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Abstract 24 

 Calcium imaging is an increasingly valuable technique for understanding neural 25 

circuits, neuroethology, and cellular mechanisms. The analysis of calcium imaging data 26 

presents challenges in image processing, data organization, analysis, and accessibility. 27 

Tools have been created to address these problems independently, however a 28 

comprehensive user-friendly package does not exist. Here we present “Mesmerize”, an 29 

efficient, expandable and user-friendly analysis platform, which uses a Findable, 30 

Accessible, Interoperable and Reproducible (FAIR) system to encapsulate the entire 31 

analysis process, from raw data to interactive visualizations for publication. Mesmerize 32 

provides a user-friendly graphical interface to state-of-the-art analysis methods for 33 

signal extraction & downstream analysis. We demonstrate the broad scientific scope of 34 

Mesmerize’s applications by analyzing neuronal datasets from mouse and a volumetric 35 

zebrafish dataset. We also applied contemporary time-series analysis techniques to 36 

analyze a novel dataset comprising neuronal, epidermal, and migratory mesenchymal 37 

cells of the protochordate Ciona intestinalis. 38 

  39 
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Introduction  40 

Large-scale calcium imaging of neuronal activity in populated brain regions, or entire animals, 41 

has become an indispensable technique in neuroscience research. The analysis of calcium imaging 42 

datasets presents significant challenges in the domains of image preprocessing, signal extraction, 43 

dataset organization, downstream analysis, and visualizations. As a result, analysis of calcium imaging 44 

data requires computational expertise that are rather uncustomary among biologists. Numerous state of 45 

the art packages, such as the Caiman library1, Suite2p2,SIMA3, EZCalcium4 and ImageJ5 provide users 46 

with a myriad of options for image pre-processing and ROI/signal extraction. Workflow management 47 

tools for neurophysiological analysis, such as DataJoint6 and NWB7, provide programmers with tools 48 

for dataset organization. Users with computational training often incorporate these tools using custom 49 

written scripts or spreadsheets. In contrast, biomedical scientists with little or no programming 50 

experience would immensely benefit from a user-friendly platform to organize, analyze, visualize, and 51 

share 2D and 3D calcium imaging data. 52 

An important attribute of such a platform would be the ability to seamlessly incorporate cutting 53 

edge tools that will readily address current and future technical challenges. The immense growth we 54 

have seen over the last decade in new imaging technologies combined with the ever-increasing palette 55 

of genetically encoded indicators have fueled an increase in the temporal and spatial resolution of the 56 

acquired data sets. Calcium imaging is not only a workhorse technique for monitoring brain-wide 57 

activity, but it is becoming increasingly popular in the dissection of developmental and physiological 58 

processes at the level of entire embryos or organs.  These types of information rich datasets are 59 

characterized by the presence of large populations of morphologically and functionally diverse, tightly 60 

packed, cells that exhibit diverse activity profiles, making downstream processing challenging. In 61 

particular, the analysis of 2D and 3D calcium imaging datasets poses significant technical hurdles 62 

across multiple domains including those of image preprocessing, signal extraction, dataset 63 

organization, downstream analysis, and visualization.  64 
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 66 

One of the greatest challenges that modern biomedical research faces is compliance with FAIR 67 

data (Findable, Accessible, Interoperable and Reusable) principles, which aim to set new and robust 68 

standards in terms of reproducibility and data sharing. However, even some of the most advanced 69 

analyses pipelines rely on custom written scripts and spreadsheets, without a standardized system to 70 

organize and functionally link raw imaging data, analysis procedures and visualizations8,9. This greatly 71 

impedes the reproducibility of the work even when the raw data are available8–10. State of the art 72 

project management tools, such as OMERO11, Biaflows12, Cytomine13, OpenBIS14 and KNIME15are 73 

geared towards cell biology and histological analysis, and are not suited for neurophysiological or 74 

calcium imaging analysis (Table 1). Most crucially, none of these tools support the rich and 75 

comprehensive annotations necessary for most experiments in the field of neuroscience. For example, 76 

the analysis of neurophysiological experiments often requires temporal mapping of complex 77 

combinations of stimuli and behavioral annotations that directly correspond to the imaging data (Table 78 

1). There are also experimental scenarios where the cells or regions of interest (ROIs) additionally 79 

require a combination of annotation tags (text/numerical labels) describing features such as the cell 80 

type, morphology, or identity, which can be mapped back to the corresponding cell(s) or ROI(s). 81 

Finally, for publication, authors have to produce figures integrating all of the above (i.e. the calcium 82 

imaging data, the annotations and the downstream analysis) to effectively and coherently convey the 83 

biological findings. While there are many tools for producing basic static visualizations, there is an 84 

urgent need for a software platform that can produce interactive visualizations where the imaging data 85 

and analysis history of every datapoint can be instantly retrieved8,9,16. Interactive and traceable 86 

visualizations have various applications, such as quality control8, reproducibility9,16,17, and allowing for 87 

a better understanding of experiments and underlying the biology8. 88 
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From the examination of the tools currently available for calcium imaging analysis and bio-89 

imaging project management (Table 1), we demonstrate that there is currently no tool that provides a 90 

comprehensive suite of features necessary for calcium imaging analysis and project management, i.e. 91 

image processing, ROI extraction, project organization, downstream analysis and interactive 92 

visualizations. To address these challenges, we created Mesmerize – a free and open source 93 

comprehensive platform that encapsulates these requirements within a reproducible system. The 94 

Mesmerize platform also provides graphical user interfaces (GUI) for the analysis and visualization of 95 

2D and 3D datasets, thereby allowing biomedical scientists to create FAIR (Findable, Accessible, 96 

Interoperable and Reusable) datasets10,18 within a flexible system that can be adopted by a wide variety 97 

of researchers who work on diverse biological problems. Mesmerize is not a pipeline, but rather a 98 

highly modular platform that presents users with many options along each step of their specific user-99 

defined calcium imaging analysis workflow. Consequently, this flexible design allows developers to 100 

easily add new or customized modules for image processing, analysis, and visualization. In summary, 101 

the ability to create modular and adaptable workflows grants Mesmerize a very broad scope of 102 

applicability across a variety of labs in various fields of neuroscience. For example, it may be used to 103 

study whole-brain dynamics, sensory-motor integration systems, or activity defects in disease models. 104 

Beyond neuroscience, Mesmerize has the potential to be transformative in the hands of developmental 105 

biologists and physiologists interested in mapping embryonic and post-embryonic calcium dynamics of 106 

specific tissues/organs or entire embryos.  Mesmerize lets users create and dynamically curate an 107 

unlimited number of categorical labels that map to entire imaging sessions, single ROIs, and temporal 108 

periods. This rich and complex annotation capability goes beyond standard neurobiological annotations 109 

such as behavioral correlates or sensory stimuli and can be extended to developmental stages, shared 110 

gene expression patterns, morphological and phenotypic cell type descriptors, and subcellular 111 

compartments to a name a few. This flexibility means that Mesmerize is broadly suitable for cell 112 

biologists, developmental biologists and other specialties beyond neuroscience. In scenarios where the 113 
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analysis workflows require further tailoring, Mesmerize can serve as a blueprint for future platforms 114 

that seek to encapsulate data analysis, project organization and interactive traceable visualizations in 115 

other fields. 116 

As introduced above, calcium imaging analysis usually requires the following components 1) 117 

pre-processing & ROI/signal extraction 2) data annotation and organization 3) downstream analysis 118 

and 4) visualization. Mesmerize provides end-users with extensive graphical interfaces for each of 119 

these components to analyze their 2D and 3D datasets. Users with basic Python or scripting skills can 120 

utilize the API to implement more customized or complex analysis. We have built the graphical 121 

interfaces using the Qt framework due to its maturity and extensive developer community. All data 122 

structures are well-documented and built using pandas DataFrames19 and numpy arrays20,21, both 123 

highly prevalent and mature libraries. These features make Mesmerize a highly accessible platform, 124 

allowing users to easily integrate Mesmerize into their analysis workflows, or develop new customized 125 

modules. 126 

Mesmerize Platform 127 

Rich Data Annotation 128 

The first step of any calcium imaging analysis workflow requires a system for users to explore 129 

their imaging data and perform ROI extraction. We demonstrate that Mesmerize works with both 2D 130 

and 3D datasets from a broad set of model organisms, such as mice, zebrafish, and Ciona intestinalis 131 

