
Detection of pre-microRNA with Convolutional
Neural Networks

Jorge Cordero 1, Vlado Menkovski 1 and Jens Allmer 2

1Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
2Medical Informatics an Bioinformatics, Hochschule Ruhr West, University of Applied Sciences, Mülheim an der Ruhr, Germany

MicroRNAs (miRNAs) are small non-coding RNA sequences
that have been implicated in many physiological processes. Fur-
thermore, miRNAs have been shown to be important biomark-
ers for diseases and their mimics are tested as drug candidates.
The experimental discovery of miRNAs is complicated because
both miRNAs and their targets need to be expressed for the con-
firmation of functional interaction. This is difficult since miRNA
expression is under spatiotemporal control. This has motivated
the development of computational methods for miRNA detec-
tion. Such computational methods typically involve the charac-
terization of candidate sequences with features designed by do-
main experts and the application of statistical or machine learn-
ing algorithms. While such features can successfully encode
domain knowledge, feature engineering is a difficult and time-
consuming task. Additionally, some engineered features pose
excessive computational complexity that can hinder the large
scale detection of miRNA. In contrast, advances of representa-
tion learning methods such as deep learning provide for auto-
matic development of effective features directly from data. In
this work, we propose a method that uses domain knowledge to
create an efficient image representation of miRNA molecules en-
coding sequence, structure, and implicitly some thermodynamic
information. We then use this low-level feature representation
of the molecules to develop a hierarchical deep representation
using a convolutional neural network model, which directly de-
tects precursor miRNAs. With this method we achieve state-of-
the-art performance on all previously used datasets. Addition-
ally, detection is achieved in real time thereby overcoming the
high computational cost for current pre-miRNA feature calcu-
lations such as p-value based ones. Finally, the encoding and
modeling process opens possibilities for interpretability of the
models’ behavior, which may lead to novel biological interpre-
tations of miRNA genesis and targeting.

1. Introduction

Mature microRNAs (miRNAs) are small noncoding RNAs
18-24 nucleotides long involved in regulating gene expres-
sion. They derive from longer RNA sequences called pre-
cursor miRNAs (pre-miRNAs) via a controlled pathway (1).
These miRNAs are involved in most biological processes,
ranging from cell differentiation, organ development, and an-
gionesis to apoptosis (2, 3). In humans, deregulated miRNAs
have been associated with cancer (4, 5), autoimmune diseases
(6), and neurological disorders (5). Due to their presence
in body fluids, miRNAs are considered good candidates for
noninvasive biomarkers. As of today, hundreds of miRNAs

have been identified for several species and many more are
predicted to exist.

There are many methods to experimentally detect miRNAs,
but they are quite involved and can only detect actually ex-
pressed miRNAs. However, many miRNAs and their targets
that are only expressed under specific conditions, therefore,
escape detection. This has led to the development of com-
putational methods to aid the detection of miRNAs and pre-
miRNAs. Among these methods, machine learning (ML) al-
gorithms have become widely used for pre-miRNA detection
(7). These algorithms train models using features usually de-
rived from primary sequence, secondary structure, and ther-
modynamic properties, or mixtures thereof, as well as math-
ematical transformations. The trained models are then used
to detect pre-miRNAs from candidate sequences.

ML approaches rely on engineered features created by do-
main experts to produce quality results; however, develop-
ing relevant features is time consuming and error prone as
it has major impact on the performance of ML models (8).
Nonetheless, an abundance of features has been described to
parameterize pre-miRNAs (9). For instance, dinucleotide fre-
quencies (10) quantify primary sequence composition, local
contiguous triplet elements (11) measure primary sequence
composition and secondary structure combined, and thermo-
dynamic properties such as enthalpy (12) quantify the sta-
bility of the secondary structure. While these features allow
ML models to learn useful parameters for classification, they
also restrict the amount of useful information models can ac-
cess. Thus, ML practitioners frequently perform feature se-
lection procedures to select the most informative features to
train useful models. The effects of feature selection in pre-
miRNA prediction have been shown in the works of (13, 14),
where a large number of features are reduced to the most in-
formative ones. Furthermore, the performance of ML models
is also tied to the training and testing datasets. This effect is
reported in a study of all ab initio pre-miRNA classification
methods published previously (15).

In this work, we aim to build a pre-miRNA detection proce-
dure that uses deep learning (DL) models. DL models auto-
matically learn high level informative features that are used
to compute the model’s output by applying a series of trans-
formations to low level weakly informative features corre-
sponding to the model’s input. DL has enabled solutions to
many long-standing ML problems in domains such as im-
age analysis, natural language processing, and speech recog-
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Fig. 1. Precursor miRNA detection framework. First, a nucleotide sequence (a) is encoded into an RGB image (b) that represents its hairpin structure. Then, using a CNN
model, the corresponding label (c) is predicted. Additionally, a saliency map (d) can be computed to explore the pixels that influence the prediction.

nition. Following the success of convolutional neural net-
works (CNNs) on image classification challenges, such as the
AlexNet (16) and ResNet (17), these DL methods have been
recently applied in bioinformatics. For instance, CNNs have
been used for gene expression prediction (18) and DNA se-
quence binding prediction (19). Most notably, DeepVariant
(20) encodes sequence alignments as images that are used
to train CNN models for the prediction of genetic variation.
Regarding pre-miRNA prediction, the work of Do et al. (21)
employs deep CNNs to identify pre-miRNAs from candidate
sequences encoded as matrices containing information of pri-
mary sequence, secondary structure, and minimum free en-
ergy. The latter, although using DL, relies on hand crafted
features, encoding the information into what they call pairing
matrices as input for their 2D CNN.

