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Summary 19 
Genome-wide association studies (GWAS) is a powerful and widely used 20 

approach to decipher the genetic control of complex traits. A major challenge for 21 

dissecting quantitative traits in forest trees is statistical power. In this study, we use 22 

a population consisting of 1123 samples from two successive generations that have 23 

been phenotyped for growth and wood property traits and genotyped using the 24 

EuChip60K chip, yielding 37,832 informative SNPs. We use multi-locus GWAS 25 

models to assess both additive and dominance effects to identify markers 26 

associated with growth and wood property traits in the eucalypt hybrids. Additive 27 

and dominance association models identified 78 and 82 significant SNPs across all 28 

traits, respectively, which captured between 39 and 86% of the genomic-based 29 

heritability. We also used SNPs identified from the GWAS and SNPs using less 30 

stringent significance thresholds to evaluate predictive abilities in a genomic 31 

selection framework. Genomic selection models based on the top 1% SNPs 32 

captured a substantially greater proportion of the genetic variance of traits 33 

compared to when all SNPs were used for model training. The prediction ability of 34 

estimated breeding values was significantly improved for all traits using either the 35 

top 1% SNPs or SNPs identified using a relaxed p-value threshold (p<10-3). This 36 

study highlights the added value of also considering dominance effects for 37 

identifying genomic regions controlling growth traits in trees. Moreover, 38 

integrating GWAS results into genomic selection method provides enhanced power 39 
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relative to discrete associations for identifying genomic variation potentially useful 40 

in tree breeding. 41 

Keywords 42 
Eucalyptus, dominance, FarmCPU, genome-wide association study, genomic 43 

selection 44 
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Introduction 46 
Deciphering the genetic basis of complex phenotypic traits is of fundamental 47 

importance for understanding biological processes and may ultimately provide 48 

information that can help enhance selection in plant breeding programs. Genome-49 

wide association studies (GWAS) is a powerful way to identify putative causal 50 

genes or genomic segments that underlie phenotypic variation in plants, 51 

particularly for traits with complex genetic architectures (Ingvarsson and Street, 52 

2011; Kruglyak, 2008). Dissection of complex traits have been undertaken in forest 53 

genetics to understand the genetic basis of adaptive phenotypes (Ingvarsson et al., 54 

2008; Olson et al., 2013; Wang et al., 2018) or physiological or morphological 55 

traits, such as growth or wood properties. For example, Porth et. al. (Porth et al., 56 

2013) and later Chhetri et. al. (Chhetri et al., 2019a) performed GWAS for wood 57 

traits, biomass, eco-physiological and phenology traits in Populus trichocarpa with 58 

genotyping based on 6.78 million single nucleotide polymorphisms (SNPs). 59 

Similarly, a study of Salix viminalis identified 29 SNPs that were associated with 60 

bud burst, leaf senescence, number of shoots or shoot diameter (Hallingback et al., 61 

2016). In Eucalyptus, the earliest GWAS identified 16 markers that were associated 62 

with growth and two markers that were associated with lignin traits (Cappa et al., 63 

2013). Recently, 26 quantitative trait loci (QTLs) were identified for productivity 64 

and disease resistance using a regional heritability mapping method that helps 65 

increase the genomic heritability to 5-15% from 4-6% when using SNPs 66 

individually(Resende et al., 2017a; Resende et al., 2017b).  67 
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GWAS studies can also provide tools for accelerating the long breeding cycles 68 

in tree breeding (reviewed in (Neale and Kremer, 2011)). For example, although 69 

many species of Eucalyptus display unusually fast growth, breeding cycles aimed 70 

at developing elite commercial genotypes still take between 12 to 16 years to 71 

complete, since identification of elite genotypes require progeny trials followed by 72 

two or more sequential clonal trials (Rezende et al., 2014). However, genomic 73 

selection based on genome-wide molecular makers is expected to reduce the time 74 

required for completing a cycle of developing elite clones to only 9 years mainly 75 

due to the shorter time needed for progeny tests when phenotypes can be predicted 76 

from the genomic selection models (Grattapaglia, 2017).  77 

The rapid development in genomics has opened up opportunities to identify 78 

molecular markers that are associated with traits of interest and use these marker-79 

trait associations to complement and extend traditional breeding programs. Despite 80 

the efforts to discover polymorphisms associated with economically relevant traits, 81 

much of the genetic contribution to complex traits in forest trees remains 82 

unexplained. One of the main reasons is that GWAS methods normally conduct 83 

tests on one marker at a time, for instance using a generalized linear model (GLM) 84 

or a mixed linear model (MLM). When dealing with complex traits such as growth 85 

and wood qualities, where the effect size of individual loci is likely small to 86 

moderate, these methods suffer from limited statistical power to detect loci of small 87 

effects (Muller et al., 2017). One potential approach to increase the power and to 88 

accurately identify more causal variants is so called ‘multi-locus mixed models’ 89 
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(MLMM), which simultaneously test multiple markers by including them as 90 

covariates in a stepwise MLM to partially remove confounding between tested 91 

markers and kinship (Segura et al., 2012). One such method is the ‘fixed and 92 

random model circulating probability unification’ (FarmCPU) that performs 93 

marker tests using other associated markers as covariates in a fixed effect model  94 

(Liu et al., 2016). Optimization across the associated covariate markers using a 95 

random effect model is then performed separately. This approach has been reported 96 

to simultaneously reduce computational complexity, remove confounding between 97 

population structure, kinship and quantitative trait loci, prevent model over-fitting 98 

and control the number of false positives (Liu et al., 2016).  99 

Most GWAS analyses to date have been undertaken by implicitly assuming a 100 

genetic architecture consisting of additive effects. However, non-additive effects, 101 

including dominance (Bruce, 1910), over-dominance (Crow, 1948) and epistasis 102 

(Hill, 1982) are known to also play important roles in controlling some traits. One 103 

trait where non-additive effects are likely to be pronounced is heterosis, or hybrid 104 

vigor, which is the near universally observed phenomenon of phenotypic 105 

superiority of hybrid progeny relative to their parents (Charlesworth and Willis, 106 

