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Abstract

Musculoskeletal simulations of movement can provide insights needed to help humans
regain mobility after injuries and design robots that interact with humans. Here, we
introduce OpenSim Moco, a software toolkit for optimizing the motion and control of
musculoskeletal models built in the OpenSim modeling and simulation package. Open-
Sim Moco uses the direct collocation method, which is often faster and can handle more
diverse problems than other methods for musculoskeletal simulation but requires exten-
sive technical expertise to implement. Moco frees researchers from implementing direct
collocation themselves, allowing them to focus on their scientific questions. The software
can handle the wide range of problems that interest biomechanists, including motion
tracking, motion prediction, parameter optimization, model fitting, electromyography-
driven simulation, and device design. Moco is the first musculoskeletal direct collocation
tool to handle kinematic constraints, which are common in musculoskeletal models.
To show Moco’s abilities, we first solve for muscle activity that produces an observed
walking motion while minimizing muscle excitations and knee joint loading. Then, we
predict a squat-to-stand motion and optimize the stiffness of a passive assistive knee
device. We designed Moco to be easy to use, customizable, and extensible, thereby
accelerating the use of simulations to understand human and animal movement.

Introduction

Musculoskeletal simulations have shed light on movement disorders by, for example,
discovering ways to walk that reduce knee loading [1], revealing that children with
cerebral palsy exhibit simplified motor control when walking [2], and reproducing eye
disorders that cause double vision [3]. Simulations provide insights to increase safety as
we push the limits of human performance, whether that is designing exercise equipment
for preserving bone density in low gravity [4], designing exoskeletons to reduce back
injuries from heavy lifting [5], or assessing the effect of training programs on knee
ligament injuries in soccer [6]. Beyond human health and performance, researchers use
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musculoskeletal simulations to understand how animals move, for example by studying
dinosaur locomotion [7] and differences between human and chimpanzee strength [8].

Simulations of movement are often categorized by whether the motion is prescribed
from data or predicted by the simulation. One may prescribe the motion of a muscu-
loskeletal model [9,10] to estimate unmeasured quantities such as muscle-level energy
consumption [11,12]. Motion prediction [13] can establish cause-effect relationships and
help design clinical interventions, such as discovering gait impairments that arise from
weakness and contracture [14] and designing prostheses for amputees [15]. Existing
prescribed motion methods are rapid but either not customizable (e.g., cost functions
are predefined) or lack support for important model features such as muscle dynamics.
Predicting a motion often requires using a model with simplified musculature, reducing
the dimensionality of the control scheme, or waiting many hours or days for a solution.
A third category, which lies between prescribing and predicting, is tracking a motion,
where errors between experimental and simulated kinematics are minimized [16]. To
accelerate the application of simulations to scientific and clinical questions, researchers
need unified simulation tools for solving diverse problems that span the prescribed-to-
predicted spectrum and involve a variety of costs and unknown model parameters. For
example, clinicians may be interested in subtle changes to an observed motion that
minimize joint loading [1], and device designers may seek optimal stiffness parameters
for a passive exoskeleton to improve the speed of an observed motion, but off-the-shelf
simulation tools cannot handle these problems.

Most musculoskeletal simulation problems are naturally posed as optimal control
problems: we seek a system’s parameters and time-varying controls that minimize a
cost (e.g., energy consumption) subject to the dynamics of the system, expressed as
differential-algebraic equations. An increasingly popular method for solving optimal
control problems is to approximate the system’s states and controls as polynomial splines
and solve for the knot points that lead the spline to obey the system’s dynamics [17–20].
The dynamics are enforced by requiring the time derivative of the state splines to match
the derivative from the system’s differential equations at specified time points. This
method is called “direct collocation” because the spline derivatives are “collocated” with
the exact derivatives ( [21], page 211; [22], page 498). Direct collocation produces
a nonlinear program in which the system states are introduced as variables and the
system’s dynamics are enforced as constraints. Typical musculoskeletal models lead to
optimization problems with thousands of variables, yet these problems are tractable
because the constraints enforcing dynamics at a given time depend only on the variables
near that time; this speeds optimization. The method can handle a wide range of
objectives and optimize model parameters, and leads to nonlinear programs that can be
solved by generic optimization software.

The advantages of direct collocation have led biomechanists to use the method for
tracking motions [16,23], predicting motions [24–33], fitting muscle properties [34],
and optimizing design parameters [35]. Researchers have made key methodological
advances, including efficiently handling multibody and muscle dynamics via implicit
formulations [36, 37], minimizing energy consumption [38, 39], and employing algo-
rithmic differentiation to simulate complex models more rapidly compared to using
finite differences [40]. Along with these methodological advances, researchers have
discovered that minimizing an energy-related cost produces non-physiological motions
during walking [24], skipping is the most efficient gait on our moon [41], and unilateral
amputees can improve gait symmetry with only a minor increase in effort [42].

Despite its advantages, direct collocation is not easy to implement, and very few
laboratories have been able to apply this powerful technique. The method requires
arduous bookkeeping of variables and efficient calculation of the objective and constraint
function derivatives required by gradient-based optimization algorithms. Several direct
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collocation solvers exist (e.g., [43, 44]), but current solvers require users to incorpo-
rate their musculoskeletal models manually. OpenSim is a software package used by
thousands of biomechanics researchers to model musculoskeletal systems [45–47], but
OpenSim does not provide direct collocation. Several biomechanists have graciously
shared their code combining OpenSim or hand-coded models with direct collocation
solvers, but such code is tailored to specific models or motions, handles only uncon-
strained models, contains closed-source components, or is difficult to install on one’s
own computer. Lastly, choosing the problem formulation (e.g., expressing dynamics as
explicit or implicit differential equations) and solver settings (e.g., detecting sparsity
patterns automatically) that lead to fast convergence requires expertise; ideally, such
expertise is embedded into the software via defaults, and users can edit their formulation
or solver settings with single commands.