Here, we leverage the fact that CNNs can capture localized
spatial patterns and infer features based on these patterns.
We propose a pre-miRNA detection framework (Figure 1)
that consists of an encoding procedure that generates inter-
mediate representations of nucleotide sequences and a CNN
model that uses these representations for pre-miRNA detec-
tion. The encoding procedure (Figure 2) transforms signif-
icant characteristics of the primary sequence and secondary
structure into color images that expose potential patterns in
the pre-miRNA structure. These images allow domain ex-
perts to visually inspect relevant characteristics of nucleotide
sequences, but more importantly, they can be used by CNNs
to automatically build useful higher level features for pre-
miRNA detection. Additionally, this encoding allows us to
interpret the decisions made by CNNs via inspecting the cor-
responding saliency maps. These maps show the effect that
each region (pixel) of an image has on the decision of a CNN
model allowing for the interpretation of the relationship be-
tween input, image, and model decision.

We implemented our approach in the tool DeepMir, which
is available at http://www.jacorderox.com. Ad-
ditionally, CNN models ready to classify candidate pre-
miRNAs and Python scripts to train CNNs on new datasets
are available at https://github.com/jacordero/
deepmir. Application of DeepMir to datasets used by Saçar
et al. (15) revealed that our framework identifies pre-miRNAs
of several species better than SVMs, Decision Trees, Naive
Bayes models, as well as ensemble models trained using
different sets of features. More importantly, DeepMir out-
performs the best ML models in this work (mostly ensem-
ble models) at classifying candidate sequences from novel
datasets. The efficiency and accuracy of DeepMir for pre-
miRNA detection makes it applicable to the analysis of large

eukaryotic genomes.

2. Materials and Methods

Datasets. Nucleotide sequences from various positive and
negative datasets, taken from a study by Saçar et al. (15),
were encoded as hairpin images to train and evaluate CNN
models:

• miRBase: pre-miRNAs downloaded from the miR-
Base 21st release (http:www.mirbase.com) con-
taining 28,596 examples from several species

• hsa: subset of miRBase containing 1,881 human pre-
miRNAs

• mmu: subset of miRBase containing 1,193 mouse pre-
miRNAs

• mmu*: subset of 380 mouse pre-miRNAs extracted
from miRBase with at least 100 reads per million

• MirGeneDB: set of 1,434 pre-miRNAs downloaded
from http://www.mirgenedb.org

• hsa+: subset of 523 human pre-miRNAs extracted
from MirGeneDB

• mmu+: subset of 395 mouse pre-miRNAs extracted
from MirGeneDB

• gga+: subset of 229 chicken pre-miRNAs extracted
from MirGeneDB

• dre+: subset of 287 zebra fish pre-miRNAs extracted
from MirGeneDB

• NegHsa: negative dataset containing 68,046 unique se-
quences introduced by Gudys et al. (22)

• Pseudo: negative dataset composed of 8,492 pseudo
pre-miRNAs proposed by Ng et al. (10)

• Shuffled: negative dataset containing 1,423 entries cre-
ated by shuffling human pre-miRNAs

• Zou: negative sequences generated by applying a sam-
ple selection technique to sub-sequences obtained from
coding regions of known mature miRNAs (23)

• Chen: negative examples sampled from Zou and
Pseudo (24)

• NotBestFold: negative dataset containing suboptimal
folds of pre-miRNAs from miRBase (15)

Using these positive and negative example datasets, we cre-
ated two datasets to train CNN models for pre-miRNA de-
tection, modmiRBase and modhsa. The modmiRBase dataset
contains positive examples obtained from miRBase after re-
moving duplicate sequences. The modhsa dataset contains
only the unique human hairpin images present in modmiR-
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Fig. 2. Encoding the cel-mir-83 pre-miRNA as color image. From a primary RNA sequence, the secondary structure is computed using RNAFold with default values (a). The
structure is presented in the dot bracket format underneath the sequence. The computed fold and primary sequence are then co-aligned, with the hairpin section (b). The
terminal loop (red section) is included twice and is left aligned. Finally, the corresponding color image is generated (c).

Base. Negative examples for both datasets were obtained
from the Pseudo, Shuffled, and NegHsa datasets.

