
SLAST: Simple Local Alignment Search Tool

Juanjo Bermúdez
Non-affiliated

Hospitalet de Llobregat, Spain
juanjo75es@gmail.com

Abstract— We present a local alignment search tool not
based on the usual strategy of seed and grow often employed
for these tools. Instead, we just find regions in the database
sequences having a high density of seed matches and then we
perform a Smith-Waterman local alignment of the query
sequence into these regions. This approach has some
advantages for some use cases.

Keywords — Sequence similarity, BLAST, DNA search, local
alignment, phylogenetic trees, homolog sequences

I. INTRODUCTION

BLAST [1] is by far the most widely used tool for rapid
similarity searching among nucleic acid or amino acid
sequences.

BLAST does well its job and there are also many
alternatives that apparently work fairly well. Therefore, there
is no practical reason to justify why we developed SLAST.
We just had the opportunity to develop it and we did. Indeed,
to be honest, we developed it because we were unable to
make BLAST work properly due to bad parameter selection.
We found later that it works well with the right parameters
but we already had developed SLAST by that time.

Therefore, the basic idea of SLAST does not have, in
practice, any big advantage over BLAST or other similar
tools. But we think the way in which it is encapsulated to
provide a functionality does indeed have some advantages,
and despite the core technology of SLAST is in theory
replaceable by any of the other ones (which in theory are
faster and with similar reliability), not doing that does not
impose any big impediment for the functionality of the tool.
We are not sure either that there are theoretical reasons why
SLAST could not evolve to be as fast as BLAST. It could be
that it actually isn’t because of a lack of optimization as it is
just a first version.

What SLAST actually really does differently than
BLAST (not sure about the other ones) is the formatting of
the results. SLAST is really(!!) a local alignment search tool,
which BLAST is not. SLAST makes a search for the
complete query sequence, not for subsequences of the query
sequence. The output of SLAST are really local alignments
of the full query sequence into the database sequences.
Indeed, the output are alignments done by means of the
Smith-Waterman [2] algorithm.

We observe that finding local alignments instead of
similar subsequences has some practical advantages that are
actually not easily available for BLAST users.

II. METHOD

As has already been explained, the idea behind SLAST is
quite simple: finding segments of sequences in the database
with a high density of seed matches and then applying
Smith-Waterman to these regions. These are the steps
involved:

1. Selecting seeds

There are some possible configurations. For example, we
can split the query sequence into same-size seeds or we can
select as seeds every subsequence of the query sequence. We
can also implement intermediate strategies, like selecting
subsequences of fixed length starting at even positions of the
query sequence. Depending on this configuration the
algorithm will go faster or slower and will have more or less
accuracy.

The way in which the database is indexed also affects the
performance of the algorithm. If we index the sequences
splitting them into same-size chunks starting at even
positions it will, in theory, miss some matches, but using
every position as start it will cover all possibilities (at the
cost of more space needed for indexing).

Fig. 1. Indexing based on same-size chunks (16 bps) located at even
positions.

Fig. 2. Indexing based on same-size chunks (16 bps) located at every
position.

2. Making a search for every seed

The indexing technology that we use is able to match
sequences even if they have some characters deleted,
inserted, or modified. Therefore, even if the indexing
configuration does not cover all subsequences in the
database, it could anyway find the corresponding matches.
The sensibility to mismatches, insertions or deletions can
also be configured in another parameter. The user only needs
to keep in mind that if he uses that ability in the indexing
technology to cover possible misses, then it will miss some
matches corresponding to insertions or deletions that really
occurred by evolution (as the ‘wildcard’ will be used to
cover the artificial miss or misses generated by the
configuration). You also have to think that the more sensible
the indexing technology is, the slower it is.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 15, 2019. ; https://doi.org/10.1101/840546doi: bioRxiv preprint

https://doi.org/10.1101/840546
http://creativecommons.org/licenses/by-nc-nd/4.0/

Fig. 3. Matches for different query seeds.

So, we played with all these parameters and found a
configuration that works well enough for our purposes and
we let the user select the sensibility of the indexing tool to
choose between some faster and less accurate modes or
slower and more accurate ones.

3. Mapping matches in the database sequences

Once we have made a search for every seed, we map all
these matches to the sequences in the database. Another
parameter that can be configured is how many matches are
returned per seed search. Usually, limiting that number
increases performance and does not have any impact on the
accuracy (for long enough sequences) given that even if a
seed misses a match there are more seeds likely matching the
same sequence.

