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19  Summary

20 Genome-wide association studies (GWAS) is a powerful and widely used
21 approach to decipher the genetic control of complex traits. A major challenge for
22 dissecting quantitative traits in forest trees is statistical power. In this study, we use
23 a population consisting of 1123 samples from two successive generations that have
24 been phenotyped for growth and wood property traits and genotyped using the
25  EuChip60K chip, yielding 37,832 informative SNPs. We use multi-locus GWAS
26  models to assess both additive and dominance effects to identify markers
27  associated with growth and wood property traits in the eucalypt hybrids. Additive
28  and dominance association models identified 78 and 82 significant SNPs across all
29  traits, respectively, which captured between 39 and 86% of the genomic-based
30  heritability. We also used SNPs identified from the GWAS and SNPs using less
31 stringent significance thresholds to evaluate predictive abilities in a genomic
32 selection framework. Genomic selection models based on the top 1% SNPs
33 captured a substantially greater proportion of the genetic variance of traits
34 compared to when all SNPs were used for model training. The prediction ability of
35  estimated breeding values was significantly improved for all traits using either the
36 top 1% SNPs or SNPs identified using a relaxed p-value threshold (p<107). This
37  study highlights the added value of also considering dominance effects for
38  identifying genomic regions controlling growth traits in trees. Moreover,

39  integrating GWAS results into genomic selection method provides enhanced power
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relative to discrete associations for identifying genomic variation potentially useful
in tree breeding.
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46  Introduction

47 Deciphering the genetic basis of complex phenotypic traits is of fundamental
48  importance for understanding biological processes and may ultimately provide
49  information that can help enhance selection in plant breeding programs. Genome-
50  wide association studies (GWAS) is a powerful way to identify putative causal
51  genes or genomic segments that underlie phenotypic variation in plants,
52 particularly for traits with complex genetic architectures (Ingvarsson and Street,
53 2011; Kruglyak, 2008). Dissection of complex traits have been undertaken in forest
54  genetics to understand the genetic basis of adaptive phenotypes (Ingvarsson et al.,
55  2008; Olson et al., 2013; Wang et al., 2018) or physiological or morphological
56  traits, such as growth or wood properties. For example, Porth et. al. (Porth et al.,
57  2013) and later Chhetri et. al. (Chhetri et al., 2019a) performed GWAS for wood
58  traits, biomass, eco-physiological and phenology traits in Populus trichocarpa with
59  genotyping based on 6.78 million single nucleotide polymorphisms (SNPs).
60  Similarly, a study of Salix viminalis identified 29 SNPs that were associated with
61  bud burst, leaf senescence, number of shoots or shoot diameter (Hallingback et al.,
62  2016). In Eucalyptus, the earliest GWAS identified 16 markers that were associated
63  with growth and two markers that were associated with lignin traits (Cappa et al.,
64  2013). Recently, 26 quantitative trait loci (QTLs) were identified for productivity
65  and disease resistance using a regional heritability mapping method that helps
66  increase the genomic heritability to 5-15% from 4-6% when using SNPs

67 individually(Resende et al., 2017a; Resende et al., 2017b).
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68 GWAS studies can also provide tools for accelerating the long breeding cycles
69  in tree breeding (reviewed in (Neale and Kremer, 2011)). For example, although
70  many species of Fucalyptus display unusually fast growth, breeding cycles aimed
71 at developing elite commercial genotypes still take between 12 to 16 years to
72 complete, since identification of elite genotypes require progeny trials followed by
73 two or more sequential clonal trials (Rezende et al., 2014). However, genomic
74  selection based on genome-wide molecular makers is expected to reduce the time
75  required for completing a cycle of developing elite clones to only 9 years mainly
76 due to the shorter time needed for progeny tests when phenotypes can be predicted

77  from the genomic selection models (Grattapaglia, 2017).

78 The rapid development in genomics has opened up opportunities to identify
79  molecular markers that are associated with traits of interest and use these marker-
80 trait associations to complement and extend traditional breeding programs. Despite
81  the efforts to discover polymorphisms associated with economically relevant traits,
82  much of the genetic contribution to complex traits in forest trees remains
83  unexplained. One of the main reasons is that GWAS methods normally conduct
84  tests on one marker at a time, for instance using a generalized linear model (GLM)
85  or a mixed linear model (MLM). When dealing with complex traits such as growth
86  and wood qualities, where the effect size of individual loci is likely small to
87 moderate, these methods suffer from limited statistical power to detect loci of small
88  effects (Muller et al., 2017). One potential approach to increase the power and to

89  accurately identify more causal variants is so called ‘multi-locus mixed models’
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90 (MLMM), which simultaneously test multiple markers by including them as
91  covariates in a stepwise MLM to partially remove confounding between tested
92  markers and kinship (Segura et al., 2012). One such method is the ‘fixed and
93  random model circulating probability unification’ (FarmCPU) that performs
94  marker tests using other associated markers as covariates in a fixed effect model
95 (Liu et al., 2016). Optimization across the associated covariate markers using a
96  random effect model is then performed separately. This approach has been reported
97  to simultaneously reduce computational complexity, remove confounding between
98  population structure, kinship and quantitative trait loci, prevent model over-fitting

99  and control the number of false positives (Liu et al., 2016).