Joining the positive and negative elements directly would re-
sult in heavily unbalanced datasets. For instance, the modhsa
dataset would have a negative to positive ratio of about 40:1
(3:1 for modmiRBase). For such an unbalanced dataset, it is
easy to obtain high accuracy values on classification tasks by
building classifiers that output the majority class label. How-
ever, the recall values are typically very low for such classi-
fiers. To reduce the effects that unbalanced datasets can have
on trained classifiers, Weis (25) recommends techniques to
overcome issues with unbalanced datasets such as sampling
methods. Accordingly, in this work, we use a subsampling
method to create datasets having the same number of positive
and negative entries. For the modhsa dataset, the same num-
ber of negative examples are selected in a stratified manner
from each of the three selected negative datasets. In contrast,
for the modmiRBase dataset, we include all elements from
Pseudo and Shuffled but sampled a subset of images from
NegHsa.

Hairpin Encoding. In our approach we aim to leverage the
power of deep CNN models to develop effective represen-
tations of the low-level high dimensional data that enable
accurate classification. On the other hand, we also would
like to benefit from available knowledge on the base pair in-
teraction and their bond strengths (thermodynamic informa-
tion) as these properties play a major role in the forming of
miRNA molecules. We, therefore, developed an encoding of
the pre-miRNA sequence information as an image, enriched
with its secondary structure and implicit thermodynamic in-
formation.

For a given nucleotide sequence, the encoding procedure
works as follows. First, the secondary structure is predicted
using RNAFold (26) with default settings (see Figure 2(a)).

Then, as illustrated in Figure 2(b), the resulting fold and
sequence are aligned according to the structural constraints
given by the parentheses in the predicted secondary structure
with the complete terminal loop (depicted in red) duplicated
on the left. Next, we represent this structure as an image by
using different colors to encode nucleotides and gaps (A: yel-
low, C: blue, G: red, U: green, and gap: black). The strength
of the bonds between the nucleotides are represented by ex-
tending the nucleotide pixels from the middle up and down
towards the top and bottom of the image accordingly. Specif-
ically, the length of the bar representing the nucleotide pairs
takes into account different bond strengths: G-C > A-U >
G-U > gap. G-C bonds are represented with one pixel above
and below the mid-line of the image using the appropriate
colors defined above. A-U bonds get an additional pixel and
G-U wobbles two pixels, in order to represent lower bond
strengths compared to G-C bonds, towards the top and bot-
tom of the image, respectively. The final strength of the bond
is not only defined by the nucleotide pair, but by their neigh-
bouring pairs as well. This spatial context is represented by
extending the nucleotide pixels (weakening the bond) when a
pair is adjacent to other mismatches or gaps. So, a sequence
of consecutive mismatches is represented by an additional ex-
tension of the nucleotide pixels in the middle of the section
(see Figure 2(c)). Finally, this representation is pasted on a
fixed sized image canvas of 100×25 pixels. This results in
pre-miRNAs larger than 100 base pairs being cleaved on the
stem side, which is an acceptable compromise since the ma-
ture miRNA is expected to be close to the loop and typically
consist of around 18-24 nucleotides.

CNN Models. Many successful CNN architectures have
been proposed for natural image processing. However, the
synthetic images generated by our hairpin encoding method
have different statistical properties than the data used to
train these CNN models. Therefore, we developed cus-
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Fig. 3. Elements of the VGG-Style-3M-256FU network.

tom based architectures that use architectural ideas and com-
ponents from successful models such as Visual Geometry
Group (VGG) (27), GoogLeNet (28), and ResNet (17). We
tested a number of models (48) that include different varia-
tions of successful practices in CNN design. The architecture
of these models can be found in Tables 3 to 5, and the perfor-
mance of each trained model is shown in Tables 7 to 9.

Among all designed CNNs, the model named VGG-Style-
3M-256FU obtained the best performance. This CNN (de-
picted in Figure 3) is based on the VGG architecture and con-
tains three convolutional modules and one fully connected
module. The convolutional modules have two convolutional
layers each, where each convolutional layer has a fixed num-
ber of filters (48, 60, or 72) with shape 3×3. Then, a max-
pool layer with filter shape 2×2 and a dropout layer follow
the convolutional layers. Finally, the fully connected module
maps the features obtained in the last convolutional module to
the output that represent the probability of the input molecule
being detected as pre-miRNA. This module is composed by
a fully connected layer with 256 units, a dropout layer, and a
softmax output layer.

Saliency maps for pre-miRNA images. The image repre-
sentation of the pre-miRNA and the CNN model enable us to
visualize the salient regions (pixels relevant for the decision
making of the model) of those images. These salient regions
indicate to which parts of the molecule our model is sensitive.
We obtain saliency maps using smoothed guided backprop-
agation (29, 30). Sensitivity analysis such as this allows for
interpretations of the behaviour of the CNN model. As DL
models and other complex machine learning models are typi-
cally black-boxes, enabling interpretation poses a significant
advantage for the expert evaluation of their decisions which
in turn results in higher adoption rates of the model.