(Fig 1a). These datasets can be visualized using the Mesmerize Viewer, which provides GUI front-ends 132 

(based on pyqtgraph) and API interfaces for various signal extraction modules (Fig 1b). Importantly, 133 

the Viewer also facilitates extensive in-place annotation of experimental information (Fig 1c-e), such 134 

as: 135 

1. Cell identities, morphology, or any other tags that map to individual cells/ROIs (Fig 1e) 136 

2. Temporal mapping, such as stimulus or behavioral periods (Fig 1d) 137 

3. Data that map to entire recordings, such as an animal’s genotype, age, strain etc. (not shown) 138 
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These annotations may be performed through the GUI, or automated through the simple scripting 139 

interface. Mesmerize’s unique support for customizable annotations makes it broadly applicable for 140 

diverse range of researchers and distinguishes it from other calcium imaging and image analysis tools 141 

(Table 1). The highly versatile annotation functions within Mesmerize enable scientists to efficiently 142 

curate and analyze complex datasets that are emerging from the use of multiplexed imaging combining 143 

several cell-specific promoters that express Genetically Encoded Calcium Indicators (GECIs). For 144 

example, researchers can perform a cohort of experiments that utilize tens of GCaMP promoters, 145 

multiple combinations of optogenetic and/or chemogenetic lines, multiple UAS-GAL4 systems, 146 

multiple drugs etc. in one efficient, organized and reproducible system. To illustrate this capacity of 147 

Mesmerize, we leverage a powerful emerging model organism, the protochordate Ciona intestinalis. 148 

The Ciona dataset analyzed here includes annotations for seven different GCaMP6s promoters, eight 149 

anatomical regions, and twenty-one cell types (Supplementary table 1 & 2). 150 

ROI Extraction 151 

Graphical front-ends help users explore imaging data, perform pre-processing, and signal 152 

extraction. They help facilitate efficient workflows for advanced users, and are necessary for users 153 

without extensive programming experience. From a user’s perspective these front-ends, which we call 154 

Viewer Modules, interact with the Mesmerize Viewer in a manner similar to the various components 155 

within ImageJ and its plugins. This familiarity in the user-end design will allow Mesmerize to be easily 156 

adopted by more biologists, and broaden the reach of cutting-edge packages, (such as the CaImAn 157 

library1) allowing them to perform more accurate and in-depth analysis. 158 

By default, Viewer Modules are provided for NoRMCorr22, CNMF(E)23–25, NuSeT26, as well as 159 

importers for Suite2p2 outputs and ImageJ5 ROIs (Fig 1b). These front-ends encompass a very broad 160 

variety of user-options for motion correction and signal extraction from both 2D and 3D calcium 161 

imaging datasets. Many Viewer Modules are used in conjunction with the Mesmerize Batch Manager 162 
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which streamlines the exploration of parameter space and data organization for these computationally 163 

intensive tasks. 164 

ROI extraction and image processing are not limited to the default options that we provide, 165 

these Viewer Modules can be expanded, customized and created by users with modest programming 166 

experience. We provide an API and scripting interfaces, which allows ROIs to be extracted from any 167 

other custom technique which the user may desire. This flexibility allows scientists to conveniently 168 

integrate and combine their favorite pre-processing or ROI extraction technique into their analysis 169 

workflow. For example we created a simple API27 to a deep-learning approach for cellular 170 

segmentation using the NuSeT26 network, which is useful for the segmentation of recordings using 171 

nuclear-localized GCaMP. The NuSeT method can be used through a GUI that can be expanded to 172 

include additional deep-learning segmentation approaches from this rapidly evolving field in the future. 173 

Furthermore, the binary masks produced by the NuSeT Viewer Module can be used for seeding 174 

CNMF(E)23,25, thereby allowing these two cutting-edge tools to be combined in manner that would be 175 

non-trivial for users without extensive programming experience. In summary, these features 176 

demonstrate how Mesmerize can be a powerful platform for complex integration and interoperability 177 

between multiple state of the art analysis tools for both end-users and developers. 178 

Project Organization 179 

Current software platforms for bio-image dataset organization are not suited for handling 180 

calcium imaging data (Table 1). Mesmerize packages all data associated with an imaging sample, i.e. 181 

extracted signals, annotations etc, into a Project Sample (Fig 1f). A collection of Project Samples 182 

constitute a Project Dataset, which can be explored and filtered in a user-friendly manner to create 183 

experimental groups using the Project Browser (Fig 1g). Project Samples can be modified throughout 184 

the course of a project. Therefore, in addition to efficient data annotation, users can append, change or 185 

supplement existing annotations that can then be propagated through downstream analysis and 186 
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visualizations. Dynamically adaptable data management is extremely useful since biological questions 187 

and experiments are often in constant flux as new data are processed and analyzed. 188 

Downstream Analysis 189 

A Project Dataset, or sub-dataset, can be loaded into a flowchart where users can build analysis 190 

pipelines by connecting analysis nodes (Fig 1h-j). We provide nodes to perform many common signal 191 

processing routines, data handling/organization, dimensionality reduction, and clustering analysis. 192 

Mesmerize’s default collection of nodes allows users to perform many common analysis procedures 193 

such as comparison of stimulus/behavioral periods (Fig 1h), peak detection (Fig 1i), and clustering 194 

analysis (Fig 1j). All analyses performed in the flowchart are logged with a description of the nodes 195 

and their parameters, thereby facilitating future reproducibility of the analyses. For more customized 196 

analysis, we provide documentation and an API for efficiently writing new analysis nodes or using the 197 

analysis data structures in external notebooks or scripts 198 

(http://docs.mesmerizelab.org/en/master/developer_guide/nodes.html). The flowchart builds upon a 199 

pyqtgraph28 widget. The stock assortment of nodes implement various signal processing, 200 

dimensionality reduction, and clustering analysis using scipy29, sklearn30 and tslearn31 libraries. We use 201 

common and mature libraries to simplify customization by more advanced users or developers. 202 

Visualization 203 

The ultimate result of almost any analysis procedure and scientific study is the creation of 204 

visualizations that convey an experiment’s results. The vast majority of visualizations in most research 205 

are static. This makes it difficult or impossible to instantly link datapoints from a plot with the original 206 

imaging data and analysis procedures8,9,16, which greatly hampers reproducibility16. Recent 207 

developments help address these issues; tools such as Jupyter32 notebooks delivered via MyBinder33 208 

allow the data and analysis procedures to be shared. However, these methods are not readily accessible 209 

to non-programmers and do not aid in the creation of FAIR and functionally linked datasets. 210 

Mesmerize allows users to create interactive visualizations through a GUI and share them in their 211 
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interactive state (Fig 1k). Many interactive plots are attached to a Datapoint Tracer (Fig 1l) which 212 

highlights the spatial localization of the selected datapoint and displays all its associated annotations 213 

and the analysis history log which can be visualized using an analysis graph (Fig 1m), a graphical 214 

visualization that intuitively communicates the analysis steps. A rich variety of built-in plots are 215 

provided, such as heatmaps, spacemaps, scatterplots, beeswarm, and more. As with other components 216 

of the Mesmerize platform, we provide developer instructions for the creation of new plots that can 217 

integrate with the Datapoint Tracer 218 

(http://docs.mesmerizelab.org/en/master/developer_guide/plots.html). Thus far, no other calcium 219 

imaging analysis suite offers such a rich variety of interactive visualizations for downstream analysis 220 

