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Abstract— We present a local alignment search tool not 
based on the usual strategy of seed and grow often employed 
for these tools. Instead, we just find regions in the database 
sequences having a high density of seed matches and then we 
perform a Smith-Waterman local alignment of the query 
sequence into these regions. This approach has some 
advantages for some use cases. 
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I. INTRODUCTION  

BLAST [1] is by far the most widely used tool for rapid 
similarity searching among nucleic acid or amino acid 
sequences.  

BLAST does well its job and there are also many 
alternatives that apparently work fairly well. Therefore, there 
is no practical reason to justify why we developed SLAST. 
We just had the opportunity to develop it and we did. Indeed, 
to be honest, we developed it because we were unable to 
make BLAST work properly due to bad parameter selection. 
We found later that it works well with the right parameters 
but we already had developed SLAST by that time.  

Therefore, the basic idea of SLAST does not have, in 
practice, any big advantage over BLAST or other similar 
tools. But we think the way in which it is encapsulated to 
provide a functionality does indeed have some advantages, 
and despite the core technology of SLAST is in theory 
replaceable by any of the other ones (which in theory are 
faster and with similar reliability), not doing that does not 
impose any big impediment for the functionality of the tool. 
We are not sure either that there are theoretical reasons why 
SLAST could not evolve to be as fast as BLAST. It could be 
that it actually isn’t because of a lack of optimization as it is 
just a first version. 

What SLAST actually really does differently than 
BLAST (not sure about the other ones) is the formatting of 
the results. SLAST is really(!!) a local alignment search tool, 
which BLAST is not. SLAST makes a search for the 
complete query sequence, not for subsequences of the query 
sequence. The output of SLAST are really local alignments 
of the full query sequence into the database sequences. 
Indeed, the output are alignments done by means of the 
Smith-Waterman [2] algorithm. 

We observe that finding local alignments instead of 
similar subsequences has some practical advantages that are 
actually not easily available for BLAST users. 

II. METHOD 

As has already been explained, the idea behind SLAST is 
quite simple: finding segments of sequences in the database 
with a high density of seed matches and then applying 
Smith-Waterman to these regions. These are the steps 
involved: 

1. Selecting seeds 

There are some possible configurations. For example, we 
can split the query sequence into same-size seeds or we can 
select as seeds every subsequence of the query sequence. We 
can also implement intermediate strategies, like selecting 
subsequences of fixed length starting at even positions of the 
query sequence. Depending on this configuration the 
algorithm will go faster or slower and will have more or less 
accuracy.  

The way in which the database is indexed also affects the 
performance of the algorithm. If we index the sequences 
splitting them into same-size chunks starting at even 
positions it will, in theory, miss some matches, but using 
every position as start it will cover all possibilities (at the 
cost of more space needed for indexing). 

 

Fig. 1. Indexing based on same-size chunks (16 bps) located at even 
positions. 

 

Fig. 2. Indexing based on same-size chunks (16 bps) located at every 
position. 

 

2. Making a search for every seed 

The indexing technology that we use is able to match 
sequences even if they have some characters deleted, 
inserted, or modified. Therefore, even if the indexing 
configuration does not cover all subsequences in the 
database, it could anyway find the corresponding matches. 
The sensibility to mismatches, insertions or deletions can 
also be configured in another parameter. The user only needs 
to keep in mind that if he uses that ability in the indexing 
technology to cover possible misses, then it will miss some 
matches corresponding to insertions or deletions that really 
occurred by evolution (as the ‘wildcard’ will be used to 
cover the artificial miss or misses generated by the 
configuration). You also have to think that the more sensible 
the indexing technology is, the slower it is. 
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Fig. 3. Matches for different query seeds. 

So, we played with all these parameters and found a 
configuration that works well enough for our purposes and 
we let the user select the sensibility of the indexing tool to 
choose between some faster and less accurate modes or 
slower and more accurate ones. 