2009). Not surprisingly, heterosis has been and continues to be of great importance 107 

in most plant breeding schemes (Duvick, 2001). To date, a limited number of 108 

studies have utilized GWAS methods to dissect the genetic basis of heterotic traits 109 

in Arabidopsis thaliana and rice. In the model plant A.thaliana, dominance and 110 

over-dominance of flowering time is a well-studied trait and significant loci from a 111 
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GWAS were shown to explain as much as 20% of the phenotypic variation in a 112 

hybrid population consisting of 435 individuals derived from inter-crossing 30 113 

parents (Seymour et al., 2016). In rice, genome-wide dissection uncovered multiple 114 

non-additive effect loci for yield increase (Li et al., 2016; Zhen et al., 2017). For 115 

instance, a major QTL, rice heterosis 8 (RH8) was found to regulate grain-yield 116 

component traits (Li et al., 2016). In Eucalyptus hybrids dominance appears to be 117 

an important and widespread contributor to many growth-related traits (Bison et al., 118 

2006; Bouvet and Vigneron, 1995; Volker et al., 2008) and ratios of dominance to 119 

additive variances exceeding 1.2 have been estimated for growth in E. grandis x E. 120 

urophylla hybrids (Bouvet et al., 2009; Makouanzi et al., 2014; Tan et al., 2017). 121 

Such results suggest that there should be ample opportunities to identify SNPs 122 

accounting for dominance and/or over-dominance effects in Eucalyptus hybrids.  123 

Another genomic-based approach that has become widely used in plant and 124 

animal breeding in recent years is genomic selection (GS) or alternatively known 125 

as genomic prediction. Unlike GWAS, GS refers to marker-based selection where 126 

total genetic variance is captured using genome-wide markers without a prior step 127 

of identifying trait-associated markers. GS aims to predict the genetic potential (e.g. 128 

genome-estimated breeding values) of breeding individuals without locating genes 129 

or QTLs important for the trait(s) of interest. One of most important questions for 130 

GS is how to improve the prediction accuracy and methods for accuracy has long 131 

been a central research aim in genomic selection. Thus far progress on increasing 132 

prediction accuracies have been achieved through the development of new 133 
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statistical models, more efficient design of training populations, improved quality 134 

of phenotypic measurements, a greater number of makers used for model building 135 

and by also considering non-additive effects (Grattapaglia, 2017). In this paper we 136 

assess methods for improving genomic prediction accuracy by integrating results 137 

from GWAS studies into GS to predict the genetic potential of breeding targets. It 138 

is well known that using only associated SNPs identified from a GWAS is usually 139 

not sufficient for explaining a large fraction of the genetic variation in a trait of 140 

interest (the so called “missing heritability” problem, (Makowsky et al., 2011)). 141 

However, utilizing GWAS information in the form of associated SNPs, in 142 

combination with other types of data has the potential to enhance prediction ability 143 

in GS studies (Gowda et al., 2015).  144 

In this study, we present results from a GWAS on growth and wood quality 145 

traits, in a breeding population comprising two species of Eucalyptus and their 146 

hybrids. We also integrate the GWAS results in a GS model with the goal of 147 

assessing whether this can help increase prediction accuracies for the traits in 148 

question. Specifically, our study has two objectives: first, we implement a state of 149 

the art GWAS method that consider both additive and dominance effects for 150 

dissecting the genetic architecture of growth and wood quality traits. We also 151 

evaluate the proportion of phenotypic variation that explained by significant loci 152 

for these two genetic effects. Second, we evaluate how different categories of 153 

informative SNPs, selected based on the results from the GWAS, can be 154 

implemented in a widely used model for genomic prediction, GBLUP, to estimate 155 
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variance components and to evaluate prediction accuracies of estimated breeding 156 

values.  157 

Results 158 
Characters of growth and wood traits 159 

All growth traits were moderately variable at the different assessment ages 160 

(Table 1). We observed a lower phenotypic variation for height at 3 years of age, as 161 

judged by the coefficient of variation (Table 1). The F1 population underwent 162 

selection based on height in order to identify trees to use for genotyping and this 163 

selection process likely contributed to the lower phenotypic variation we see in 164 

height at 3 years of age. We also observed low phenotypic variation for basic 165 

density and pulp yield, which is commonly observed in many wood quality traits. 166 

Generally, variation in CBH was greater than in height but both mean and variance 167 

for both traits increased as the trees aged. Growth traits generally had low 168 

heritabilities (h2 < 0.2) whereas wood quality traits showed moderate heritabilities 169 

(Table 1). Phenotypic correlations between growth traits were generally positive 170 

(0.24~0.74) whereas basic density was weakly negatively correlated with pulp 171 

yield (-0.28). The wood quality traits were generally independent from growth 172 

traits (correlations in the range -0.1 - 0.1) (Figure S1). The greatest positive 173 

phenotypic correlations were observed between CBH and height assessed at the 174 

same age (0.63 and 0.74 for 3 and 6 years, respectively).  175 

 176 

 177 
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Table 1. Statistical summary of phenotypes 178 
Trait Abbr. No. obs. Unit Mean CV(%)† h2 

Circumference at breast height, age 3 years CBH3 1123 cm 61.82 13.22 0.143 
Height, age 3 years Ht3 1094 m 22.43 9.81 0.162 
Circumference at breast height, age 6 years CBH6 1104 cm 83.80 18.67 0.186 
Height, age 6 years Ht6 985 m 28.40 13.09 0.182 
Basic density BD 1061 kg/m3 532.78 6.83 0.381 
Pulp yield PY 1039 % 49.64 8.05 0.42 