(Table 1). Lastly, we are currently creating a set of standardized web-based visualizations that mirror 221 

the current options available for matplotlib34 and pyqtgraph28 based plots in Mesmerize. This will 222 

further improve the shareability of data since a user will be able to interactively explore visualizations 223 

from a Mesmerize dataset without installing anything on their end. 224 

Shareable Datasets 225 

In summary, Mesmerize is the first platform to address common difficulties with 226 

reproducibility, data reusability, and organization in calcium imaging data analysis by comprehensively 227 

encapsulating image analysis, data annotation, analysis, and interactive visualizations. Mesmerize 228 

allows analysis procedures and annotations to be transparent at the level of the individual datapoints in 229 

a plot. This is achieved by tagging Universally Unique Identifiers (UUID) to the data at various layers 230 

of analysis, a key principle for the creation of a FAIR dataset. Mesmerize’s unique capacity for the 231 

robust maintenance of rich and complex annotations encourages users to exhaustively describe their 232 

datasets. A Mesmerize project is entirely self-contained within a single directory tree, making it easy to 233 

share entire datasets, analysis workflows, and interactive visualizations with the scientific community. 234 

Another scientist can open a Mesmerize project and immediately explore visualizations, analysis 235 

procedures, and view the raw data associated with the datapoints on a published figure. This ease of 236 
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opening a Mesmerize project and exploring datasets in conjunction with interactive visualizations will 237 

help scientists in making their data easily accessible and reusable.  238 

Lastly, in order to reach a broad range of users, Mesmerize is cross-platform and works on 239 

Linux, Mac OSX and Windows. Mesmerize is free, open source, uses the GNU General Public License 240 

v3.0 and is hosted on GitHub. In facilitate fast and easy installation on all major platform, we provide 241 

an importable Virtual Machine with Mesmerize pre-installed so that users can get up and running 242 

within minutes. Mesmerize is also on PyPI, which allows it to be installed via pip – the prevailing 243 

package manager for Python. We have a dedicated YouTube channel with more than 150 minutes of 244 

video tutorials, we host an active GitHub community to provide troubleshooting help, software 245 

maintenance, and a gitter room for open discussions. Mesmerize is regularly updated and there have 246 

been five releases in the past year (excluding bug-fix releases). This paper describes Mesmerize v0.7.1. 247 

See section “Documentation, source code and assistance” for details. 248 

Usage Examples 249 

Calcium imaging in the mouse visual cortex in response to visual sinusoidal grating stimuli 250 

Before we illustrate the more complex and novel analysis that can be performed with 251 

Mesmerize, we demonstrate its use for basic neurobiological analysis using a well-known phenomenon 252 

and a simple dataset. We used a mouse visual cortex dataset (dataset name: CRCNS pvc-7) contributed 253 

by the Allen Brain Institute, which consists of in-vivo 2-photon imaging data from layer 4 cells in the 254 

mouse visual cortex35 (Fig 2a). The recording was performed while the mouse was presented with 255 

visual stimuli consisting of sinusoidal bands at various orientations, spatial frequencies, and temporal 256 

frequencies. The stimulus mapping module in Mesmerize allows users to map temporal annotations, 257 

such as the characteristics of the visual stimuli in this experiment (Fig 2b). However, it can be used to 258 

map any temporal variable, such as behaviors and other forms of stimuli, with any number of 259 

characteristics. These temporal mappings can be entered manually through the GUI, or the scripting 260 

interface can be used to import a temporal mapping from a spreadsheet file. As we will show, these 261 
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temporal mappings can be incorporated into downstream analysis – an essential feature for streamlined 262 

analysis in systems neuroscience. The CaImAn NoRMCorre22 module and CNMF23 were used for 263 

motion correction and signal extraction respectively (Fig 2c). A flowchart, illustrated in Fig 2d, can 264 

then be used to determine how cells are tuned to various characteristics of the visual stimuli. An 265 

interactive heatmap can be used to visualize the result (Fig 2e). The heatmap can be labelled and sorted 266 

according to any categorical variable in the dataset, such as the orientation, spatial frequency, and 267 

temporal frequency that each cell is tuned to. As mentioned previously, clicking a datapoint in the 268 

heatmap will update the Datapoint Tracer, which then 1) highlights the spatial localization of the ROI 269 

that the datapoint originates from, 2) displays all other data associated to the datapoint (Fig 2e, bottom 270 

center), and 3) lists the analysis log (Fig 2e, top center) which can be exported as an analysis graph 271 

(Supplementary Figure 1). Another visualization that is appropriate for these data are Spacemaps. 272 

These allow users to spatially visualize categorical analysis results or annotations within the imaging 273 

field. For example, we show orientation tuning (Fig 2f), spatial frequency tuning (Fig 2g) and temporal 274 

frequency tuning (Fig 2h) of the cells in the “CRCNS pvc-7” dataset. The analysis of this basic dataset 275 

illustrates how Mesmerize can encapsulate entire analysis workflows. 276 

Analysis of a volumetric zebrafish calcium imaging dataset coupled to somatosensory stimulation  277 

Mesmerize is also capable of handling 3D volumetric imaging datasets with the same 278 

annotation and analysis capabilities that are provided for 2D datasets. In order to demonstrate some of 279 

these features we analyzed an in-vivo 2-photon imaging dataset where zebfrafish larvae expressing a 280 

nuclear localized GCaMP are presented with various forms of heat stimuli36 (Fig 3a). Users are 281 

provided with multiple options for ROI extraction from 3D data. Mesmerize can interface with the 282 

Caiman 3D CNMF23 implementation, or each plane can be processed individually using Caiman 2D 283 

CNMF. Furthermore, Mesmerize can utilize the NuSeT26 network to provide a deep-learning based 284 

segmentation tool for ROI extraction. These NuSeT-segmented ROIs that can then be used to initialize 285 
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CNMF. This example demonstrates how Mesmerize’s modular platform greatly simplifies the process 286 

of combining multiple cutting-edge tools, allowing them to be more easily adopted by a broader range 287 

of users. For this 3D dataset, CNMF with greedy initialization performed poorly (Fig 3b), which is 288 

likely due to lower signal-to-noise ratios that are more common with 2-photon volumetric imaging37. 289 

However, the performance of CNMF is greatly improved when it is initialized with binary masked 290 

produced by NuSeT (Fig 3b). After ROI extraction, the stimulus information was temporally mapped 291 

and a few imaging samples were used to create a Mesmerize project and perform downstream analysis. 292 

Interactive stimulus tuning plots can be obtained for every cell (Fig 3c-d), and these can be used to sort 293 

cells according to the stimulus they are tuned for (Fig 3e) and visualized using a spacemap (Fig 3f). 294 

Lastly, we used Mesmerize to train a Linear Discriminant Analysis (LDA) model and classified three 295 

distinct brain states that are observed during heat-on, heat-on-delayed and pre-stimulus (none) periods 296 

(Fig 3g). Put together, these demonstrate Mesmerize’s capabilities in handling 3D calcium imaging 297 

data and identifying distinct brain states using standard machine learning approaches, such as LDA 298 

decomposition. This example demonstrates how Mesmerize’s suite of analysis tools and annotation 299 

capabilities makes it a game-changer for cutting-edge systems neuroscience researchers in the present 300 

and into the future as volumetric imaging becomes more widespread. 301 

Functional fingerprinting of neuronal and non-neuronal cell types in C. intestinalis 302 

