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Abstract 1 

Machine learning is helping the interpretation of biological complexity by enabling the 2 

inference and classification of cellular, organismal and ecological phenotypes based on 3 

large datasets, e.g. from genomic, transcriptomic and metagenomic analyses. A number 4 

of available algorithms can help search these datasets to uncover patterns associated with 5 

specific traits, including disease-related attributes. While, in many instances, treating an 6 

algorithm as a black box is sufficient, it is interesting to pursue an enhanced 7 

understanding of how system variables end up contributing to a specific output, as an 8 

avenue towards new mechanistic insight. Here we address this challenge through a suite 9 

of algorithms, named BowSaw, which takes advantage of the structure of a trained 10 

random forest algorithm to identify combinations of variables (“rules”) frequently used 11 

for classification.  We first apply BowSaw to a simulated dataset, and show that the 12 

algorithm can accurately recover the sets of variables used to generate the phenotypes 13 

through complex Boolean rules, even under challenging noise levels. We next apply our 14 

method to data from the integrative Human Microbiome Project and find previously 15 

unreported high-order combinations of microbial taxa putatively associated with Crohn’s 16 

disease. By leveraging the structure of trees within a random forest, BowSaw provides a 17 

new way of using decision trees to generate testable biological hypotheses. 18 

 19 

 20 

 21 

  22 
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Introduction 23 

The production of large biological data sets with high-throughput techniques has 24 

increased the utilization of supervised machine learning algorithms to produce 25 

predictions of complex phenotypes (e.g. healthy vs. disease) from measurable traits. 26 

These algorithms use measurements of relevant traits such as gene variants, the 27 

presence/absence of microbial taxa, or metabolic consumption variables as predictors. 28 

Categorical prediction of phenotypes is typically the end goal of these applications. 29 

However, an additional benefit of these algorithms is the potential to extract explanatory 30 

classification rules. In this context, a rule is defined as a Boolean function of a set of 31 

traits, such that the value of the function is 1 (true) when the traits are associated with a 32 

given phenotype. Identifying the relationships between the traits involved in 33 

classification rules may yield key insights into the biological processes associated with 34 

important phenotypes [1, 2]. This realization is creating demand for methods that assist in 35 

the interpretation of supervised machine learning methods [3–5], especially when the 36 

measured traits may be causal agents of disease states, such as genetic variants or 37 

microbial taxa [6]. Identifying classification rules associated with a phenotype of interest 38 

is valuable because these rules are likely to carry information about the causal 39 

mechanisms that generate the phenotype.  40 

Algorithms that are particularly valuable in this respect are those involving 41 

decision trees, such as random forests, since decision trees are easily interpretable [7]. 42 

Decision trees are rule-based classifiers, where rules arise from a series of “yes-no” 43 

questions that can efficiently divide the data into categorical groups. In a biological 44 
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context, such rules may arise from sets of genes whose simultaneous modulation could 45 

affect a phenotype, or sets of microbial species whose co-occurrence may be associated 46 

with a disease state. While in several cases it seems like disease phenotypes are uniquely 47 

associated with a single specific pattern (e.g. retinoblastoma [8]), there is increasing 48 

evidence for cases in which multiple distinct patterns can be associated with (and 49 

potentially causing) the same high-level phenotype [9, 10]. A particular example we will 50 

explore in this work is the multiplicity of distinct microbial presence/absence patterns 51 

which may be associated with Crohn’s disease [11]. Crohn’s disease has five clinically 52 

defined sub-types [12] but studies of the associated microbiome do not usually indicate 53 

which form of Crohn’s disease a donor has been diagnosed with. Each sub-type of the 54 

disease may be associated with different microbes, each requiring different treatment 55 

regimes. Thus, identifying rules associated with sub-populations within a given 56 

phenotype label are of great interest due to potential therapeutic implications.  57 

The fact that there may be multiple etiologies that generate the same or similar 58 

phenotypes complicates the straightforward interpretation of parameter coefficients or 59 

variable importance scores [13, 14]. Uncovering the multiple interactions between 60 

predictive variables as they relate to phenotypic labels remains a challenging statistical 61 

endeavor, but one that is of paramount importance. Identifying the associated rules that a 62 

random forest uses to classify a given sample as having a particular disease enables the 63 

development of mechanistic hypotheses for follow up-studies. This challenge, and an 64 

overview of the key strategy we propose, are illustrated in Figure 1. In figure 1A we 65 

depict a toy model where measured variables (traits) have only two possible values (e.g.: 66 
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present/absent), the high-level phenotype (category) is binary (e.g.: no disease/disease), 67 

and two distinct Boolean rules can both generate the phenotype. The goal in this case is 68 

to identify each of the rules that are associated with the phenotype. The multiple Boolean 69 

rules obtained in this manner can be thought of as a consensus decision tree that 70 

possesses the most informative branches of the forest with respect to a given class label. 71 

