KHLH)� 1

2n3
tr(⌃̂

�1

Y
)tr(HK). (6)

where L = Y⌃̂
�2

Y
Y

|. To derive the null distribution of Ŝn, we reformulate the score statistic as

Ŝn(K,L) = 1
2n2 tr(ỹ|

K̃ỹ) � 1
2n3 tr(⌃̂

�1

✏
)tr(HK), where ỹ = ⌃̃✏

� 1
2 (~y � ~µ) ⇠ N (0, Inp) and K̃ =

⌃̃
� 1

2

✏
(Ip ⌦K)⌃̃

� 1
2

✏
. Let ⌘̃1, . . . , ⌘̃np be the eigenvalues of K̃/n. The eigenvalues can be calculated

from the eigenvalues of K and ⌃̃✏ by ⌘̃((j�1)⇤p+i) = �i⌘̂j , where �i are the eigenvalues of ⌃̂
�1

Y
. We

then have nŜn(K,L) =
P

p

i=1

P
n

j=1 �i⌘̂j(z2ij � 1).

S6. Proof of Theorem 1

We first give a more formal statement of Theorem 1 in our main paper.
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Theorem 1 (Formal). Let Ǐ =
P

p

i=1

P
q

j=1 �i⌘j(z2ij � 1) and Ǐm =
P

p

i=1

P
q

j=1 �̂i⌘̂j(z2ij � 1).

(1) Assume
P

p

i=1

P
q

j=1 �
1/2
i
⌘1/2

j
< 1. Then, as m ! 1, Ǐm

D�! Ǐ.

(2) E(Ǐm) = E(Ǐ). For m > 1 and all � > 0, with probability 1� �, for all PXY ,

|V(Ǐm)� V(Ǐ)| 

s
864max(2

Y
,2

X
) log 12

�

m
, (7)

where ⌘j be the eigenvalues of CX (covariance of �(X)), ⌘̂j be the eigenvalues of ĈX (empirical

covariance of �(X)), �i be the eigenvalues of the CY (covariance of  (Y )), and �̂i be the eigenvalues
of ĈY (empirical covariance of  (Y )), respectively, in descending order. Y ,X are constants.

Proof. (1) The proof of (1) in our Theorem 1 can be obtained by extending the proof of Theorem

1 in [13]. To prove Ǐm

D�! Ǐ, it su�ces to prove

pX

i=1

qX

j=1

(�̂i⌘̂j � �i⌘j)z
2
ij
! 0 (8)

and
tr(ĈY )tr(ĈX) ! tr(CY )tr(CX) (9)

in probability as m ! 1. The convergence of the covariance trace operator has been proved in [13],
i.e., tr(ĈY ) ! tr(CY ) and tr(ĈX) ! tr(CX). According to the continuous mapping theorem [14],
we can immediately obtain (9). To prove (8), we can first get an upper bound

|
pX

i=1

qX

j=1

(�̂i⌘̂j � �i⌘j)z
2
ij
| |

pX

i=1

qX

j=1

�̂1/2
i
⌘̂1/2

j
(�̂1/2

i
⌘̂1/2

j
� �1/2

i
⌘1/2

j
)z2

ij
|

+ |
pX

i=1

qX

j=1

�1/2
i
⌘1/2

j
(�̂1/2

i
⌘̂1/2

j
� �1/2

i
⌘1/2

j
)z2

ij
|



8
<

:

pX

i=1

qX

j=1

�̂i⌘̂jz
4
ij

9
=

;

1/28<

:

pX

i=1

qX

j=1

(�̂1/2
i
⌘̂1/2

j
� �1/2

i
⌘1/2

j
)2

9
=

;

1/2

+

8
<

:

pX

i=1

qX

j=1

�i⌘jz
4
ij

9
=

;

1/28<

:

pX

i=1

qX

j=1

(�̂1/2
i
⌘̂1/2

j
� �1/2

i
⌘1/2

j
)2

9
=

;

1/2

. (10)

According to Chebyshev’s inequality,
P

p

i=1

P
q

j=1 �i⌘jz4ij is of Op(1). Since �̂i, ⌘̂j , and zij are

independent, E
hP

p

i=1

P
q

j=1 �̂i⌘̂jz4ij

i
=
P

p

i=1

P
q

j=1 E(�̂i)E(⌘̂j)E(z4ij) = E(tr(ĈY ))E(tr(ĈX))E(z4
ij
).