To improve the accessibility of advanced optimal control methods in musculoskeletal
biomechanics, we introduce OpenSim Moco (“musculoskeletal optimal control”), an
easy-to-use, customizable, and extensible software toolkit for solving optimal control
problems with OpenSim musculoskeletal models. OpenSim frees biomechanists from
implementing equations of motion on their own, and OpenSim Moco frees biomechanists
from implementing direct collocation. Moco not only removes the need to set up gradient-
based optimization, but also includes an interface that abstracts away the details of
constructing an optimal control problem. With just a few lines of code, researchers can
solve complex problems with an OpenSim model for almost any movement. Users can
add custom cost terms or constraints if Moco does not provide what they need. This
paper first details the design and implementation of the software. We next show that
Moco can accurately estimate muscle activity for an observed walking motion and allows
users to customize the cost terms that are minimized. Finally, to illustrate that Moco can
rapidly predict motions and model parameters, we predict a squat-to-stand motion and
optimize the stiffness of a passive assistive device.

Design and implementation

Moco solves optimal control problems that users define using a library of cost and
constraint modules, which are implemented through configurable software classes. Users
describe their problem with the MocoProblem class. To decouple the problem from the
numerical methods used to solve it, we use the MocoSolver class. (We denote names
of classes in Moco and Moco’s dependencies with italics.) Moco classes are available
via C++, MATLAB, Python, and XML text files, with interfaces familiar to OpenSim
users. We package the MocoProblem and MocoSolver together into a MocoStudy (Figure
1), which can be written to and loaded from XML text files. Moco contains utilities for
visualizing and plotting a study’s solution, which is held by the MocoSolution class. For
certain standard biomechanics problems, Moco provides simpler interfaces that may be
preferable to the flexibility of MocoStudy.

Defining problems with MocoProblem

MocoProblem supports a diversity of scientific questions and contains the following
elements.

• cost terms: Users can minimize a weighted sum of control effort, deviation from
an observed motion, joint reaction loads, the duration of a motion, and other costs
by appending to the MocoProblem an instance of the class associated with a cost
module (e.g., MocoControlGoal implements the control effort cost).
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Figure 1. Overview of MocoStudy. Moco can solve custom optimal control problems
using a library of cost, boundary constraint, and path constraint modules. Moco contains
additional cost modules beyond what is shown here, and users can define their own
custom modules.

• multibody dynamics, muscle dynamics, and kinematic constraints: OpenSim
Models are a standard way to describe musculoskeletal systems, and Moco uses
OpenSim Models to obtain the system’s multibody dynamics, auxiliary dynamics
(e.g., muscle activation dynamics and tendon compliance), and kinematic con-
straints. Moco handles kinematic constraints, which are commonly used to model
anatomy such as the knee, shoulder, and neck [48–51].

• boundary constraints: Users can enforce average speed, symmetry, or periodicity
with constraints relating initial and final states.

• path constraints: Users can constrain any function of time to lie in a specified
range over the motion. For example, researchers often estimate muscle activity with
electromyography and Moco allows constraining simulated muscle excitations to
be close to those measurements via the MocoControlBoundConstraint class. (These
path constraints are not related to OpenSim’s actuator paths.)

• parameter optimization: Users can optimize model properties, such as a body’s
mass, a muscle’s optimal fiber length, or an exoskeleton’s stiffness.

• bounds on variables: Users can bound the values of states, controls, and initial
and final time.

The modules of a MocoProblem can be combined in diverse ways, as demonstrated by
the following examples.

• dynamically-constrained inverse kinematics: minimize the error between ex-
perimental and model marker positions (marker tracking) and control effort while
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obeying multibody dynamics. The optimized variables are generalized coordinates,
speeds, and forces.

• electromyography-constrained muscle force estimation: for a prescribed exper-
imental motion, minimize muscle excitations while obeying multibody dynamics
and the difference between muscle excitations and electromyography data. The
muscle excitations are the only variables in this problem.

• torso mass calibration: for a prescribed experimental motion, minimize model
residual forces at the pelvis while obeying multibody dynamics. The joint torques
and torso mass are the variables.

• prediction of muscle coordination adaptations to an exoskeleton: minimize
squared muscle excitations and the error between experimental joint angles and
model coordinate values (state tracking) while obeying multibody and muscle
activation dynamics. The model coordinates, speeds, muscle excitations, muscle
activations, and exoskeleton torques are the variables.

MocoProblem describes the optimization problem in Eq (1). We seek the time-dependent
states y(t) and controls x(t) that minimize a sum of costs J j with weights w j . The states
include generalized coordinates q(t), generalized speeds u(t), and auxiliary states z(t),
such as muscle activations. We may also seek time-invariant parameters p, the initial
time of the motion t0, or the final time of the motion t f . We place lower (L) and upper
(U) bounds on all variables, as well as bounds on the initial and final values of the states
and controls; these bounds allow solving boundary value problems such as standing
from a squat.

minimize
∑

j

w jJ j(t0, t f , y0, y f , x0, x f ,λ0,λ f , p, Sc, j) costs

Sc, j =

∫ t f

t0

sc, j(t, y, x ,λ, p) d t

subject to q̇ = u

M(q, p)u̇+ G(q, p)Tλ= fapp(t, y, x , p)− finertial(q, u, p) multibody dynamics

żex(t) = fż,ex(t, y, x ,λ, p) auxiliary dynamics, explicit

0= fż,im(t, y, żim, x ,λ, p) auxiliary dynamics, implicit

0= φ(q, p) kinematic constraints

VL,k ≤ Vk(t0, t f , y0, y f , x0, x f ,λ0,λ f , p, Sb,k)≤ VU ,k boundary constraints

Sb,k =

∫ t f

t0

sb,k(t, y, x ,λ, p) d t k = 1, . . . , K

gL ≤ g(t, y, x ,λ, p)≤ gU path constraints

y0,L ≤ y0 ≤ y0,U y f ,L ≤ y f ≤ y f ,U initial and final states

x0,L ≤ x0 ≤ x0,U x f ,L ≤ x f ≤ x f ,U initial and final controls

with respect to t0 ∈ [t0,L , t0,U] initial time

t f ∈ [t f ,L , t f ,U] final time

y(t) = (q(t), u(t), z(t)) ∈ [yL , yU] states

x(t) ∈ [xL , xU] controls

λ(t) Lagrange multipliers

p ∈ [pL , pU] time-invariant parameters

(1)

