BowSaw: inferring higher-order trait interactions associated with complex biological phenotypes

Demetrius DiMucci^{a,b}, Mark Kon^{a,c}, Daniel Segrè^{a,b,d, #}

^a Bioinformatics Graduate Program, Boston University, Boston, Massachusetts, USA

^b Biological Design Center, Boston University, Boston, Massachusetts, USA

^c Department of Mathematics and Statistics, Boston University, Boston,

Massachusetts, USA

^d Department of Biology, Department of Biomedical Engineering, Department of

Physics, Boston University, Boston, Massachusetts, USA

Correspondence to Daniel Segrè, dsegre@bu.edu

1 Abstract

2 Machine learning is helping the interpretation of biological complexity by enabling the 3 inference and classification of cellular, organismal and ecological phenotypes based on 4 large datasets, e.g. from genomic, transcriptomic and metagenomic analyses. A number 5 of available algorithms can help search these datasets to uncover patterns associated with specific traits, including disease-related attributes. While, in many instances, treating an 6 7 algorithm as a black box is sufficient, it is interesting to pursue an enhanced 8 understanding of how system variables end up contributing to a specific output, as an 9 avenue towards new mechanistic insight. Here we address this challenge through a suite 10 of algorithms, named BowSaw, which takes advantage of the structure of a trained 11 random forest algorithm to identify combinations of variables ("rules") frequently used 12 for classification. We first apply BowSaw to a simulated dataset, and show that the 13 algorithm can accurately recover the sets of variables used to generate the phenotypes 14 through complex Boolean rules, even under challenging noise levels. We next apply our 15 method to data from the integrative Human Microbiome Project and find previously 16 unreported high-order combinations of microbial taxa putatively associated with Crohn's 17 disease. By leveraging the structure of trees within a random forest, BowSaw provides a 18 new way of using decision trees to generate testable biological hypotheses.

- 19
- 20

21

23 Introduction

24	The production of large biological data sets with high-throughput techniques has
25	increased the utilization of supervised machine learning algorithms to produce
26	predictions of complex phenotypes (e.g. healthy vs. disease) from measurable traits.
27	These algorithms use measurements of relevant traits such as gene variants, the
28	presence/absence of microbial taxa, or metabolic consumption variables as predictors.
29	Categorical prediction of phenotypes is typically the end goal of these applications.
30	However, an additional benefit of these algorithms is the potential to extract explanatory
31	classification rules. In this context, a rule is defined as a Boolean function of a set of
32	traits, such that the value of the function is 1 (true) when the traits are associated with a
33	given phenotype. Identifying the relationships between the traits involved in
34	classification rules may yield key insights into the biological processes associated with
35	important phenotypes [1, 2]. This realization is creating demand for methods that assist in
36	the interpretation of supervised machine learning methods [3–5], especially when the
37	measured traits may be causal agents of disease states, such as genetic variants or
38	microbial taxa [6]. Identifying classification rules associated with a phenotype of interest
39	is valuable because these rules are likely to carry information about the causal
40	mechanisms that generate the phenotype.
41	Algorithms that are particularly valuable in this respect are those involving
42	decision trees, such as random forests, since decision trees are easily interpretable [7].
43	Decision trees are rule-based classifiers, where rules arise from a series of "yes-no"
44	questions that can efficiently divide the data into categorical groups. In a biological

45	context, such rules may arise from sets of genes whose simultaneous modulation could
46	affect a phenotype, or sets of microbial species whose co-occurrence may be associated
47	with a disease state. While in several cases it seems like disease phenotypes are uniquely
48	associated with a single specific pattern (e.g. retinoblastoma [8]), there is increasing
49	evidence for cases in which multiple distinct patterns can be associated with (and
50	potentially causing) the same high-level phenotype [9, 10]. A particular example we will
51	explore in this work is the multiplicity of distinct microbial presence/absence patterns
52	which may be associated with Crohn's disease [11]. Crohn's disease has five clinically
53	defined sub-types [12] but studies of the associated microbiome do not usually indicate
54	which form of Crohn's disease a donor has been diagnosed with. Each sub-type of the
55	disease may be associated with different microbes, each requiring different treatment
56	regimes. Thus, identifying rules associated with sub-populations within a given
57	phenotype label are of great interest due to potential therapeutic implications.
58	The fact that there may be multiple etiologies that generate the same or similar
59	phenotypes complicates the straightforward interpretation of parameter coefficients or
60	variable importance scores [13, 14]. Uncovering the multiple interactions between
61	predictive variables as they relate to phenotypic labels remains a challenging statistical
62	endeavor, but one that is of paramount importance. Identifying the associated rules that a
63	random forest uses to classify a given sample as having a particular disease enables the
64	development of mechanistic hypotheses for follow up-studies. This challenge, and an
65	overview of the key strategy we propose, are illustrated in Figure 1. In figure 1A we
66	depict a toy model where measured variables (traits) have only two possible values (e.g.:

67	present/absent), the high-level phenotype (category) is binary (e.g.: no disease/disease),
68	and two distinct Boolean rules can both generate the phenotype. The goal in this case is
69	to identify each of the rules that are associated with the phenotype. The multiple Boolean
70	rules obtained in this manner can be thought of as a consensus decision tree that
71	possesses the most informative branches of the forest with respect to a given class label.
72	In this work, we will show how this can be achieved by in-depth analyses of any given
73	random forest (RF) (Fig. 1B).
74	The random forest algorithm intrinsically takes advantage of non-linear
75	relationships between variables and is widely used in the life sciences [15–17]. RFs,
76	when used to distinguish between disease states known to have multiple causes, often
77	result in excellent classifiers [18, 19]. It has also been reported that RFs capture subtle
78	statistical interactions between variables [13]. Unfortunately, an RF is not
79	straightforwardly interpretable despite its hierarchical structure, and recovering those
80	interactions is notoriously difficult [14] due in large part to the method's reliance on
81	ensembles of trees [20]. The difficulties in interpretation created by these properties has
82	led many to refer to RF as a 'black box' model [21].
83	Identifying the rules that a RF utilizes in classification tasks is an active area of
84	research, and many strategies have been developed to address this problem. Effective
85	strategies have focused on evaluating how individual variables influence the
86	classification probabilities of specific samples [22, 23], pruning existing decision rules
87	found in the tree ensemble to produce compact models [24], computing conditional
88	importance scores [25], or iteratively enriching the most prevalent variable co-

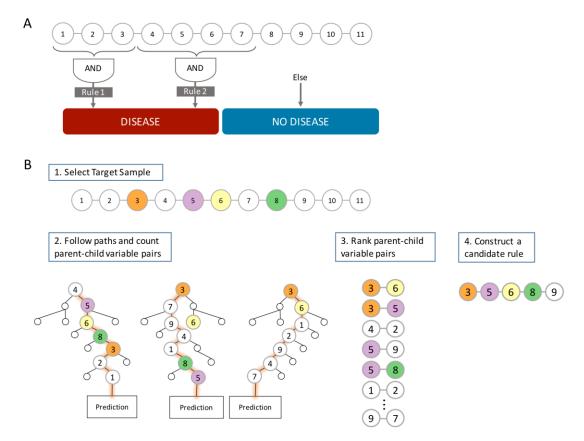
occurrences through regularization [26]. These approaches offer valuable methods for the