In this work, we will show how this can be achieved by in-depth analyses of any given 72 

random forest (RF) (Fig. 1B). 73 

The random forest algorithm intrinsically takes advantage of non-linear 74 

relationships between variables and is widely used in the life sciences [15–17]. RFs, 75 

when used to distinguish between disease states known to have multiple causes, often 76 

result in excellent classifiers [18, 19]. It has also been reported that RFs capture subtle 77 

statistical interactions between variables [13]. Unfortunately, an RF is not 78 

straightforwardly interpretable despite its hierarchical structure, and recovering those 79 

interactions is notoriously difficult [14] due in large part to the method’s reliance on 80 

ensembles of trees [20]. The difficulties in interpretation created by these properties has 81 

led many to refer to RF as a ‘black box’ model [21].  82 

Identifying the rules that a RF utilizes in classification tasks is an active area of 83 

research, and many strategies have been developed to address this problem. Effective 84 

strategies have focused on evaluating how individual variables influence the 85 

classification probabilities of specific samples [22, 23], pruning existing decision rules 86 

found in the tree ensemble to produce compact models [24], computing conditional 87 

importance scores [25], or iteratively enriching the most prevalent variable co-88 
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occurrences through regularization [26]. These approaches offer valuable methods for the 89 

identification of statistical interactions between variables. However, we and others have 90 

observed that while these methods are capable of recovering a true causal rule in 91 

simulated data when exactly one such rule is present, the existence of multiple rules 92 

associated with one phenotype can confound interpretation efforts [26].  93 

Here we describe BowSaw, a new set of algorithms that utilizes variable 94 

interactions in a trained RF model in order to extract multiple candidate explanatory 95 

rules. With BowSaw, we set out to develop a post hoc method intended to aid in the 96 

discovery of these rules when the input variables are categorical in nature. The primary 97 

approach of BowSaw is to start by approximating a best combination of variables (i.e. a 98 

rule) that explain the forest’s predictions for individual instances of a given class in the 99 

data set and then to curate the collection of best combinations to obtain a concise set of 100 

combinations that collectively segregate a class of interest with high precision. For 101 

individual instances a rule is identified by systematically quantifying the co-occurrence 102 

of specific variable pairs across trees in the forest that attempt to predict the class of the 103 

instance (out-of-bag trees) and then using the frequency of co-occurring variable pairs to 104 

guide the construction of a rule that precisely identifies the instance as its observed class. 105 

For the entire set of instances, we then curate the collection of all rules identified this way 106 

in order to produce a small set of rules that are broadly and precisely applicable to 107 

instances of the given class label. 108 

We first demonstrate that BowSaw can recover true rules by applying the 109 

algorithms to simulated data sets of varying complexity. We then apply BowSaw to a 110 
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study on the role of the gut microbiome on Crohn’s disease [11], and show that it can find 111 

a previously unreported combination of microbial taxa that is broadly and precisely 112 

associated with Crohn’s disease instances in the data set. In its current implementation 113 

BowSaw can be applied to any dataset with categorical or discrete predictors with any 114 

number of class labels. 115 

  116 
A In a hypothetical dataset there may be two phenotype labels – “Disease” and “No 117 
Disease”, that we wish to discriminate based on input predictor variables. In this 118 
example, there are two distinct high-order patterns that both confer the “Disease” 119 
phenotype. Our goal is to identify a potentially diverse set of patterns (or, in this 120 
simplified case, all patterns) that are associated with the “Disease” label. B Conceptual 121 
pipeline of BowSaw. In (1) we begin by identifying the vector of a target instance that 122 
has the target observed label. In this example, the colored nodes indicate a true associated 123 
pattern, which is unknown to us. In (2) we follow the path of the instance through each of 124 
its out-of-bag trees and record how often the sample encounters sequential pairs of 125 
variables. (3) Each ordered pair sequence is sorted in descending order by its observed 126 
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frequency. (4) Starting from the top of the list, pair sequences are iteratively evaluated 127 
and added to an undirected network of variables (i.e. a candidate rule) until this network 128 
is maximally associated with the observed phenotype of the target vector or the list of 129 
ordered pairs is exhausted. Each sample with the label of interest yields one such 130 
candidate rule. These rules are then aggregated and curated to obtain a concise set of 131 
rules that explain class-specific classification decisions that occur in the forest. 132 
 133 

Methods 134 

Overview of the pipeline 135 

Provided with a trained random forest and a training set, BowSaw goes through 136 

three steps in order to generate a candidate rule (variable-value combination) for each 137 

observation associated with the phenotype of interest. First, for a specific observation, the 138 

Count algorithm counts the frequency of unique ordered pairs of variables encountered 139 

along each of its out-of-bag trees in the forest (Figure 1B – step 2). Second, for that 140 

observation, the Construct algorithm takes the counts from the first step and generates a 141 

list of ordered pairs, ranked by their frequencies, then uses this list as a guide to construct 142 

a candidate decision rule (which could consist of two or more variables) that is 143 

maximally associated with the observed phenotype (Figure 1B – steps 3 - 4). Finally, the 144 

Curate algorithm pools the candidate decision rules from each observation together in 145 

order to select a subset of rules that collectively account for all of the samples with the 146 

desired phenotype (Figure 1B – step 5). Optionally, the Sub-rule algorithm can be used to 147 

generate pruned versions of candidate rules prior to applying the Curate algorithm in 148 

order to obtain a more concise, albeit less specific, set of candidate rules. The Count and 149 