November 12, 2019 5/25

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2019. ; https://doi.org/10.1101/839381doi: bioRxiv preprint 

https://doi.org/10.1101/839381
http://creativecommons.org/licenses/by/4.0/


The variables must obey the system’s multibody dynamics (involving the mass matrix
M ; applied forces fapp from gravity, muscles, etc.; and centripetal and Coriolis terms
finertial) and any auxiliary dynamics, which may be expressed as explicit ( fż,ex) or im-
plicit ( fż,im) differential equations. The system may contain position-level (holonomic)
kinematic constraints to, for example, weld a foot to a bicycle pedal. Each constraint is
enforced by forces exerted by tissue, bones, bodies, or other parts of the modeled system.
These generalized constraint forces are applied in the constrained directions (e.g., the
six degrees of freedom between the foot and pedal), and we introduce time-varying
Lagrange multiplier variables λ to solve for these forces. The derivative of the kinematic
constraints φ yields the kinematic constraint Jacobian G; the transpose of this matrix
converts the Lagrange multipliers into generalized forces along the system’s degrees of
freedom. See S1 Appendix for details on how Moco handles kinematic constraints.

Additionally, the variables must obey boundary constraints Vk (with bounds VL,k and
VU ,k) and algebraic path constraints g over the motion (with time-invariant bounds gL
and gU). The cost terms and boundary constraints may depend on initial and final
time; states; controls; kinematic constraint multipliers (required for joint reactions);
time-invariant parameters; and an integral, Sc, j or Sb,k, over the motion.

We demonstrate Moco’s interface with a MATLAB example that seeks the force to
apply to a point mass to move the mass by one meter (starting and ending at rest) in
minimum time:

study = MocoStudy();
problem = study.updProblem();
problem.addGoal(MocoFinalTimeGoal()); % minimum−time problem
problem.setModel(Model(’sliding_mass.osim’)); % load model from file
problem.setTimeBounds(0, [0, 5]); % initial time = 0, final time <= 5 s
problem.setStateInfo(’/slider/position/value’, [−5, 5], 0, 1); % move 1 m
problem.setStateInfo(’/slider/position/speed’, [−50, 50], 0, 0);
problem.setControlInfo(’/actuator’, [−50, 50]);
solution = study.solve();

Setting the model and adding a cost (termed “goal” in the example) each require only a
single statement. Setting bounds on states and controls by name is easier and less bug-
prone than setting bounds by index, as is common in other direct collocation software.

Direct collocation relies on gradient-based optimization, and therefore converges
faster and more reliably when all functions in the optimal control problem are con-
tinuous and differentiable. To this end, Moco includes a muscle model DeGroote-
Fregly2016Muscle [37] and a compliant contact force model SmoothSphereHalfSpace-
Force [52] that are continuous and differentiable.

Users wishing to employ a cost term, boundary constraint, or path constraint that
Moco does not support can create a C++ plugin using the same steps as for OpenSim
plugins. By providing a library of cost, boundary constraint, and path constraint modules,
allowing users to create their own modules, and allowing these modules to be combined,
we achieve our design goals of ease-of-use, customizability, and extensibility.

Solving problems with MocoSolver

All details of solving an optimal control problem are encapsulated in MocoSolver, which
is decoupled from MocoProblem for flexibility. The MocoProblem knows nothing about
the solver that may be used. When a user defines a custom cost term, they need
not worry about how the solver will handle the cost. The only assumption made by
MocoSolver about the problem is that it describes a multibody system; this allows using
special solver algorithms not suited to generic dynamic systems, such as for handling
kinematic constraints [53]. Moco users can add bodies or muscles to their model without
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modifying the solver, a convenience often not afforded by custom research code that
couples the problem formulation to the solver. MocoSolver uses the CasADi library [54] to
transcribe the continuous optimal control problem defined by MocoProblem into a finite-
dimensional nonlinear program, which we solve with well-established gradient-based
nonlinear program solvers such as IPOPT [55] and SNOPT [56] (see S1 Appendix).

Moco provides two transcription schemes: the second-order trapezoidal scheme and
the third-order Hermite-Simpson scheme [17]. Multibody dynamics can be expressed
with either explicit differential equations (“forward dynamics”) or implicit differential
equations (“inverse dynamics”); problems may converge faster in implicit mode [36,37].
Solving a musculoskeletal optimal control problem often requires trying many problem
formulations and solver settings. Moco users can change the transcription scheme,
dynamics mode, and other solver settings with a single line of code.

Solving a MocoStudy yields a MocoSolution (Figure 2), which is a subclass of Moco-
Trajectory and provides easy access to the values of all variables at any iteration in the
optimization. Users provide initial guesses via MocoTrajectory, and can use the solution
from one problem as the initial guess for a subsequent problem; this permits users to
build a complex study by solving a series of simpler studies. For example, a simulation
to predict the change in walking kinematics due to an external perturbation (e.g., an
ankle exoskeleton) could benefit from an initial guess generated from a series of tracking
simulations where kinematic deviations from reference data are gradually penalized less
in the objective. MocoSolution provides additional information, including whether the
solver converged, the final objective value, and the number of solver iterations.

Figure 2. Using trajectories to solve problems iteratively. Guesses for the
optimization are specified using MocoTrajectory, which holds the values of states,
controls, Lagrange multipliers, and parameters at any iteration in the optimization.
MocoSolution is a subclass of MocoTrajectory that holds the solution to a study and
includes the success status of the optimization, the final objective value, and the number
of solver iterations. Users can use the solution of one problem as the initial guess for a
subsequent problem.

After solving a problem, users often wish to visualize the solution as an animation,
plot the state and control trajectories, or compute quantities from the solution. With
a MocoStudy and MocoSolution, each of these tasks require only a single line of code.
MocoTrajectories can be written to and read from tab-delimited Storage text files, which
are familiar to OpenSim users. The ability to save MocoTrajectories and MocoStudies
to files allows users to reproduce each other’s results, which is essential for sound
science [57].

Tools for standard problems

Currently, Moco provides two tools for solving standard problems (Figure 3):

• MocoInverse solves the muscle/actuator redundancy problem [37], wherein we
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solve for muscle (or other actuator) controls that achieve a motion that is prescribed
exactly (see S1 Appendix) while minimizing effort or other costs.