Having demonstrated how Mesmerize can be used to tackle several popular experimental 303 

paradigms in neuroscience, where neuronal dynamics are analyzed in the context of stimuli or 304 

behavior, we next addressed more contemporary/non-standard forms of analysis, with the aim of 305 

making novel biological findings. We thus turned our attention to spontaneous calcium activity datasets 306 

from both neuronal and non-neuronal cells in the absence of well-defined stimuli, in cells where typical 307 

neuronal spike trains have not been observed previously by leveraging the emerging model organism 308 

for systems neuroscience, the protochordate Ciona intestinalis. Neurobiological studies in C. 309 
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intestinalis have just gained momentum, with a handful of ethological studies38–40 and a few studies of 310 

calcium dynamics41. However no pan-neuronal calcium imaging analysis has been performed and such 311 

a study would be a great resource for the Ciona and greater chordate community. 312 

We chose C. intestinalis as model system to address the unique and fundamental question of 313 

spontaneous neuronal activity in neuronal and non-neuronal cells for multiple reasons. First, the recent 314 

completion of the larval connectome42–44 in conjunction with the generation of comprehensive single-315 

cell transcriptomes45,46 establishes the nervous system of C. intestinalis as likely the most thoroughly 316 

mapped chordate nervous system to date. Second, despite the established connectome, there has not 317 

been a comprehensive functional study to investigate neuronal activity across its diverse neuronal 318 

populations. Third, its small nervous system, flat head, and the ability to label genetically defined 319 

populations of cells using various promoters that drive GCaMP6s expression allow us to approximate 320 

the identity of neuronal cells in reference to the connectome42,43. Finally, to showcase comprehensive 321 

comparative calcium dynamics analysis within the same organism for applications beyond 322 

neuroscience, we additionally performed calcium imaging in two non-neuronal cell types in C. 323 

intestinalis, the epidermis and a population of migratory mesenchymal cells termed trunk lateral cells47 324 

(TLCs).The analysis methods developed in this work can be employed by cell and developmental 325 

biologists to study calcium-dependent mechanisms that underlie a broad range of cell biological and 326 

morphogenetic processes. 327 

Since our goal here was to quantitatively define calcium activities in cells and domains where 328 

typical neuronal spike trains have not been observed previously, we implemented techniques which 329 

have not been used prior to our study to analyze calcium dynamics. These methods can also be applied 330 

to understand calcium dynamics in other systems. Frequency-domain analysis has previously been used 331 

to compare calcium dynamics between experimental groups48,49and during cortical development50, 332 

however it has not been used for global clustering analysis to deduce more complex relationships 333 
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between cell types or experimental conditions. To fill this gap, we introduce the application of Earth 334 

Mover’s Distances51,52 (EMD) between frequency domain representations of calcium traces data as a 335 

distance metric for hierarchical clustering. The EMD is commonly used for pattern recognition and 336 

image retrieval systems through histogram comparison52. Intuitively, the EMD can be thought of the 337 

amount of work that must be done to transform one distribution into another. Therefore, in contrast to 338 

the Euclidean distance, the Earth Mover’s Distance accounts for the order of elements along two 339 

feature vectors that are being compared. This makes it a useful metric for performing clustering 340 

analysis using Discrete Fourier transforms (DFTs) of calcium traces since similar weights in 341 

neighboring, but not identical, frequency domains are measured as a small EMD whereas the same 342 

weights in far-apart frequency domains result in a large EMD between the feature vectors. To illustrate 343 

this, consider the traces from two cells that appear to have similar dynamics (Fig 4a), and their 344 

corresponding Fourier transforms (Fig 4b). If the order of elements along the DFT, shown as feature 345 

vectors u & v (Fig 4b), are randomly shuffled, the EMD between the shuffled vectors is different 346 

whereas the Euclidean distance is identical (Fig 4c). 347 

Next, we show how we used the EMD to cluster calcium dynamics of neuronal and non-348 

neuronal cells from C. intestinalis. To conceptually demonstrate the application of Earth Mover’s 349 

Distances, consider ten example traces (Fig 4d). It is important to note that these traces were not 350 

acquired over the same time period and we were not interested in finding neurons/cells that fire 351 

together (i.e. neural assemblies). Instead, we were interested in quantitatively categorizing neurons 352 

based on their overall dynamics. The EMD-based distance matrix shows better grouping than the 353 

distance matrices calculated using Euclidean distances (Fig 4e-f). To quantitatively demonstrate that 354 

the EMD performs better than Euclidean distances we performed hierarchical clustering and calculated 355 

the agglomerative coefficient (denoted by α ) - a score between 0 and 1 where values approaching 1 356 

indicate better clustering structure. With the ten example traces, the hierarchical clustering obtained by 357 

using the EMD metric results in an agglomerative coefficient α ≈ 0.841 (Fig 4g), whereas the clustering 358 
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obtained from Euclidean distances results in a coefficient α ≈ 0.574 (Fig 4h). When applied to a larger 359 

dataset the clustering structure found through EMD is even stronger with an agglomerative coefficient 360 

α ≈ 0.983 (Fig 4i), compared to α ≈ 0.663 for Euclidean distances (Fig 4j). Agglomerative coefficients 361 

tend to increase with the size of a dataset, therefore smaller datasets (Fig 4e-f) are more useful for 362 

evaluating performance between different metrics. Euclidean distances in the time-domain can be 363 

useful for grouping cells that fire together, however this is irrelevant since the traces were not acquired 364 

over the same time period. 365 

To compare our methods with techniques that have previously been used in clustering analysis 366 

of spontaneous neuronal activity, such as comparisons between various stages of the circadian cycle53, 367 

we benchmarked Silhouette and Davies-Bouldin scores using both hierarchical and k-means clustering. 368 

Earth Mover’s Distance based hierarchical clustering far outperforms standard hierarchical clustering 369 

using Euclidean distances, and k-means using both the time and frequency domain (Fig 4k-l). Since the 370 

data are not temporally aligned, k-means clustering would be unsuitable for our task and mostly results 371 

in aligned traces as expected (Supplementary figure 2). From these dendrograms and agglomerative 372 

coefficients, we demonstrate that the EMD metric between frequency-domain representations of 373 

calcium traces results in better separation of disparate dynamics and an aggregation of similar 374 

dynamics. Since this method is suitable for data that are not temporally aligned, it opens the potential 375 

for novel analysis of spontaneous activity during circadian cycles53, development50, and during 376 

pathological states using psychiatric disease-relevant models and paradigms49,54. 377 

To illustrate how the EMD is a simple and effective method for characterization of calcium 378 

dynamics across a diverse range of cell types, we performed hierarchical clustering on traces obtained 379 

by imaging various neuronal and non-neuronal populations of cells in the C. intestinalis head. 380 

Clustering of both neuronal and non-neuronal cells resulted in a dendrogram which was cut to form 4 381 

clusters, separating these cells into 4 distinct populations based on their activity profile (Fig 5a). 382 

Example traces from each of the four clusters show that Cluster 1 consists of cells with very low levels 383 
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of activity (Fig 5b). Cells within Cluster 2 show slightly more activity, and Cluster 3 is enriched with 384 

cells showing moderately more activity and shorter peaks. Cluster 4 is highly enriched with cells that 385 

show very high levels of activity. The cluster centroids help further describe the characteristics of the 386 

four clusters. Cluster 1 shows very high spectral energy in the lowest frequency domains, and relatively 387 

no spectral energy in higher frequency domains (Fig 5c). The amount of spectral energy in the lowest 388 

frequency domains increases progressively from Cluster 1 to Cluster 4, whereas the opposite is true for 389 

spectral energy in higher frequency domains. Cluster 4 shows the most spectral energy in higher 390 

frequency domains. Biologically, each of these 4 clusters are enriched with distinct populations of cells 391 