3. Experiments and Results

For the training of DL models with the architectures out-
lined in Figure 1 and Tables 3 to 5 positive and negative
examples of pre-miRNAs are needed. As positive exam-
ples, we selected 1,830 human hairpin images and combined
them with 1,830 negative example images taken from the
Pseudo, Shuffled, and NegHsa datasets (610 examples from
each dataset). In the following, we will refer to this dataset
as the modhsa dataset. Since this dataset is limited in size,

but the largest available for a single species, we also develop
a second, larger dataset that contains 24,801 images contain-
ing all species in miRBase as positive examples and an equal
number of negative images selected from the Pseudo, Shuf-
fled, and NegHsa datasets. We will refer to this larger dataset
as modmiRBase in the following.

Initially, CNN models were trained using 70% of the hairpin
images randomly selected from modhsa, while the remain-
ing hairpin images were used for testing. These models were
implemented using the Keras library (31). For training, we
used the Adam (32) optimization algorithm with default val-
ues (learning rate of 0.001, β1 = 0.9, β2 = 0.999, ε = 1−7,
and decay of 0), 100 epochs as the number of iterations over
the entire training dataset, and a batch size of 128 correspond-
ing to the number of samples used by Adam to update the
CNN parameters. Training directly on the modhsa dataset,
we achieve ∼ 92% accuracy.

The modhsa dataset can be considered small for training deep
learning models, as they tend to perform better when trained
on large datasets. For some image analysis tasks, such as
digit recognition or object recognition, it is relatively easy to
collect more positive examples. In contrast, in this study we
were limited to previously verified pre-miRNAs. Addition-
ally, data augmentation techniques typically used in image
analysis where transformation of the image data is possible
without changing the target classification are also not suit-
able for this case. We did, however, in our case benefit from
using a transfer learning approach, i.e., we pre-trained the
CNNs on different datasets and then fine-tuned the models on
the modhsa dataset. Transfer learning typically provides ad-
vantages when restricted amounts of data are available. The
strategy is to develop good low-level detectors on data with
similar properties (or solving a similar task), which can then
effectively be used on the target task to boot-strap the training
process.

Specifically, we pre-trained the model using a subset of hair-
pin images from modmiRBase that does not contain images in
modhsa. These subset of images contains a larger number of
pre-miRNAs that share similar statistical properties to human
pre-miRNAs. The pre-training procedure was performed us-
ing 40 epochs, Adam with default values, and a batch size of
128. The resulting pre-trained models were then fine-tuned
using 70% of the entries in the modhsa dataset, and the re-
maining 30% were used for testing. For fine-tuning, we used
100 epochs, Adam with default values, and the same batch
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Table 1. CNN models compared against the best ML models selected among
trained instances of DTs, NBs, and SVMs trained by Saçar et al. These ML mod-
els were trained and tested using human pre-miRNAs from miRBase and negative
sequences from the Pseudo dataset. The base-CNN model was trained using only
the modhsa dataset and the fine-tunned-CNN model was pre-trained using modhsa
and fine-tuned using modmiRBase.

Model Number of features Accuracy
fine-tunned-CNN 2 0.952
base-CNN 2 0.917
Chen 99 0.913
Ng 29 0.899
Ding 32 0.888
Batuwita 21 0.875
Gudys 28 0.874
Burgt 18 0.872
Bentwich 26 0.870
Gao 57 0.863
Jiang 34 0.862
Lopes 13 0.860
Xu 35 0.857
Ritchie 36 0.849
Xue 32 0.811

size.

As shown in Tables 7 to 9, the CNN models resulting from
pre-training outperform the models without pre-training.
Overall, the best pre-trained CNN reaches 95% accuracy
while the best non pre-trained CNN only reaches 92%. The
performance of our best pre-trained models and their corre-
sponding non pre-trained versions is displayed in Table 6.
From these results, we select the pre-trained VGG-Style-3M-
256FU network as our best CNN model (fine-tuned-CNN).

We compare the performance of our models with exist-
ing work employing SVM, decision trees (DTs), and Naive
Bayes(NB) models trained by Saçar et al. (15) using features
defined in the works of Xue (11), Ng (10), Batuwita (12),
and Gudys (22), among others. The balanced dataset used
to train these models contains human hairpins obtained from
miRBase and negative sequences sampled from the Pseudo
dataset. The dataset was split 70%-30% for training and test-
ing respectively. In the study by Saçar et al. the average per-
formance over 1000fold MCCV for SVM, DT, and NB mod-
els was computed for varying feature sets. Here, features are
automatically learned from the graphical representation. We
here evaluated a large number of models by training and test-
ing CNNs derived from different architectures and picked a
model in that process. Since many models are not achieving
good performance and because this is not an inherent dis-
criminator for the other models, we present the best model
instead of the average model accuracy. The accuracy values
of the selected ML models, our best CNN, and the corre-
sponding CNN without pre-training (base-CNN), are shown
in Table 1. We observe a considerable difference in per-
formance between the best ML model (Chen) and the fine-
tunned-CNN. These results suggest that CNNs can learn to
extract relevant features from the hairpin images and develop
accurate detection model for pre-miRNAs.