3. Mapping matches in the database sequences 

Once we have made a search for every seed, we map all 
these matches to the sequences in the database. Another 
parameter that can be configured is how many matches are 
returned per seed search. Usually, limiting that number 
increases performance and does not have any impact on the 
accuracy (for long enough sequences) given that even if a 
seed misses a match there are more seeds likely matching the 
same sequence. 

4. Selecting regions with a higher density of matches 

Finally, a window with the size of the query sequence is 
displaced along the sequences in the database and the 
window positions with more matches are selected. These are 
the regions for which the Smith-Waterman algorithm will be 
applied.  

III. BENCHMARKS 

The algorithm is in general slower than BLAST in its 
actual version, but we are not sure it is because of intrinsic 
disadvantage and not because of not proper configuration 
and optimization of the code. But nonetheless, in most cases, 
it is not exponentially slower than BLAST. 

Database 
looking into 

Query 
length 

Sensibility Time 
spent 

Threads Max 
memory 
usage 

Full set of 
prokaryotes 

900 
bps 

High About 
one hour 
per 
strand 

8 30 GB 

The full 
mouse 
genome 

900 
bps 

High About 8 
minutes 
per 
strand 

8 24 GB 

Chromosome 
19 of the 
mouse 

300 
bps 

Moderate About 
30 
seconds 
per 
strand 

1 3 GB 

Fig. 4. Time spent for making queries over different databases with a 
single computer (8 cores 30 GB of memory). 

IV. ADVANTAGES 

We find that SLAST has advantages for some tasks. 

A. Finding homolog short non-conserved sequences 

For short sequences not subject to conservation the 
accumulation of mutations can make related sequences 
hardly recognizable, especially for algorithms that focus on 
finding consecutive matches between base pairs, as BLAST 
does. Therefore, BLAST will return even shorter sequences 
as matches, these being so short that they could even be due 
to chance in some cases. BLAST does not compare the rest 
of the sequence. 

In contrast, once SLAST finds a region with enough 
matching seeds, it tries to make an alignment of similar size 
to the query sequence. Therefore, even if the sequence is 
very eroded by mutations, the sequences with fewer 
mutations will still have less distance to the query than the 
most eroded ones. This way, you will get higher scores for 
closer matching results and lower scores for more eroded 
ones. 

For example, if you make a search for AluSq10 
sequences in the genome of the mouse, BLAST will return 
thousands of short matches on average 60 bps long, while the 
sequence used as query was 292 bps long. 

 

Fig. 5. Pairwise alignment of fragment of AluSq10 query sequence and a 
BLAST match in chromosome 1 of the mouse 

SLAST will return, in contrast, thousands of alignments 
like the one in fig. 6. 

 

Fig. 6. Pairwise alignment of AluSq10 query sequence and a SLAST 
match in chromosome 19 of the mouse 

Note also how BLAST omits repetitive sequences like 
the final A’s which in some circumstances can enhance 
speed and limit useless matches but not in this case. 
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B. Getting data for phylogenetic trees  

Phylogenetic trees usually require a multiple alignment 
of sequences to compare. If these sequences have different 
sizes, the difference in size is filled with gaps. These gaps, 
therefore increase the distance between the sequences even if 
some bps in the original sequences were matching. That, 
therefore, takes to a less reliable tree. 

Therefore, SLAST matching sequences are more useful 
for making phylogenetic trees than BLAST ones, especially 
when comparing a large number of short sequences and 
when manually curating the data is not a practical option. 

V. CONCLUSIONS 

Despite we have not found evidence that a strategy 
consisting on applying the Smith-Waterman algorithm to 
regions with a high density of seed matches has, in most 
cases, any advantage over the usual seed and grow strategy, 
we find that in some cases, it does. 

We need to investigate further for additional use cases for 
which our strategy could also have advantages. 

On the other hand, we have not found evidence either 
that this strategy has less potential for designing this sort 

of tool (finding similar sequences in a database), being 
actually its only considerable drawback that it’s slower 
than BLAST. But we have not tested yet how the 
performance compares when applying FPGAs or GPUs 
to this strategy. That also is left for future research. 
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