00 Most GWAS analyses to date have been undertaken by implicitly assuming a
01  genetic architecture consisting of additive effects. However, non-additive effects,
02  including dominance (Bruce, 1910), over-dominance (Crow, 1948) and epistasis
03  (Hill, 1982) are known to also play important roles in controlling some traits. One
04  trait where non-additive effects are likely to be pronounced is heterosis, or hybrid
05  vigor, which is the near universally observed phenomenon of phenotypic
06  superiority of hybrid progeny relative to their parents (Charlesworth and Willis,
07  2009). Not surprisingly, heterosis has been and continues to be of great importance
08  in most plant breeding schemes (Duvick, 2001). To date, a limited number of
09  studies have utilized GWAS methods to dissect the genetic basis of heterotic traits
10 in Arabidopsis thaliana and rice. In the model plant A.thaliana, dominance and

11 over-dominance of flowering time is a well-studied trait and significant loci from a
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12 GWAS were shown to explain as much as 20% of the phenotypic variation in a
13 hybrid population consisting of 435 individuals derived from inter-crossing 30
14 parents (Seymour et al., 2016). In rice, genome-wide dissection uncovered multiple
15 non-additive effect loci for yield increase (Li et al., 2016; Zhen et al., 2017). For
16  instance, a major QTL, rice heterosis 8 (RH8) was found to regulate grain-yield
17  component traits (Li et al., 2016). In Eucalyptus hybrids dominance appears to be
18  an important and widespread contributor to many growth-related traits (Bison et al.,
19 2006; Bouvet and Vigneron, 1995; Volker et al., 2008) and ratios of dominance to
20  additive variances exceeding 1.2 have been estimated for growth in E. grandis x E.
21 urophylla hybrids (Bouvet et al., 2009; Makouanzi et al., 2014; Tan et al., 2017).
22 Such results suggest that there should be ample opportunities to identify SNPs

23 accounting for dominance and/or over-dominance effects in Eucalyptus hybrids.

24 Another genomic-based approach that has become widely used in plant and
25  animal breeding in recent years is genomic selection (GS) or alternatively known
26  as genomic prediction. Unlike GWAS, GS refers to marker-based selection where
27  total genetic variance is captured using genome-wide markers without a prior step
28  of identifying trait-associated markers. GS aims to predict the genetic potential (e.g.
29  genome-estimated breeding values) of breeding individuals without locating genes
30  or QTLs important for the trait(s) of interest. One of most important questions for
31  GS is how to improve the prediction accuracy and methods for accuracy has long
32 been a central research aim in genomic selection. Thus far progress on increasing

33 prediction accuracies have been achieved through the development of new
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34  statistical models, more efficient design of training populations, improved quality
35  of phenotypic measurements, a greater number of makers used for model building
36  and by also considering non-additive effects (Grattapaglia, 2017). In this paper we
37  assess methods for improving genomic prediction accuracy by integrating results
38  from GWAS studies into GS to predict the genetic potential of breeding targets. It
39  is well known that using only associated SNPs identified from a GWAS is usually
40  not sufficient for explaining a large fraction of the genetic variation in a trait of
41 interest (the so called “missing heritability” problem, (Makowsky et al., 2011)).
42  However, utilizing GWAS information in the form of associated SNPs, in
43 combination with other types of data has the potential to enhance prediction ability

44  in GS studies (Gowda et al., 2015).

45 In this study, we present results from a GWAS on growth and wood quality
46  traits, in a breeding population comprising two species of Eucalyptus and their
47  hybrids. We also integrate the GWAS results in a GS model with the goal of
48  assessing whether this can help increase prediction accuracies for the traits in
49  question. Specifically, our study has two objectives: first, we implement a state of
50  the art GWAS method that consider both additive and dominance effects for
51  dissecting the genetic architecture of growth and wood quality traits. We also
52 evaluate the proportion of phenotypic variation that explained by significant loci
53 for these two genetic effects. Second, we evaluate how different categories of
54 informative SNPs, selected based on the results from the GWAS, can be

55  implemented in a widely used model for genomic prediction, GBLUP, to estimate
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56  variance components and to evaluate prediction accuracies of estimated breeding
57  values.