Curate algorithms generate the candidate rules for individual observations while the 150 
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Curate and Sub-rule algorithms produce a combined set of rules that account for all 151 

observations with the chosen phenotype. 152 

In the following section, we provide a description of the inputs BowSaw takes and 153 

the algorithms that implement these steps along with pseudocode. 154 

 155 
Inputs 156 

 BowSaw takes as inputs a dataset, D, composed of 𝑁 observed vectors 𝒙𝑖 157 

(together with their respective classes 𝑘𝑖) each of 𝑝 categorical variables. There are 158 

assumed to be 𝐾 possible class labels for each vector in D which for the purposes of this 159 

discussion denote different phenotypes. A random forest is assumed to be trained on D to 160 

distinguish the classes 𝑘 = 1, … , 𝐾. Additionally, BowSaw takes as input the feature 161 

vector 𝒙𝑖 of a specific observation for which the goal is to identify a set of simplified 162 

rules associated with the phenotype 𝑘𝑖. 163 

 164 

Counting stubs 165 

Given an RF machine M trained on dataset D and a feature vector 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑝) ∈166 

𝑫, the first sub-routine of our method (the count algorithm) proceeds as follows. It starts 167 

by identifying among the set of trees in M, those sub-paths (sequences of successive 168 

variable indices) encountered by sample 𝒙 as it travels through 𝑴𝒙, its set of out-of-bag 169 

trees. An out-of-bag tree is a tree for which 𝒙 was not included in the training set. For a 170 

specific path P in 𝑴𝒙 the sequence of successive variable indices forms a vector 𝒗 =171 

(𝑣1, … , 𝑣𝑟)  (note that each 𝑣𝑗  is one of the variables 𝑥𝑗).  Each stub (ordered pair of 172 
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sequentially encountered variables 𝑣𝑖𝑣𝑖+1) in all out-of-bag along 𝑷 for i = 1, … r-1 is 173 

accounted for in a 𝑝 × 𝑝 matrix  𝑪𝒙, where the element 𝐶𝑖𝑗
𝒙   records the number of stubs 174 

containing the ordered pair of variables 𝑥𝑖 and 𝑥𝑗 among all paths of 𝑴𝒙.  175 

 176 

Algorithm 1: Count Algorithm Pseudocode 177 

Initialize 𝑪𝒙 as a 𝑝 × 𝑝 matrix of zeros. 178 

For each path P  with feature indices 𝒗 in 𝑴𝒙  do:  179 

 For 𝑖 = 1, … , 𝑟 − 1,   180 

  𝐶𝑣𝑖,𝑣𝑖+1

𝒙 = 𝐶𝑣𝑖,𝑣𝑖+1

𝒙 + 1 181 

 End loop 182 

End loop 183 

Return 𝑪𝒙. 184 

For simplicity, henceforth we will denote 𝑪 = 𝑪𝒙, remembering that 𝑪 continues to 185 

depend on the fixed sample 𝒙.  186 

 187 

Constructing a candidate rule 188 

A rule for classifying to a test point 𝒙 will have the form “𝒙𝑰 = 𝒂𝑰 implies 𝒙 is in class 189 

𝑘”.  Here 𝑰 is a designated subcollection of the variable indices 𝑖 = 1, … , 𝑝, and 𝒙𝑰 =190 

(𝑥𝑖1
, … , 𝑥𝑖|𝐼|

) is the sub-vector of current vector 𝒙 = (𝑥1, … , 𝑥𝑝) corresponding just to the 191 

indices 𝑖𝑗 ∈ 𝑰.  The vector 𝒂𝑰 = (𝑎𝑖1
, … , 𝑎𝑖|𝑰|

) will denote an assigned set of values to the 192 

𝑥𝑖, i.e., so that 𝑥𝑖 = 𝑎𝑖 for 𝑖 ∈ 𝑰.  Thus the condition 𝒙𝑰 = 𝒂𝑰 means assignment of values 193 
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to 𝑥𝑖 for 𝑖 ∈ 𝑰.  The rule is that if training vector 𝒙 satisfies 𝒙𝑰 = 𝒂𝑰, we classify 𝒙 into 194 

category 𝑘.  195 

 196 

The second sub-routine (the construct algorithm) builds a candidate rule 𝑹, based 197 

(initially) on a fixed training point, say 𝒂 ∈ 𝑫, in class 𝑘.  This is done by first placing all 198 

of the stubs (𝑖, 𝑗) with non-zero counts 𝑪𝑖𝑗 into a list 𝑳 sorted in descending order by their 199 

values in 𝑪.  200 

 201 

We define the candidate rule 𝑹 (based on 𝒂) through the following steps.  We initialize 202 

using the first stub 𝐿1 = (𝑖1, 𝑗1) in the list 𝑳, together with the two fixed values 𝑥𝑖1
=203 