• MocoTrack solves motion tracking problems, wherein we solve for both a motion
and muscle (or other actuator) controls that minimize the error with an observed
motion in addition to effort or other costs.

MocoTrack is useful for predicting deviations from motion data (e.g., predicting kinematic
adaptations to an exoskeleton), while MocoInverse is a faster option when the motion
should be enforced exactly (e.g., estimating elastic energy storage for an observed mo-
tion). MocoTrack can use contact models instead of applying measured external forces to
the model, as would be done with MocoInverse. Applying measured external forces often
requires introducing non-physiological “residual” actuators to resolve inconsistencies
between measured forces, measured kinematics, and mass properties. For both tools,
the only required inputs are an OpenSim model and motion data (coordinate or marker
trajectories, and external forces). Internally, the tools build a MocoStudy with solver
settings that yield fast and reliable convergence on problems we tested.

Figure 3. Solving prescribed motion, tracked motion, and predicted motion
problems. Moco provides the tools MocoTrack and MocoInverse for solving standard
problems. Both require a Model and kinematic data as inputs and produce controls and
actuator states as outputs, but these tools solve different optimal control problems.
MocoTrack produces a new simulated motion, while MocoInverse does not permit
deviations from the provided kinematic data. Predicting a motion is not easily
standardized and requires using a custom MocoStudy.

Future versions of Moco may include tools for model calibration, electromyography-
driven simulation, and other standard problems. For problems that do not fit into a
standard form, such as predicting a motion, using MocoStudy provides the necessary
flexibility.
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Verification

Verifying software is essential for good science and gaining the trust of users [58]; thus,
we conducted extensive verification tests. For example, producing the known solution to
an optimal control problem verifies that Moco implements direct collocation correctly.
We solved the following linear optimal control problem, which has a known solution:

minimize

∫ t f

t0

1
2

x2 d t

subject to q̇ = u

u̇= −u+ x

t0 = 0 t f = 2

q0 = 0 q f = 5

u0 = 0 u f = 2.

(2)

Moco’s solution for the optimal control matched the known control solution with a
root-mean-square error of 8.0× 10−8.

Next, we ensured that a time-stepping forward simulation using controls from a
motion prediction produced the same motion as in the prediction. These tests used a
model consisting of a point mass suspended by three muscles (DeGrooteFregly2016Muscle)
and under the influence of gravity (Figure 4). For this problem, the muscles had activation
dynamics and rigid tendons. We first predicted the state and control trajectories to move
the point mass between prescribed initial and final positions, starting and ending at rest
(Figure 4, gray band). In this prediction, the cost included both the sum of squared
muscle excitations and the final time. Then, we used the predicted controls to perform
a time-stepping forward simulation using an OpenSim integrator (Figure 4, blue line).
The resulting position trajectory of the point mass matched that from the prediction with
a root-mean-square error of 0.0051 m (1.7% of the distance between the initial and
final positions). This gives us confidence that Moco enforces the same multibody and
muscle dynamics enforced in a time-stepping forward simulation in OpenSim. For more
complex problems, conducting a time-stepping forward simulation using controls from a
MocoSolution requires a stabilizing feedback controller to counteract numerical errors.

To gain confidence in motion tracking problems, we ensured that using MocoTrack
on a synthesized motion with known muscle activity produced the original muscle
activity. We used the same suspended point mass model and tracked the previous motion
prediction (Figure 4, gray band) while minimizing squared excitations. The muscle
activations from MocoTrack (Figure 4, orange line) matched those from the prediction
with a root-mean-square error that was 0.23% of the peak predicted activation. To show
that there are indeed multiple muscle activity trajectories that produce the same motion,
we tracked the motion while minimizing the sum of muscle excitations raised to the
fourth power; this resulted in a much larger root-mean-square error that was 11% of the
peak predicted activation. For most tracking problems of interest, we do not know the
true muscle activity solution; verifying tracking problems using synthesized data gives us
confidence in Moco’s estimates of muscle activity for real-world data.

Moco contains an automated test suite with over 30 files that extends beyond the
verification described here. For example, the test suite ensures that users receive error
messages for incorrect input, that a MocoStudy can be written to and read from an XML
file, that kinematic constraints are enforced, and that implicit and explicit differential
equations lead to the same solution. We ensure all these tests succeed before accepting
changes to the code.
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Figure 4. Verification of time-stepping and motion tracking. The trajectory of a
point mass suspended by three muscles and moving under the influence of gravity (g) in
three different types of simulation is shown on the left. The activations of the “left,”
“middle,” and “right” muscles throughout the motion are shown on the right. We
predicted a trajectory (gray band) that minimized the sum of squared muscle excitations
and final time. We then performed a time-stepping forward simulation (blue) with the
predicted controls and produced the motion we originally predicted. Tracking the
predicted motion with MocoTrack (orange) produced the original activations.

Results

Estimating muscle activity from motion capture data of walking

Moco can estimate muscle activity in walking, which allows studies of gait disorders
and muscle coordination. We used a model with 19 degrees of freedom and 80 lower-
limb muscles [50] to simulate one gait cycle of walking at a self-selected speed of 1.25
m/s. The scaled model and data are based on the supplementary material of [50]. All
muscles had activation dynamics but only the gastrocnemii and soleus had compliant
tendons [37]. We solved for muscle activity using MocoInverse, which prescribes kinemat-
ics exactly (see “Tools for standard problems” for details), and compared the resulting
muscle activations to electromyography measurements (Figure 5).

MocoInverse produced activations that included some of the major features of the
electromyography data [59], such as the timing of peak activity for the semitendinosus,
biceps femoris short head, vastus lateralis, medial gastrocnemius, and soleus. With
MocoInverse, the difference between required net joint moments and muscle-generated
net joint moments (termed “reserve” moments in OpenSim) had a maximum value of 2.5
N-m across time and degrees of freedom [58]. MocoInverse solved this problem in 4.4
minutes, using a 3.6 GHz Intel Core i7 processor with 8 parallel threads; this duration
is similar to the amount of time required by the Computed Muscle Control [9] tool in
OpenSim for solving prescribed motion problems [50].