58  Results

59  Characters of growth and wood traits

60 All growth traits were moderately variable at the different assessment ages
61  (Table 1). We observed a lower phenotypic variation for height at 3 years of age, as
62  judged by the coefficient of variation (Table 1). The F1 population underwent
63  selection based on height in order to identify trees to use for genotyping and this
64  selection process likely contributed to the lower phenotypic variation we see in
65  height at 3 years of age. We also observed low phenotypic variation for basic
66  density and pulp yield, which is commonly observed in many wood quality traits.
67  Generally, variation in CBH was greater than in height but both mean and variance
68  for both traits increased as the trees aged. Growth traits generally had low
69  heritabilities (h* < 0.2) whereas wood quality traits showed moderate heritabilities
70  (Table 1). Phenotypic correlations between growth traits were generally positive
71 (0.24~0.74) whereas basic density was weakly negatively correlated with pulp
72 yield (-0.28). The wood quality traits were generally independent from growth
73 traits (correlations in the range -0.1 - 0.1) (Figure S1). The greatest positive
74 phenotypic correlations were observed between CBH and height assessed at the

75  same age (0.63 and 0.74 for 3 and 6 years, respectively).
76

77
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78 Table 1. Statistical summary of phenotypes
Trait Abbr. No.obs. Unit Mean CV(%)Jr h*
Circumference at breast height, age 3 years CBH3 1123 cm  61.82 1322 0.143
Height, age 3 years Ht3 1094 m 2243 981 0.162
Circumference at breast height, age 6 years CBH6 1104 cm 83.80 18.67 0.186
Height, age 6 years Ht6 985 m 2840 13.09 0.182
Basic density BD 1061 kg/m’ 532.78 6.83 0.381
Pulp yield PY 1039 % 49.64 805 042
79 TCV: coefficient of variance.
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81 Figure 1. Population structure of parents and F1 progenies. (A) Cross-validation
82 error in the admixture analysis for K varying from 1-20 for the 174 parents. (B)
83 Population structure of parents inferred using admixture for K=6. (C) PCA plot
84 based on genetic covariance among all individuals. Only the first two principle
85 components are shown. The colours used for the parents are in line with the
86 clustering shown in (B), with grey colour denoting all F1 progeny.

87  Population structure and model optimization

88 To examine population structure in the breeding population including both
89  parents and their F1 progenies, we conducted both model-based admixture and
90  fastStructure analyses and principle component analysis (PCA) based on a set of
91 independent SNPs. The admixture analysis could not identify an optimal genetic

92 clustering on account of the minimization of the CV error even for K-values up to
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93  K=100 (Figure S2). In contrast, fastStructure suggested an optimal genetic
94  clustering of K=1. Due to the inconsistences between the methods, we repeated the
95  population structure analyses using only the parents, given that the F1 individuals
96  were all obtained through crossings between these parents. Admixture analyses

97  based on the parents alone suggested K=6 minimized the CV error (Fig

98

99 ure 1A) and K=6 was also the optimal genetic clustering obtained from
'00  fastStructure. The parents were assigned to the six subpopulations according to
01 individual ancestry proportions (Figure 1B). We also performed a PCA to
'02  summarize genetic variation among parents and the first six components explained
‘03 21.53% of the total genetic variation. Notably, the eigenvalues beyond the first six
'04  PCs were relatively small (Figure S3), consistent with the minimum K identified in
'05  the admixture analyses. Based on first two principle components, parents can be
06 clearly separated into three clusters and two further sub-clusters can be identified
'07  within in each major cluster. Progenies are inferred to be derived from crossing
'08  parents either with the different major clusters or between them (Figure 1C) and
'09  therefore we used the first six PCs in all subsequent analyses to correct for

10 population stratification.
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Figure 2. Manhattan plots and quantile-quantile (QQ) plots of the FarmCPU
results using an additive effects model. The traits used are CBH and height at age
3 and 6 (Ht3 and Ht6, respectively) as well as basic density (BD) and pulp yield
(PY). The Manhattan plots show -log;o p-values plotted against SNP positions on
the 11 Eucalyptus chromosomes. Associations reaching genome-wide
significance are displayed in red and the horizontal dotted line indicates a
Bonferroni-corrected significant threshold of p <1.7E-06. The QQ plots for each
of the six traits demonstrate the observed versus expected distribution of p-
values. The solid red line represents the expected null distribution assuming no

associations.
Genome-wide association study for additive effects

We first ran FarmCPU with an additive effect encoding to identify loci with
significant additive effects on the different phenotypes. Quantile-quantile (QQ)
plots suggest that population structure and kinship relationships were well
controlled in the GWAS for the different traits (Figure 2). SNPs with p-values <
1.7E-06 threshold were declared statistically significant. Overall, we identified 78

significant SNPs across the six traits and these significant SNPs were distributed
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29 across all 11 chromosomes (Figure 2). No significant SNPs were identified for
30 more than one trait, even though both CBH and height show strong genetic
31 correlations across ages. Comparing the number of significant SNPs found for the
'32  different traits, growth traits had more significant SNPs than wood traits, with
'33  height and CBH at the two different ages having between 14 and 18 significant
:34  SNPs whereas we only identified 9 significant SNPs for the two wood quality traits.
'35 We generally observe lower phenotypic variances explained by individual SNPs
36 for CBH and height compared to pulp yield and basic density (Table S1). The
'37  maximum percentage of phenotypic variance explained by single associated SNP
38 was 2.3% (for pulp yield) and the minimum percentage of phenotypic variance