𝑎𝑖1
,  𝑥𝑗1

= 𝑎𝑗1
.  This is the initialized form of the rule 𝑹, which requires that for any test 204 

vector, its values at the above indices 𝑖1 and 𝑗1 match the values  205 

of the above fixed training vector 𝒂 ∈ 𝑫, so that 𝑥𝑖1
= 𝑎𝑖1

,  and 𝑥𝑖2
= 𝑎𝑖2

.  For brevity, 206 

denote the pair (𝑖1, 𝑗1) = 𝐼1 and the corresponding assigned values as (𝑎𝑖1
, 𝑎𝑗1

) = 𝒂𝑰1
.  207 

Then the content of rule 𝑹 will be denoted succinctly as 𝑹: 𝒙𝑰 = 𝒂𝑰 ⇒ class 𝑘.  Since 208 

ordering of the indices 𝑖1, 𝑗1 does not matter, (as long as the indices are identified), we 209 

will henceforth write (𝑖1, 𝑖2) → {𝑖1, 𝑖2}.   210 

We then update rule 𝑹 as follows.  We find all 𝒙 ∈ 𝑫 that satisfy the initial part of rule 𝑹, 211 

i.e., 𝒙𝑰 = 𝒂𝑰 i.e., all training points matching the two indices {𝑖1, 𝑗1} of training sample 𝒂, 212 

and store them as a subcollection 𝑫1 ⊂ 𝑫 of the training set.  We call 𝐹 the fraction of 213 

data points in 𝑫1 that have phenotype 𝑘, i.e., match the phenotype of the initial sample 214 

𝒂 ∈ 𝑫.  If 𝑭 = 1, we stop and return the current above rule 𝑹.  If 𝑭 < 1, we continue by 215 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2019. ; https://doi.org/10.1101/839357doi: bioRxiv preprint 

https://doi.org/10.1101/839357
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

choosing the second stub 𝐿2 = {𝑖2, 𝑗2} in the above list 𝑳, and augment the current rule 𝑹 216 

by adding the condition 𝑥𝑖2
= 𝑎𝑖2

, 𝑥𝑗2
= 𝑎𝑗2

(again written 𝑥𝑰2
= 𝒂𝑰2

) and maintaining the 217 

assignment of class 𝑘 (i.e., the same class as the currently fixed sample 𝒂 ∈ 𝑫).  If the 218 

second stub 𝐿2 happens to overlap with the initial stub 𝐿1, this added condition in the rule 219 

𝑹 will clearly be consistent, being still based on the fixed sample 𝒂.  We augment the 220 

current index list 𝑰1 to a list 𝑰2, adding to it the two new indices 𝑖2 and 𝑗2, so that now 221 

𝑰2 = {𝑖1, 𝑗1, 𝑖2, 𝑗2} writing the augmented rule as 𝑹: 𝒙𝑰2
= 𝒂𝑰2

⇒ class 𝑘.  Again 222 

defining 𝐹 to be the fraction of the data subset 𝑫2 (matching the more restrictive new 223 

rule 𝑹) with phenotype 𝑘, we stop the algorithm and use the current rule 𝑹 if 𝐹 = 1, and 224 

otherwise augment rule 𝑹 by adding the indices 𝑳3 = (𝑖3, 𝑗3) to it, as above, yielding a 225 

larger set 𝑰3 of indices and the augmented rule 𝑹: 𝒙𝐼3
= 𝒂𝐼3

⇒ class 𝑘 , with a more 226 

restricted subset 𝑫3 ⊂ 𝑫, and a new value for 𝐹, now the fraction of 𝑫3 in the class 𝑘 of 227 

the fixed 𝒂 ∈ 𝑫.   228 

This process continues until the fraction 𝐹 = 1, i.e., 100% of the samples in 𝑫 match the 229 

current set of indices, and also match the class 𝑘 of the current sample 𝒂.  Alternatively, 230 

the algorithm stops when all stubs in 𝑳 have been exhausted. 231 

 232 

Algorithm 2: Construct Algorithm Pseudocode 233 

Make ranked list L of stubs from C 234 

Initialize fixed 𝒂 ∈ 𝑫, 𝑹 = 𝜙  𝑰 = 𝜙, 𝐹 = 0, 235 

For 𝑖 = 1: |𝑳|, select stub 𝐿𝑖 236 

If F = 1:  237 
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Exit loop 238 

Else: 239 

  𝑰′ = {𝑰 ∪ 𝐿𝑖} 240 

  𝑫𝑰′  = {𝒙 ∈ 𝑫: 𝒙𝑰′ = 𝒂𝐼′}  241 

  𝐹′ =
|{𝒙∈𝑫

𝑰′:class 𝒙=𝑘}|

|𝑫𝑰′|
 242 

  If 𝐹′ > 𝐹: 243 

   𝑰 = 𝑰′ 244 

  𝐹 = 𝐹′ 245 

End loop 246 

Return  𝑰, 𝐹, 𝑫𝑰  [all corresponding to the fixed 𝒂 ∈ 𝑫].   247 

Return rule 𝑹: 𝑥𝐼 = 𝑎𝑰 ⇒ class 𝑘 248 

 249 

Curating candidate rules: 250 

The count and construct algorithms are the heart of BowSaw. In our workflow, 251 

we apply these algorithms to each observation 𝒂 ∈ 𝑫 that has the desired observed 252 

phenotype 𝑘. We call the set of these vectors 𝑫𝑘 ⊂ 𝑫. By default, we produce a single 253 

candidate rule for each vector in 𝒂 ∈ 𝑫𝑘. We store each candidate rule in list Q and rank 254 

them by their respective values of |I|, i.e., the number of indices in the respective rules.  255 