(Fig 5d). Cluster 1 is almost exclusively composed of CESA and HNK-1 cells exhibiting wide and 392 

large peaks, with large spectral energy in lower frequency domains. In contrast, neuronal cells are 393 

predominantly found in Clusters 3 and 4, with a few peripheral sensory neurons also found in Cluster 394 

2. Peripheral sensory neurons, such as Pap, aATEN, pATEN and RTEN, are highly enriched in Cluster 395 

2 and 3. Cluster 4, with cell showing very high activity, mostly consists of various types of 396 

photoreceptor cells and interneurons. 397 

This analysis demonstrates that the combination of DFT with EMD allow us to identify 398 

different activity states in non-neuronal cell types and to classify different neuronal cell types in 399 

different groups based on their activity dynamics. We show that this clustering separates genetically 400 

defined populations of peripheral & sensory neurons, from populations located within the brain vesicle 401 

which form the Central Nervous System. Most interestingly, four cell types involved in peripheral 402 

sensory networks namely the Palp Sensory Neurons (PSNs), the rostal trunk epidermal neurons 403 

(RTEN), and the apical trunk epidermal neurons (aATEN & pATEN) exhibit similar modes of activity 404 

and are enriched in Cluster 2 and 3. Previous anatomical studies44,55,56 postulated that PSNs provide 405 

feedforward excitation to the RTENs, while all four cell types appear to exhibit a glutamatergic 406 

molecular signature55,57. The similarity in their activity ‘signatures’ that we observe in our imaging 407 

analysis provides functional support for this hypothesis. Cells that are mostly primary interneurons 408 
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within the brain vesicle all exhibit high levels of activity and cluster together (Fig 5d). These cell types 409 

include interneurons that are postsynaptic to the RTENs such as the peripheral interneurons (PNIN), 410 

interneurons closely associated with photoreceptors such as the photoreceptor tract interneuron (trIN) 411 

and the photoreceptor relay neurons (prRN), antenna relay neurons (antRN) which receive input from 412 

the gravity sensing cells and finally the Eminens (Em) peripheral relay neurons which are thought to be 413 

one of the main centers of integration in the larval nervous system42.  The high activity that these 414 

different types of interneurons exhibit could reflect the possibility that they receive more complex 415 

inputs due to their intermediate positions in different sensory networks. 416 

The distinct clustering of cell types shown here is likely indicative of cellular function and 417 

molecular composition. For example, the slower calcium dynamics observed in Cluster 1 likely reflect 418 

the contribution of calcium signaling in homeostatic cellular processes58 such as epidermal barrier 419 

formation and maintenance, and processes mediating motility and cell-shape changes in mesenchymal 420 

cells. Neuronal cells are inherently noisy compared to other excitable cell types59, such as epithelial 421 

cells, even in the absence of any discernable stimuli. However noise, or spontaneous activity, is often 422 

important for many neurobiological processes such as development50, encoding60 and stochastic 423 

resonance61–64 - a signal-boosting strategy employed by sensory circuits and other neurophysiological 424 

systems where noise from neurons exhibiting spontaneous activity is injected to increase the sensitivity 425 

of sensory circuits. Spontaneous activity in developing circuits have been studied semi-quantitatively, 426 

including frequency analysis50. These fields could greatly benefit from a method to quantitatively 427 

compare and cluster large numbers of diverse cell types to create cell-type signatures at various stages 428 

of development, which could complement the ever growing transcriptomic data that are more 429 

commonly used to generate cell-type signatures65. Put together, this work reveals how spontaneous 430 

activity is sufficient to broadly derive cell-specific functional fingerprints in C. intestinalis larvae. This 431 

simple but broadly applicable technique can be used in other model systems to define discrete 432 

functional domains for specific populations or sub-types of neurons and provides a novel way to 433 
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quantitatively characterize the overall dynamics of calcium, or other molecules and ions. 434 

 435 

Motif extraction from shape-based analysis of calcium imaging data 436 

To extract additional valuable information from our calcium imaging datasets, here we 437 

demonstrate another downstream analysis method, k-Shape clustering31,66, on our C. intestinalis dataset 438 

using Mesmerize. Many experiments in neuroscience and cell biology require a quantitative method to 439 

define discrete archetypical shapes from calcium traces, as well as traces that may represent changes in 440 

the levels of other molecules such as those obtained from neurotransmitter or voltage indicators, etc. 441 

Thus, the methods described here will be broadly applicable to trace-containing datasets and not 442 

limited to calcium datasets. In the early days shape archetypes were defined subjectively67–70, and 443 

currently the most common method is to describe peak-features such as amplitude, width, slope, etc71. 444 

However, certain biological systems such as the developing nervous system or adult nervous system in 445 

the context of pathological conditions (e.g. seizures) display complex and irregular types of calcium 446 

activity, which makes the use of such metrics less suitable. Here we apply k-Shape clustering, a 447 

contemporary time-series analysis technique to tackle this problem. This method allows us to 448 

comprehensively compare peaks directly so that we can reduce calcium traces to sequences of discrete 449 

motifs. K-Shape clustering uses a normalized cross-correlation function to derive a shape-based 450 

distance metric that can be used to extract a finite set of discrete archetypical peaks from calcium traces 451 

(Fig 6a). These clusters can be visualized using PCA of peak features to illustrate how the k-Shape 452 

clustering maps to more traditional peak-features based measures. K-Shape derived archetypes can then 453 

be used to reduce calcium traces to sequences of discrete letters, and statistical models, such as Markov 454 

Chains (Fig 6d-g), can be applied to describe calcium dynamics between different types of cells or 455 

experimental groups. For example, the Markov Chains created using k-Shape-sequences derived from 456 

HNK-1 traces (Fig 6d-e) are very simple, characteristic of the simple calcium dynamics that these cell 457 

exhibit. On the other hand, Markov Chains that represent photoreceptor cells (Fig 6f-g) are much more 458 
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complex. In summary, we show that k-Shape clustering could provide a contemporary approach to 459 

answering questions in various systems, such as examining stimulus-response profiles, behavioral 460 

periods, etc. This approach can likely be further tailored to extract motifs from imaging calcium, 461 

neurotransmitters, voltage or other Genetically Encoded Indicators (GEIs) using different organisms, to 462 

investigate conserved and species-specific mechanisms. 463 

 464 

Conclusion 465 

We demonstrate here that Mesmerize is a platform that can be used to perform novel, complex, 466 

and reproducible calcium imaging data from a diverse range of cell types and organisms.   467 

Mesmerize addresses a contemporary need in the field of functional imaging namely, the requirement 468 

for a platform with cutting edge analytical tools capable of tackling 2D and 3D datasets that is 469 

accessible to biologists with a broad range of competence in terms of computational skills and 470 

biological interests. We show that Mesmerize can analyze a wide range of datasets from multiple 471 

organisms with morphologically diverse brains and cell types, which were acquired using different 472 

imaging techniques (e.g., 2-photon imaging, epifluorescence) in the absence or presence of 473 

spatiotemporally defined external stimuli.   474 

While the creation of a user-friendly platform was of paramount importance, this should not 475 

come at the expense of novelty, expandability, traceability and broad applicability. Mesmerize provides 476 

new analyses techniques such as EMD based hierarchical clustering and k-Shape clustering in 477 

combination with Markov Chains, equipping users with new tools to extract functional fingerprints and 478 

to delineate the basic building blocks and organization of calcium activity from diverse cell types. Our 479 

platform can be readily integrated with popular imaging processing tools such as Suite2p and can 480 

utilize newly published cutting-edge tools such as the deep learning tool NuSeT, which as we 481 

demonstrate can markedly improve the performance of the well-established and popular signal 482 