'39  explained by a significantly associated SNP was 0.33% (CBH age 3 years).
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41 Figure 3. Manhattan plots and quantile-quantile (QQ) plots of the FarmCPU
42 results for the dominance effects model. The traits used are CBH and height at
43 age 3 and 6 (Ht3 and Ht6, respectively) as well as basic density (BD) and pulp

44 yield (PY). The Manhattan plots show -logj, p-values plotted against SNP
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45 positions on the 11 Eucalyptus chromosomes. Associations reaching genome-
'46 wide significance are displayed in red and the horizontal dotted line indicates a
47 Bonferroni-corrected significant threshold of p <1.7E-06. The QQ plots for each
48 of the six traits indicate the observed versus expected distribution of p-values.
'49 The solid red line represents the expected null distribution assuming no
'50 associations.

)51 Genome-wide association study for dominance effects

)52 FarmCPU efficiently controlled the false positive rates due to population
'53  structure and sample relationships also when identifying significant loci using
'54  dominance encoding (Figure 3, QQ plots). Under a dominance model we detected a
'55  total of 82 significant SNPs for the six traits. Height at 3 years old (Ht3) had the
'56  greatest number of associations with 19 SNPs displaying significant effects. Fewer
'57  associations were observed for the other traits, with between 11 and 15 significant
'58  SNPs identified (Figure 3, Manhattan plots). Two significant SNPs,
'59 Chr5.40663824 and Chrl11.28479550, were found to overlap between CBH and
'60  height at age of 6 years. The maximum percentage of phenotypic variance
61 explained by an associated SNP was 4%, a much higher value than found in the
62 additive effect estimations. The smallest percentage of phenotypic variance
63  explained by an associated SNP for the dominance model was of similar magnitude
64 to that observed for additive effects model (Table S2). Comparing significant SNPs
'65 identified from the additive and dominance effects models, a total of 10 SNPs
66 overlap between two models for different traits. This result suggest that the two

67  genetic effects are not completely independent. Nine out of ten SNPs that overlap
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'68  between additive and dominance effects were identified for growth traits and with

'69  the remaining SNP observed for pulp yield.

70 Genome selection by using GWAS results

71 To confirm the utility of the SNPs identified from the GWAS and to further
72 understand the performance of selecting SNPs for each trait based on the GWAS
73 results, we conducted genomic prediction using four categories of SNPs by using
74 both an additive genetic model (A) and an additive + dominance genetic model
75 (AD). The four categories of SNPs used for the GBLUP analyses were selected
76 from the GWAS results for each trait based on the following criteria: 1) ‘associated
77 SNPs’ were identified as significant from the GWAS using the threshold p< 1.7E-6;
78 2) ‘putative SNPs’ were identified as significant from the GWAS using a more
79 relaxed significance threshold p<1E-3 of each trait; 3) the ‘fop 1% SNPs’ included
80 the top 1% SNPs for each trait, ranked according to GWAS significance. The
‘81  rational of this category was to ensure that models utilised the same number of
'82  SNPs across all traits. Finally, 4) ‘all SNPs’ used all 37,832 available SNPs when

'83  building the genomic selection models (Table S3).
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'85 Figure 4. Genomic-based narrow- and broad-sense heritabilities based on an
'86 additive (A) or an additive + dominance (AD) model for the four different
87 categories of SNPs used. The coloured bins represent the different categories of
88 SNPs used, with red indicating ‘all’ SNPs (37,832), green indicates the ‘top 1%’
'89 SNPs ranked according to GWAS p-value, cyan denotes ‘putative’ SNPs
90 selected based on GWAS results with p < 1E-3 and purple denoted ‘associated’
91 SNPs selected based on GWAS results using p < 1.7E-6. The fill patterns
92 represent different genetic effects. Vertical lines denote additive effects and
93 horizontal lines denote dominance effects. Error bars indicate the standard error
194 of total genetic variance.
95 The narrow-sense and broad-sense heritabilities were estimated using a

96  modified GBLUP model based on different maker-based relationship matrices
'97  calculated using the four SNP categories. As expected, basic density and pulp yield
'98  had higher realised heritabilites than growth traits, independent of what category of
'99  SNPs that were used for the calculations. Broad-sense heritabilities were higher
00  than narrow-sense heritabilities for most traits, demonstrating that dominance plays

01  an important role in the expression of most traits (Figure 4) and in line with earlier
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02  observations in this population (Tan et al., 2018). Comparing heritabilites (h* and
)03 H?) for the different SNP categories suggest, perhaps surprisingly, that the ‘top 1%
04  SNPs’ category explain more of the genetic variation than any of the other
05 categories, including when all SNPs were used (Table S4). Furthermore, using the
06  ‘top 1% SNP’ set yielded the largest estimates of dominance effects. As expected,
07  using only SNPs that were significantly associated with a trait in the GWAS
08  resulted in lower heritability estimates compared to using all SNPs. Comparing
09  heritability estimates between the ‘putative’ and ‘all’ SNP categories showed that
10 these yielded similar estimates for CBH and height, the ‘putative’ category of SNPs
11 yielding significantly lower heritability estimates than the ‘all” SNP category for the

12 two wood quality traits (Figure 4).