Since Q may include many redundant rules, we developed another sub-routine (the curate 256 

algorithm) to generate a concise set of candidate rules that collectively account for all 257 

data vectors 𝑫𝑘 in class 𝑘.  Briefly, we initialize an empty list E, to which we add the top 258 
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ranked rule from Q (by default this is the rule with the greatest value of |𝑰|), and record 259 

the index of samples in D that match any rule in E and also have the desired observed 260 

phenotype class 𝑘, into a set A. Next, we determine how many samples remain 261 

unaccounted for, i.e. are in U = 𝑫𝑘~𝑨 , Then we determine which of the remaining rules 262 

in Q minimizes |U|, add it to E, and repeat these steps until U is an empty set.  263 

 264 

Algorithm 3: Curate algorithm pseudocode 265 

Q = ranked list of all candidate rules for Φt 266 

E = Qbest (user defined, default is maximum M) 267 

I* = which D match any rule in E and k = Kd 268 

A = 𝑫𝒌 ∩ M* 269 

U =𝑫𝒌  - A 270 

While U is not empty:  271 

 B = { } 272 

 For rule i in Q: 273 

  E* = E + Qi 274 

  I* = which D match any rule in E* and k = Kd 275 

  A* = 𝑫𝒌  ∩ I* 276 

  Bi = |U – A* | 277 

End loop 278 

  best = which min Bi 279 

E = E + Qbest 280 
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M* = which D match any rule in E and k = Kd  281 

A = 𝑫𝒌 ∩ M* 282 

U = U - A 283 

End while loop 284 

Return E 285 

 286 

Constructing sub-rules 287 

Since rules are rarely 100% associated with any given phenotype, we devised a 288 

strategy for selecting a set of candidate sub-rules that account for all samples with desired 289 

observed phenotype class 𝑘. Candidate sub-rules are shorter candidate rules derived from 290 

larger candidate rules by omitting one or more variables. For each candidate rule in E, we 291 

identify sub-rules that meet a user-defined complexity criteria, e.g. only produce sub-292 

rules that are composed of three or four variables and their corresponding values. We 293 

place each of the unique sub-rules into a new list Esub. Then the corresponding number of 294 

identical matches, I, and proportion of I that have the phenotype Kd, F, are determined. 295 

At this stage, we can apply our third sub-routine (the Curate algorithm) to Esub to obtain a 296 

parsimonious list of sub-rules that accounts for xall. In our pipeline, we also choose 297 

thresholds based on desired levels of I and/or F in order to eliminate poor candidate sub-298 

rules from consideration. In this study, we decided on the thresholds after visually 299 

inspecting a plot of F against I.  300 

 301 

Algorithm 4: Sub-rule algorithm pseudocode 302 
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Esub = { } 303 

Complexity = {user defined numeric values} 304 

For rule in E 305 

 For i in Complexity 306 

  Esub = Esub ∪ (
𝒓𝒖𝒍𝒆

𝒊
) 307 

 End loop 308 

End loop 309 

 310 

The algorithms described above are generalizable to multi-classification tasks but 311 

are currently limited to discretized or categorical representations of the feature space. 312 

Pseudocode for implementing each of the algorithms described above along with an 313 

implementation of the algorithms in R [27] can be found in the supplemental files and on 314 

github: https://github.com/ddimucci/BowSaw. 315 

 316 

 317 

Results 318 

Application to simulated Data 319 

To test the capacity of BowSaw to recover multiple decision rules, we applied it 320 

to increasingly challenging simulated data sets. These data set consists of binary vectors 321 

representing different observations. The phenotype associated with each observation is a 322 

function of the corresponding vector.  The function consists of a set of multiple mutually 323 

distinct Boolean rules, such that if a rule is satisfied, it will cause the observation to have 324 
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the phenotype with a certain probability (which we call here “penetrance” because of its 325 

resemblance to the genetics concept). The first dataset (IDEALIZED) we use is relatively 326 

simple, and includes multiple equally prevalent rules. It is also generated under the 327 

assumption that there are no unmeasured confounders, i.e. that if an observation does 328 

have a phenotype, then it must be satisfying at least one of the above rules.  We then 329 

apply BowSaw to a more challenging scenario (INTERMEDIATE) in which the 330 

phenotype-generating rules differ in their relative prevalence and the assumption of 331 

unmeasured confounders is violated. Finally, is a set of data sets with complex co-332 

varying parameters (COMPLEX), we systematically varied the underlying parameters of 333 

the simulation and examined the relationship between summary statistics of the RF 334 

performance and the ability of BowSaw to generate candidate rules containing the true 335 

phenotype-generating rules.  336 

 For the IDEALIZED scenario, we simulated data set of 100 independent and 337 

identically distributed random binary variables and 2,000 observations. We randomly 338 