Because E(tr(ĈY )) and E(tr(ĈX)) are bounded, we also have that
P

p

i=1

P
q

j=1 �̂i⌘̂jz4ij is of Op(1)
according to Chebyshev’s inequality. The proof is complete if we show

pX

i=1

qX

j=1

(�̂1/2
i
⌘̂1/2

j
� �1/2

i
⌘1/2

j
)2 = op(1). (11)
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From (�̂1/2
i
⌘̂1/2

j
� �1/2

i
⌘1/2

j
)2  |�̂1/2

i
⌘̂1/2

j
� �1/2

i
⌘1/2

j
|(�̂1/2

i
⌘̂1/2

j
+ �1/2

i
⌘1/2

j
) = |�̂i⌘̂j � �i⌘j |, we have

pX

i=1

qX

j=1

(�̂1/2
i
⌘̂1/2

j
� �1/2

i
⌘1/2

j
)2 

pX

i=1

qX

j=1

|�̂i⌘̂j � �i⌘j |


pX

i=1

qX

j=1

|�̂i⌘̂j � �̂i⌘j |+
pX

i=1

qX

j=1

|�̂i⌘j � �i⌘j |

=
pX

i=1

�̂i

qX

j=1

|⌘̂j � ⌘j |+
qX

j=1

⌘j

pX

i=1

|�̂i � �i|

tr(ĈY )kĈX � CXk1 + tr(CX)kĈY � CY k1, (12)

where k · k1 is the trace norm. The last inequality makes use of generalized Ho↵mann-Wielandt
inequality. According to [15, Proposition 12], kĈY �CY k1 ! 0 and kĈX �CXk1 ! 0 in probability,
then the proof completes.

(2) To prove (2) in our Theorem 1, we first introduce the following Theorem on deviation bounds
for U-statistics [16], which was obtained by applying a bound from [17, p. 25].

Theorem S1. (Deviation bound for U-statistics). A one-sample U-statistics is defined as the
random variable:

u :=
1

(m)r

X

imr

g(xi1, . . . , xir), (13)

where g is the kernel of the U-statistic. If a  g  b, then for all t > 0 the following bound holds:

P(u � Eu[u] � t)  exp

✓
�2t2dm/re

(b � a)2

◆
. (14)

Now we are ready to prove the following Lemma.

Lemma S1. Given a random variable X with covariance in RHKS CX = EX [�(X) ⌦ �(X)] and
its empirical estimation ĈX = 1

m�1

P
m

i=1 �(xi) ⌦ �(xi) from a sample Sx = {x1, . . . , xm}. For all
✏ > 0, we have

P(
��kĈXk2

HS
� kCXk2

HS

�� � ✏)  3 exp(�m✏2/54). (15)

Proof. We first write kCXk2
HS

in terms of kernels:

kCXk2
HS

=EXX0k(X, X 0)2 + [EXX0k(X, X 0)]2 � 2EX [EX0k(X, X 0)]2. (16)

Similarly, we can also write kĈXk2
HS

in terms of kernels:

kĈXk2
HS

=
1

(m � 1)2

mX

i=1

mX

j=1

k(xi, xj)
2

| {z }
a�

+
1

(m � 1)2m2
[

mX

i=1

mX

j=1

k(xi, xj)]
2

| {z }
b�

� 2

(m � 1)2m

mX

i=1

[
mX

j=1

k(xi, xj)]
2

| {z }
c�

. (17)
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We first expand ESx
a� into

1

(m � 1)2
ESx

2

4
X

i

K2
ii
+

X

(i,j)2im2

K2
ij

3

5 = O(m�1) + (1 + O(m�1))EXX0k(X, X 0)2, (18)

expand ESx
b� into

O(m�1) +
1

(m � 1)2m2
ESx

2

4
X

(i,j,q,r)2i4

KijKqr

3

5 = O(m�1) + (1 + O(m�1))[EXX0k(X,X 0)]2, (19)

and expand ESx
c� into

1

m(m � 1)2
ESx

2

4
X

i

K2
ii
+

X

(i,j)2im2

(KiiKij + KijKjj)

3

5+
1

m(m � 1)2
ESx

2

4
X

(i,j,r)2im3

KijKjr

3

5

= O(m�1) + (1 + O(m�1))EX [EX0k(X, X 0)]2, (20)

where i
m

r
is the set of all r-tuples drawn without replacement from {1,. . . ,m} and ESx denotes the

expectation w.r.t. m independent copies xi drawn from PX . By omitting the terms that decay as
O(m�1) or faster, we have

P{kĈXk2
HS

� kCXk2
HS

� ✏}

 P

8
<

:EXX0k(X, X 0)2 � 1

(m)2

X

im2

K2
ij
� 1

3
✏

9
=

;

+ P

8
<

:EX [EX0k(X, X 0)]2 � 1

(m)3

X

(i,j,r)2im3

KijKjr � 1

6
✏

9
=

;

+ P

8
<

:[EXX0k(X, X 0)]2 � 1

(m)4

X

(i,j,q,r)2i4

KijKqr � 1

3
✏

9
=

; (21)

 exp(�m✏2/9) + exp(�m✏2/54) + exp(�m✏2/18), (using Theorem S1).