89

90 identification of statistical interactions between variables. However, we and others have 91 observed that while these methods are capable of recovering a true causal rule in 92 simulated data when exactly one such rule is present, the existence of multiple rules 93 associated with one phenotype can confound interpretation efforts [26]. 94 Here we describe BowSaw, a new set of algorithms that utilizes variable 95 interactions in a trained RF model in order to extract multiple candidate explanatory 96 rules. With BowSaw, we set out to develop a post hoc method intended to aid in the 97 discovery of these rules when the input variables are categorical in nature. The primary 98 approach of BowSaw is to start by approximating a best combination of variables (i.e. a 99 rule) that explain the forest's predictions for individual instances of a given class in the 100 data set and then to curate the collection of best combinations to obtain a concise set of 101 combinations that collectively segregate a class of interest with high precision. For 102 individual instances a rule is identified by systematically quantifying the co-occurrence 103 of specific variable pairs across trees in the forest that attempt to predict the class of the 104 instance (out-of-bag trees) and then using the frequency of co-occurring variable pairs to 105 guide the construction of a rule that precisely identifies the instance as its observed class. 106 For the entire set of instances, we then curate the collection of all rules identified this way 107 in order to produce a small set of rules that are broadly and precisely applicable to 108 instances of the given class label.

109 We first demonstrate that BowSaw can recover true rules by applying the110 algorithms to simulated data sets of varying complexity. We then apply BowSaw to a

- study on the role of the gut microbiome on Crohn's disease [11], and show that it can find
- a previously unreported combination of microbial taxa that is broadly and precisely
- 113 associated with Crohn's disease instances in the data set. In its current implementation
- 114 BowSaw can be applied to any dataset with categorical or discrete predictors with any
- 115 number of class labels.



117 A In a hypothetical dataset there may be two phenotype labels – "Disease" and "No

- 118 Disease", that we wish to discriminate based on input predictor variables. In this
- 119 example, there are two distinct high-order patterns that both confer the "Disease"
- 120 phenotype. Our goal is to identify a potentially diverse set of patterns (or, in this
- simplified case, all patterns) that are associated with the "Disease" label. **B** Conceptual pipeline of BowSaw. In (1) we begin by identifying the vector of a target instance that
- pipeline of BowSaw. In (1) we begin by identifying the vector of a target instance thathas the target observed label. In this example, the colored nodes indicate a true associated
- 124 pattern, which is unknown to us. In (2) we follow the path of the instance through each of
- its out-of-bag trees and record how often the sample encounters sequential pairs of
- 126 variables. (3) Each ordered pair sequence is sorted in descending order by its observed

frequency. (4) Starting from the top of the list, pair sequences are iteratively evaluated and added to an undirected network of variables (i.e. a candidate rule) until this network is maximally associated with the observed phenotype of the target vector or the list of ordered pairs is exhausted. Each sample with the label of interest yields one such candidate rule. These rules are then aggregated and curated to obtain a concise set of rules that explain class-specific classification decisions that occur in the forest.

133

134 Methods

135 Overview of the pipeline

136 Provided with a trained random forest and a training set, BowSaw goes through 137 three steps in order to generate a candidate rule (variable-value combination) for each 138 observation associated with the phenotype of interest. First, for a specific observation, the 139 *Count* algorithm counts the frequency of unique ordered pairs of variables encountered 140 along each of its out-of-bag trees in the forest (Figure 1B – step 2). Second, for that 141 observation, the *Construct* algorithm takes the counts from the first step and generates a 142 list of ordered pairs, ranked by their frequencies, then uses this list as a guide to construct 143 a candidate decision rule (which could consist of two or more variables) that is 144 maximally associated with the observed phenotype (Figure 1B - steps 3 - 4). Finally, the 145 *Curate* algorithm pools the candidate decision rules from each observation together in 146 order to select a subset of rules that collectively account for all of the samples with the 147 desired phenotype (Figure 1B – step 5). Optionally, the *Sub-rule* algorithm can be used to 148 generate pruned versions of candidate rules prior to applying the Curate algorithm in 149 order to obtain a more concise, albeit less specific, set of candidate rules. The Count and 150 Curate algorithms generate the candidate rules for individual observations while the

151	Curate and Sub-rule algorithms produce a combined set of rules that account for all
152	observations with the chosen phenotype.
153	In the following section, we provide a description of the inputs BowSaw takes and
154	the algorithms that implement these steps along with pseudocode.
155 156	Inputs
157	BowSaw takes as inputs a dataset, D , composed of N observed vectors x_i
158	(together with their respective classes k_i) each of p categorical variables. There are
159	assumed to be K possible class labels for each vector in D which for the purposes of this
160	discussion denote different phenotypes. A random forest is assumed to be trained on D to
161	distinguish the classes $k = 1,, K$. Additionally, BowSaw takes as input the feature
162	vector \boldsymbol{x}_i of a specific observation for which the goal is to identify a set of simplified
163	rules associated with the phenotype k_i .
164	
165	Counting stubs
166	Given an RF machine <i>M</i> trained on dataset <i>D</i> and a feature vector $\mathbf{x} = (x_1, x_2,, x_p) \in$
167	D , the first sub-routine of our method (the <i>count algorithm</i>) proceeds as follows. It starts
168	by identifying among the set of trees in M , those sub-paths (sequences of successive
169	variable indices) encountered by sample x as it travels through M_x , its set of out-of-bag
170	trees. An out-of-bag tree is a tree for which \boldsymbol{x} was not included in the training set. For a
171	specific path P in M_x the sequence of successive variable indices forms a vector $v =$
172	$(v_1,, v_r)$ (note that each v_j is one of the variables x_j). Each stub (ordered pair of

173 sequentially encountered variables
$$v_i v_{i+1}$$
 in all out-of-bag along **P** for $i = 1, ..., r-1$ is

174 accounted for in a $p \times p$ matrix C^x , where the element C_{ij}^x records the number of stubs

175 containing the ordered pair of variables x_i and x_j among all paths of M_x .

176

177 Algorithm 1: Count Algorithm Pseudocode

- 178 Initialize C^x as a $p \times p$ matrix of zeros.
- 179 For each path **P** with feature indices v in M_x do:

1,

180 For
$$i = 1, ..., r -$$

181
$$C_{v_i,v_{i+1}}^x = C_{v_i,v_{i+1}}^x + 1$$

- 182 End loop
- 183 End loop
- 184 Return C^x .

185 For simplicity, henceforth we will denote $C = C^x$, remembering that C continues to

186 depend on the fixed sample x.