13 We further estimated the prediction ability of breeding values for the 4 model
14 and the prediction ability of genetic values for the 4D model using a ten-fold cross-
15 validation approach. The distribution of predictive abilities for each of the models
16 and SNP, obtained using 100 replications, are displayed in Figure (5). Generally,
17 we observe higher prediction abilities for wood quality traits, in line with the
18  higher heritability values we observe for these traits. The AD model yielded
19 slightly higher prediction abilities than the A model for most of traits. When
20 comparing the different SNP categories, both the ‘top 1%’ and ‘putative’ SNP
21 categories yielded substantial improvements in the predictive ability compared to
122 both the ‘all’ and the ‘significant’ SNP categories. The ‘associated’ SNPs yielded

23 more or less similar results to that obtained using ‘all’ SNPs. Moreover, the ‘top
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24 1%’ SNP category yielded the highest average prediction ability for height, basic
125 density and pulp yield with values being much higher than those calculated from

126 the ‘all” SNP category (Table S5).
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128 Figure 5. Predictive abilities of the additive (A) and the additive + dominance
129 (AD) genomic prediction models for the four different categories of SNPs. The
130 coloured boxplots display the distribution of predictive ability across 100
31 replicates of ten-fold cross-validation for the different categories of SNPs.
132 Colours used as in Figure 4.
133
34 Discussion
135 We used GWAS with both additive and dominance effects to dissect the

36 genetic architecture of growth and wood quality traits in hybrid Fucalyptus. The
37  method we employed for GWAS, FarmCPU, was able to control the false positive
138 rate induced by both the complex population structure and kinship that characterise
139 our mapping population and efficiently identified significantly associated SNPs for

40 both additive and dominance effects. Using top-ranking SNPs based on the GWAS
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41 yielded higher genomic heritability estimates compared to using all available SNPs.
42 We were also able to achieve more accurate genomic prediction results by filtering
43 SNPs based on their associations in the GWAS and this help shed light on future

44 directions in the application of genomic selection in Eucalyptus breeding.

45  FarmCPU perform superior in GWAS analysis

46 Most economic traits targeted for breeding in forestry, such as growth and
47 wood properties, are quantitative traits and usually have a complex genetic
48  architecture controlled by many loci of small effect. Here we utilised a recently
49 developed method for the dissection of complex traits, FarmCPU, that has been
50 proposed to efficiently address problems confounding between testing markers and
51 covariates that often arise in GWAS (Liu et al., 2016). Several empirical studies
52 have verified that FarmCPU offers enhanced power for GWAS of complex traits
53 (Vanous et al., 2019; Ward et al., 2019; Zhu et al., 2018). In this study, we
54 identified 78 and 82 significant associations having additive and dominant effects,
155 respectively, with average of 13 SNPs identified per trait studied. These results are
56  more efficient compared to another commonly used GWAS method, Genome-wide
57  Efficient Mixed Model Association (GEMMA). In preliminary analyses we found
58  that GEMMA was also able to control the false positive rate very well, but this
59 came at the price of a relatively low statistical power. GEMMA consequently only
60  identified two significant SNPs for additive effects (Figure S4) and a total of 13
61 significant SNPs for the dominance effects across traits (Figure S5). The FarmCPU

62 methods therefore appears to be an attractive method that strike a good balance
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63 between the identification of false positives and false negatives and thus have good
64 power for the dissection complex traits.

65 Dominance effects play important roles in hybrid population

166 GWAS have traditionally assumed only additive effects of individual SNPs
67 (Bush and Moore, 2012; Marjoram et al., 2014) but here we show the added value
68  of also considering dominance effects for identifying genomic regions controlling
69  growth and wood quality traits. By assessing also dominance effects, we identify
70 an additional 72 associated SNPs across the traits, in addition to the 78 SNPs we
71 identified using additive effects. Furthermore, a considerable proportion of the
72 genetic variation in our hybrid population is attributable to non-additive effects and
73 our results show that the alleles underlying this variation can be identified when
74 dominance effects are explicitly considered in a GWAS setting. Several previous
75 studies have used controlled crosses in crop species, particularly in maize and rice,
76 to identified loci that exhibit dominance effects. For heterosis-related traits, data
77 from maize is frequently cited as supporting the dominance model (Cui et al., 2017;
78  Wallace et al., 2014), while rice has been proposed as a system that supports the
79 over-dominance hypothesis (Li et al., 2016; Zhen et al., 2017). Our approach
80 quantifies the contribution of dominance to the “missing heritability” in a
81 Eucalyptus hybrid breeding population and we collectively show that up to 10% of
82 the genomic-based heritability can be explained by associated SNPs that were

83 identified using a dominance model (Table S4).