Fig. 4. ROC curves for for fine-tunned-CNN and base-CNN. The area under the
curve for both models shows they have an excellent performance predicting positive
and negative pre-miRNAs.

ROC curves computed for both CNNs (see Figure 4) show
that the fine-tuned-CNN excels at discriminating between
positive and negative examples. Hence, in case we need to
trade accuracy to reduce the false positive rate, this model
could still perform similar to the best ML models from Table
1. Additionally, the ROC curves also indicate that our mod-
els excel at identifying negative examples, which is expected
because both models were trained using balanced datasets.

Models for pre-miRNA detection are expected to identify
novel pre-miRNAs. Due to the nature of our study, we could
not validate that our framework can detect unknown pre-
miRNAs using experimental methods as done for example by
Bentwich and colleagues (33). Instead, as done in most stud-
ies concerned with pre-miRNA prediction (e.g.:, (14, 34)),
we used several positive and negative datasets to observe the
performance of our CNNs when applied to previously un-
seen hairpin images. We consider that if our models perform
well at classifying unseen nucleotide sequences, they should
perform equally well with novel pre-miRNAs. Therefore,
we evaluated our models using several positive and negative
datasets and compared their performance against the best two
ensemble models employed by Saçar et al. (AverageDT and
ConsensusNB). The results shown in Table 2 indicate that the
four models are better at predicting positive sequences than
negative ones. For instance, all models obtain a true negative
rate lower than 0.6 on the Zou dataset (the most difficult neg-
ative dataset for both CNNs, but also for all ML approaches).
On the contrary, although mmu appears to be a difficult pos-
itive dataset for both ML models, the CNNs perform well on
this dataset. Overall, our CNNs obtain an excellent perfor-
mance on positive and negative datasets. By looking at the
average accuracy, we observe that both CNNs perform better
than existing ensemble-based models. Saçar et al. previously
noted, that with higher data quality (mmu < mmu* < mmu+)
true positive and true negative prediction rates improve (15)
and the same can be observed for CNN performance.

To further evaluate our CNN model, we selected the organ-
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Table 2. Successful detection of non pre-miRNA for negative datasets and pre-miRNA for positive datasets. AverageDT and ConsensusNB are the best two ensemble
models from Saçar et al. The fine-tunned-CNN and base-CNN models correspond to the VGG-Style-3M-256FU network with and without pre-training respectively.
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fine-tunned-CNN 97 26 91 97 99 65 98 93 97 93 100 100 99 100 100
base-CNN 93 43 74 97 96 62 98 91 95 82 99 99 98 99 99
AverageDT 82 56 93 31 93 77 97 83 95 91 97 98 96 98 96
ConsensusNB 89 52 86 24 96 77 86 82 93 89 96 96 93 98 97

isms having at least 200 entries in the complete miRBase
dataset, and used these examples to compute true positive rate
(TPR) values per organism. The resulting TPR values for the
fine-tuned-CNN and both ensemble models are depicted in
Figure 5. We observe that the fine-tunned-CNN outperforms
the other models for most of the organisms. Among the 44
selected organisms, the fine-tuned-CNN achieves the highest
accuracy on 33 of them. Note that all models achieve lower
performance classifying tca, ame, and bmo. But even for
these organisms, fine-tuned-CNN still obtains a reasonable
performance, while for bmo, the other three models perform
like a random classifier. Perhaps this performance could be
related to the use of miRBase data during the fine-tuned-CNN
pre-training. Nonetheless, this network still outperforms both
ML models on previously unseen data such as MirGeneDB
and NotBestFold.

To understand the decision making process of our model in
respect to the locations in the hairpin structure, we produce
average saliency maps of the true positives (Figure 6) and
true negatives (Figure 7). These images show that the CNN
focuses on different regions to predict true pre-miRNAs and
false pre-miRNAs. The central pixels are important for posi-
tive hairpin images, while top and central pixels are important
for negative images. From a biological point of view these
images give us a certain level of sanity check. We see that
our model is not sensitive to the hairpin loop that is present
in both positive and negative images. This seems to be con-
trary to the biological understanding that a pre-miRNA must
have a terminal loop, however, any RNA structure that folds
back on itself must have a terminal loop and, therefore, the
negative examples all have terminal loops, therefore this fea-
ture is not discriminative for the given data. We also see that
the model is not sensitive to regions of the image that are not
representing parts of the miRNA molecule such as the edges.
This give us a certain level of confidence that our model be-
haves as expected, however, we leave a more in-depth analy-
sis of the behavior towards developing explicit interpretations
to future work.