† CV: coefficient of variance. 179 

 180 

Figure 1. Population structure of parents and F1 progenies. (A) Cross-validation 181 
error in the admixture analysis for K varying from 1-20 for the 174 parents. (B) 182 
Population structure of parents inferred using admixture for K=6. (C) PCA plot 183 
based on genetic covariance among all individuals. Only the first two principle 184 
components are shown. The colours used for the parents are in line with the 185 
clustering shown in (B), with grey colour denoting all F1 progeny. 186 

Population structure and model optimization  187 

To examine population structure in the breeding population including both 188 

parents and their F1 progenies, we conducted both model-based admixture and 189 

fastStructure analyses and principle component analysis (PCA) based on a set of 190 

independent SNPs. The admixture analysis could not identify an optimal genetic 191 

clustering on account of the minimization of the CV error even for K-values up to 192 
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K=100 (Figure S2). In contrast, fastStructure suggested an optimal genetic 193 

clustering of K=1. Due to the inconsistences between the methods, we repeated the 194 

population structure analyses using only the parents, given that the F1 individuals 195 

were all obtained through crossings between these parents. Admixture analyses 196 

based on the parents alone suggested K=6 minimized the CV error (Fig 197 

 198 

ure 1A) and K=6 was also the optimal genetic clustering obtained from 199 

fastStructure. The parents were assigned to the six subpopulations according to 200 

individual ancestry proportions (Figure 1B). We also performed a PCA to 201 

summarize genetic variation among parents and the first six components explained 202 

21.53% of the total genetic variation. Notably, the eigenvalues beyond the first six 203 

PCs were relatively small (Figure S3), consistent with the minimum K identified in 204 

the admixture analyses. Based on first two principle components, parents can be 205 

clearly separated into three clusters and two further sub-clusters can be identified 206 

within in each major cluster. Progenies are inferred to be derived from crossing 207 

parents either with the different major clusters or between them (Figure 1C) and 208 

therefore we used the first six PCs in all subsequent analyses to correct for 209 

population stratification.  210 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 13, 2019. ; https://doi.org/10.1101/841049doi: bioRxiv preprint 

https://doi.org/10.1101/841049
http://creativecommons.org/licenses/by/4.0/


	

 211 

Figure 2. Manhattan plots and quantile-quantile (QQ) plots of the FarmCPU 212 
results using an additive effects model. The traits used are CBH and height at age 213 
3 and 6 (Ht3 and Ht6, respectively) as well as basic density (BD) and pulp yield 214 
(PY). The Manhattan plots show -log10 p-values plotted against SNP positions on 215 
the 11 Eucalyptus chromosomes. Associations reaching genome-wide 216 
significance are displayed in red and the horizontal dotted line indicates a 217 
Bonferroni-corrected significant threshold of p <1.7E-06. The QQ plots for each 218 
of the six traits demonstrate the observed versus expected distribution of p-219 
values. The solid red line represents the expected null distribution assuming no 220 
associations.   221 

Genome-wide association study for additive effects  222 

We first ran FarmCPU with an additive effect encoding to identify loci with 223 

significant additive effects on the different phenotypes. Quantile-quantile (QQ) 224 

plots suggest that population structure and kinship relationships were well 225 

controlled in the GWAS for the different traits (Figure 2). SNPs with p-values < 226 

1.7E-06 threshold were declared statistically significant. Overall, we identified 78 227 

significant SNPs across the six traits and these significant SNPs were distributed 228 
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across all 11 chromosomes (Figure 2). No significant SNPs were identified for 229 

more than one trait, even though both CBH and height show strong genetic 230 

correlations across ages. Comparing the number of significant SNPs found for the 231 

different traits, growth traits had more significant SNPs than wood traits, with 232 

height and CBH at the two different ages having between 14 and 18 significant 233 

SNPs whereas we only identified 9 significant SNPs for the two wood quality traits. 234 

We generally observe lower phenotypic variances explained by individual SNPs 235 

for CBH and height compared to pulp yield and basic density (Table S1). The 236 

maximum percentage of phenotypic variance explained by single associated SNP 237 

was 2.3% (for pulp yield) and the minimum percentage of phenotypic variance 238 

explained by a significantly associated SNP was 0.33% (CBH age 3 years).  239 

 240 

Figure 3. Manhattan plots and quantile-quantile (QQ) plots of the FarmCPU 241 
results for the dominance effects model. The traits used are CBH and height at 242 
age 3 and 6 (Ht3 and Ht6, respectively) as well as basic density (BD) and pulp 243 
yield (PY). The Manhattan plots show -log10 p-values plotted against SNP 244 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 13, 2019. ; https://doi.org/10.1101/841049doi: bioRxiv preprint 

https://doi.org/10.1101/841049
http://creativecommons.org/licenses/by/4.0/


	

positions on the 11 Eucalyptus chromosomes. Associations reaching genome-245 
wide significance are displayed in red and the horizontal dotted line indicates a 246 
Bonferroni-corrected significant threshold of p <1.7E-06. The QQ plots for each 247 
of the six traits indicate the observed versus expected distribution of p-values. 248 
The solid red line represents the expected null distribution assuming no 249 
associations.   250 

Genome-wide association study for dominance effects  251 

FarmCPU efficiently controlled the false positive rates due to population 252 

structure and sample relationships also when identifying significant loci using 253 

dominance encoding (Figure 3, QQ plots). Under a dominance model we detected a 254 

total of 82 significant SNPs for the six traits. Height at 3 years old (Ht3) had the 255 

greatest number of associations with 19 SNPs displaying significant effects. Fewer 256 

associations were observed for the other traits, with between 11 and 15 significant 257 