defined five rules that each required four randomly selected variables each to have 339 

specific values (e.g. all variables equal to 1) in order to assign a hypothetical phenotype 340 

with likelihood between .8 and .9. Here we present the results of this scenario with a 341 

specified random seed, but other seeds and parameters can be explored using the scripts 342 

provided in the supplemental files. Using these parameters 479 samples were assigned 343 

the phenotype and BowSaw produced a set of 135 unique candidate rules ranging in 344 

complexity from six to fourteen variables. From these rules, we produced all sub-rules 345 

ranging involving anywhere from two to five variables, which resulted in unique 50,034 346 
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sub-rules. We calculated the number of matches |I|, the proportion of samples with the 347 

phenotype, F, for each sub-rule, and visualized these values in order to select an 348 

association threshold (Figure 2A). To reduce the number of sub-rules that the curate 349 

algorithm would need to examine, we eliminated from consideration any rules that had an 350 

F below 80%. We selected an 80% threshold because in the cluster centered around 125 351 

matching samples there is a small cloud of rules that are clearly segregating the 352 

phenotype more efficiently than the others are. We selected the sub-rule with largest |I| 353 

among these as the top candidate rule. This produced a final list consisting of five 354 

candidate rules that accounted for all of the samples with the phenotype and were each 355 

one of the true phenotype generating rules (Figure 3A red points). These results 356 

demonstrate that in an ideal scenario with no phenotype diagnosis errors, BowSaw is 357 

indeed capable of recovering multiple true rules. 358 

For the more challenging scenario (INTERMEDIATE), we generated the data set 359 

the same as before except this time we allowed the five underlying rules to vary in 360 

complexity from three to five variables. Varying the complexities of rules resulted in 361 

different prevalence among them, as rules that are more complicated are less likely to 362 

appear in the data. In this case, we had one rule of complexity five, two that required four 363 

variables, and two that used three variables. We also added background noise by 364 

randomly assigning the phenotype to 2% of samples that did not possess any of the rules. 365 

BowSaw produced 176 unique candidate rules involving between six to thirteen 366 

variables. From this list we generated 68,938 sub-rules and chose an association threshold 367 

of 75% because there are two clusters at ~|I| = 125 that begin to clearly separate in that 368 
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range and the two outlier points at ~|I| = 250 do not combine to account for all of the 369 

phenotype (Figure 3B). Applying the curate algorithm to the rules meeting this threshold 370 

produced 20 candidate sub-rules the top four (when ranked by |I|) of which were true 371 

rules. The rule of five variables was not recovered. These results show that BowSaw is 372 

able to recover strongly associated patters (and in this case, causal patterns) even in the 373 

presence of noise, but low prevalence rules can be masked by high prevalence rules. 374 

We used the same data generation method to investigate BowSaw’s ability to 375 

produce candidate rules containing true rules when the underlying parameters change. 376 

We applied BowSaw to 20,000 simulated data sets where we randomly altered the 377 

number of features, sample size (200 or 2,000 samples), complexity of the rules, number 378 

of rules, the likelihood of each rule assigning the phenotype, and the background noise. 379 

We identified scenarios where rule recovery with BowSaw performs very well and 380 

situations in which it fails to recover any rules at all. Additionally, we found a strong 381 

linear relationship between BowSaw’s performance measured as the average fraction of 382 

rules recovered and the of number of samples, number of features, and two evaluation 383 

metrics for RF model – the area under the curve for both the receiver operator 384 

characteristic and precision recall curves (Figure S1). 385 
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 386 

Figure 2 387 
A Precision of candidate sub-rules against the number of exactly matching samples for 388 
the ideal scenario. Each point represents a unique sub-rule. X-axis is the number of 389 
samples that exactly match the pattern defined by the rule. Y-axis is the fraction of 390 
matching samples with the observed phenotype (i.e. precision of the rule). Each cluster of 391 
points corresponds to decreasing rule complexity from 5 variables per rule to 2 on the 392 
right most cluster. These clusters appear because the values of each variable is produced 393 
by an identical binomial distribution. Dashed line is the precision threshold we set. Only 394 
candidate rules with precision above this threshold were considered for the curate 395 
algorithm. Red points are the causative sub-rules we defined. BowSaw correctly 396 
identified all five red points in this scenario. B Candidate sub-rules generated for the 397 
more challenging scenario. We defined 5 causative rules of varying lengths in this 398 
scenario and allowed 2% of samples without a causative rule to be assigned the label. 399 
BowSaw completely 4 of the causative rules (red points). The longest rule which 400 
involved 5 variables was not recovered.  401 
 402 
Application to Human Microbiome Data 403 

  Irregular distributions of microbial taxa within the gut are often associated with 404 

serious illnesses such as Crohn’s disease or ulcerative colitis [28, 29]. Human 405 

microbiome studies regularly use 16s sequencing methods and extensive reference 406 

databases to report on microbial taxa found in samples as operational taxon units (OTUs). 407 