187

188 Constructing a candidate rule

189 A *rule* for classifying to a test point
$$\mathbf{x}$$
 will have the form " $\mathbf{x}_I = \mathbf{a}_I$ implies \mathbf{x} is in class

190 k". Here I is a designated subcollection of the variable indices i = 1, ..., p, and $x_I =$

191 $(x_{i_1}, ..., x_{i_{|I|}})$ is the sub-vector of current vector $\mathbf{x} = (x_1, ..., x_p)$ corresponding just to the

192 indices $i_j \in I$. The vector $\mathbf{a}_I = (a_{i_1}, \dots, a_{i_{|I|}})$ will denote an assigned set of values to the

193 x_i , i.e., so that $x_i = a_i$ for $i \in I$. Thus the condition $x_I = a_I$ means assignment of values

11

- 194 to x_i for $i \in I$. The rule is that if training vector x satisfies $x_I = a_I$, we classify x into 195 category k.
- 196
- 197 The second sub-routine (the *construct algorithm*) builds a candidate rule **R**, based
- 198 (initially) on a fixed training point, say $a \in D$, in class k. This is done by first placing all
- of the stubs (i, j) with non-zero counts C_{ij} into a list L sorted in descending order by their
- 200 values in *C*.
- 201

202 We define the candidate rule \mathbf{R} (based on \mathbf{a}) through the following steps. We initialize

203 using the first stub $L_1 = (i_1, j_1)$ in the list **L**, together with the two fixed values $x_{i_1} =$

- 204 $a_{i_1}, x_{j_1} = a_{j_1}$. This is the initialized form of the rule **R**, which requires that for any test
- 205 vector, its values at the above indices i_1 and j_1 match the values
- of the above fixed training vector $a \in D$, so that $x_{i_1} = a_{i_1}$, and $x_{i_2} = a_{i_2}$. For brevity,

207 denote the pair $(i_1, j_1) = I_1$ and the corresponding assigned values as $(a_{i_1}, a_{j_1}) = a_{I_1}$.

- 208 Then the content of rule **R** will be denoted succinctly as $\mathbf{R}: \mathbf{x}_I = \mathbf{a}_I \Rightarrow \text{class } k$. Since
- ordering of the indices i_1 , j_1 does not matter, (as long as the indices are identified), we
- 210 will henceforth write $(i_1, i_2) \rightarrow \{i_1, i_2\}$.

211 We then update rule R as follows. We find all $x \in D$ that satisfy the initial part of rule R,

- 212 i.e., $x_I = a_I$ i.e., all training points matching the two indices $\{i_1, j_1\}$ of training sample a,
- and store them as a subcollection $D_1 \subset D$ of the training set. We call F the fraction of
- 214 data points in D_1 that have phenotype k, i.e., match the phenotype of the initial sample

215 $a \in D$. If F = 1, we stop and return the current above rule R. If F < 1, we continue by

12

216	choosing the second stub $L_2 = \{i_2, j_2\}$ in the above list L , and augment the current rule R
217	by adding the condition $x_{i_2} = a_{i_2}$, $x_{j_2} = a_{j_2}$ (again written $x_{I_2} = a_{I_2}$) and maintaining the
218	assignment of class k (i.e., the same class as the currently fixed sample $a \in D$). If the
219	second stub L_2 happens to overlap with the initial stub L_1 , this added condition in the rule
220	R will clearly be consistent, being still based on the fixed sample a . We augment the
221	current index list I_1 to a list I_2 , adding to it the two new indices i_2 and j_2 , so that now
222	$I_2 = \{i_1, j_1, i_2, j_2\}$ writing the augmented rule as $R: x_{I_2} = a_{I_2} \Rightarrow$ class k. Again
223	defining F to be the fraction of the data subset D_2 (matching the more restrictive new
224	rule R) with phenotype k, we stop the algorithm and use the current rule R if $F = 1$, and
225	otherwise augment rule R by adding the indices $L_3 = (i_3, j_3)$ to it, as above, yielding a
226	larger set I_3 of indices and the augmented rule $R: x_{I_3} = a_{I_3} \Rightarrow \text{class } k$, with a more
227	restricted subset $D_3 \subset D$, and a new value for <i>F</i> , now the fraction of D_3 in the class <i>k</i> of
228	the fixed $\boldsymbol{a} \in \boldsymbol{D}$.
229	This process continues until the fraction $F = 1$, i.e., 100% of the samples in D match the
230	current set of indices, and also match the class k of the current sample a . Alternatively,
231	the algorithm stops when all stubs in L have been exhausted.
232	
233	Algorithm 2: Construct Algorithm Pseudocode
234	Make ranked list <i>L</i> of stubs from <i>C</i>

235 Initialize fixed $a \in D$, $R = \phi$ $I = \phi$, F = 0,

236 For i = 1: |L|, select stub L_i

237 If F = 1:

238	Exit loop
239	Else:
240	$I' = \{I \cup L_i\}$
241	$D_{I'} = \{x \in D : x_{I'} = a_{I'}\}$
242	$F' = \frac{ \{x \in D_{I'}: \text{class } x = k\} }{ D_{I'} }$
243	If $F' > F$:
244	I = I'
245	F = F'
246	End loop
247	Return I, F, D_I [all corresponding to the fixed $a \in D$].
248	Return rule $\mathbf{R}: x_I = a_I \Rightarrow \text{class } k$
249	
250	Curating candidate rules:
251	The <i>count</i> and <i>construct</i> algorithms are the heart of BowSaw. In our workflow,

252 we apply these algorithms to each observation $a \in D$ that has the desired observed

253 phenotype k. We call the set of these vectors $D^k \subset D$. By default, we produce a single

254 candidate rule for each vector in $a \in D^k$. We store each candidate rule in list Q and rank

them by their respective values of |I|, i.e., the number of indices in the respective rules.

256 Since Q may include many redundant rules, we developed another sub-routine (the *curate*

257 *algorithm*) to generate a concise set of candidate rules that collectively account for all

258 data vectors D^k in class k. Briefly, we initialize an empty list E, to which we add the top

259	ranked rule from	Q (by	default this i	s the rule wit	th the greatest	value of $ I $),	and record
-----	------------------	--------------	----------------	----------------	-----------------	-------------------	------------

- 260 the index of samples in D that match any rule in E and also have the desired observed
- 261 phenotype class k, into a set A. Next, we determine how many samples remain
- 262 unaccounted for, i.e. are in $U = D^k \sim A$, Then we determine which of the remaining rules
- 263 in Q minimizes |U|, add it to E, and repeat these steps until U is an empty set.