To demonstrate how Moco allows customization, we added a cost term to MocoInverse
to minimize knee joint loading. With this additional cost, the peak magnitude of the knee
joint reaction force decreased from 4.7 to 2.9 body weights. As expected, the activity of
muscles crossing the knee joint (vastus lateralis, biceps femoris short head, and medial
gastrocnemius) decreased. To compensate for the reduced medial gastrocnemius moment
at the ankle, soleus activity increased, as seen in a previous simulation study [60]. Activity
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Figure 5. Estimates of muscle activity during walking. MocoInverse produced muscle activations (black) whose timing
matched the timing from electromyography measurements (gray; available for all muscles shown except psoas) [59].
Electromyography was normalized such that its peak matched the peak of the MocoInverse activations. Minimizing knee joint
loading reduced the activity of the vastus lateralis, biceps femoris short head, and medial gastrocnemius, which span the knee
(blue).

of the semitendinosus increased to compensate for the decrease in activity of the biceps
femoris short head. Psoas activity increased to its maximum value; while a subject
attempting to minimize the same objective in an experiment may not maximally activate
their psoas, this high activity was allowed by our problem definition. Joint loading
is a more complex cost than simply minimizing excitations; the problem solved in 48
minutes.

Predicting and assisting a squat-to-stand motion

To show that Moco can predict motions and optimize parameters of a model, we predicted
a squat-to-stand motion that minimized a combination of effort, expressed as the sum of
squared excitations, and the duration of the motion. The initial pose was prescribed to
be squatting [4], and the final pose was prescribed to be upright standing. No motion
was tracked. The model contained a torso and leg with 9 muscles obeying activation
dynamics and compliant tendon dynamics. To enforce mediolateral symmetry, we used a
single leg and doubled muscle strengths, which we obtained from a previous study [14].
We used Moco’s default initial guess, in which each variable’s value is the midpoint of
the variable’s bounds. The predicted motion and muscle activations are shown in Figure
6. As expected, extensor muscles such as the gluteus maximus, hamstrings, and vasti
exhibited the greatest activity.

Next, we added a torsional spring to the knee and solved for the optimal motion,
muscle activations, and spring stiffness. The spring was in equilibrium when the knee
was extended, as illustrated in Figure 6. We used the same cost as in the unassisted case;
no motion was tracked. With the assistive device, the motion was achieved with lower
muscle activity. The optimal spring stiffness was 88 N-m/rad.
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Figure 6. Predicting and assisting a squat-to-stand motion. We predicted a squat-to-stand motion with prescribed initial
and final poses that minimized the sum of squared muscle excitations and final time (gray). The predicted motion is shown on
the left, and the activations of key muscles are shown on the right. We then added a torsional spring to the knee and solved for
the optimal motion, muscle activations, and spring stiffness k (blue). The spring allowed gluteus maximus and vasti activity to
decrease substantially.

Both predictions solved in under 3 minutes. Moco’s ability to rapidly predict motions
and optimize device parameters makes it a valuable tool for designing assistive devices.

Availability and future directions

OpenSim Moco can be downloaded freely for Windows and Mac from SimTK and
GitHub (https://simtk.org/projects/opensim-moco and https://github.com/opensim-
org/opensim-moco), where we develop the project and users can report bugs and request
features. The OpenSim Moco source code is available under the permissive Apache
License 2.0, though some dependencies have more restrictive licenses (e.g., CasADi [54]
is available under the GNU Lesser General Public License).

The documentation for Moco contains a User Guide, Theory Guide, Developer Guide,
and an Application Programming Interface (API) Reference. The User Guide explains
how to use Moco and provides tips for posing a problem. The Theory Guide explains how
Moco implements direct collocation, and the Developer Guide introduces the code and
explains software design choices. The API Reference describes the classes and functions
in the library. Lastly, we provide a printable two-page “cheat sheet” that demonstrates
common commands in Moco.

The Moco distribution contains examples in MATLAB, Python, and C++. These ex-
amples range from predicting the optimal trajectory for a double pendulum to predicting
2-D muscle-driven walking (which solves in under an hour). The code used to generate
the results for this paper are available at https://github.com/stanfordnmbl/mocopaper.

Moco currently lacks the ability to handle certain problems. Metabolic energy con-
sumption is a commonly used cost term, but direct collocation struggles with the non-
convexity of many energy consumption models. Koelewijn et al. recently published a
smoothed energy consumption model for use in direct collocation [39]; we hope Moco
will include this model in the future. Implementing a cost term that minimizes the error
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between measured and simulated contact forces would improve the accuracy of simulated
ground reaction forces in tracking problems. Many direct collocation formulations allow
a problem to contain multiple phases, each with different system dynamics. Supporting
multiple phases enables modeling foot–ground contact with kinematic constraints instead
of compliant contact, which would avoid the poor numerical conditioning caused by the
stiffness of compliant contact. Falisse et al. used a multiple-phase approach to solve for
muscle parameters that fit multiple unrelated motions [34]. By including cost terms for
energy expenditure and contact force tracking and permitting multiple phases, Moco
could cover a wider range of biomechanics applications.

The performance and ease of use of Moco’s direct collocation solvers could be im-
proved. Supporting mesh refinement would allow the solver to increase the number of
mesh intervals in time ranges with fast dynamics, thereby improving accuracy. Com-
puting the nonlinear program derivatives with algorithmic differentiation instead of
finite differences would vastly improve the speed of Moco, but would require substantial
changes to the source code of OpenSim and its dependencies [40].

We designed Moco to be easy to use, customizable, and extensible. We verified the
software and applied it to multiple musculoskeletal problems. Given this foundation, we
expect Moco to accelerate research by reducing the time spent wrestling with simulation
tools and enabling our field to tackle more ambitious problems. Moco handles models
with kinematic constraints, muscle activation dynamics, compliant tendons, and compli-
ant contact, and can minimize a combination of complex costs such as marker tracking
and joint reaction loads. To build a community that sustains the Moco project, we have
organized several in-person workshops. We invite the community to help improve the
software and contribute documentation, examples, teaching materials, and code.