4. Discussion

In our experimental study, both proposed CNN models out-
perform the ensemble models proposed in izMiR, for the

NegHsa, NotBestFold, Shuffled, MirGeneDB, mmu, mmu+,
and dre+ datasets (Table 2). We achieve similar performance
for Pseudo and perform worse only on Chen and Zou. The
performance, particularly stands out on NotBestFold dataset,
which can be explained by the direct encoding of structure
in the images. Sub-optimal folds often do not resemble pre-
miRNAs and are, therefore, correctly rejected by both CNNs.
On average, fine-tuned-CNN performs better than the other
models. Thus, DeepMir uses this model for nucleotide se-
quence classification.

The results also demonstrate that transfer learning can be
used for developing models for other species that have a
small number of known pre-miRNAs. In principle, we could
select any valid pre-miRNA for the pre-training procedure.
Therefore, we should be able to generate CNN models for
organisms that have enough pre-miRNAs to perform the fine-
tuning procedure. The resulting models could be used on the
DeepMir framework, as it allows for the usage of different
CNNs. Hence, when necessary, new models could be incor-
porated to DeepMir.

Besides having excellent performance, one of the main ad-
vantage of this approach is that the detection can be done
with significantly lower computational complexity than other
methods that rely on engineered features. To detect a pre-
miRNA sequence we execute two steps; the encoding of the
hairpin image and the detection with the neural network. The
hairpin encoding algorithm only runs RNAfold once per se-
quence. All other calculations are significantly simpler. In
contrast, several of the ML features are based on statistics
and need to rerun RNAfold for the randomly shuffled se-
quence up to a thousand times with additional feature calcula-
tions which may not be trivial (9, 10). For some sequences it
may not be possible to create a thousand different sequences.
Taken together, some features take a thousand fold longer to
be created than an image; and for sequences some additional
runtime may be required since a thousand different randomly
shuffled sequences cannot be created. The detection with the
neural network model is very efficient. The computational
complexity of such models scales linearly with the number
of neurons and the size of the input. As both of these val-
ues are fairly small for today’s computational resources this
step is very quick. Furthermore, the execution of the model is
highly parallelizable and can be significantly accelerated on
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Fig. 5. Image that shows the performance of CNN models and ML models identifying pre-miRNAs from organisms that have at least 200 entries in the miRBase dataset. The
plot shows that both CNN models outperform the ensemble models for most of the organisms. For some organisms such as tca, ame, and bmo, pre-miRNAs are difficult to
identify. While the ML model appear to be no different than random selection methods for these organisms, our CNNs show that they are able to learn features for pre-miNRA
detection as their worse performance is close to 0.7.

Fig. 6. Average saliency map computed from modhsa entries accurately classified
as pre-miRNAs. Central pixels (possibly strong bonds) are more relevant for the
CNN model than others.

Fig. 7. Average saliency map computed from modhsa entries accurately classified
as non pre-miRNAs. Besides central pixels, loop regions are also considered to
classify hairpin images.

suitable hardware.

Overall, the lower computational time required to encode
hairpin images makes our pre-miRNA detection framework a
feasible choice for even large eukaryotic genomes with mil-
lions of putative hairpins.

5. Conclusions

MicroRNAs are important in gene regulation and contribute
to cell homeostasis. Their dysregulation is a hallmark of dis-
ease. However, miRNA and their target detection is exper-
imentally complicated since both are under spatiotemporal
control. Therefore, computational methods are important to
detect miRNAs and their targets.

We addressed the task of pre-miRNA detection using a deep
learning based framework whose key components are a novel
hairpin image encoding algorithm and a custom CNN model.
To this end, we first encode the primary sequence and sec-
ondary structure of nucleotide sequences into RGB images
that display spatial patterns and implicitly encode thermody-
namics. Then, CNN models are used to classify these images
as pre-miRNA or other.

By using this framework, we avoid time consuming feature
selection procedures used in ML methods for pre-miRNA
detection. When compared against ML pre-miRNA detec-
tion methods, our framework outperforms these methods in
most of the positive and negative datasets used for evalua-
tion. Therefore, we conclude that this framework can be used

7

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 13, 2019. ; https://doi.org/10.1101/840579doi: bioRxiv preprint 

https://doi.org/10.1101/840579
http://creativecommons.org/licenses/by-nc-nd/4.0/


for the prediction of novel pre-miRNAs. Additionally, aver-
age saliency maps show that our CNN models are able to fo-
cus on different regions to distinguish between true and false
pre-miRNA examples. For this, further study is required in
order to identify how these regions are related to biological
structures of pre-miRNAs and whether they are different for
different species, classes, or kingdoms.

Even though we achieved state-of-the-art performance, we
believe that there may be room for future improvement of
both the hairpin encoding algorithm and the CNN models.
Specifically, the hairpin algorithm can be extended to incor-
porate more domain knowledge and accordingly more com-
plex CNN models can be developed for such encodings.