SNPs identified (Figure 3, Manhattan plots). Two significant SNPs, 258 

Chr5.40663824 and Chr11.28479550, were found to overlap between CBH and 259 

height at age of 6 years. The maximum percentage of phenotypic variance 260 

explained by an associated SNP was 4%, a much higher value than found in the 261 

additive effect estimations. The smallest percentage of phenotypic variance 262 

explained by an associated SNP for the dominance model was of similar magnitude 263 

to that observed for additive effects model (Table S2). Comparing significant SNPs 264 

identified from the additive and dominance effects models, a total of 10 SNPs 265 

overlap between two models for different traits. This result suggest that the two 266 

genetic effects are not completely independent. Nine out of ten SNPs that overlap 267 
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between additive and dominance effects were identified for growth traits and with 268 

the remaining SNP observed for pulp yield.  269 

Genome selection by using GWAS results 270 

To confirm the utility of the SNPs identified from the GWAS and to further 271 

understand the performance of selecting SNPs for each trait based on the GWAS 272 

results, we conducted genomic prediction using four categories of SNPs by using 273 

both an additive genetic model (A) and an additive + dominance genetic model 274 

(AD). The four categories of SNPs used for the GBLUP analyses were selected 275 

from the GWAS results for each trait based on the following criteria: 1) ‘associated 276 

SNPs’ were identified as significant from the GWAS using the threshold p< 1.7E-6; 277 

2) ‘putative SNPs’ were identified as significant from the GWAS using a more 278 

relaxed significance threshold p<1E-3 of each trait; 3) the ‘top 1% SNPs’ included 279 

the top 1% SNPs for each trait, ranked according to GWAS significance. The 280 

rational of this category was to ensure that models utilised the same number of 281 

SNPs across all traits. Finally, 4) ‘all SNPs’ used all 37,832 available SNPs when 282 

building the genomic selection models (Table S3).  283 
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 284 

Figure 4. Genomic-based narrow- and broad-sense heritabilities based on an 285 
additive (A) or an additive + dominance (AD) model for the four different 286 
categories of SNPs used. The coloured bins represent the different categories of 287 
SNPs used, with red indicating ‘all’ SNPs (37,832), green indicates the ‘top 1%’ 288 
SNPs ranked according to GWAS p-value, cyan denotes ‘putative’ SNPs 289 
selected based on GWAS results with p < 1E-3 and purple denoted ‘associated’ 290 
SNPs selected based on GWAS results using p < 1.7E-6. The fill patterns 291 
represent different genetic effects. Vertical lines denote additive effects and 292 
horizontal lines denote dominance effects. Error bars indicate the standard error 293 
of total genetic variance. 294 

The narrow-sense and broad-sense heritabilities were estimated using a 295 

modified GBLUP model based on different maker-based relationship matrices 296 

calculated using the four SNP categories. As expected, basic density and pulp yield 297 

had higher realised heritabilites than growth traits, independent of what category of 298 

SNPs that were used for the calculations. Broad-sense heritabilities were higher 299 

than narrow-sense heritabilities for most traits, demonstrating that dominance plays 300 

an important role in the expression of most traits (Figure 4) and in line with earlier 301 
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observations in this population (Tan et al., 2018). Comparing heritabilites (h2 and 302 

H2) for the different SNP categories suggest, perhaps surprisingly, that the ‘top 1% 303 

SNPs’ category explain more of the genetic variation than any of the other 304 

categories, including when all SNPs were used (Table S4). Furthermore, using the 305 

‘top 1% SNP’ set yielded the largest estimates of dominance effects. As expected, 306 

using only SNPs that were significantly associated with a trait in the GWAS 307 

resulted in lower heritability estimates compared to using all SNPs. Comparing 308 

heritability estimates between the ‘putative’ and ‘all’ SNP categories showed that 309 

these yielded similar estimates for CBH and height, the ‘putative’ category of SNPs 310 

yielding significantly lower heritability estimates than the ‘all’ SNP category for the 311 

two wood quality traits (Figure 4).  312 

We further estimated the prediction ability of breeding values for the A model 313 

and the prediction ability of genetic values for the AD model using a ten-fold cross-314 

validation approach. The distribution of predictive abilities for each of the models 315 

and SNP, obtained using 100 replications, are displayed in Figure (5). Generally, 316 

we observe higher prediction abilities for wood quality traits, in line with the 317 

higher heritability values we observe for these traits. The AD model yielded 318 

slightly higher prediction abilities than the A model for most of traits. When 319 

comparing the different SNP categories, both the ‘top 1%’ and ‘putative’ SNP 320 

categories yielded substantial improvements in the predictive ability compared to 321 

both the ‘all’ and the ‘significant’ SNP categories. The ‘associated’ SNPs yielded 322 

more or less similar results to that obtained using ‘all’ SNPs. Moreover, the ‘top 323 
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1%’ SNP category yielded the highest average prediction ability for height, basic 324 

density and pulp yield with values being much higher than those calculated from 325 

the ‘all’ SNP category (Table S5).  326 

 327 

Figure 5. Predictive abilities of the additive (A) and the additive + dominance 328 
(AD) genomic prediction models for the four different categories of SNPs. The 329 
coloured boxplots display the distribution of predictive ability across 100 330 
replicates of ten-fold cross-validation for the different categories of SNPs. 331 
Colours used as in Figure 4. 332 

 333 

Discussion 334 
We used GWAS with both additive and dominance effects to dissect the 335 

genetic architecture of growth and wood quality traits in hybrid Eucalyptus. The 336 

method we employed for GWAS, FarmCPU, was able to control the false positive 337 

rate induced by both the complex population structure and kinship that characterise 338 

our mapping population and efficiently identified significantly associated SNPs for 339 

both additive and dominance effects. Using top-ranking SNPs based on the GWAS 340 
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yielded higher genomic heritability estimates compared to using all available SNPs. 341 

We were also able to achieve more accurate genomic prediction results by filtering 342 