S1 Appendix

Kinematic constraints

Support for kinematic constraints is a key feature of Moco. Understanding how kinematic
constraints are handled in multibody dynamics is valuable for understanding how Moco
handles such problems. Consider a two-dimensional point mass system with coordinates
qx and qy constrained to a parabola 0 = qy −q2

x . To prevent the point mass from violating
the constraint, we must apply a force perpendicular to the parabola. Each constraint
has a corresponding scalar force variable, called a Lagrange multiplier λ. We must solve
for the required magnitudes of these constraint forces, but the direction in which we
apply each of these forces is determined by the derivative of the constraint equations. We
gather the derivatives of the constraint equations in the kinematic constraint Jacobian
matrix G. Each row in this matrix contains the derivative of a single constraint equation
with respect to each degree of freedom, and the matrix has a column for each degree
of freedom. For the parabola example, the Jacobian is (−2qx , 1). The transpose of this
matrix, GT , contains columns that are vectors in the state space which are perpendicular
to each constraint. For our single constraint, the vector (−2qx , 1)T is perpendicular to the
parabola. The matrix-vector product between the Jacobian transpose and the Lagrange
multipliers, GTλ, yields the vector of generalized forces (whose length is the number
of degrees of freedom) necessary for enforcing the system constraints. For our point
mass example, the generalized forces yielded by the vector-scalar product (−2qx , 1)Tλ
keep the point mass on the parabola. To apply these forces to the multibody system, we
include the GTλ term in the multibody dynamics equations of motion.

When simulating a multibody system with time-stepping forward integration, we first
ensure the initial generalized coordinates and speeds satisfy the kinematic constraints
φ(q) = 0 and their first derivative φ̇(q, u) = 0 via a root-solve. During the integration,
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we solve for generalized accelerations and Lagrange multipliers that obey the multibody
dynamics equations of motion and the second derivative of the kinematic constraints,
φ̈(q, u, u̇) = 0. Numerically integrating the resulting generalized accelerations yields
generalized coordinates and speeds that approximately lie on the constraint manifold
defined by φ(q) = 0; to fix any errors in the constraints caused by numerical integration
error, we project the generalized coordinates and speeds back onto the constraint
manifold [47].

In direct collocation, the generalized coordinates, generalized speeds, and Lagrange
multipliers are the unknowns—we are solving for the entire trajectory of the system.
When expressing multibody dynamics as implicit differential equations, the generalized
accelerations are also unknowns. How we solve for the trajectory of the system in
the presence of kinematic constraints depends on the transcription scheme; see the
remainder of this Appendix for details.

Defining problems containing prescribed kinematics

A common task in musculoskeletal biomechanics is to estimate the muscle and actuator
behavior that drove an observed motion. We can solve this problem by minimizing the
error between the observed motion and the simulated motion, as with Computed Muscle
Control (using the “slow target”) [9] or MocoTrack. Alternatively, we can prescribe the
motion exactly, as with Static Optimization, electromyography-driven simulation [10],
and the Muscle Redundancy Solver [37]. Consider a two-dimensional point mass
with coordinates qx and qy for which we prescribe a circular motion via the functions
q̂x(t) = cos(t) and q̂y(t) = sin(t). We can either add these functions to the kinematic
constraints φ(q), or we can substitute these functions into the equations of motion,
thereby eliminating the variables qx and qy . With Moco, users can choose either the
former approach through OpenSim’s Coordinate, or the latter (and usually preferable)
approach using PositionMotion, a new component that employs Simbody’s Motion class.
Prescribing kinematics by eliminating variables leads to a problem that is robust and fast—
the nonlinear multibody dynamics are removed from the optimization problem—but
prevents predicting kinematic deviations from the observed motion.

When we prescribe kinematics in Moco by eliminating variables, we replace the
problem in Eq (1) with the following:
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minimize
∑

j

w jJ j(t0, t f , q̂0, q̂ f , û0, û f , z0, z f , x0, x f ,λ0,λ f , p, Sc, j) costs

Sc, j =

∫ t f

t0

sc, j(t, q̂, û, z, x ,λ, p) d t

subject to M(q̂, p)ˆ̇u+ G(q̂, p)Tλ= fapp(t, q̂, û, z, x , p)− finertial(q̂, û, p) multibody dynamics

żex(t) = fż,ex(t, q̂, û, z, x ,λ, p) auxiliary dynamics, explicit

0= fż,im(t, q̂, û, z, żim, x ,λ, p) auxiliary dynamics, implicit

VL,k ≤ Vk(t0, t f , q̂0, q̂ f , û0, û f , z0, z f , x0, x f ,λ0,λ f , p, Sb,k)≤ VU ,k boundary constraints

Sb,k =

∫ t f

t0

sb,k(t, q̂, û, z, x ,λ, p) d t k = 1, . . . , K

gL ≤ g(t, q̂, û, z, x ,λ, p)≤ gU path constraints

z0,L ≤ z0 ≤ z0,U z f ,L ≤ z f ≤ z f ,U initial and final states

x0,L ≤ x0 ≤ x0,U x f ,L ≤ x f ≤ x f ,U initial and final controls

with respect to t0 ∈ [t0,L , t0,U] initial time

t f ∈ [t f ,L , t f ,U] final time

z(t) ∈ [zL , zU] auxiliary states

x(t) ∈ [xL , xU] controls

λ(t) Lagrange multipliers

p ∈ [pL , pU]. time-invariant parameters

(3)

We replace the kinematic variables q and u with known quantities q̂ and û. The system
still depends on auxiliary state variables z and control variables x , and includes auxiliary
dynamics. If none of the parameter variables affect the multibody system, then the
multibody dynamics are reduced to a force balance: muscles and other force elements
must generate the net generalized forces determined by the kinematics and external
loads data. The easiest way to prescribe kinematics in Moco is to use the MocoInverse
tool.

Whether the motion is prescribed by adding constraints or eliminating variables,
OpenSim supplements the modeled force elements with Lagrange multipliers to ensure
the prescribed motion is achieved. When using PositionMotion with Moco, we require
that the prescribed motion’s Lagrange multipliers are zero, thereby ensuring the motion
is fully generated by the modeled force elements.

Transcription schemes

Trapezoidal transcription

The trapezoidal scheme transcribes the optimal control problem into a nonlinear pro-
gram by approximating integrals using the trapezoidal rule. As a second-order scheme,
trapezoidal transcription exhibits accuracy that improves four-fold when halving the
mesh interval (i.e., time step).