 3 exp(�m✏2/54). (22)

Now we are ready to prove (2) in our Theorem 1. From the definition of Ǐ and Ǐm, we have E(Ǐ) =
E(Ǐm) = 0, V(Ǐm) = 2

P
p

i=1

P
q

j=1 �̂
2
i
⌘̂2

j
= 2kĈY k2

HS
kĈXk2

HS
, and V(Ǐ) = 2

P
p

i=1

P
q

j=1 �
2
i
⌘2

j
=

2kCY k2
HS

kCXk2
HS

. Then we have

V(Ǐm)� V(Ǐ) = 2(kĈY k2
HS

kĈXk2
HS

� kCY k2
HS

kCXk2
HS

)

= 2(kĈY k2
HS

kĈXk2
HS

� kĈY k2
HS

kCXk2
HS

+ kĈY k2
HS

kCXk2
HS

� kCY k2
HS

kCXk2
HS

)

= 2kĈY k2
HS

(kĈXk2
HS

� kCXk2
HS

) + 2kCXk2
HS

(kĈY k2
HS

� kCY k2
HS

). (23)
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Thus,

P(V(Ǐm)� V(Ǐ) � ✏) = P(2kĈY k2
HS

(kĈXk2
HS

� kCXk2
HS

) + 2kCXk2
HS

(kĈY k2
HS

� kCY k2
HS

) � ✏)

 P(2kĈY k2
HS

(kĈXk2
HS

� kCXk2
HS

) � ✏/2) + P(2kCXk22
��kĈY k22 � kCY k22

�� � ✏/2)

 P(kĈXk2
HS

� kCXk2
HS

� ✏/(4Y )) + P(kĈY k2
HS

� kCY k2
HS

� ✏/(4X)),

 3 exp(�m✏2/(8642
Y
)) + 3 exp(�m✏2/(8642

X
))

 6 exp(�m✏2/(864max(2
Y

,2
X
))). (24)

where kĈY k22  Y and kCXk22  X . By setting 6 exp(�m✏2/(864max(2
Y

,2
X
))) = �, we can

solve for ✏:

✏ =

s
864max(2

Y
,2

X
) log 6

�

m
. (25)

Therefore, we have that with probability at least 1� �,

|V(Ǐm)� V(Ǐ)| 

s
864max(2

Y
,2

X
) log 12

�

m
, (26)

then the proof completes.

S7. Derivation of the Null Distributions of Our SAT Test Statistics

Recall that our method SAT has two variants SAT-fx and SAT-rx, which are the extensions of
VCST and KIT, respectively. Our SAT method basically project the original data into a subspace
learned from unpaired data, and then plug in the projected data into the original VCST or KIT
test statistics. The null distributions of our SAT-fx or SAT-rx test statistics follow the same forms
as VCST or KIT, and di↵er in the number of �2 terms in the summation. In the following, we will
derive the null distributions of SAT-fx and SAT-rx test statistics separately.

SAT-fx Let U be a the projection matrix containing first rY columns of the eigenvector matrix
of ⌃̂Y , in which the eigenvectors are sorted according to their corresponding eigenvalues in a
descent order. Let Y

0 = YU 2 Rn⇥rY . Here we define ~y0 = (Y 0
11, . . . , Y

0
n1, . . . , Y

0
1rY

, . . . , Y 0
nrY

)|,
~µ0 = (µ0

1, . . . , µ
0
rY

)| ⌦ 1n, ~✏0 = (✏011, . . . , ✏
0
n1, . . . , ✏

0
1rY

, . . . , ✏0
nrY

)|. The covariance of Y 0 is defined

as ⌃
0
Y

and the covariance of ~✏0 is defined as ⌃̃0
✏ = ⌃

0
✏
⌦ In. According to the derivation of the

null distribution of Ŝn(K,L) in Section S1, we reformulate the score statistic of our SAT-fx as