SNPs based on their associations in the GWAS and this help shed light on future 343 

directions in the application of genomic selection in Eucalyptus breeding.   344 

FarmCPU perform superior in GWAS analysis 345 

Most economic traits targeted for breeding in forestry, such as growth and 346 

wood properties, are quantitative traits and usually have a complex genetic 347 

architecture controlled by many loci of small effect. Here we utilised a recently 348 

developed method for the dissection of complex traits, FarmCPU, that has been 349 

proposed to efficiently address problems confounding between testing markers and 350 

covariates that often arise in GWAS (Liu et al., 2016). Several empirical studies 351 

have verified that FarmCPU offers enhanced power for GWAS of complex traits 352 

(Vanous et al., 2019; Ward et al., 2019; Zhu et al., 2018). In this study, we 353 

identified 78 and 82 significant associations having additive and dominant effects, 354 

respectively, with average of 13 SNPs identified per trait studied. These results are 355 

more efficient compared to another commonly used GWAS method, Genome-wide 356 

Efficient Mixed Model Association (GEMMA). In preliminary analyses we found 357 

that GEMMA was also able to control the false positive rate very well, but this 358 

came at the price of a relatively low statistical power. GEMMA consequently only 359 

identified two significant SNPs for additive effects (Figure S4) and a total of 13 360 

significant SNPs for the dominance effects across traits (Figure S5). The FarmCPU 361 

methods therefore appears to be an attractive method that strike a good balance 362 
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between the identification of false positives and false negatives and thus have good 363 

power for the dissection complex traits. 364 

Dominance effects play important roles in hybrid population 365 

GWAS have traditionally assumed only additive effects of individual SNPs 366 

(Bush and Moore, 2012; Marjoram et al., 2014) but here we show the added value 367 

of also considering dominance effects for identifying genomic regions controlling 368 

growth and wood quality traits. By assessing also dominance effects, we identify 369 

an additional 72 associated SNPs across the traits, in addition to the 78 SNPs we 370 

identified using additive effects. Furthermore, a considerable proportion of the 371 

genetic variation in our hybrid population is attributable to non-additive effects and 372 

our results show that the alleles underlying this variation can be identified when 373 

dominance effects are explicitly considered in a GWAS setting. Several previous 374 

studies have used controlled crosses in crop species, particularly in maize and rice, 375 

to identified loci that exhibit dominance effects. For heterosis-related traits, data 376 

from maize is frequently cited as supporting the dominance model (Cui et al., 2017; 377 

Wallace et al., 2014), while rice has been proposed as a system that supports the 378 

over-dominance hypothesis (Li et al., 2016; Zhen et al., 2017). Our approach 379 

quantifies the contribution of dominance to the “missing heritability” in a 380 

Eucalyptus hybrid breeding population and we collectively show that up to 10% of 381 

the genomic-based heritability can be explained by associated SNPs that were 382 

identified using a dominance model (Table S4). 383 

The benefit of integrating GWAS results on genomic prediction 384 
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Even if we capture a substantially larger number of associated SNPs by 385 

considering both additive and dominance effects, a large fraction of the genomic-386 

based hertiabilies (14%-62%) cannot be explained by only considering 387 

significantly associated SNPs (Table S4) and these observations are in line with 388 

several earlier reports (Chhetri et al., 2019b; Tang et al., 2019; Zhao et al., 2019). 389 

Also, when using significantly associated SNPs from the GWAS to investigate the 390 

accuracy of genomic predication, we find that this yields no improvement in 391 

accuracy, and sometimes even reduced accuracy, compared to predictions based on 392 

all available SNPs which mirrors results seen in other similar studies (Gowda et al., 393 

2015; Wallace et al., 2016). Regions identified in a GWAS are consequently not 394 

able to explain all of the genetic variation in the traits of interest and this problem 395 

is greater for quantitative traits that are controlled by many genes of small effect. 396 

These are the traits where current GWAS methods often suffers from insufficient 397 

power to detect loci of small effect, unless sample sizes are substantially larger 398 

than what is commonly used in most studies of plants.  399 

In order to assess if the GWAS results could be used to enhance genomic 400 

prediction in our breeding population, we also tried to identify possible ‘candidate’ 401 

SNPs that were not detected as significant using the stringent significant threshold 402 

we applied in our GWAS. The rational here is that, as outlined above, most GWAS 403 

methods fail to detect loci of small effect but that the GWAS would nevertheless 404 

serve as a useful ‘filter’ for ranking SNPs for their possible effects on the traits of 405 

interest. We therefore selected two categories of SNPs using two different criteria 406 
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of relaxed significance and used these to estimate genomic heritabilities and 407 

perform genomic prediction. The first category, ‘putative’ SNPs include all SNPs 408 

that were found to be associated with the traits of interest based a more relaxed p-409 

value (p< 1E-3). Using this more relaxed p-value we identify between 70 to184 410 

SNPs for the different of trait when combined across the additive and dominance 411 

effect models. Using the ‘putative’ SNP category we observed large improvements 412 

in the heritability estimates for the growth traits, to the point where almost all of 413 

the genetic variation could be explained (Table S4). For wood quality traits, 414 

however, about 40% of the genetic variation remain unexplained compared to 415 

when using all SNPs for heritability estimation (Table S4). The second category of 416 

SNPs we considered consisted of the top 1% of SNPs, ranked by the p-value from 417 

the GWAS. Using this criterion ensures that the same number of SNPs are used for 418 

prediction across the different traits. Surprisingly we were able to explain a 419 

substantially greater proportion, up to 174%, of the genetic variation explained 420 

when using all SNPs (Table S4). When we performed genomic prediction using 421 

these two categories of SNPs we also observe a substantial increase in the 422 

prediction ability for all traits compared to predictions based on all available SNPs. 423 

This suggests that using all available SNPs introduce noise in the prediction models 424 

that negatively affects our prediction ability. Our method for analysing genomic 425 

selection and increasing prediction accuracy clearly benefited from integrating 426 

results from the GWAS analyses, but the number of associated SNPs that needs to 427 

be incorporated depends on the study trait in questions.  428 
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Detection of associations for complex traits in forest trees 429 

Identifying candidate genes underlying growth and wood traits has long been 430 

an active area of research in forest trees, such as in Eucalyptus (Cappa et al., 2013; 431 

Müller et al., 2019; Muller et al., 2017; Resende et al., 2017a), Populus (Allwright 432 

et al., 2016; Du et al., 2016; Fahrenkrog et al., 2017; Porth et al., 2013) and Pinus 433 