4. Selecting regions with a higher density of matches

Finally, a window with the size of the query sequence is
displaced along the sequences in the database and the
window positions with more matches are selected. These are
the regions for which the Smith-Waterman algorithm will be
applied.

III. BENCHMARKS

The algorithm is in general slower than BLAST in its
actual version, but we are not sure it is because of intrinsic
disadvantage and not because of not proper configuration
and optimization of the code. But nonetheless, in most cases,
it is not exponentially slower than BLAST.

Database
looking into

Query
length

Sensibility Time
spent

Threads Max
memory
usage

Full set of
prokaryotes

900
bps

High About
one hour
per
strand

8 30 GB

The full
mouse
genome

900
bps

High About 8
minutes
per
strand

8 24 GB

Chromosome
19 of the
mouse

300
bps

Moderate About
30
seconds
per
strand

1 3 GB

Fig. 4. Time spent for making queries over different databases with a
single computer (8 cores 30 GB of memory).

IV. ADVANTAGES

We find that SLAST has advantages for some tasks.

A. Finding homolog short non-conserved sequences

For short sequences not subject to conservation the
accumulation of mutations can make related sequences
hardly recognizable, especially for algorithms that focus on
finding consecutive matches between base pairs, as BLAST
does. Therefore, BLAST will return even shorter sequences
as matches, these being so short that they could even be due
to chance in some cases. BLAST does not compare the rest
of the sequence.

In contrast, once SLAST finds a region with enough
matching seeds, it tries to make an alignment of similar size
to the query sequence. Therefore, even if the sequence is
very eroded by mutations, the sequences with fewer
mutations will still have less distance to the query than the
most eroded ones. This way, you will get higher scores for
closer matching results and lower scores for more eroded
ones.

For example, if you make a search for AluSq10
sequences in the genome of the mouse, BLAST will return
thousands of short matches on average 60 bps long, while the
sequence used as query was 292 bps long.

Fig. 5. Pairwise alignment of fragment of AluSq10 query sequence and a
BLAST match in chromosome 1 of the mouse

SLAST will return, in contrast, thousands of alignments
like the one in fig. 6.

Fig. 6. Pairwise alignment of AluSq10 query sequence and a SLAST
match in chromosome 19 of the mouse

Note also how BLAST omits repetitive sequences like
the final A’s which in some circumstances can enhance
speed and limit useless matches but not in this case.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 15, 2019. ; https://doi.org/10.1101/840546doi: bioRxiv preprint

https://doi.org/10.1101/840546
http://creativecommons.org/licenses/by-nc-nd/4.0/

B. Getting data for phylogenetic trees

Phylogenetic trees usually require a multiple alignment
of sequences to compare. If these sequences have different
sizes, the difference in size is filled with gaps. These gaps,
therefore increase the distance between the sequences even if
some bps in the original sequences were matching. That,
therefore, takes to a less reliable tree.

Therefore, SLAST matching sequences are more useful
for making phylogenetic trees than BLAST ones, especially
when comparing a large number of short sequences and
when manually curating the data is not a practical option.

V. CONCLUSIONS

Despite we have not found evidence that a strategy
consisting on applying the Smith-Waterman algorithm to
regions with a high density of seed matches has, in most
cases, any advantage over the usual seed and grow strategy,
we find that in some cases, it does.

We need to investigate further for additional use cases for
which our strategy could also have advantages.

On the other hand, we have not found evidence either
that this strategy has less potential for designing this sort

of tool (finding similar sequences in a database), being
actually its only considerable drawback that it’s slower
than BLAST. But we have not tested yet how the
performance compares when applying FPGAs or GPUs
to this strategy. That also is left for future research.

VI. ACKNOWLEDGMENTS

The authors of this research adhere to the Agile Science
Manifesto v 1.0 [3] and this document was written in
concordance with its arguments.

REFERENCES

[1] Altschul SF1, Gish W, Miller W, Myers EW, Lipman DJ., “Basic

local alignment search tool” Journal of Molecular Biology, Volume
215, Issue 3

[2] Smith, Temple F. & Waterman, Michael S. (1981). "Identification of
Common Molecular Subsequences" Journal of Molecular Biology.
147 (1): 195–197. CiteSeerX 10.1.1.63.2897. doi:10.1016/0022-
2836(81)90087-5. PMID 7265238

[3] Juanjo Bermúdez, “The Agile Science Manifesto”,
http://www.dnaservic.es/agilesciencemanifesto

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 15, 2019. ; https://doi.org/10.1101/840546doi: bioRxiv preprint

https://doi.org/10.1101/840546
http://creativecommons.org/licenses/by-nc-nd/4.0/