264

265 Algorithm 3: Curate algorithm pseudocode

- 266 Q = ranked list of all candidate rules for $\Phi_{\rm t}$
- 267 $E = Q_{best}$ (user defined, default is maximum M)
- 268 I^* = which **D** match any rule in **E** and $k = \mathbf{K}_d$
- 269 $A = D^k \cap M^*$
- 270 $U = D^k A$
- 271 While U is not empty:
- 272 $B = \{ \}$
- 273 For rule *i* in *Q*:
- $274 E^* = E + Q_i$
- 275 I^* = which **D** match any rule in E^* and $k = K_d$
- 277 $B_i = |U A^*|$
- 278 End loop
- 279 *best* = which min B_i
- $280 E = E + Q_{best}$

15

281 M^* = which **D** match any rule in **E** and $k = K_d$

 $A = \boldsymbol{D^k} \cap \boldsymbol{M^*}$

283 U = U - A

End while loop

285 Return *E*

286

287 Constructing sub-rules

288 Since rules are rarely 100% associated with any given phenotype, we devised a 289 strategy for selecting a set of candidate sub-rules that account for all samples with desired 290 observed phenotype class k. Candidate sub-rules are shorter candidate rules derived from 291 larger candidate rules by omitting one or more variables. For each candidate rule in E, we 292 identify sub-rules that meet a user-defined complexity criteria, e.g. only produce sub-293 rules that are composed of three or four variables and their corresponding values. We 294 place each of the unique sub-rules into a new list E_{sub} . Then the corresponding number of 295 identical matches, I, and proportion of I that have the phenotype K_d , F, are determined. 296 At this stage, we can apply our third sub-routine (the *Curate* algorithm) to E_{sub} to obtain a 297 parsimonious list of sub-rules that accounts for x_{all} . In our pipeline, we also choose 298 thresholds based on desired levels of I and/or F in order to eliminate poor candidate sub-299 rules from consideration. In this study, we decided on the thresholds after visually 300 inspecting a plot of *F* against *I*. 301

302 Algorithm 4: Sub-rule algorithm pseudocode

303
$$E_{sub} = \{ \}$$

304 *Complexity* = {user defined numeric values}

305 For *rule* in *E*

306 For *i* in *Complexity*

307
$$Esub = E_{sub} \cup \left(\frac{rule}{i}\right)$$

- 308End loop
- 309 End loop
- 310

311 The algorithms described above are generalizable to multi-classification tasks but

are currently limited to discretized or categorical representations of the feature space.

313 Pseudocode for implementing each of the algorithms described above along with an

314 implementation of the algorithms in R [27] can be found in the supplemental files and on

315 github: <u>https://github.com/ddimucci/BowSaw</u>.

316

317

318 **Results**

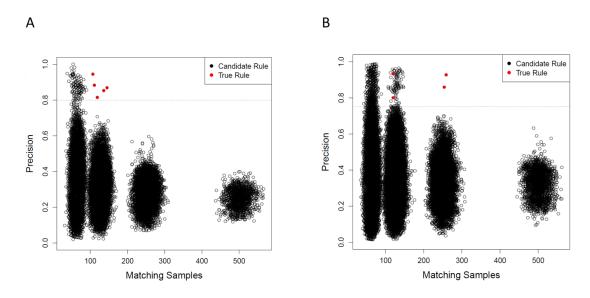
319 Application to simulated Data

To test the capacity of BowSaw to recover multiple decision rules, we applied it to increasingly challenging simulated data sets. These data set consists of binary vectors representing different observations. The phenotype associated with each observation is a function of the corresponding vector. The function consists of a set of multiple mutually distinct Boolean rules, such that if a rule is satisfied, it will cause the observation to have

325	the phenotype with a certain probability (which we call here "penetrance" because of its
326	resemblance to the genetics concept). The first dataset (IDEALIZED) we use is relatively
327	simple, and includes multiple equally prevalent rules. It is also generated under the
328	assumption that there are no unmeasured confounders, i.e. that if an observation does
329	have a phenotype, then it must be satisfying at least one of the above rules. We then
330	apply BowSaw to a more challenging scenario (INTERMEDIATE) in which the
331	phenotype-generating rules differ in their relative prevalence and the assumption of
332	unmeasured confounders is violated. Finally, is a set of data sets with complex co-
333	varying parameters (COMPLEX), we systematically varied the underlying parameters of
334	the simulation and examined the relationship between summary statistics of the RF
335	performance and the ability of BowSaw to generate candidate rules containing the true
336	phenotype-generating rules.
336 337	phenotype-generating rules. For the IDEALIZED scenario, we simulated data set of 100 independent and
337	For the IDEALIZED scenario, we simulated data set of 100 independent and
337 338	For the IDEALIZED scenario, we simulated data set of 100 independent and identically distributed random binary variables and 2,000 observations. We randomly
337 338 339	For the IDEALIZED scenario, we simulated data set of 100 independent and identically distributed random binary variables and 2,000 observations. We randomly defined five rules that each required four randomly selected variables each to have
337 338 339 340	For the IDEALIZED scenario, we simulated data set of 100 independent and identically distributed random binary variables and 2,000 observations. We randomly defined five rules that each required four randomly selected variables each to have specific values (e.g. all variables equal to 1) in order to assign a hypothetical phenotype
337 338 339 340 341	For the IDEALIZED scenario, we simulated data set of 100 independent and identically distributed random binary variables and 2,000 observations. We randomly defined five rules that each required four randomly selected variables each to have specific values (e.g. all variables equal to 1) in order to assign a hypothetical phenotype with likelihood between .8 and .9. Here we present the results of this scenario with a
 337 338 339 340 341 342 	For the IDEALIZED scenario, we simulated data set of 100 independent and identically distributed random binary variables and 2,000 observations. We randomly defined five rules that each required four randomly selected variables each to have specific values (e.g. all variables equal to 1) in order to assign a hypothetical phenotype with likelihood between .8 and .9. Here we present the results of this scenario with a specified random seed, but other seeds and parameters can be explored using the scripts
 337 338 339 340 341 342 343 	For the IDEALIZED scenario, we simulated data set of 100 independent and identically distributed random binary variables and 2,000 observations. We randomly defined five rules that each required four randomly selected variables each to have specific values (e.g. all variables equal to 1) in order to assign a hypothetical phenotype with likelihood between .8 and .9. Here we present the results of this scenario with a specified random seed, but other seeds and parameters can be explored using the scripts provided in the supplemental files. Using these parameters 479 samples were assigned