(Bartholomé et al., 2016; Lu et al., 2017). To ensure good statistical power, both 434 

common and rare genetic variants needs to be considered to have a comprehensive 435 

understanding of the genetic regulation of complex traits, since many low-436 

frequency variants were identified as associated with growth and wood 437 

composition traits (Fahrenkrog et al., 2017). For instance, regional heritability 438 

mapping (RHM), has previously been shown to successfully utilise information 439 

from both common and rare variants and can therefore capture a larger proportion 440 

of the genomic heritability in Eucalyptus (Müller et al., 2019; Resende et al., 441 

2017a).   442 

Furthermore, both additive and non-additive effects play important roles in 443 

association studies for many traits. Adding dominance effects to a GWAS analysis 444 

increase the possibility to identify additional variants that can help capture a greater 445 

fraction of the genetic variance (Du et al., 2016; Lu et al., 2017). Other methods, 446 

such increasing the sample size using meta-analysis (Müller et al., 2019) or using 447 

multi-locus GWAS approaches instead of single marker methods (Fahrenkrog et al., 448 

2017) are methods that also can help increase statistical power in GWAS.  449 

Putative genes for plant growth and stress response 450 
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Among the significantly associated SNPs we observe across additive and 451 

dominance effects estimations, we identified a total of 49 candidate genes that have 452 

known functions relevant for the traits in question. The details of these genes, 453 

including information on the position of associated SNPs and the putative functions 454 

of the genes, are summarised Table S6. In general, candidate genes can be 455 

separated into two groups, with one group containing genes that have direct 456 

functions associated to the morphological formation of different tissues or organs. 457 

The other group contain genes related to general responses to abiotic and biotic 458 

stress, which, more indirectly, influence plant growth and biomass.  459 

Among the significant SNPs associated with morphology, a number of 460 

associations are linked to genes which are related to cell wall biosynthesis. For 461 

example, SNP Chr3.46653967 is associated with Ht6 using an additive effects 462 

model. This SNP is located on chromosome 3 and encodes a missense variant in a 463 

gene coding for a pectin lyase-like superfamily protein (PME). This gene is 464 

expressed in stamen and is involved in cell wall loosening and have previously 465 

been implicated in floral development (Francis et al., 2006). We also identified a 466 

significant SNP on chromosome 11 (Chr11.20479646) which is associated with 467 

Ht6 (Table S6). This SNP is located in the gene Eucgr.K01691 which encodes a 468 

homolog to the Arabidopsis alpha-L-arabinofuranosidase 1 (ARAF1) gene. 469 

Expression of the ARAF1 gene is localized to several cell types in the vascular 470 

system of roots and stems and the protein is known to be involved in cell type-471 

specific alterations of cell wall structure (Chávez Montes et al., 2008). Many other 472 
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studies have also identified cell wall biosynthesis related genes from GWAS 473 

performed using growth traits in forest trees. Du et. al. (2016) identified four 474 

significant SNPs that were located in genes involved in secondary cell wall 475 

biosynthesis when analysing growth traits in the Populus (Du et al., 2016). A SNP 476 

associated with volume in E. pellita is located in a gene whose function is known 477 

to be involved in cell wall cellulose biosynthesiss (Muller et al., 2017).  Similarly, 478 

Muller et. al. (Müller et al., 2019) used a joint-GWAS approach in four Eucalyptus 479 

breeding populations and identified eight SNPs associated with growth traits that 480 

were all linked to genes which were related to cell wall biosynthesis.  481 

Many of the candidate genes putatively related to abiotic and biotic stress 482 

show response to adverse conditions. It is perhaps not surprising that these genes 483 

show up in our GWAS, as the planting area of the study population alternates 484 

between extremely dry (from July to August) and wet (from August to October) 485 

conditions in most years, which often leads to stress-induced damage and high 486 

incidence of diseases. In line with this, we identified several candidate genes 487 

involved in stress response to adverse climate conditions. The SNP Chr2.1760161 488 

is highly associated (p-value=3.72E-12) with height at 3 years age in the 489 

dominance model. This SNP is located upstream of the gene Eucgr.B00092, which 490 

encodes a putative HVA22 homologue E (HVA22E). HVA22E is upregulated to 491 

varying degrees in response to cold and salt stress, ABA treatment or dehydration 492 

(Chen et al., 2002; Shen et al., 2001). Another variant (Chr3.41941452), associated 493 

with CBH at age 6, is located in the upstream region of High-affinity K+ 494 
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transporter 1 (HKT1) gene. HKT1 is expressed in root stelar cells and leaf cells 495 

(Hamamoto et al., 2015) and provides a key mechanism for protecting leaves from 496 

Na+ over-accumulation and salt stress (Berthomieu et al., 2003; Maser et al., 2002). 497 

The SNP Chr6.23066996 is associated with CBH at 6 years of age in the additive 498 

effects model, is located on chromosome 6 inside the gene Eucgr.F01775 that 499 

encodes catalase 2 (CAT2). CAT2 controls levels and sensitivity to H2O2 (Bueso et 500 

al., 2007), photo-oxidative stress (Konert et al., 2015) and auxin levels (Gao et al., 501 

2014).  502 

Four of the candidate genes we identify in our GWAS have functions in both 503 

morphological formation and stress response. One common SNP (Chr11. 504 

28479550), associated with CBH6 in both the additive and dominance models as 505 

well as with Ht6 for the dominance model is located in the vicinity of the gene 506 