Ŝn(K,L0) = 1
2n2 tr(ỹ0|

K̃
0
ỹ
0) � 1

2n3 tr(⌃̂0�1

✏
)tr(HK), where ỹ

0 = ⌃̃
0
✏

� 1
2
(~y0 � ~µ0) ⇠ N (0, InrY ) and

K̃
0 = ⌃̃

0�
1
2

✏
(IrY ⌦ K)⌃̃0�

1
2

✏
|⌃0

✏=⌃0
Y
. Let ⌘̃01, . . . , ⌘̃

0
nrY

be the eigenvalues of K̃0/n. The eigenvalues

can be calculated from the eigenvalues of K and ⌃̃
0
✏ by ⌘̃((j�1)⇤rY +i) = �i⌘̂j , where �1, . . . ,�rX are

the smallest rY eigenvalues of ⌃̂
�1

Y
. We then have nŜn(K,L0) =

P
rY

i=1

P
n

j=1 �i⌘̂j(z2ij � 1).
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SAT-rx According to Mercer’s theorem [18], the kernel functions k̃(X, X 0) and l̃(Y, Y 0) can be
represented using eigenfunctions and eigenvalues defined in connection with them:

k̃(X,X 0) =
qX

i=1

⌘i�i(X)�i(X
0), l̃(Y, Y 0) =

pX

i=1

�i i(Y ) i(Y
0). (27)

To derive the asymptotic null distribution of În(K0,L0), it su�ces to derive the null distribution of
Un = 1

n(n�1)

P
i 6=j

k̃0(xi,xj)l̃0(yi,yj), where

k̃0(xi,xj) =
rXX

k=1

⌘k�k(xi)�k(xj), l̃0(yi,yj) =
rYX

k=1

�k k(yi) k(yj). (28)

Using (28), we can rewrite Un as

Un =
1

n � 1

rYX

i=1

rXX

j=1

�i⌘j

 
1p
n

nX

k=1

�j(xk) i(yk)

!2

� 1

n � 1

rYX

i=1

rXX

j=1

�i⌘j

1

n

nX

k=1

(�j(xk) i(yk))
2. (29)

Let Sij = EXY �j(X) i(Y ) and Sij

n
= 1p

n

P
n

k=1 �j(Xk) i(Yk), T ij = EXY (�j(X) i(Y ))2, and

T ij

n
= 1

n

P
n

k=1(�j(Xk) i(Yk))2, where {(Xk, Yk)}n

k=1 are i.i.d. variables with the same distribution
as (X, Y ). Under the null hypothesis, Sij = 0, the expectation of Sij

n
is

E(Sij

n
) =

1p
n

nX

k=1

EXkYk [�j(Xk) i(Yk)] =
p

nEXY [�j(X) i(Y )] =
p

nSij = 0, (30)

and the variance of Sij

n
is

V(Sij

n
) =

1

n

nX

k=1

EXkYk [�j(Xk) i(Yk)�
p

nSij ]2 = [1�
p

n(Sij)2] = 1. (31)

Similarly, the expectation of T ij

n
is

E(T ij

n
) =

1

n

nX

k=1

EXkYk [(�j(Xk) i(Yk))
2] = EXY [(�j(X) i(Y ))2] = 1, (32)

and the variance of T ij

n
is

V(T ij

n
) =

1

n2

nX

k=1

{EXkYk [�j(Xk) i(Yk)]
4 � 1} = O(

1

n
). (33)

Thus, we have T ij

n

D�! 1 and Sij

n

D�! zij , where zij are standard normal variables. Therefore,

nUn

D�!
rYX

i=1

rXX

j=1

�i⌘j(z
2
ij
� 1), (34)

so does În(K0,L0).
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S8. Proof of Theorem 2

Here we give a formal version of Theorem 2 in our main paper.

Theorem 2 (Formal). We assume the following data generating process for X and Y :

�(X) = AZx + nx

 (Y ) = BZy + ny, (35)

where �(X) 2 Rq, (Y ) 2 Rp, Zx ⇠ N (0, IrX ), Zy ⇠ N (0, IrY ),A 2 Rq⇥rX , B 2 Rp⇥rY , nx ⇠
N (0,�2

X
Iq), ny ⇠ N (0,�2

Y
Ip), rX  q, rY  p, and nx is independent of ny. Under the alternative

hypothesis, we have
P0(nÎ 0

n
> q01�↵

)  P(nÎn > q1�↵), (36)

where q1�↵ and q01�↵
are the 1�↵ quantiles for the null distributions of nÎn and nÎ 0

n
, respectively.