84 The benefit of integrating GWAS results on genomic prediction
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85 Even if we capture a substantially larger number of associated SNPs by
86 considering both additive and dominance effects, a large fraction of the genomic-
87  based hertiabilies (14%-62%) cannot be explained by only considering
88 significantly associated SNPs (Table S4) and these observations are in line with
89 several earlier reports (Chhetri et al., 2019b; Tang et al., 2019; Zhao et al., 2019).
90  Also, when using significantly associated SNPs from the GWAS to investigate the
91 accuracy of genomic predication, we find that this yields no improvement in
192 accuracy, and sometimes even reduced accuracy, compared to predictions based on
93 all available SNPs which mirrors results seen in other similar studies (Gowda et al.,
94 2015; Wallace et al., 2016). Regions identified in a GWAS are consequently not
95 able to explain all of the genetic variation in the traits of interest and this problem
96 is greater for quantitative traits that are controlled by many genes of small effect.
97  These are the traits where current GWAS methods often suffers from insufficient
98  power to detect loci of small effect, unless sample sizes are substantially larger

99 than what is commonly used in most studies of plants.

00 In order to assess if the GWAS results could be used to enhance genomic
‘01 prediction in our breeding population, we also tried to identify possible ‘candidate’
‘02 SNPs that were not detected as significant using the stringent significant threshold
‘03 we applied in our GWAS. The rational here is that, as outlined above, most GWAS
‘04 methods fail to detect loci of small effect but that the GWAS would nevertheless
‘05  serve as a useful “filter’ for ranking SNPs for their possible effects on the traits of

‘06 interest. We therefore selected two categories of SNPs using two different criteria
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‘07  of relaxed significance and used these to estimate genomic heritabilities and
‘08  perform genomic prediction. The first category, ‘putative’ SNPs include all SNPs
‘09  that were found to be associated with the traits of interest based a more relaxed p-
10 value (p< 1E-3). Using this more relaxed p-value we identify between 70 to184
‘11 SNPs for the different of trait when combined across the additive and dominance
12 effect models. Using the ‘putative’ SNP category we observed large improvements
13 in the heritability estimates for the growth traits, to the point where almost all of
14 the genetic variation could be explained (Table S4). For wood quality traits,
15 however, about 40% of the genetic variation remain unexplained compared to
16 when using all SNPs for heritability estimation (Table S4). The second category of
17 SNPs we considered consisted of the top 1% of SNPs, ranked by the p-value from
18 the GWAS. Using this criterion ensures that the same number of SNPs are used for
19 prediction across the different traits. Surprisingly we were able to explain a
20 substantially greater proportion, up to 174%, of the genetic variation explained
21 when using all SNPs (Table S4). When we performed genomic prediction using
22 these two categories of SNPs we also observe a substantial increase in the
23 prediction ability for all traits compared to predictions based on all available SNPs.
24 This suggests that using all available SNPs introduce noise in the prediction models
25 that negatively affects our prediction ability. Our method for analysing genomic
26 selection and increasing prediction accuracy clearly benefited from integrating
27 results from the GWAS analyses, but the number of associated SNPs that needs to

28  be incorporated depends on the study trait in questions.
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29 Detection of associations for complex traits in forest trees

30 Identifying candidate genes underlying growth and wood traits has long been
31 an active area of research in forest trees, such as in Eucalyptus (Cappa et al., 2013;
32 Miiller et al., 2019; Muller et al., 2017; Resende et al., 2017a), Populus (Allwright
33 etal, 2016; Du et al., 2016; Fahrenkrog et al., 2017; Porth et al., 2013) and Pinus
34 (Bartholomé et al., 2016; Lu et al., 2017). To ensure good statistical power, both
'35 common and rare genetic variants needs to be considered to have a comprehensive
36 understanding of the genetic regulation of complex traits, since many low-
37  frequency variants were identified as associated with growth and wood
38 composition traits (Fahrenkrog et al., 2017). For instance, regional heritability
39 mapping (RHM), has previously been shown to successfully utilise information
40 from both common and rare variants and can therefore capture a larger proportion
41 of the genomic heritability in Eucalyptus (Miiller et al., 2019; Resende et al.,
42 2017a).