Eucgr.K02133 which encodes a nucleotide-diphospho-sugar transferase (QUA1). 507 

This enzyme is expressed in vascular tissues and affects homogalacturonan, pectin 508 

and hemicellulose cell wall synthesis (Orfila et al., 2005). Recent studies have 509 

shown that QUA1 also functions in chloroplast-dependent calcium signalling under 510 

salt and drought stresses (Zheng et al., 2016). Finally, the SNP Chr4.11644680 is 511 

associated with Ht3 and is a synonymous variant located in the SFR6/MED16 gene 512 

which plays important roles in cold- and drought-inducible gene expression 513 

(Knight et al., 2009, defence gene expression {Wathugala, 2012 #739) as well as 514 

modulating iron uptake (Zhang et al., 2014) in response to cell wall defects (Sorek 515 
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et al., 2015). These findings suggest that stress resistance also plays an important 516 

role in affecting tree growth traits.  517 

Conclusions 518 
In this study, we have used a GWAS approach in a Eucalyptus hybrid 519 

population to dissect the genetic basis of growth and wood quality traits by 520 

accounting for both additive and dominance genetic effects. Altogether we identify 521 

78 and 82 significant SNPs using additive and dominance models, respectively, 522 

with 10 SNPs showing an overlap between the two effect models, suggesting that 523 

additive and dominance effects are not completely independent. The associated 524 

genes could be grouped into two broad functional categories relating to how they 525 

influence tree growth and biomass. One group contain genes associated with 526 

morphological formation, such as cell wall biosynthesis, and the other group 527 

contain genes related to abiotic and biotic stress responses, such as oxidative, 528 

hormone-based and disease-induced stress. These results provide novel targets for 529 

possible transgenic or genome editing approaches in the future to directly improve 530 

growth and biomass related traits.  531 

We also applied our results from the GWAS in a genomic selection analysis 532 

by using different categories of SNPs selected based on the GWAS results and used 533 

them to evaluate genomic-based heritabilities and predictive abilities. Our results 534 

show that prediction abilities of the estimated breeding values improved for all 535 

traits when using SNPs selected based on the GWAS results. Integrating GWAS 536 
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results into genomic selection thus appear to be a promising avenue to increase the 537 

efficiency of genomic selection in forest breeding.  538 

Experimental procedures 539 
Populations, phenotypic and genotypic data 540 

A total of 1123 Eucalyptus individuals were used in this study, including 90 541 

E.grandis, 84 E.urophylla parents and 949 F1 progenies derived from a random 542 

mating design that has previously been described (Tan et al., 2017). Briefly, F1 543 

individuals were identified to be comprised of inter- and intra-crossing of the two 544 

parental species. Of the 949 F1 individuals, 57% were interspecific E.grandis × 545 

E.urophylla hybrids, 21% were intraspecific E.grandis × E.grandis progeny and 22% 546 

were intraspecific E.urophylla × E.urophylla progeny (Tan et al., 2018).  547 

The phenotypic and genotypic data utilized in this study has been previously 548 

described in detail (Tan et al., 2017). The phenotypes include height and 549 

circumference at breast height (CBH), where F1 individuals were evaluated at ages 550 

three and six and the pure species parents were evaluated at age five. In addition, 551 

we obtained data on two wood quality traits, basic density and pulp yield, that were 552 

assessed at age five. Genotyping was performed using an Illumina Infinium 553 

EuCHIP60K SNP chip that contains probes for 60,904 unique SNPs (Silva-Junior 554 

et al., 2015). Across the 1123 individuals, 37,832 SNPs were retained after quality-555 

control based on call rates (>0.7) for both SNPs and samples and following 556 

filtering based on minor allele frequencies (>0.01) and deviations from Hardy-557 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 13, 2019. ; https://doi.org/10.1101/841049doi: bioRxiv preprint 

https://doi.org/10.1101/841049
http://creativecommons.org/licenses/by/4.0/


	

Weinberg equilibrium (>1e-7). Any missing data remaining in the 37,832 SNPs 558 

were subsequently imputed using BEAGLE 4.1 (Browning and Browning, 2007). 559 

Phenotypic data analyses 560 

Phenotype data for the parental and F1 population were adjusted separately to 561 

minimize environmental variation by fitting a mixed linear model for each trait: 562 

𝐲 = 𝐗𝛃 + 𝐙𝐛𝐫 + 𝛆              (1)  563 

where y is the vector of phenotypic observation, 𝛃 is the vector of overall mean as 564 

fixed effect, 𝐫 is the vector of random replication effects following r~N(0, Iσ!!), 565 

where σ!! is the replication variance, 𝛆 is the vector of random residual effects. 𝐗 566 

and 𝐙𝐛  is design matrix for 𝛃 and 𝐫, respectively. For the F1 population, the 567 

residual variance-covariance matrix is R =  Iσ!! + AR1(ρ!)⨂AR1(ρ!)σ!! , where 568 

AR1(ρ!) and AR1(ρ!) are autoregressive correlation matrices for the row model 569 

(autocorrelation parameter ρ!) and column model (autocorrelation parameter ρ!), 570 

respectively. σe2 is the independent residual variance while σ!!  is the spatial variance. 571 

For the pure parental species, we fitted the model in Equation 1 by setting the 572 

residual matrix R =  Iσ!! since spatial coordinates and position information were 573 

not available for these individuals. All mixed-linear model analyses were 574 

performed in ASReml 4 (Gilmour et al., 2015). Phenotypes of individuals from the 575 

F1 and parental populations were adjusted for random block effects (r) and spatial 576 

effects (s), respectively. 577 
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The heritability (h2) was estimated using a mixed model 𝐲 = 𝐗𝛃 + 𝐙𝐮 + 𝛆, 578 

where 𝐲 represents the adjusted phenotypes of single trait, 𝛃 is the vector of fixed 579 

effects, including overall mean and age difference. 𝐮 is a vector of random additive 580 

or dominance genetic effect of individuals with a normal distribution, 𝐮~N(0, Aσ!!), 581 

A being the revised, pedigree-based genetic relationships among individuals (Tan 582 

et al., 2018); and 𝛆 is a heterogeneous random residual effects represented different 583 

experimental sites. X and Z are incidence matrices for 𝛃 and 𝐮, respectively. We 584 

obtained restricted maximum likelihood (REML) estimates of σ!!  and 𝛆 , and 585 

estimated ℎ! = σ!!/(σ!! + ε n).  586 

Population structure, kinship analysis and GWAS 587 

In the association analyses, confounding effects of population structure and 588 

kinship between individuals need to be accounted for. Population structure (Q) was 589 

estimated using a model-based clustering and through principle component analysis 590 