347	sub-rules. We calculated the number of matches $ I $, the proportion of samples with the
348	phenotype, F , for each sub-rule, and visualized these values in order to select an
349	association threshold (Figure 2A). To reduce the number of sub-rules that the curate
350	algorithm would need to examine, we eliminated from consideration any rules that had an
351	F below 80%. We selected an 80% threshold because in the cluster centered around 125
352	matching samples there is a small cloud of rules that are clearly segregating the
353	phenotype more efficiently than the others are. We selected the sub-rule with largest $ I $
354	among these as the top candidate rule. This produced a final list consisting of five
355	candidate rules that accounted for all of the samples with the phenotype and were each
356	one of the true phenotype generating rules (Figure 3A red points). These results
357	demonstrate that in an ideal scenario with no phenotype diagnosis errors, BowSaw is
358	indeed capable of recovering multiple true rules.
358 359	indeed capable of recovering multiple true rules. For the more challenging scenario (INTERMEDIATE), we generated the data set
359	For the more challenging scenario (INTERMEDIATE), we generated the data set
359 360	For the more challenging scenario (INTERMEDIATE), we generated the data set the same as before except this time we allowed the five underlying rules to vary in
359 360 361	For the more challenging scenario (INTERMEDIATE), we generated the data set the same as before except this time we allowed the five underlying rules to vary in complexity from three to five variables. Varying the complexities of rules resulted in
359 360 361 362	For the more challenging scenario (INTERMEDIATE), we generated the data set the same as before except this time we allowed the five underlying rules to vary in complexity from three to five variables. Varying the complexities of rules resulted in different prevalence among them, as rules that are more complicated are less likely to
359 360 361 362 363	For the more challenging scenario (INTERMEDIATE), we generated the data set the same as before except this time we allowed the five underlying rules to vary in complexity from three to five variables. Varying the complexities of rules resulted in different prevalence among them, as rules that are more complicated are less likely to appear in the data. In this case, we had one rule of complexity five, two that required four
359 360 361 362 363 364	For the more challenging scenario (INTERMEDIATE), we generated the data set the same as before except this time we allowed the five underlying rules to vary in complexity from three to five variables. Varying the complexities of rules resulted in different prevalence among them, as rules that are more complicated are less likely to appear in the data. In this case, we had one rule of complexity five, two that required four variables, and two that used three variables. We also added background noise by
359 360 361 362 363 364 365	For the more challenging scenario (INTERMEDIATE), we generated the data set the same as before except this time we allowed the five underlying rules to vary in complexity from three to five variables. Varying the complexities of rules resulted in different prevalence among them, as rules that are more complicated are less likely to appear in the data. In this case, we had one rule of complexity five, two that required four variables, and two that used three variables. We also added background noise by randomly assigning the phenotype to 2% of samples that did not possess any of the rules.

369	range and the two outlier points at $\sim I = 250$ do not combine to account for all of the
370	phenotype (Figure 3B). Applying the curate algorithm to the rules meeting this threshold
371	produced 20 candidate sub-rules the top four (when ranked by $ I $) of which were true
372	rules. The rule of five variables was not recovered. These results show that BowSaw is
373	able to recover strongly associated patters (and in this case, causal patterns) even in the
374	presence of noise, but low prevalence rules can be masked by high prevalence rules.
375	We used the same data generation method to investigate BowSaw's ability to
376	produce candidate rules containing true rules when the underlying parameters change.
377	We applied BowSaw to 20,000 simulated data sets where we randomly altered the
378	number of features, sample size (200 or 2,000 samples), complexity of the rules, number
379	of rules, the likelihood of each rule assigning the phenotype, and the background noise.
380	We identified scenarios where rule recovery with BowSaw performs very well and
381	situations in which it fails to recover any rules at all. Additionally, we found a strong
382	linear relationship between BowSaw's performance measured as the average fraction of
383	rules recovered and the of number of samples, number of features, and two evaluation
384	metrics for RF model – the area under the curve for both the receiver operator
385	characteristic and precision recall curves (Figure S1).



387 Figure 2

386

388 A Precision of candidate sub-rules against the number of exactly matching samples for 389 the ideal scenario. Each point represents a unique sub-rule. X-axis is the number of 390 samples that exactly match the pattern defined by the rule. Y-axis is the fraction of 391 matching samples with the observed phenotype (i.e. precision of the rule). Each cluster of points corresponds to decreasing rule complexity from 5 variables per rule to 2 on the 392 393 right most cluster. These clusters appear because the values of each variable is produced 394 by an identical binomial distribution. Dashed line is the precision threshold we set. Only 395 candidate rules with precision above this threshold were considered for the curate 396 algorithm. Red points are the causative sub-rules we defined. BowSaw correctly 397 identified all five red points in this scenario. B Candidate sub-rules generated for the 398 more challenging scenario. We defined 5 causative rules of varying lengths in this scenario and allowed 2% of samples without a causative rule to be assigned the label. 399 400 BowSaw completely 4 of the causative rules (red points). The longest rule which involved 5 variables was not recovered. 401

402

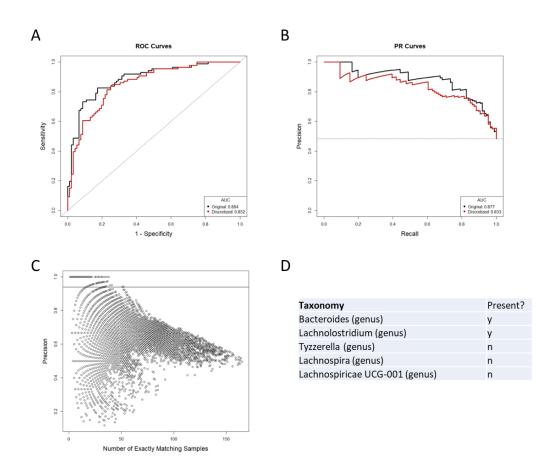
403 Application to Human Microbiome Data

404 Irregular distributions of microbial taxa within the gut are often associated with

- 405 serious illnesses such as Crohn's disease or ulcerative colitis [28, 29]. Human
- 406 microbiome studies regularly use 16s sequencing methods and extensive reference
- 407 databases to report on microbial taxa found in samples as operational taxon units (OTUs).
- 408 RF classifiers are frequently built using counts of OTUs to accurately discriminate