RF classifiers are frequently built using counts of OTUs to accurately discriminate 408 
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between disease and healthy patient samples [30, 31]. Despite their demonstrated 409 

effectiveness as good classifiers of Crohn’s disease, studies that look to discover 410 

associations with disease status typically focus on individual OTUs while specific 411 

microbial association rules found by RF are not discussed, as a result it is uncertain how 412 

heterogeneous study cohorts are. To investigate potential rule heterogeneity in a human 413 

microbiome cohort we downloaded processed files from the Human Microbiome Project 414 

for inflammatory bowel disease (IBD) [11] which contain information on the taxonomic 415 

profiles of 982 OTUs in 178 patients – 86 of which have been diagnosed with Crohn’s 416 

disease, 46 diagnosed with ulcerative colitis, and 46 diagnosed as non-IBD. We were 417 

specifically interested in finding rules that separate the Crohn’s disease samples from 418 

ulcerative colitis and non-IBD, so we framed the problem as a binary classification task 419 

with Crohn’s disease as the target phenotype. 420 

Since the current implementation of BowSaw is limited to finding rules when the 421 

variables have categorical values, we first converted the OTU counts of each taxon to a 422 

simple presence/absence scheme. This resulted in nearly equivalent RF performance 423 

relative to training RF with the original continuous OTU inputs: ROC AUC of 0.862 424 

(binary) vs 0.882 (continuous) and PR AUC of 0.846 (binary) vs 0.886 (continuous) 425 

(Figure 3A-B). This is an important result because it allows us to think about associations 426 

just in terms of presence or absence of an OTU without sacrificing much in model 427 

performance. We applied BowSaw to the Crohn’s disease samples and visualized 56,902 428 

resultant sub-rules ranging in complexity from 2 to 7 variables (Figure 3C). There were 429 

1,941 sub-rules with F = 1. We selected the most general of these rules (max|I|) to be the 430 
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top candidate for the curate algorithm and found that it considers the status of 5 OTUs 431 

and accounts for 38 of 86 Crohn’s disease samples (Figure 3C). We set an association 432 

threshold of 90% and ended up with 10 sub-rules that together account for all 86 Crohn’s 433 

disease samples and an additional 11 non-Crohn’s disease samples (4 non-IBD, 7 434 

ulcerative colitis). The top five rules combine to account for 78 of 86 Crohn’s disease 435 

samples and include 10 non-Crohn’s disease samples (Table 1).  436 

The top candidate rule is comprised of the presence of Bacteroides and 437 

Lachnoclostridium and the absence of three genera from the family Lachnospiraceae: 438 

Lachnospira, Tyzerrella, and Lachnospiracea UCG 001 (Figure 3D). Detection of 439 

Bacteroides was nearly ubiquitous within the cohort, it was found in 170 of 178 total 440 

samples, but only 3 of the samples in which it was missing are diagnosed as Crohn’s 441 

disease. For the remaining taxa we performed a t-test comparing the distribution of the 442 

taxa in Crohn’s disease versus ulcerative colitis and versus healthy samples. 443 

Lachnoclostridium was frequently found in Crohn’s disease (67/86) but not in ulcerative 444 

colitis (27/46, p = .02) and was detected at roughly the same rate in non-IBD samples 445 

(34/46, p = .616). Detection of Lachnospira was depleted in Crohn’s disease samples 446 

(20/86) relative to ulcerative colitis (20/46, p = .022) and to non-IBD samples (31/46, p = 447 

9.9-7). Tyzzerella was also detected at a lower rate in Crohn’s disease (63/86) relative to 448 

ulcerative colitis (24/46, p = .019) and non-IBD (24/46, p = .019). Lachnospiracea UCG 449 

001 was rarely detected in Crohn’s disease (4/86) which is a lower rate than it was 450 

detected in ulcerative colitis (9/46, p = .022) and in non-IBD samples (19/46, p = 1.45-5). 451 
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 452 

Figure 3  453 
A Performance of the random forest classifier as measured by area under the receiver 454 
operator curve (ROC-AUC) is not strongly perturbed by simplifying OTU representation 455 
to a presence/absence scheme versus the original continuous count. Dashed line indicates 456 
the performance of a perfectly random classifier. B The area under the curve of the 457 
precision recall curve is similarly not strongly affected by the new representation scheme. 458 
Dashed horizontal line is the random performance line. C Each point represents a unique 459 
candidate sub-rule. On the x-axis is the number of samples in the data matrix that are 460 
subject to that rule. The y-axis represents what fraction of matching samples were 461 
diagnosed as Crohn’s disease. D The taxon identities of the OTUs that make up the most 462 
generally applicable of the sub-rules where all matching samples have the Crohn’s 463 
disease label. 464 
 465 
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 466 
 467 
Table 1 Association rules identified by BowSaw that account for all Crohn’s disease 468 
samples. 469 
 470 
 471 