We hope that the exceptional performance of our fine-tuned-
CNN model and its applicability for a wide range of species
and even for large genomes will enable others to confidently
perform pre-miRNA prediction.
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Cremers. Precursor microRNA Identification Using Deep Convo-
lutional Neural Networks. bioRxiv, 2018. doi: 10.1101/414656.
10.1101/414656, 16-September-2018, pre-print: not peer reviewed.
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Appendix

A. CNN architectures. The networks described in Tables 3 to 5 were implemented using the Keras deep learning framework,
and their code is available at https://github.com/jacordero/deepmir/. The code includes scripts to design and
train VGG-Style, Inception-Style, and ResNet-Style models.

Table 3. Structure of CNNs that were designed based on the VGG architecture (27). The table shows the structure of VGG-Style networks with up to four convolutional
modules (VGG-Style-4M). Each convolutional module is made of two convolutional layers using filter size of 3×3 and the same number of filters (48, 60, 72, or 84) followed
by a maxpool layer and a dropout layer. The end of the networks consist of a fully connected module made of a fully connected layer containing a certain number of fully
connected units FU (32, 64, 128, or 256) followed by a dropout layer and a softmax layer with two output units (pre-miRNA and non pre-miRNA respectively). In total, we can
create 16 different CNNs for a given dataset: four different VGG-Style networks with four different values for the FU parameter.

VGG-Style-1M VGG-Style-2M VGG-Style-3M VGG-Style-4M
Layer Params Layer Params Layer Params Layer Params
Convolutional (3×3, 48×) Convolutional (3×3, 48×) Convolutional (3×3, 48×) Convolutional (3×3, 48×)
Convolutional (3×3, 48×) Convolutional (3×3, 48×) Convolutional (3×3, 48×) Convolutional (3×3, 48×)
Maxpool (2×2) Maxpool (2×2) Maxpool (2×2) Maxpool (2×2)
Dropout 0.25 Dropout 0.25 Dropout 0.25 Dropout 0.25
Flatten Convolutional (3×3, 60×) Convolutional (3×3, 60×) Convolutional (3×3, 48×)
FC (FU×) Convolutional (3×3, 60×) Convolutional (3×3, 60×) Convolutional (3×3, 48×)
Dropout 0.5 Maxpool (2×2) Maxpool (2×2) Maxpool (2×2)
Softmax (2×) Dropout 0.25 Dropout 0.25 Dropout 0.25

Flatten Convolutional (3×3, 72×) Convolutional (3×3, 72×)
FC (FU×) Convolutional (3×3, 72×) Convolutional (3×3, 72×)
Dropout 0.5 Maxpool (2×2) Maxpool (2×2)
Softmax (2×) Dropout 0.25 Dropout 0.25

Flatten Convolutional (3×3, 84x)
FC (FU×) Convolutional (3×3, 84x)
Dropout 0.5 Maxpool (2×2)
Softmax (2×) Dropout 0.25

Flatten
FC (FU×)
Dropout 0.5
Softmax (2×)

Table 4. Structure of CNNs with up to four modules that were designed based on the Inception architecture (28). The first layer of each network is a convolutional layer
with 64 filters of shape 3×3 used to extract low level features. The Inception modules, used to extract spatial patterns at different resolutions, have the structure shown in
Figure 8. This Inception module has convolutional layers with different filter shape that the ones presented in the original GoogLeNet, the maxpool layer also differs. All the
convolutional layers inside the Inception modules have the same number of filters (CK), which can take four different values: 8, 12, 16, and 20. In total, we can create 16
different CNNs for a given dataset: four different Inception-Style networks with four different values for the CK parameter.

Inception-Style-1M Inception-Style-2M Inception-Style-3M Inception-Style-4M
Layer/Module Params Layer/Module Params Layer/Module Params Layer/Module Params
Convolutional (64×, 3×3) Convolutional (64×, 3×3) Convolutional (64×, 3×3) Convolutional (64×, 3×3)
Inception (CK×) Inception (CK×) Inception (CK×) Inception (CK×)
Flatten Inception (CK×) Inception (CK×) Inception (CK×)
Softmax (2×) Flatten Inception (CK×) Inception (CK×)

Softmax (2×) Flatten Inception (CK×)
Softmax (2×) Flatten

Softmax (2×)
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Table 5. Structure of CNNs with up to four modules that were designed based on the ResNet architecture (35) using fully-preactivated units (36). The first layer of each
network is a convolutional layer with 32 filters of shape 3×3 used to extract low level features. The ResNet modules have convolutional layers with a filter shape of 3×3.
The number of filters in the convolutional layers is given by the parameter CK that can take four different values: 20, 24, 28, and 32. The GPA layer corresponds to a global
average pooling layer that maps 3D feature maps to 1D vectors. The units of such vectors are then connected to the softmax units to produce the output of the network. In
total, we can create 16 different CNNs for a given dataset: four different ResNet-Style networks with four different values for the CK parameter.