extraction method CNMF(E). Importantly, Mesmerize’s capacity to produce FAIR datasets by the 483 
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encapsulation of raw data, analysis procedures and interactive plots en masse provides a blueprint for 484 

other projects and future software platforms. In future directions, Mesmerize could provide 485 

neuroscientists with a user-friendly interface to back-end tools such as DataJoint6 and NWB7. This will 486 

help create a community where traceable visualizations and reproducible analysis become more 487 

common in the biological sciences. 488 

Mesmerize provides the opportunity to combine functional fingerprinting (calcium signal or 489 

other using GEIs) with genetic fingerprinting (e.g. regulatory elements) in genetically tractable 490 

organisms with the potential to simplify systems-level analyses that utilize complex combinations of 491 

categorical variables that include multiple genotypes, drugs, and other experimental groups. Our 492 

functional imaging analysis of genetically defined neuronal and non-neuronal cell types in C. 493 

intestinalis showed that different neuronal cell types can be grouped together based on their calcium 494 

fingerprint. In addition, it also revealed for the first time some of the basic building blocks that build 495 

the observed calcium activity (k-Shape derived archetypes) and how these building blocks can be 496 

organized (Markov Chains) in order to generate distinct calcium dynamics. The C. intestinalis datasets  497 

(both neuronal and non-neuronal) generated in this work will enrich an ever-growing ecosystem of 498 

openly available genomic45,46, morphological and genetic72–74 resources for an emerging model system 499 

for neuroscience and beyond.   500 

  501 
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Methods  502 

Obtaining C. intestinalis 503 

Adult Ciona intestinalis were obtained and maintained as described previously38. Briefly, the 504 

adults were collected from Døsjevika, Bildøy Marina AS near Bergen, 5353, Norway and housed in 505 

filtered seawater at 10°C in constant illumination. 506 

Electroporation of zygotes 507 

Electroporation was performed as described by L. Christiaen etc. al.75; adult Ciona intestinalis 508 

were dissected to obtain eggs & sperm to perform fertilization in-vitro. Zygotes were then 509 

dechorionated using sodium-thioglycolate solution and placed on a rocker for ~6 minutes until zygotes 510 

were fully dechorionated. Zygotes were electroporated in a mannitol solution with 70-100μg of DNA 511 

depending on the typical expression levels of a given construct. Embryos were cultured in ASW 512 

(artificial sea water, Red Sea Salt) at 14°C until they were swimming larvae to be used for imaging. 513 

The pH of the ASW was 8.4 at 14 °C. The salinity of the ASW was 3.3–3.4%. 514 

Imaging 515 

 Stage 26 larvae were embedded in 1.5% low melting point agarose (Fisher BioReagents, 516 

BP1360-100) between two coverslips to minimize scattering and bathed in artificial sea water. 517 

Illumination was provided by a mercury lamp with a BP470/20, FT493, BP505-530 filterset. A 518 

Hamamatsu Orca FlashV4 CMOS camera acquired images at 10Hz with exposure times of 100ms 519 

using a custom application76 using a python library for interfacing with Hamamatsu cameras77. Imaging 520 

was performed at 16°C using a Zeiss Examiner A1 with a water immersion objective ZEISS W B- 521 

ACHROPLAN 40x. 522 

Signal Extraction  523 
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 Images were motion corrected using NoRMCorre22 and signal extraction was performed using 524 

CNMFE25 with parameters optimized per video. Extracted signals that were merely movement or noise 525 

were excluded. All parameters for motion correction and CNMFE can be seen in the available dataset. 526 

Cells were identified with the assistance of the connectome42,43 to the best of our capability with 1-527 

photon data (Supplementary Figure 3). Only regions that covered cell bodies were tagged, axons were 528 

not tagged with cell identity labels. 529 

Hierarchical Clustering 530 

 Analysis was performed using the Mesmerize flowchart. All traces extracted from CNMFE 531 

were normalized between 0 – 1. The Discrete Fourier Transform (DFT) of the normalized data was 532 

calculated using `scipy.fftpack.rfft` from the SciPy (v1.3) Python library29. The logarithm of the 533 

absolute value of the DFT data arrays were taken, and the first 1000 frequency domains (corresponding 534 

to frequencies between 0 – 1.67 Hz) were used for clustering. This cutoff was determined by looking at 535 

the sum of squared differences (SOSD) between the raw curves and interpolated Inverse Fourier 536 

Transforms (IFTs) of the DFTs with a step-wise increase in the frequency cutoff (Supplementary 537 

Figure 4). The SOSD changes negligibly beyond 1.67 Hz, and inclusion of higher frequencies would 538 

likely introduce noise. At 1001 frequency domains, corresponding to 1.676 Hz, the cumulative sum of 539 

the mean SOSD corresponds to 94.5% of the total cumulative sum from all frequency domains (i.e. all 540 

domains up to Nyquist frequency). Earth Mover’s Distance (EMD) was used as the distance metric 541 

through the OpenCV78 (v3.4) EMD function and complete linkage was used for constructing the tree. 542 

The dendrogram was cut to obtain 4 clusters according to the maxima of the silhouette scores (Fig 4k). 543 

The Davies-Bouldin score was also relatively low for 4 clusters (Fig 4l). Silhouette scores were 544 

calculated using sklearn30 v0.23 and a custom written function was used to adapt the Davies-Bouldin 545 

score for Earth Mover’s Distances. Euclidean Davies Bouldin scores were calculated using sklearn30 546 

v0.23. 547 
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k-Shape Clustering 548 

This method uses a normalized cross-correlation function to derive a shape-based distance 549 

metric66. The tslearn31 implementation is used in Mesmerize. Tslearn v0.4 was used. Peak-curves were 550 

used as the input data for k-Shape clustering and the parameters can see seen in Supplementary Figure 551 

5. A gridsearch was performed to optimize the hyperparameters and obtain a set of clusters with 552 

minimum inertia (sum of within cluster distances) with no empty clusters. The search range for the 553 

number of clusters to form was 2-14. For each iteration of the gridsearch, peak-curves were ordered 554 

based on half-peak-width and partitioned into n_cluster partitions and a random centroid seed was 555 

picked from each partition. 556 

Markov Chains 557 

Cluster membership of peaks, as determined through k-Shape clustering, was used to express 558 

calcium traces as discretized sequences. These sequences were used to create Markov Chain models 559 

using the pomegranate79 Python library. 560 

Determining stimulus tuning of cell within the CRCNS pvc-7 and zebrafish datasets 561 

All stimulus periods were extracted and the average response was calculated for each stimulus, 562 

such as an orientation, spatial frequency, or temporal frequency for the pvc-7 data set; or heat-on, heat-563 

off, and none (inter-trial period). The stimulus tuning of the cell was then determined as the stimulus 564 

which produced the highest mean response in that cell. For more details, this is calculated by the 565 

`get_tuning_curves()` function within `mesmerize.plotting.widgets.stimulus_tuning.widget`. The 566 

analysis graph for the analysis of the pvc-7 dataset can be seen in Supplementary Figure 1, and the 567 

analysis graph for the analysis of the zebrafish dataset can be seen in Supplementary Figure 6. 568 

Linear Discriminant Analysis 569 
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 The “Neural Decompose” node was used in the Mesmerize flowchart to perform supervised 570 

LDA. Each timepoint of the recording is used as a feature vector containing the intensity values for 571 

each cell at that timepoint. The model was trained using the stimulus periods (heat-on, heat-on-delayed, 572 

and none) for classification. 573 

Promoters 574 
 575 
To drive the expression of GCaMP6s population in different cell types in Ciona intestinalis larvae we 576 
used the following promoters:  577 
Gene Unique ID Gene Model ID Name Abbr. Length 