43 Furthermore, both additive and non-additive effects play important roles in
44 association studies for many traits. Adding dominance effects to a GWAS analysis
45 increase the possibility to identify additional variants that can help capture a greater
46  fraction of the genetic variance (Du et al., 2016; Lu et al., 2017). Other methods,
47 such increasing the sample size using meta-analysis (Miiller et al., 2019) or using
48  multi-locus GWAS approaches instead of single marker methods (Fahrenkrog et al.,
49 2017) are methods that also can help increase statistical power in GWAS.

50 Putative genes for plant growth and stress response


https://doi.org/10.1101/841049
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841049; this version posted November 13, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

51 Among the significantly associated SNPs we observe across additive and
52 dominance effects estimations, we identified a total of 49 candidate genes that have
53 known functions relevant for the traits in question. The details of these genes,
54 including information on the position of associated SNPs and the putative functions
55  of the genes, are summarised Table S6. In general, candidate genes can be
56  separated into two groups, with one group containing genes that have direct
57  functions associated to the morphological formation of different tissues or organs.
58  The other group contain genes related to general responses to abiotic and biotic

159 stress, which, more indirectly, influence plant growth and biomass.

60 Among the significant SNPs associated with morphology, a number of
61 associations are linked to genes which are related to cell wall biosynthesis. For
62 example, SNP Chr3.46653967 is associated with Ht6 using an additive effects
63 model. This SNP is located on chromosome 3 and encodes a missense variant in a
64 gene coding for a pectin lyase-like superfamily protein (PME). This gene is
65  expressed in stamen and is involved in cell wall loosening and have previously
66  been implicated in floral development (Francis et al., 2006). We also identified a
67  significant SNP on chromosome 11 (Chrl11.20479646) which is associated with
68  Ht6 (Table S6). This SNP is located in the gene Eucgr.K01691 which encodes a
69  homolog to the Arabidopsis alpha-L-arabinofuranosidase 1 (ARAF1) gene.
70 Expression of the ARAF1 gene is localized to several cell types in the vascular
71 system of roots and stems and the protein is known to be involved in cell type-

72 specific alterations of cell wall structure (Chavez Montes et al., 2008). Many other
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73 studies have also identified cell wall biosynthesis related genes from GWAS
74 performed using growth traits in forest trees. Du et. al. (2016) identified four
75 significant SNPs that were located in genes involved in secondary cell wall
76 biosynthesis when analysing growth traits in the Populus (Du et al., 2016). A SNP
77 associated with volume in E. pellita is located in a gene whose function is known
78  to be involved in cell wall cellulose biosynthesiss (Muller et al., 2017). Similarly,
79 Muller et. al. (Miiller et al., 2019) used a joint-GWAS approach in four Eucalyptus
80  breeding populations and identified eight SNPs associated with growth traits that

81  were all linked to genes which were related to cell wall biosynthesis.

82 Many of the candidate genes putatively related to abiotic and biotic stress
83 show response to adverse conditions. It is perhaps not surprising that these genes
84 show up in our GWAS, as the planting area of the study population alternates
85  between extremely dry (from July to August) and wet (from August to October)
86 conditions in most years, which often leads to stress-induced damage and high
87  incidence of diseases. In line with this, we identified several candidate genes
88  involved in stress response to adverse climate conditions. The SNP Chr2.1760161
89 is highly associated (p-value=3.72E-12) with height at 3 years age in the
90  dominance model. This SNP is located upstream of the gene Eucgr.B00092, which
91  encodes a putative HVA22 homologue E (HVA22E). HVA22E is upregulated to
92 varying degrees in response to cold and salt stress, ABA treatment or dehydration
193  (Chen et al., 2002; Shen et al., 2001). Another variant (Chr3.41941452), associated

94  with CBH at age 6, is located in the upstream region of High-affinity K+
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95 transporter 1 (HKT1) gene. HKT1 is expressed in root stelar cells and leaf cells
96  (Hamamoto et al., 2015) and provides a key mechanism for protecting leaves from
197 Na+ over-accumulation and salt stress (Berthomieu et al., 2003; Maser et al., 2002).
98  The SNP Chr6.23066996 is associated with CBH at 6 years of age in the additive
99  effects model, is located on chromosome 6 inside the gene Fucgr.F01775 that
00  encodes catalase 2 (CAT2). CAT2 controls levels and sensitivity to H,O, (Bueso et
01 al.,, 2007), photo-oxidative stress (Konert et al., 2015) and auxin levels (Gao et al.,

02 2014).