We discretize the continuous variables t, y, x , and λ on a mesh of time points t i
defined by dimensionless time τi , yielding n mesh intervals with durations hi:

November 12, 2019 15/25

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2019. ; https://doi.org/10.1101/839381doi: bioRxiv preprint 

https://doi.org/10.1101/839381
http://creativecommons.org/licenses/by/4.0/


0= τ0 < τ1 < τ2 < . . .< τi < . . .< τn−1 < τn = 1,

t i = (t f − t0)τi + t0,

hi = (t f − t0)(τi −τi−1).

(4)

For conciseness, we define the following function:

trapi(F(η, p)) =
1
2

hi(F(ηi−1, p) + F(ηi , p)), (5)

where trapi() is a trapezoidal rule approximation of the area under the function F
for mesh interval i, and η represents any subset of continuous variables. We define the
explicit multibody dynamics function as:

fu̇(t, y, x ,λ, p) = M(q, p)−1
�

( fapp(t, y, x , p)− finertial(q, u, p)− G(q, p)Tλ
�

. (6)

The mass matrix M , the centripetal and Coriolis forces finertial, and kinematic con-
straint Jacobian G are computed by Simbody (OpenSim’s multibody dynamics engine)
using order-N recursive algorithms; the complete mass matrix is not computed explicitly.
The applied forces fapp are usually defined by OpenSim components that implement
Simbody force elements. Simbody computes the constraint Jacobian G based on any
Simbody kinematic constraints that the OpenSim model adds to the system. In Moco,
the Lagrange multipliers λ are explicit optimization variables; this approach differs from
that in forward simulations, in which Simbody solves for accelerations and multipliers
simultaneously.

The result of the trapezoidal transcription, with multibody dynamics expressed as
explicit differential equations, is the following nonlinear program:
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minimize
∑

j

w jJ j(t0, t f , y0, yn, x0, xn,λ0,λn, p, Sc, j) +wλ

n
∑

i=1

trapi(‖λ‖
2
2)

Sc, j =
n
∑

i=1

trapi(sc, j(t, y, x ,λ, p))

subject to qi = qi−1 + trapi(u) i = 1, . . . , n

ui = ui−1 + trapi( fu̇(t, y, x ,λ, p)) i = 1, . . . , n

zex,i = zex,i−1 + trapi( fż,ex(t, y, x ,λ, p)) i = 1, . . . , n

zim,i = zim,i−1 + trapi(ζ) i = 1, . . . , n

0= fż,im(t i , yi ,ζi , x i ,λi , p) i = 0, . . . , n

0= φ(qi , p) i = 0, . . . , n

VL,k ≤ Vk(t0, t f , y0, y f , x0, x f ,λ0,λ f , p, Sb,k)≤ VU ,k

Sb,k =
n
∑

i=1

trapi(sb,k(t, y, x ,λ, p)) k = 1, . . . , K

gL ≤ g(t i , yi , x i ,λi , p)≤ gU i = 0, . . . , n

with respect to t0 ∈ [t0,L , t0,U] tn ∈ [t f ,L , t f ,U]

y0 ∈ [y0,L , y0,U] yn ∈ [y f ,L , y f ,U]

yi ∈ [yL , yU] i = 1, . . . , n− 1

ζi ∈ [ζL ,ζU] i = 0, . . . , n

x0 ∈ [x0,L , x0,U] xn ∈ [x f ,L , x f ,U]

x i ∈ [xL , xU] i = 1, . . . , n− 1

λi ∈ [λL ,λU] i = 0, . . . , n

p ∈ [pL , pU].

(7)

In this form, the problem can be solved directly by a nonlinear program solver. We
introduce the algebraic (control) variable ζ as the derivative of auxiliary state variables
whose dynamics are expressed with an implicit differential equation.

When expressing the multibody dynamics implicitly, we remove the constraint in-
volving fu̇, introduce generalized accelerations as an algebraic variable υ, and enforce
multibody dynamics in “inverse dynamics” form:

subject to ui = ui−1 + trapi(υ) i = 1, . . . , n

M(qi , p)υi + G(qi , p)Tλi = fapp,i − finertial,i i = 0, . . . , n

with respect to υi ∈ [−υB,υB] i = 0, . . . , n.

(8)

The constant υB is a large positive number (1000 by default).
The dynamic, kinematic, and path constraints are enforced at a set of discrete time

points, so the quadratic spline approximation to the continuous variables may violate the
original continuous-time constraints between the discrete time points. For this reason, a
mesh with more points leads to a more accurate solution.

Our implementation of trapezoidal transcription handles kinematic constraints, but
not in the most robust fashion. We enforce φ but not its time derivatives; enforcing the
constraints at only the position level yields an index-3 differential-algebraic system of
equations, which is challenging to solve [17,22,61]. Furthermore, we minimize these
multipliers (with weight wλ) to improve numerical conditioning.
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When kinematics are prescribed (see “Prescribed kinematics”), multibody dynamics
must be expressed implicitly and kinematic constraints are not enforced; we expect the
prescribed kinematics to already obey the constraints.

Hermite-Simpson transcription

The Hermite-Simpson scheme transcribes the optimal control problem into a nonlinear
program by approximating integrals using a Hermite interpolant and Simpson integration
rule. As a third-order scheme, Hermite-Simpson transcription exhibits accuracy that
improves eight-fold when halving the mesh interval.

We use a similar dimensionless time mesh as for the trapezoidal scheme, with n mesh
intervals with durations hi. We also introduce collocation points at the midpoints of
the mesh intervals, leading to a total of 2n+ 1 time points at which we discretize the
continuous variables:

0= τ0 < τ1 < τ2 < . . .< τi < . . .< τn−1 < τn = 1,

τ̄i = 0.5(τi−1 +τi),
t i = (t f − t0)τi + t0,

t̄ i = (t f − t0)τ̄i + t0,

hi = (t f − t0)(τi −τi−1),

(9)

where τ̄i denote mesh interval midpoints. For conciseness, we define the following
functions:

hermitei(η, F(η, p)) =
1
2
(ηi−1 +ηi) +

hi

8
(F(ηi−1, p)− F(ηi , p)), (10)

simpsoni(F(η, p)) =
hi

6
(F(ηi−1, p) + 4F(η̄i , p) + F(ηi , p)), (11)

where hermitei() represents the Hermite interpolant and simpsoni() represents the
Simpson integration rule. Again, F is a function for mesh interval i, and η represents
any subset of continuous variables.