Cirobu.g00010959 KH.L128.92 Proprotein/Prohormone 
convertase 2 

pc2 2.86kb 

Cirobu.g00008038 KH.C7.211 CesA cesa 2.2kb 

Cirobu.g00014653 KH.S544.3 DMRT1 dmrt1 1.29kb 

Cirobu.g00004616 KH.C2.42 Brn3b/POU4 brn3b 3.78kb 

Cirobu.g00006491 KH.C4.403 HNK133 hnk1 3.0kb 

Cirobu.g00010171 KH.C9.608 PDE9 pde9 4.43kb 

Cirobu.g00012642 KH.L42.6 CNG Channel 4 cng_ch4 1.48kb 

Cirobu.g00003963 KH.C14.52 EEF1A1 eef1a 1.96kb 

Sequences for several of these promoters were obtained from DBTGR74.  578 
 579 

Primer name Primer sequence 
PC2 GW-FW g g g g a c a a c t t t g t a t a g a a a a g t t gCAGCAGTCAAAGGGTTTCTTGAAACAC 
PC2 GW-RV g g g g a c t g c t t t t t t g t a c a a a c t t gGCTGCTTTAAGAATTCTTCGTTTTTTCAC 
CesA GW-FW g g g g a c a a c t t t g t a t a g a a a a g t t gCCCGGTGCTTTGAAAATTGACAAG 
CesA GW-RV g g g g a c t g c t t t t t t g t a c a a a c t t gGAACTCGTATATCTTGATGGTTTGG 
DMRT1 GW-FW g g g g a c a a c t t t g t a t a g a a a a g t t gTCAGAACGAGGCGCTACATGATC 
DMRT1 GW-RV g g g g a c t g c t t t t t t g t a c a a a c t t gCACTGTTCTAAGCAAGGTATCAAGG 
Brn3b/Pou4 GW-
FW 

g g g g a c a a c t t t g t a t a g a a a a g t t gCGACTGTAACAAGTTCTAAACAGAGC 

Brn3b/Pou4 GW-RV g g g g a c t g c t t t t t t g t a c a a a c t t gATATCGTATCAAAAAATATACAATAAGTCTG 
HNK1 GW-FW g g g g a c a a c t t t g t a t a g a a a a g t t gCAGCACGGGTTGAGTCAATGAAAC 
HNK1 GW-RV g g g g a c t g c t t t t t t g t a c a a a c t t gACGCACCAGGAAGTTAAATAAAACC 
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PDE9 GW-FW g g g g a c a a c t t t g t a t a g a a a a g t t gATTCATGGCTGATATACCCGGTTG 
PDE9 GW-RV g g g g a c t g c t t t t t t g t a c a a a c t t gCTATGCTGTTGTAGAATCTGTATATAG 
CNG4 GW-FW g g g g a c a a c t t t g t a t a g a a a a g t t gCTCCGTTTCGTGGAAAACTCATTTTTC 
CNG4 GW-RV g g g g a c t g c t t t t t t g t a c a a a c t t gACTGGACTCTAGACACAGACAGC 
EEF1A1 GW-FW g g g g a c a a c t t t g t a t a g a a a a g t t gGTGACGGGAAAACGATAGTCG 
EEF1A1 GW-RV g g g g a c t g c t t t t t t g t a c a a a c t t gTTTGGAAGGTTGGGGTTAACC  

 580 
The amplified PCR products were gel purified and inserted into P4-P1R vector using BP Clonase II.  581 
Positive clones identified by restriction digest were sequenced. Subsequently we performed a 4-way 582 
Gateway Recombination using one of the promoters in the 1st position, GCaMP6s in the 2nd positon 583 
and unc-54 3’UTR in the 3rd position. These were recombined into a pDEST II. Expression constructs 584 
were electroporated at a range of concentrations (80-120µg). 585 
 586 
C. elegans strain generation and imaging 587 

To generate construct drg1 [prab-3::GCaMP6m::NLS::unc-54 3’UTR] we performed a 4-way 588 
Gateway recombination reaction using LR Clonase II (Invitrogen). We recombined pDEST II with the 589 
following entry clones: 1st position a 1.2kb promoter of rab-3 (a kind gift from Dr. Inja Radman, Chin 590 
lab, MRC LMB); 2nd position GCaMP6m fused to SV40NLS at the N-terminus and EGL-13 NLS 591 
sequence at the C-terminus and 3rd position unc-54 3’UTR. The resulting construct was injected into 592 
N2 animals at 100µg/µl to generate strain SCB1. C. elegans young adults were immobilized on 1% 593 
agarose pads (in M9) using DERMABOND (2-Octyl Cyanoacrylate) glue.  594 
 595 
Dataset availability 596 
The datasets are available as a Mesmerize project and can be downloaded from figshare: 597 
 C. intestinalis: https://doi.org/10.6084/m9.figshare.10289162 598 
 C. elegans: https://doi.org/10.6084/m9.figshare.10287113 599 
 CRCNS pvc-7 as a Mesmerize dataset: https://doi.org/10.6084/m9.figshare.10293041 600 
 Zebrafish dataset as a Mesmerize dataset: https://doi.org/10.6084/m9.figshare.14748915 601 
 602 
Notebooks that produce some of the figures and the Markov Chains are available on GitHub and can be 603 
used on binder. 604 

https://github.com/kushalkolar/mesmerize_manuscript_notebooks 605 
https://mybinder.org/v2/gh/kushalkolar/mesmerize_manuscript_notebooks/master 606 

 607 
 608 
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Package Type
Suited for Ca 
imaging

3D calcium 
imaging

Motion 
correction

ROI 
Extraction

Project 
Management

ROI 
Annotation

Temporal 
annotation

Sample 
Annotation

Graphical 
Interfaces

Scripting 
interfaces

Downstream 
analysis

FAIR Dataset 
Creation Visualization

Interactive 
Visualization

Mesmerize Platform
Caiman Pipeline
Suite2p Pipeline
EZCalcium Pipeline
SIMA Pipeline
S. A Romano Pipeline
SamuROI GUI Tool
DataJoint Workflow Management
OMERO Platform
Biaflows Platform
Cytomine Platform
openBIS Platform
KNIME Platform

Mesmerize:
Available:
Limited:

Not Available:
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Table 1 | Overview of various image analysis tools 
An overview of various tools for calcium imaging analysis and dataset organization. The availability of 
various features for calcium imaging analysis, data annotation, data management, analysis, and, 
visuzalition are shown. 
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Fig 1 | Mesmerize platform overview 
(a) Raw imaging data that can originate from a variety of sources, examples shown from 1-photon 
calcium imaging of Ciona intestinalis, 2-photon imagine of the mouse visual cortex neurons and 
volumetric 2-photon imaging of zebrafish. (b) Mesmerize’s highly modular design allows ROI 
extraction to be performed through a variety of methods such as CaImAn CNMF(E), NuSeT deep 
learning, or manually. ROIs can also be imported from Suite2p, ImageJ, or a custom module can be 
written using the API to import ROIs from other sources. (c) The Mesmerize Viewer lets users explore 
their imaging data and integrates with various viewer modules such as: (d) Stimulus Mapping module 
which allows users to map temporal information, such as stimulus or behavioral periods; (e) ROI 
Manager which can work with ROIs originating from a variety of sources, as shown in [b], and allows 
users to tag an unlimited variety of categorial information such as anatomical location, cell type, 
morphology, etc. for each ROI. (f) All data pertaining to an imaging session, i.e. the image sequence, 
calcium curves, ROIs, tags (annotations), stimulus mappings, and all other categorical information are 
packaged into a “Project Sample” and saved to the Project Dataset. (g) The samples within a Project 
Dataset can be interactively managed using the Project Browser. (h, i, j) Project Datasets, or sub-
datasets, can be loaded into a flowchart which allows users to interactively perform downstream 
analysis. Simplified examples of how flowcharts can be used to (e) explored stimulus or behavioral 
responses, (i) analyze peak features (width, amplitude, slope etc.) or perform k-Shape clustering and (j) 
perform hierarchical clustering. (k) Downstream analysis in flowcharts are integrated with various 
forms of highly interactive plots such as cross-correlation analysis. Many interactive plots are 
associated with a (l) Datapoint Tracer where users can click on individual datapoints to view the spatial 
location of the ROI that it originates from, along with all other data associated with that datapoint. (m) 
The Datapoint Tracer shows in [l] also lets users view the analysis history log for every datapoint in the 
form of an Analysis Graph. This graph will also allow users to view any pre-processing or ROI 
extraction parameters that were used (not shown here for simplicity). 
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Fig 2 | Stimulus tuning of cells from the CRCNS PVC-7 dataset. 
(a) Video of cells within the visual cortex of a mouse being presented with visual stimuli consisting of 
sinusoidal gratings. These stimuli can be mapped onto the imaging data using the (b) Stimulus 
Mapping module of the Mesemrize Viewer. (c) The video was processed using the Mesmerize Batch 
Manager, which allows users to conveniently manage computationally intestensive tasks such as 
CaImAn NoRMCorre motion correction and CNMF(E). The CNMF results are imported in the 
Mesmerize Viewer and are packaged into a Project Sample with the imaging data and stimulus maps. 
(d) Flowchart which illustrates basic stimulus tuning analysis that can be performed in Mesmrize 
flowcharts. (e) Heatmap widget showing the results of the stimulus tuning anlysis flowchart in [d]. The 
heatmap shows min-max normalized calcium traces. The y-axis color labels show the orientation 
tuning of the cells. These plots are interactive, allowing the user to plot various forms of numerical 
data, such as raw traces, normalized traces, ΔF/F0, z-scored traces etc., the relationships between 
numerical data and various form of categorial data such as stimulus tuning, ROI tags, etc. The spatial 
location of the ROI and calcium trace, along with any other tagged data, can be seen on the right-hand-
side panels of the widget (Datapoint Tracer). The stimulus tuning of individual cells can also be 
visualized using “Space maps” to visualize the (f) orientation tuning of cells, (g) spatial frequency 
tuning, and (h) temporal frequency tuning. Space maps can be used to visualize ROIs with respect to 
any categorial variables. 
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Fig 3 | Mesmerize handles 3D calcium imaging data 
(a) Mesmerize can work with volumetric calcium imaging data. (b) Frame from one plane of the 
volumetric dataset. CNMF with greedy initialization is unable to detect many cells in this relatively 
noisy dataset, however CNMF seeded with NuSeT segmentation picks up many more cells. (c) 
Mesmerize datapoint tracer showing a cell highlighted in red, and the corresponding calcium trace. The 
tuning curves of this cell are shown in (d), which shows that this cell is tuned to heat-on stimulus. (e) 
Min-max normalized calcium traces sorted by their stimulus tuning profiles, heat-on, heat-on-delayed, 
and none. (f) Space map showing the stimulus tuning characteristic of each cell. (g) LDA projection 
showing distinct brain states for heat-on, heat-on-delayed and none between each stimulus trial. 
Scalebars: 100 microns. 
heat-on: cells which respond to the heat stimulus 
heat-on-delayed: cells which show a delayed response to the heat stimulus 
none: cells which are more active between the stimulus trials and less active during heat-on and heat-
on-delayed stimulus periods. 
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Fig 4 | The Earth Mover’s Distance is a robust metric for broadly characterizing calcium activity. 
(a) Two example calcium traces, u & v, in the time domain. (b) Discrete fourier transforms of  u & v are 
used as feature vectors. The Earth Mover’s Distance (EMD) between u & v is 1.30, the Euclidean 
(EUC) distance between u & v is 22.72. (c) A random shuffle is applied to feature vectors u & v. The 
Earth Mover’s Distance (EMD = 5.93) is altered by the random shuffle, however the Euclidean 
distance (EUC = 22.72) is identical. This demonstrates how the order of elements along a feature vector 
is captured by the EMD, which is necessary for effectively comparing discrete Fourier Transforms. (d) 
Eleven example calcium traces from C. intestinalis. (e) Distance matrix showing Earth Mover’s 
Distances between discrete Fourier Transforms of the eleven calcium traces from [d]. (f) Distance 
matrix showing Euclidean Distances between discrete Fourier Transforms of the eleven calcium traces 
from [d]. (g) Dendrogram constructed from [e], with a high agglomerative coefficient (α ≈ 0.841, best = 
1, worst = 0) indicating good hierarhical clustering. (h) Dendrogram constructed from [f], with a low 
agglomerative coefficient (α ≈ 0.574) indicating poor hierarhical clustering. (i-j) Dendrograms showing 
hierarhical relationships between over 200 calcium traces. (i) Dendrogram calculated using EMD, 
showing a very high agglomerative coefficient (α ≈ 0.983) that indicates good clustering performance. 
Cells near the top of the tree show slow and sparse calcium dynamics, cells closer to the bottom of the 
tree show much more active and complex calcium dynamics. (j) Dendrogram calculated using 
Euclidean distances, showing a moderate agglomerative coefficient (α ≈ 0.663). (k) Silhouette scores 
comparing clustering performance of various methods. Higher scores indicate better clustering 
performance. Hierarchical clustering using the EMD between discrete Fourier Transforms outperforms 
other methods. (k) Davies-Bouldin scores comparing clustering performance of various methods. 
Lower Davies-Bouldin scores indicate better clustering performance. This score also demonstrates that 
hierarchical clustering using the EMD between discrete Fourier Transforms outperforms other methods. 
Legend: 
H – EMD – F : Hierarchical clustering using the EMD between discrete Fourier transforms. 
H – EUC – F : Hierarchical clustering using the Euclidean distances between discrete Fourier 
transforms. 
KMeans – F : k-means clustering using discrete Fourier transforms as feature vectors. 
KMeans – T : k-means clustering using calcium traces in the time domain as feature vectors. 
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Fig 5 | Spontaneous calcium dynamics in C. intestinalis reveals cell type signatures. 
(a) Hierarchical clustering of calcium dynamics observed in neuronal and non-neuronal cells within the 
head of C. intestinalis. Dendrogram show hierarchical relationships. Left colorbar between the 
dendrogram and heatmap indicates cluster membership. Right colorbar legend indicates cell identity. 
Heatmap shows normalized traces. (b) Example traces from each cluster. (c) Cluster centroids in both 
the time domain (top) and frequency domain (bottom). (d) Proportion of cells that appear in each of the 
four clusters. For each cell type, proportions sum up to 100% across all 4 clusters. 
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Fig 6 | k-Shape clustering and Markov Chains 
(a) Cluster means from k-Shape clustering of peaks from neuronal and non-neuronal cells in the head 
of C. intestinalis. Clusters are assigned alphabetical labels according to their half peak width. Error 
bands show within-cluster standard deviation. (b) PCA of peak-features showing how k-Shape 
clustering maps onto the PCA space. (c) Inverse transform for each of the input features showing the 
characteristics of the PCA space. (d) State Transition Matrix of a Markov Chain created from 
discretized sequences of HNK-1 cell calcium traces and the corresponding (e) state transition graph. (f) 
State Transition Matrix of a Markov Chain created from discretized sequences of photoreceptor cell 
calcium traces and the corresponding (g) state transition graph. Color scales in (d) and (f) are transition 
probability. Numbers on the transition graphs in (e) and (g) also show transition probability. Transition 
probabilities less than 0.1 were excluded to reduce visual clutter.  
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