 472 

Discussion 473 

Rule CD Samples Non CD SamplesNew Samples Covered Taxonomy Presence

1 38 0 38 Bacteroides (genus) y

Lachnolostridium (genus) y

Tyzzerella (genus) n

Lachnospira (genus) n

Lachnospiricae UCG-001(genus) n

2 41 4 20 Dialister (genus) y

Christensenellacea R7 group (genus) n

Christensenellacea R7 group (genus) n

Collinsella (genus) n

Ruminococcaceae (family) n

Finegoldia (genus) n

Ruminococcus 1 (genus) n

3 9 1 9 Ruminococcus 1 (genus) y

Ruminococcaceae UCG-002 (genus) n

Lachnospiraceae (family) n

4 24 2 6 Streptococcus (genus) y

Tyzzerella (genus) n

Lachnospiraceae (family) n

Hafnia Obesumbacterium n

5 27 3 5 Lachnospiraceae UCG-008 (family) y

Ruminococcus 1 (genus) n

Eubacterium eligens group n

6 5 0 2 Ruminococcus 1 (genus) y

Dorea (genus) n

7 7 0 2 Bacteroides (genus) y

Dialister (genus) n

Eubacterium rectale group n

8 15 0 2 Lachnospiraceae NK4A136 group y

Eubacterium eligens group y

Tyzzerella (genus) n

Christensenellacea R7 group (genus) n

Lachnospira (genus) n

9 3 0 1 Ruminococcus gnavus group y

Veillonella (genus) n

Bacteroides (genus) n

Finegoldia (genus) n

10 10 1 1 Parabacteroides (genus) y

Eubacterium eligens group y

Ruminococcaceae UCG-003 (genus) n

Lachnospiraceae ND3007 group n
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 Interpretation of random forest models for classification may be confounded when 474 

there are multiple rules (combinations of variables and their specific values) associated 475 

with a phenotype of interest. We have developed BowSaw, which is an algorithmic 476 

approach for identifying the rules that a trained random forest model uses to make 477 

classifications when the values are categorical in nature. By taking advantage of the 478 

structure of trees found within a random forest, BowSaw produces a set of multiple 479 

decision rules that combine to account for each sample with a given observed phenotype. 480 

When the variables are the presumed causal agents, these rules represent plausible 481 

mechanistic relationships.  482 

 Results on simulated data demonstrate that when there are multiple rules 483 

associated with a single phenotype label that BowSaw is capable of faithfully identifying 484 

them. Application to data from the human microbiome project offers further evidence 485 

that BowSaw provides an efficient way of generating plausible hypotheses for high 486 

through put metagenomics studies. In particular we identified a rule that utilizes a 487 

presence/absence pattern of five microbial taxa (present: bacteroides, lachnoclostridium, 488 

absent: lachnospira,lachnospiracea, tyzerrella) that accounts for nearly half of all 489 

Crohn’s disease samples in the cohort (38/86). This specific pattern of microbial 490 

colonization in the guts of Crohn’s disease patients is unreported, but each taxon’s 491 

respective enrichment or depletion status and association with disease status has been 492 

reported. If the cohort of patients in the human microbiome study are representative of all 493 

people afflicted by Crohn’s disease then this rule represents a significantly large sub-set 494 

of those suffering. Inquiries into the relationship of the taxa included in this rule with 495 
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disease status may yield important insights into the mechanisms of the disease and 496 

potential therapeutic strategies for this sub-population. Of the five associated taxa, we 497 

suspect that the absence of lachnospira, lachnospiracea UCG 001, and tyzzerella are 498 

biologically meaningful. We have reason to believe so because it has been reported that 499 

the lachnospiraceae family is generally suppressed in Crohn’s disease [32–34]. 500 

Lachnospira has been reported as depleted with respect to Crohn’s disease several times 501 

[35, 36]. The depletion of tyzzerella has been associated with chronic intestinal 502 

inflammation and supplementation suggested as a probiotic for Crohn’s disease [37, 38]. 503 

While the relationship of lachnospiracea UCG 001 with Crohn’s disease is still unclear, 504 

its depletion has been reported in mice displaying symptoms of anhedonia and it was 505 

significantly enriched in anhedonia resilient mice [39]. Partly because IBD is frequently 506 

accompanied by depression, anhedonia has been suggested as an important symptom in 507 

the diagnosis of IBD [40]. The associations of the individual OTUs defined by this rule 508 

are consistent with previously reported findings in the existing literature and describe a 509 

taxonomic profile that exclusively identifies a large sub-population of Crohn’s disease 510 

samples within this cohort. The presence of bacteroides does not appear to be particularly 511 

useful and in this context is probably preserved because it causes a perfect association, 512 

although high levels of some species are implicated in the pathology of Crohn’s disease 513 

[41]. Lachnoclostridium, is differentially distributed across the three classes. Notably it is 514 

less frequently detected in ulcerative colitis relative to Crohn’s and non-IBD samples, 515 

which roughly resemble one another. Increased levels of this genus was detected in rats 516 
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that showed relief of colitis symptoms after treatment with a proposed therapeutic agent 517 

[42].  518 

The current implementation of the algorithms are restricted to classification tasks 519 

with categorical predictor values, this is a challenge that we will need to address in order 520 

to make the approach more generally applicable. Future work will also focus on 521 

extending these for the interpretation of regression models. Such additions will greatly 522 

increase the number of systems to which we can apply BowSaw. 523 
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