ResNet-Style-1M ResNet-Style-2M ResNet-Style-3M ResNet-Style-4M
Layer/Module Params Layer/Module Params Layer/Module Params Layer/Module Params
Convolutional (32×, 3×3) Convolutional (32×, 3×3) Convolutional (32×, 3×3) Convolutional (32×, 3×3)
ResNet (32×, 3×3) ResNet (32×, 3×3) ResNet (32×, 3×3) ResNet (32×, 3×3)
GPA ResNet (32×, 3×3) ResNet (32×, 3×3) ResNet (32×, 3×3)
Softmax (2×) GPA ResNet (32×, 3×3) ResNet (32×, 3×3)

Softmax (2×) GPA ResNet (32×, 3×3)
Softmax (2×) GPA

Softmax (2×)

Fig. 8. Inception module designed for pre-miRNA detection. It follows a similar structure to the original inception module presented in the GoogLeNet network, but it uses
different filter shapes for the convolutional and maxpool layers. The convolutional layers have filters with shape 1×1, 2×2, and 3×3, while the maxpool layer has filter shape
of 2×2.

B. CNNs performance. Table 6 shows the accuracy of the best ten CNN models trained using transfer learning and their
corresponding versions without pre-training. Even though 48 different models were trained following the VGG-Style,
Inception-Style, and ResNet-Style defined in the tables above, only VGG-Style models belong to the top ten models. The
models are sorted according to their average accuracy on both datasets. Tables 7 to 9 show the accuracy of VGG-Style,
Inception-Style, and ResNet-Style models respectively. The accuracy of the best models is emphasized in bold.

Table 6. Accuracy of top ten pre-trained CNN models including VGG-Style, Inception-Style, and ResNet-Style models sorted by their accuracy. The corresponding non
pre-trained models are also included to observe the benefits of pre-training. Only VGG-Style models belong to the top ten CNNs.

CNN With pre-training Without pre-training
VGG-Style-3M-256FU 0.9517 0.9171
VGG-Style-1M-128FU 0.9472 0.8934
VGG-Style-3M-128FU 0.9472 0.8907
VGG-Style-1M-64FU 0.9454 0.8889
VGG-Style-3M-64FU 0.9454 0.8807
VGG-Style-2M-256FU 0.9426 0.9180
VGG-Style-4M-128FU 0.9426 0.9199
VGG-Style-1M-32FU 0.9417 0.9044
VGG-Style-1M-256FU 0.9408 0.8962
VGG-Style-4M-256FU 0.9408 0.9089

Table 7. Accuracy of 16 VGG-Style networks trained with and without pre-training. The modhsa test dataset is used to evaluate the performance of all trained networks. For
pre-trained networks, VGG-Style-3M-256FU has the best performance, while for non pre-trained networks, VGG-Style-2M-128FU and VGG-Style-4M-128FU achieve the best
performance.

CNN Without pre-training With pre-training

32FU 64FU 128FU 256FU 32FU 64FU 128FU 256FU
VGG-Style-1M 0.9044 0.8889 0.8934 0.8962 0.9417 0.9454 0.9472 0.9408
VGG-Style-2M 0.9162 0.9144 0.9199 0.9180 0.9390 0.9390 0.9381 0.9426
VGG-Style-3M 0.8989 0.8807 0.8907 0.9171 0.9362 0.9454 0.9472 0.9517
VGG-Style-4M 0.9162 0.9089 0.9199 0.9089 0.9244 0.9381 0.9426 0.9408
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Table 8. Accuracy of 16 Inception-Style networks trained with and without pre-training. The modhsa test dataset is used to evaluate the performance of all trained networks.
For pre-trained networks, Inception-Style-2M-8CK has the best performance, while for non pre-trained networks, Inception-Style-2M-16CK achieves the best performance.

CNN Without pre-training With pre-training

8CK 12CK 16CK 20CK 8CK 12CK 16CK 20CK
Inception-Style-1M 0.8843 0.8880 0.5000 0.5000 0.9311 0.9299 0.9344 0.5000
Inception-Style-2M 0.8907 0.8807 0.8953 0.8852 0.9353 0.5000 0.9290 0.9290
Inception-Style-3M 0.8834 0.8916 0.8880 0.5000 0.9235 0.9271 0.9335 0.9281
Inception-Style-4M 0.8871 0.8843 0.8934 0.8862 0.9281 0.9235 0.9262 0.9226

Table 9. Accuracy of 16 ResNet networks trained with and without pre-training. The modhsa test dataset is used to evaluate the performance of all trained networks. For
pre-trained networks, ResNet-Style-1M-24CK has the best performance, while for non pre-trained networks, ResNet-Style-3M-24CK achieves the best performance.

CNN Without pre-training With pre-training

20CK 24CK 28CK 32CK 20CK 24CK 28CK 32CK
ResNet-Style-1M 0.5009 0.9098 0.9044 0.9135 0.8242 0.9208 0.5082 0.5337
ResNet-Style-2M 0.5055 0.5000 0.5000 0.5000 0.8780 0.6366 0.6967 0.8652
ResNet-Style-3M 0.5893 0.9199 0.9044 0.5310 0.9117 0.8470 0.6894 0.9117
ResNet-Style-4M 0.9062 0.8233 0.8925 0.9123 0.5729 0.8525 0.5337 0.7570
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