(PCA) using 13,245 independent SNPs obtained by LD-pruning the original SNP 591 

data set and including only SNPs that have pairwise linkage disequilibrium (LD) 592 

values (r2) less than 0.2. Model-based clustering was implemented using the 593 

software admixture v.1.3.0 which infer population structure by estimating 594 

individual admixture proportions using multi-locus SNP data through a maximum-595 

likelihood method (Alexander et al., 2009). The number of ancestral populations (P) 596 

was varied from 1 to 100 when using admixture and fastStructure (Raj et al., 2014). 597 

Five-fold cross-validation (CV) was performed to choose the optimal P value in 598 
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admixture. A PCA was also performed using the smartpca program in eigensoft 599 

v6.0 to estimate individual ancestry proportions (Price et al., 2006).  600 

GWAS was conducted using a recently developed method, FarmCPU, which 601 

explicitly takes into account the confounding that exists between covariates and test 602 

marker by using both a fixed effect model and a random effect model (Liu et al., 603 

2016). The results from the PCA and the kinship matrix were used as covariates in 604 

FarmCPU to account for population structure and relatedness among samples, 605 

respectively. We ran the GWAS using the R package FarmCPU. False positive 606 

errors due to multiple testing were controlled by an adjusted Bonferroni method, 607 

simpleM (Gao et al., 2008). This method infers the number of independent SNPs by 608 

filtering on LD and performs a standard Bonferroni correction to correct for 609 

multiple testing based on the number of ‘independent tests’ performed. For the 610 

present data a p-value < 1.7E-06 was selected as a cut-off to indicate significant 611 

associations. 612 

GWAS for additive and dominance models 613 

We conducted GWA analyses in FarmCPU using either an additive or 614 

dominance encoding of genotypes. For the additive encoded data, the homozygous 615 

major allele was encoded with 0, the heterozygous genotype with 1 and the 616 

homozygous minor allele with 2. For the dominance encoding, both homozygous 617 

minor and major alleles were encoded as 0 whereas the heterozygous genotype was 618 

encoded as 1 (Seymour et al., 2016).  619 

Genomic selection (GS) with different informative SNPs 620 
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Genomic selection (GS) models were constructed based on four different 621 

categories of SNPs using the Genomic Best Linear Unbiased Prediction (GBLUP) 622 

method. Details on how the genomic-based additive and dominance relationship 623 

matrices are estimated have been previously described in detail in Tan et al. (Tan et 624 

al., 2018). Here we focus on the details of how the four categories of SNPs we have 625 

used in all subsequent analyses were selected. The four categories of SNPs 626 

employed for estimating the additive and dominance relationship matrices were: 1) 627 

‘associated SNPs’ which contain only SNPs that were identified as significantly 628 

associated with the corresponding trait at the Bonferroni-adjusted p-value <1.7E-6; 629 

2) ‘putative SNPs’ are all SNPs that were significant in the GWAS for the 630 

corresponding trait using a more relaxed p-value threshold (p< 1E-3) in order to 631 

capture also possible causal SNPs that do not reach significance using the more 632 

stringent criteria in the original GWAS; 3) The ‘top 1% SNPs’ category use the top 633 

378 SNPs for each trait in the GWAS ranked after p-value in the GWAS in order to 634 

evaluate the same number of SNPs across different traits when building genomic 635 

selection models; and finally 4) ‘all SNPs’ which use all of the 37,832 SNPs 636 

available and is therefore identical to the models originally used in Tan et al (2017) 637 

and Tan el al (2018).   638 

Two separate GBLUP models were evaluated that included i) either only 639 

additive (A) or ii) both additive and dominance (AD) genetic effects using the four 640 

SNP categories described above to create marker-based relationship matrices. The 641 

A and AD models have been well described earlier in Tan et. al.(Tan et al., 2018). 642 
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The genomic-based narrow- and broad-sense heritability (h2 and H2 respectively) 643 

were calculated after fitting each model across the different traits. Narrow-sense 644 

heritability in the A model was estimated as ℎ! = 𝜎!!/𝜎!!  and the broad-sense 645 

heritability of AD model was estimated as ℎ! = (𝜎!! + 𝜎𝑑2)/𝜎!!, where 𝜎!!,𝜎!!and 646 

𝜎!!  represented the estimated additive, dominance and phenotypic variance, 647 

respectively. The prediction ability was estimated for all models and relationship 648 

matrices using a ten-fold cross-validation scheme where 100 replications was 649 

implemented to evaluate the prediction accuracy of the different models. For each 650 

replication, the dataset was randomly divided into 10 subsets and nine out of the 651 

ten partitions were used as the training population to fit a model using both 652 

phenotypes and genotypes, while the remaining partition was used as the validation 653 

set where phenotypic data was removed and then used to predict breeding values or 654 

total genetic values for the model in question. The predictive ability of the model 655 

was evaluated by estimating the correlation between phenotypes and 656 

breeding/genetic values, 𝑟(𝐴!"#$ ,𝑌!"#$) or 𝑟(𝐺!"#$ ,𝑌!"#$). 657 

Assigning significant SNPs to putative candidate genes   658 

Genes within ±5kb away from a SNP that was significantly associated with a 659 

measured phenotypic trait were extracted from the E.grandis v2.0 reference 660 

genome (BRASUZ1) in Phytozome (www.phytozome.net) using SnpEff v4.2 661 

(Cingolani et al., 2012). The 5kb window threshold used was based on the distance 662 

over which LD decays in this population (Tan et al., 2017). The putative functions 663 
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of these candidate genes were determined based on their homology to functionally 664 

characterized genes in A. thaliana (TAIR).  665 
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