409	between disease and healthy patient samples [30, 31]. Despite their demonstrated
410	effectiveness as good classifiers of Crohn's disease, studies that look to discover
411	associations with disease status typically focus on individual OTUs while specific
412	microbial association rules found by RF are not discussed, as a result it is uncertain how
413	heterogeneous study cohorts are. To investigate potential rule heterogeneity in a human
414	microbiome cohort we downloaded processed files from the Human Microbiome Project
415	for inflammatory bowel disease (IBD) [11] which contain information on the taxonomic
416	profiles of 982 OTUs in 178 patients – 86 of which have been diagnosed with Crohn's
417	disease, 46 diagnosed with ulcerative colitis, and 46 diagnosed as non-IBD. We were
418	specifically interested in finding rules that separate the Crohn's disease samples from
419	ulcerative colitis and non-IBD, so we framed the problem as a binary classification task
420	with Crohn's disease as the target phenotype.
421	Since the current implementation of BowSaw is limited to finding rules when the
421 422	Since the current implementation of BowSaw is limited to finding rules when the variables have categorical values, we first converted the OTU counts of each taxon to a
422	variables have categorical values, we first converted the OTU counts of each taxon to a
422 423	variables have categorical values, we first converted the OTU counts of each taxon to a simple presence/absence scheme. This resulted in nearly equivalent RF performance
422 423 424	variables have categorical values, we first converted the OTU counts of each taxon to a simple presence/absence scheme. This resulted in nearly equivalent RF performance relative to training RF with the original continuous OTU inputs: ROC AUC of 0.862
422 423 424 425	variables have categorical values, we first converted the OTU counts of each taxon to a simple presence/absence scheme. This resulted in nearly equivalent RF performance relative to training RF with the original continuous OTU inputs: ROC AUC of 0.862 (binary) vs 0.882 (continuous) and PR AUC of 0.846 (binary) vs 0.886 (continuous)
422 423 424 425 426	variables have categorical values, we first converted the OTU counts of each taxon to a simple presence/absence scheme. This resulted in nearly equivalent RF performance relative to training RF with the original continuous OTU inputs: ROC AUC of 0.862 (binary) vs 0.882 (continuous) and PR AUC of 0.846 (binary) vs 0.886 (continuous) (Figure 3A-B). This is an important result because it allows us to think about associations
422 423 424 425 426 427	variables have categorical values, we first converted the OTU counts of each taxon to a simple presence/absence scheme. This resulted in nearly equivalent RF performance relative to training RF with the original continuous OTU inputs: ROC AUC of 0.862 (binary) vs 0.882 (continuous) and PR AUC of 0.846 (binary) vs 0.886 (continuous) (Figure 3A-B). This is an important result because it allows us to think about associations just in terms of presence or absence of an OTU without sacrificing much in model

431	top candidate for the curate algorithm and found that it considers the status of 5 OTUs
432	and accounts for 38 of 86 Crohn's disease samples (Figure 3C). We set an association
433	threshold of 90% and ended up with 10 sub-rules that together account for all 86 Crohn's
434	disease samples and an additional 11 non-Crohn's disease samples (4 non-IBD, 7
435	ulcerative colitis). The top five rules combine to account for 78 of 86 Crohn's disease
436	samples and include 10 non-Crohn's disease samples (Table 1).
437	The top candidate rule is comprised of the presence of Bacteroides and
438	Lachnoclostridium and the absence of three genera from the family Lachnospiraceae:
439	Lachnospira, Tyzerrella, and Lachnospiracea UCG 001 (Figure 3D). Detection of
440	Bacteroides was nearly ubiquitous within the cohort, it was found in 170 of 178 total
441	samples, but only 3 of the samples in which it was missing are diagnosed as Crohn's
442	disease. For the remaining taxa we performed a t-test comparing the distribution of the
443	taxa in Crohn's disease versus ulcerative colitis and versus healthy samples.
444	Lachnoclostridium was frequently found in Crohn's disease (67/86) but not in ulcerative
445	colitis (27/46, $p = .02$) and was detected at roughly the same rate in non-IBD samples
446	(34/46, p = .616). Detection of <i>Lachnospira</i> was depleted in Crohn's disease samples
447	(20/86) relative to ulcerative colitis (20/46, $p = .022$) and to non-IBD samples (31/46, $p = .022$)
448	9.9 ⁻⁷). <i>Tyzzerella</i> was also detected at a lower rate in Crohn's disease (63/86) relative to
449	ulcerative colitis (24/46, p = .019) and non-IBD (24/46, p = .019). Lachnospiracea UCG
450	001 was rarely detected in Crohn's disease $(4/86)$ which is a lower rate than it was
451	detected in ulcerative colitis (9/46, $p = .022$) and in non-IBD samples (19/46, $p = 1.45^{-5}$).



452

453 **Figure 3**

454 A Performance of the random forest classifier as measured by area under the receiver 455 operator curve (ROC-AUC) is not strongly perturbed by simplifying OTU representation 456 to a presence/absence scheme versus the original continuous count. Dashed line indicates 457 the performance of a perfectly random classifier. **B** The area under the curve of the precision recall curve is similarly not strongly affected by the new representation scheme. 458 459 Dashed horizontal line is the random performance line. C Each point represents a unique 460 candidate sub-rule. On the x-axis is the number of samples in the data matrix that are 461 subject to that rule. The y-axis represents what fraction of matching samples were 462 diagnosed as Crohn's disease. **D** The taxon identities of the OTUs that make up the most 463 generally applicable of the sub-rules where all matching samples have the Crohn's 464 disease label.

465

24

Rule	CD Samples	Non CD Sample	New Samples Covered	Taxonomy	Presence
	1 38	0	38	Bacteroides (genus)	у
				Lachnolostridium (genus)	у
				Tyzzerella (genus)	n
				Lachnospira (genus)	n
				Lachnospiricae UCG-001(genus)	n
,	2 41	4	20	Dialister (genus)	у
				Christensenellacea R7 group (genus)	n
				Christensenellacea R7 group (genus)	n
				Collinsella (genus)	n
				Ruminococcaceae (family)	n
				Finegoldia (genus)	n
				Ruminococcus 1 (genus)	n
	3 9	1	9	Ruminococcus 1 (genus)	у
				Ruminococcaceae UCG-002 (genus)	n
				Lachnospiraceae (family)	n
4	4 24	2	6	Streptococcus (genus)	у
				Tyzzerella (genus)	n
				Lachnospiraceae (family)	n
				Hafnia Obesumbacterium	n
	5 27	3	5	Lachnospiraceae UCG-008 (family)	у
				Ruminococcus 1 (genus)	n
				Eubacterium eligens group	n
	5 5	0	2	Ruminococcus 1 (genus)	у
				Dorea (genus)	n
,	7 7	0	2	Bacteroides (genus)	у
				Dialister (genus)	n
				Eubacterium rectale group	n
:	8 15	0	2	Lachnospiraceae NK4A136 group	у
				Eubacterium eligens group	у
				Tyzzerella (genus)	n
				Christensenellacea R7 group (genus)	n
				Lachnospira (genus)	n
	9 3	0	1	Ruminococcus gnavus group	v
				Veillonella (genus)	n
				Bacteroides (genus)	n
				Finegoldia (genus)	n
10	0 10	1	1	Parabacteroides (genus)	y
				Eubacterium eligens group	v
				Ruminococcaceae UCG-003 (genus)	n
				Lachnospiraceae ND3007 group	n

466 467

- 468 **Table 1** Association rules identified by BowSaw that account for all Crohn's disease
- samples.
- 470
- 471