Proof. We first give the results on the asymptotic distribution of În in the following lemma, which
can be obtained by applying [19, Theorem 5.5.1 (A)].

Lemma S2. Let k̃(X, X 0) and l̃(Y, Y 0) be the centered kernel functions of k(X, X 0) and l(Y, Y 0),
respectively. Assume that ⇣2 = V[k̃(X, X 0)l̃(Y, Y 0)] < 1 and ⇣1 = V{EX0Y 0 [k̃(X,X 0)l̃(Y, Y 0)]} > 0.

Under the alternative hypothesis (I > 0), we have
p

n(În � I)
D�! N (0, 4⇣1).

Now we derive the asymptotic distribution of Î 0
n
under the alternative hypothesis. Our method

can be considered as the original KIT method with new kernel functions k̃0(X, X 0) and l̃0(Y, Y 0)

defined on the dimension-reduced inputs. Therefore, we have
p

n(Î 0
n
� I 0)

D�! N (0, 4⇣ 01), where
I 0 = E[Î 0

n
]. According to Mercer’s theorem [18], the kernel functions k̃(X, X 0) and l̃(Y, Y 0) can be

represented using eigenfunctions and eigenvalues defined in connection with them:

k̃(X,X 0) =
qX

i=1

⌘i�i(X)�i(X
0), l̃(Y, Y 0) =

pX

i=1

�i i(Y ) i(Y
0). (37)

Similarly, the new kernels in the test statistic Î 0
n
of our SAT-rx method can be represented as

k̃0(X, X 0) =
rXX

i=1

⌘i�i(X)�i(X
0), l̃0(Y, Y 0) =

rYX

i=1

�i i(Y ) i(Y
0). (38)

By using the representations of the kernels, we can express I as

I = EXY EX0Y 0

qX

i=1

⌘i�i(X)�i(X
0)

pX

i=1

�i i(Y ) i(Y
0)

=
pX

i=1

qX

j=1

�i⌘jEXY EX0Y 0�j(X)�j(X
0) i(Y ) i(Y

0)

=
pX

i=1

qX

j=1

�i⌘j [EXY �j(X) i(Y )]2. (39)
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Similarly, I 0 =
P

rY

i=1

P
rX

j=1 �i⌘j [EXY �j(X) i(Y )]2. According to the connection between principal
component analysis and the factor analysis model [20,21], the first rX principal component solutions
correspond to the subspace spanned by A and the eigenfunctions of CX associated with the q� rX

smallest eigenvalues map the input X to the noise term nx. Similarly, the eigenfunctions of CY

associated with the p � rY smallest eigenvalues map the input Y to the noise term ny. Because
nx and ny are independent, we have

P
p

i=rY +1

P
q

j=rX+1 �i⌘j [EXY �j(X) i(Y )]2 = 0, which implies
I = I 0.

By using the same representation, we can derive the relation between ⇣1 and ⇣ 01. Using (37), ⇣1
can be expanded as

⇣1 = V{EX0Y 0 [k̃(X, X 0)l̃(Y, Y 0)]}

= V{
pX

i=1

qX

j=1

�i⌘j�j(X) i(Y )EX0Y 0 [�j(X
0) i(Y

0)]}. (40)

Similarly, using (38), we have

⇣ 01 = V{EX0Y 0 [k̃0(X, X 0)l̃0(Y, Y 0)]}

= V{
rYX

i=1

rXX

j=1

�i⌘j�j(X) i(Y )EX0Y 0 [�j(X
0) i(Y

0)]}. (41)

Because rX  q, rY  p, we have ⇣ 01  ⇣1. The power of the baseline KIT and our SAT meth-
ods at the significance level ↵ can be calculated as P(nÎn > q1�↵) = �(nI � q1�↵

2

p
n⇣1) and

P0(nÎ 0
n

> q01�↵
) = �(nI � q

0
1�↵

2

p
n⇣ 01), respectively, where �(·) is the CDF of a standard normal

distribution, q1�↵ is the 1�↵ quantile of
P

p

i=1

P
q

j=1 �i⌘j(z2ij �1), and q01�↵
is the 1�↵ quantile ofP

rY

i=1

P
rX

j=1 �i⌘j(z2ij � 1). Because rX  q and rY  p, we have q1�↵ � q01�↵
, and further because

of ⇣ 01  ⇣1, P0(nÎ 0
n

> q01�↵
) � P(nÎn > q1�↵). The proof completes.
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