Using the explicit multibody dynamics function fu̇ defined previously, Hermite-
Simpson transcription results in the following nonlinear program:
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minimize
∑

j

w jJc, j(t0, t f , y0, yn, x0, xn,λ0,λn, p, Sc, j) +wλ

n
∑

i=1

simpsoni(‖λ‖
2
2)

Sc, j =
n
∑

i=1

simpsoni(sc, j(t, y, x ,λ, p))

subject to q̄i = hermitei(q, u) + G(q̄i , p)T γ̄i i = 1, . . . , n

qi = qi−1 + simpsoni(u) i = 1, . . . , n

ūi = hermitei(u, fu̇(t, y, x ,λ, p)) i = 1, . . . , n

ui = ui−1 + simpsoni( fu̇(t, y, x ,λ, p)) i = 1, . . . , n

z̄ex,i = hermitei(zex, fż,ex(t, y, x ,λ, p)) i = 1, . . . , n

zex,i = zex,i−1 + simpsoni( fż,ex(t, y, x ,λ, p)) i = 1, . . . , n

z̄im,i = hermitei(zim,ζ) i = 1, . . . , n

zim,i = zim,i−1 + simpsoni(ζ) i = 1, . . . , n

0= fż,im(t i , yi ,ζi , x i ,λi , p) i = 0, . . . , n

x̄ i = (x i−1 + x i)/2 i = 1, . . . , n

0= φ(qi , p) = φ̇(qi , ui , p) = φ̈(t i , yi , x i ,λi , p) i = 0, . . . , n

VL,k ≤ Vk(t0, t f , y0, y f , x0, x f ,λ0,λ f , p, Sb,k)≤ VU ,k

Sb,k =
n
∑

i=1

simpsoni(sb,k(t, y, x ,λ, p)) k = 1, . . . , K

gL ≤ g(t i , yi , x i ,λi , p)≤ gU i = 0, . . . , n

with respect to t0 ∈ [t0,L , t0,U] tn ∈ [t f ,L , t f ,U]

y0 ∈ [y0,L , y0,U] yn ∈ [y f ,L , y f ,U]

yi ∈ [yL , yU] i = 1, . . . , n− 1

ȳi ∈ [yL , yU] i = 1, . . . , n

ζi ∈ [ζL ,ζU] i = 0, . . . , n

ζ̄i ∈ [ζL ,ζU] i = 1, . . . , n

x0 ∈ [x0,L , x0,U] xn ∈ [x f ,L , x f ,U]

x i ∈ [xL , xU] i = 1, . . . , n− 1

x̄ i ∈ [xL , xU] i = 1, . . . , n

λi ∈ [λL ,λU] i = 0, . . . , n

λ̄i ∈ [λL ,λU] i = 1, . . . , n

γ̄i ∈ [γ̄L , γ̄U] i = 1, . . . , n

p ∈ [pL , pU].

(12)

The G(q̄i , p)T γ̄i term is a velocity correction that is necessary when enforcing deriva-
tives of kinematic constraints in the nonlinear program. The additional variables γ̄i
prevent the kinematics from being overconstrained, and the kinematic constraint Jaco-
bian transpose operator G(q̄i , p)T restricts the velocity correction to the tangent plane
of the constraint manifold [53]. Currently, we only support enforcing derivatives of
position-level, or holonomic, constraints, represented by the equations:
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0= φ̇(q, u, p) = G(q, p)u, (13)

0= φ̈(t, y, x ,λ, p) = G(q, p) fu̇(t, y, x ,λ, p) + Ġ(q, p)u. (14)

The explicit multibody dynamics function is used here where u̇ would appear if it
were a continuous variable in the problem (as in implicit mode, see below).

Algebraic constraints are not enforced at the midpoints of the mesh intervals, but
exhibit fourth-order accuracy at these points [53].

For implicit multibody dynamics, we again remove the constraints involving fu̇
and introduce generalized accelerations as algebraic variables υ to enforce multibody
dynamics in “inverse dynamics” form:

subject to ūi = hermitei(u,υ) i = 1, . . . , n

ui = ui−1 + simpsoni(υ) i = 1, . . . , n

M(qi , p)υi + G(qi , p)Tλi = fapp,i − finertial,i i = 0, . . . , n

M(q̄i , p)ῡi + G(q̄i , p)T λ̄i = f̄app,i − f̄inertial,i i = 1, . . . , n

with respect to υi ∈ [−υB,υB] i = 0, . . . , n

ῡi ∈ [−υB,υB] i = 1, . . . , n.

(15)

Moco’s direct collocation solvers

Moco provides two solvers as subclasses of MocoSolver: MocoCasADiSolver uses the
third-party CasADi library [54], and MocoTropterSolver uses a direct collocation solver
we developed named Tropter. CasADi is an open-source package for algorithmic differ-
entiation and is a bridge to nonlinear program solvers IPOPT [55], SNOPT [56], and
others.

Gradient-based nonlinear program solvers require the gradient of the objective,
the Jacobian of the constraints, and sometimes the Hessian of the Lagrangian [17].
To maximize computational efficiency, these derivatives are ideally computed exactly
through either analytic expressions or algorithmic differentiation [54,62]. OpenSim’s
main distribution does not provide exact derivatives, so we use finite differences. CasADi
is an ideal library for employing direct collocation, but two limitations led us to create
Tropter: CasADi did not initially support finite differences, and CasADi’s open-source
license is more restrictive than OpenSim’s. More recent versions of CasADi support finite
differences and CasADi understands the structure of the nonlinear program objective and
constraint functions, allowing for potentially more efficient finite difference calculations
than with Tropter, which treats the nonlinear program objective and constraints as black-
box functions [63]. If OpenSim provides exact derivatives in the future, we can exploit
the algorithmic differentiation modes in Tropter and CasADi [40]. Those distributing
Moco as a dependency of closed-source software may prefer distributing Moco without
CasADi, as CasADi’s “weak copyleft” GNU Lesser General Public License 3.0 places
requirements on how CasADi is redistributed.
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