472

473 Discussion

474	Interpretation of random forest models for classification may be confounded when
475	there are multiple rules (combinations of variables and their specific values) associated
476	with a phenotype of interest. We have developed BowSaw, which is an algorithmic
477	approach for identifying the rules that a trained random forest model uses to make
478	classifications when the values are categorical in nature. By taking advantage of the
479	structure of trees found within a random forest, BowSaw produces a set of multiple
480	decision rules that combine to account for each sample with a given observed phenotype.
481	When the variables are the presumed causal agents, these rules represent plausible
482	mechanistic relationships.
483	Results on simulated data demonstrate that when there are multiple rules
484	associated with a single phenotype label that BowSaw is capable of faithfully identifying
485	them. Application to data from the human microbiome project offers further evidence
486	that BowSaw provides an efficient way of generating plausible hypotheses for high
487	through put metagenomics studies. In particular we identified a rule that utilizes a
488	presence/absence pattern of five microbial taxa (present: bacteroides, lachnoclostridium,
489	absent: lachnospira, lachnospiracea, tyzerrella) that accounts for nearly half of all
490	Crohn's disease samples in the cohort (38/86). This specific pattern of microbial
491	colonization in the guts of Crohn's disease patients is unreported, but each taxon's
492	respective enrichment or depletion status and association with disease status has been
493	reported. If the cohort of patients in the human microbiome study are representative of all
494	people afflicted by Crohn's disease then this rule represents a significantly large sub-set
495	of those suffering. Inquiries into the relationship of the taxa included in this rule with

496	disease status may yield important insights into the mechanisms of the disease and
497	potential therapeutic strategies for this sub-population. Of the five associated taxa, we
498	suspect that the absence of lachnospira, lachnospiracea UCG 001, and tyzzerella are
499	biologically meaningful. We have reason to believe so because it has been reported that
500	the <i>lachnospiraceae</i> family is generally suppressed in Crohn's disease [32–34].
501	Lachnospira has been reported as depleted with respect to Crohn's disease several times
502	[35, 36]. The depletion of <i>tyzzerella</i> has been associated with chronic intestinal
503	inflammation and supplementation suggested as a probiotic for Crohn's disease [37, 38].
504	While the relationship of lachnospiracea UCG 001 with Crohn's disease is still unclear,
505	its depletion has been reported in mice displaying symptoms of anhedonia and it was
506	significantly enriched in anhedonia resilient mice [39]. Partly because IBD is frequently
507	accompanied by depression, anhedonia has been suggested as an important symptom in
508	the diagnosis of IBD [40]. The associations of the individual OTUs defined by this rule
509	are consistent with previously reported findings in the existing literature and describe a
510	taxonomic profile that exclusively identifies a large sub-population of Crohn's disease
511	samples within this cohort. The presence of <i>bacteroides</i> does not appear to be particularly
512	useful and in this context is probably preserved because it causes a perfect association,
513	although high levels of some species are implicated in the pathology of Crohn's disease
514	[41]. Lachnoclostridium, is differentially distributed across the three classes. Notably it is
515	less frequently detected in ulcerative colitis relative to Crohn's and non-IBD samples,
516	which roughly resemble one another. Increased levels of this genus was detected in rats

517 that showed relief of colitis symptoms after treatment with a proposed therapeutic agent

518 [42].

- 519 The current implementation of the algorithms are restricted to classification tasks
- 520 with categorical predictor values, this is a challenge that we will need to address in order
- 521 to make the approach more generally applicable. Future work will also focus on
- 522 extending these for the interpretation of regression models. Such additions will greatly
- 523 increase the number of systems to which we can apply BowSaw.
- 524

525 Acknowledgments

- 526 We are grateful to members of the Segrè lab for helpful discussions and for feedback on
- 527 the manuscript. DS and DD acknowledge funding from the Defense Advanced Research
- 528 Projects Agency (Purchase Request No. HR0011515303, Contract No. HR0011-15-C-
- 529 0091), the U.S. Department of Energy (DE-SC0012627), the NIH (T32GM100842,
- 530 5R01DE024468, R01GM121950 and Sub_P30DK036836_P&F), the National Science
- 531 Foundation (1457695), the Human Frontiers Science Program (RGP0020/2016), and the
- 532 Boston University Interdisciplinary Biomedical Research Office. DD is grateful to Dr.
- 533 Nisha Rajagopal for her patience in conversations about random forests and her valuable
- 534 insight.

References

- Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A., & Yang, J. (2017). 10 Years of GWAS Discovery: Biology, Function, and Translation. *American Journal of Human Genetics*. doi:10.1016/j.ajhg.2017.06.005
- Furqan, M. S., & Siyal, M. Y. (2016). Inference of biological networks using Bidirectional Random Forest Granger causality. *SpringerPlus*. doi:10.1186/s40064-016-2156-y
- Le, V., Quinn, T. P., Tran, T., & Venkatesh, S. (2019). Deep in the Bowel: Highly Interpretable Neural Encoder-Decoder Networks Predict Gut Metabolites from Gut Microbiome. *bioRxiv*. doi:10.1101/686394
- Azmi, M., Runger, G. C., & Berrado, A. (2019). Interpretable regularized class association rules algorithm for classification in a categorical data space. *Information Sciences*. doi:10.1016/j.ins.2019.01.047
- Nguyen, M., Wesley Long, S., McDermott, P. F., Olsen, R. J., Olson, R., Stevens, R. L., ... Davisa, J. J. (2019). Using machine learning to predict antimicrobial MICs and associated genomic features for nontyphoidal Salmonella. *Journal of Clinical Microbiology*. doi:10.1128/JCM.01260-18
- LaPierre, N., Ju, C. J. T., Zhou, G., & Wang, W. (2019). MetaPheno: A critical evaluation of deep learning and machine learning in metagenome-based disease prediction. *Methods*. doi:10.1016/j.ymeth.2019.03.003
- 7. Brodley, C. E., & Friedl, M. A. (1997). Decision tree classification of land cover

from remotely sensed data. *Remote Sensing of Environment*. doi:10.1016/S0034-4257(97)00049-7

- Knudson, A. G. (1971). Mutation and cancer: statistical study of retinoblastoma. *Proceedings of the National Academy of Sciences of the United States of America*. doi:10.1073/pnas.68.4.820
- Emily, M., Mailund, T., Hein, J., Schauser, L., & Schierup, M. H. (2009). Using biological networks to search for interacting loci in genome-wide association studies. *European Journal of Human Genetics*. doi:10.1038/ejhg.2009.15
- Leem, S., Jeong, H. H., Lee, J., Wee, K., & Sohn, K. A. (2014). Fast detection of high-order epistatic interactions in genome-wide association studies using information theoretic measure. *Computational Biology and Chemistry*. doi:10.1016/j.compbiolchem.2014.01.005
- Proctor, L. M., Creasy, H. H., Fettweis, J. M., Lloyd-Price, J., Mahurkar, A., Zhou,
 W., ... Huttenhower, C. (2019). The Integrative Human Microbiome Project.
 Nature. doi:10.1038/s41586-019-1238-8
- Reading, D. (2014). Crohn Disease: Pathophysiology, Diagnosis, and Treatment, 85(3), 297–320.
- 13. Louppe, G. (2014). Understanding Random Forests. Cornell University Library.
- Wright, M. N., Ziegler, A., & König, I. R. (2016). Do little interactions get lost in dark random forests? *BMC bioinformatics*. doi:10.1186/s12859-016-0995-8
- 15. Boulesteix, A. L., Janitza, S., Kruppa, J., & König, I. R. (2012). Overview of random forest methodology and practical guidance with emphasis on

> computational biology and bioinformatics. *Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery*. doi:10.1002/widm.1072

- Touw, W. G., Bayjanov, J. R., Overmars, L., Backus, L., Boekhorst, J., Wels, M., & Sacha van Hijum, A. F. T. (2013). Data mining in the life science swith random forest: A walk in the park or lost in the jungle? *Briefings in Bioinformatics*. doi:10.1093/bib/bbs034
- Nguyen, C., Wang, Y., & Nguyen, H. N. (2013). Random forest classifier combined with feature selection for breast cancer diagnosis and prognostic. *Journal of Biomedical Science and Engineering*. doi:10.4236/jbise.2013.65070
- Franzosa, E. A., Sirota-Madi, A., Avila-Pacheco, J., Fornelos, N., Haiser, H. J., Reinker, S., ... Xavier, R. J. (2019). Gut microbiome structure and metabolic activity in inflammatory bowel disease. *Nature Microbiology*. doi:10.1038/s41564-018-0306-4
- Duvallet, C., Gibbons, S. M., Gurry, T., Irizarry, R. A., & Alm, E. J. (2017). Metaanalysis of gut microbiome studies identifies disease-specific and shared responses. *Nature Communications*. doi:10.1038/s41467-017-01973-8
- Breiman, L. (2001). Random forests. *Machine Learning*, 45(1), 5–32. doi:10.1023/A:1010933404324
- Castelvecchi, D. (2016). Can we open the black box of AI? *Nature*. doi:10.1038/538020a
- Welling, S. H., Refsgaard, H. H. F., Brockhoff, P. B., & Clemmensen, L. H.
 (2016). Forest Floor Visualizations of Random Forests. *arXiv*. Retrieved from

http://arxiv.org/abs/1605.09196

- Palczewska, A., Palczewski, J., Robinson, R. M., & Neagu, D. (2013). Interpreting random forest classification models using a feature contribution method (extended). 2013 IEEE 14th International Conference on Information Reuse & Integration (IRI), 1–30. doi:10.1109/IRI.2013.6642461
- 24. Deng, H. (2019). Interpreting tree ensembles with inTrees. *International Journal of Data Science and Analytics*. doi:10.1007/s41060-018-0144-8
- Strobl, C., Boulesteix, A. L., Kneib, T., Augustin, T., & Zeileis, A. (2008). Conditional variable importance for random forests. *BMC Bioinformatics*. doi:10.1186/1471-2105-9-307
- Basu, S., Kumbier, K., Brown, J. B., & Yu, B. (2018). Iterative random forests to discover predictive and stable high-order interactions. *Proceedings of the National Academy of Sciences*. doi:10.1073/pnas.1711236115
- Dessau, R. B., & Pipper, C. B. (2008). ["R"--project for statistical computing]. Ugeskrift for laeger.
- Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M., & Owen, L. J. (2015).
 Dysbiosis of the gut microbiota in disease. *Microbial Ecology in Health & Disease*. doi:10.3402/mehd.v26.26191
- 29. Levy, M., Kolodziejczyk, A. A., Thaiss, C. A., & Elinav, E. (2017). Dysbiosis and the immune system. *Nature Reviews Immunology*. doi:10.1038/nri.2017.7
- Ai, D., Pan, H., Han, R., Li, X., Liu, G., & Xia, L. C. (2019). Using Decision Tree
 Aggregation with Random Forest Model to Identify Gut Microbes Associated with

Colorectal Cancer. Genes, 10(2), 112. doi:10.3390/genes10020112

- Vangay, P., Hillmann, B. M., & Knights, D. (2019). Microbiome learning Repo (ML Repo): A public repository of microbiome regression and classification tasks. *GigaScience*. doi:10.1093/gigascience/giz042
- Loh, G., & Blaut, M. (2012). Role of commensal gut bacteria in inflammatory bowel diseases. *Gut Microbes*. doi:10.4161/gmic.22156
- Nagao-Kitamoto, H., & Kamada, N. (2017). Host-microbial Cross-talk in Inflammatory Bowel Disease. *Immune Network*. doi:10.4110/in.2017.17.1.1
- Geirnaert, A., Calatayud, M., Grootaert, C., Laukens, D., Devriese, S., Smagghe, G., ... Van De Wiele, T. (2017). Butyrate-producing bacteria supplemented in vitro to Crohn's disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. *Scientific Reports*. doi:10.1038/s41598-017-11734-8
- 35. Wang, Y., Gao, X., Ghozlane, A., Hu, H., Li, X., Xiao, Y., ... Zhang, T. (2018). Characteristics of faecal microbiota in paediatric Crohn's disease and their dynamic changes during infliximab therapy. *Journal of Crohn's and Colitis*. doi:10.1093/ecco-jcc/jjx153
- 36. Wright, E. K., Kamm, M. A., Wagner, J., Teo, S. M., Cruz, P. De, Hamilton, A. L., ... Kirkwood, C. D. (2017). Microbial Factors Associated with Postoperative Crohn's Disease Recurrence. *Journal of Crohn's & colitis*. doi:10.1093/eccojcc/jjw136
- 37. Y.-J., C., H., W., S.-D., W., N., L., Y.-T., W., H.-N., L., ... Shen, X.-Z. (2018).

Parasutterella, in association with irritable bowel syndrome and intestinal chronic inflammation. *Journal of Gastroenterology and Hepatology (Australia)*. doi:10.1111/jgh.14281

- Berry, D., Rahman, S., Kaplan, J., & Gordon, N. (2018). Probiotic and prebiotic compositions, and methods of use thereof for treatment and prevention of graft versus host disease. *USPTO*.
- Yang, C., Fang, X., Zhan, G., Huang, N., Li, S., Bi, J., ... Hashimoto, K. (2019).
 Key role of gut microbiota in anhedonia-like phenotype in rodents with neuropathic pain. *Translational Psychiatry*. doi:10.1038/s41398-019-0379-8
- 40. Carpinelli, L., Bucci, C., Santonicola, A., Zingone, F., Ciacci, C., & Iovino, P. (2019). Anhedonia in irritable bowel syndrome and in inflammatory bowel diseases and its relationship with abdominal pain. *Neurogastroenterology and Motility*. doi:10.1111/nmo.13531
- Rabizadeh, S., Rhee, K. J., Wu, S., Huso, D., Gan, C. M., Golub, J. E., ... Sears, C. L. (2007). Enterotoxigenic Bacteroides fragilis: A potential instigator of colitis. *Inflammatory Bowel Diseases*. doi:10.1002/ibd.20265
- Wang, K., Yang, Q., Ma, Q., Wang, B., Wan, Z., Chen, M., & Wu, L. (2018).
 Protective effects of salvianolic acid a against dextran sodium sulfate-induced acute colitis in rats. *Nutrients*. doi:10.3390/nu10060791