03 Four of the candidate genes we identify in our GWAS have functions in both
04  morphological formation and stress response. One common SNP (Chrll.
05  28479550), associated with CBH6 in both the additive and dominance models as
06 well as with Ht6 for the dominance model is located in the vicinity of the gene
07  Eucgr.K02133 which encodes a nucleotide-diphospho-sugar transferase (QUA1).
08  This enzyme is expressed in vascular tissues and affects homogalacturonan, pectin
09  and hemicellulose cell wall synthesis (Orfila et al., 2005). Recent studies have
10 shown that QUA1 also functions in chloroplast-dependent calcium signalling under
11 salt and drought stresses (Zheng et al., 2016). Finally, the SNP Chr4.11644680 is
12 associated with Ht3 and is a synonymous variant located in the SFR6/MED16 gene
13 which plays important roles in cold- and drought-inducible gene expression
14 (Knight et al., 2009, defence gene expression {Wathugala, 2012 #739) as well as

15 modulating iron uptake (Zhang et al., 2014) in response to cell wall defects (Sorek
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16 et al., 2015). These findings suggest that stress resistance also plays an important
17 role in affecting tree growth traits.

18 Conclusions

19 In this study, we have used a GWAS approach in a Eucalyptus hybrid
20 population to dissect the genetic basis of growth and wood quality traits by
21 accounting for both additive and dominance genetic effects. Altogether we identify
22 78 and 82 significant SNPs using additive and dominance models, respectively,
23 with 10 SNPs showing an overlap between the two effect models, suggesting that
24 additive and dominance effects are not completely independent. The associated
125 genes could be grouped into two broad functional categories relating to how they
26 influence tree growth and biomass. One group contain genes associated with
27  morphological formation, such as cell wall biosynthesis, and the other group
128 contain genes related to abiotic and biotic stress responses, such as oxidative,
129 hormone-based and disease-induced stress. These results provide novel targets for
30 possible transgenic or genome editing approaches in the future to directly improve

31  growth and biomass related traits.

132 We also applied our results from the GWAS in a genomic selection analysis
133 by using different categories of SNPs selected based on the GWAS results and used
34 them to evaluate genomic-based heritabilities and predictive abilities. Our results
'35 show that prediction abilities of the estimated breeding values improved for all

36 traits when using SNPs selected based on the GWAS results. Integrating GWAS
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37 results into genomic selection thus appear to be a promising avenue to increase the
138  efficiency of genomic selection in forest breeding.

39  Experimental procedures

40 Populations, phenotypic and genotypic data

41 A total of 1123 Eucalyptus individuals were used in this study, including 90
42 E.grandis, 84 E.urophylla parents and 949 F1 progenies derived from a random
43 mating design that has previously been described (Tan et al., 2017). Briefly, F1
44 individuals were identified to be comprised of inter- and intra-crossing of the two
45 parental species. Of the 949 F1 individuals, 57% were interspecific E.grandis x
46  E.urophylla hybrids, 21% were intraspecific E.grandis x E.grandis progeny and 22%

47 were intraspecific E.urophylla x E.urophylla progeny (Tan et al., 2018).

48 The phenotypic and genotypic data utilized in this study has been previously
49 described in detail (Tan et al., 2017). The phenotypes include height and
50 circumference at breast height (CBH), where F1 individuals were evaluated at ages
51 three and six and the pure species parents were evaluated at age five. In addition,
152 we obtained data on two wood quality traits, basic density and pulp yield, that were
153 assessed at age five. Genotyping was performed using an Illumina Infinium
54 EuCHIP60K SNP chip that contains probes for 60,904 unique SNPs (Silva-Junior
155 etal., 2015). Across the 1123 individuals, 37,832 SNPs were retained after quality-
56 control based on call rates (>0.7) for both SNPs and samples and following

57 filtering based on minor allele frequencies (>0.01) and deviations from Hardy-


https://doi.org/10.1101/841049
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841049; this version posted November 13, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

58 Weinberg equilibrium (>1e-7). Any missing data remaining in the 37,832 SNPs

59 were subsequently imputed using BEAGLE 4.1 (Browning and Browning, 2007).

60  Phenotypic data analyses
61 Phenotype data for the parental and F1 population were adjusted separately to

'62  minimize environmental variation by fitting a mixed linear model for each trait:
63 y=XB+Zp,r+¢€ €))

64 where y is the vector of phenotypic observation, B is the vector of overall mean as
65 fixed effect, ris the vector of random replication effects following r~N(0, 162),
166  where 02 is the replication variance, € is the vector of random residual effects. X
67  and Zy, is design matrix for § and r, respectively. For the F1 population, the
/68  residual variance-covariance matrix is R = Io?% +AR1(pr)®AR1(pC)G,21, where
69  AR1(p,) and AR1(p.) are autoregressive correlation matrices for the row model
70 (autocorrelation parameter p;) and column model (autocorrelation parameter p.),
71 respectively. o2 is the independent residual variance while O'TZ] is the spatial variance.
72 For the pure parental species, we fitted the model in Equation 1 by setting the
73 residual matrix R = Io? since spatial coordinates and position information were
74 not available for these individuals. All mixed-linear model analyses were
75 performed in ASReml 4 (Gilmour et al., 2015). Phenotypes of individuals from the
76 F1 and parental populations were adjusted for random block effects (r) and spatial

77 effects (s), respectively.
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78 The heritability (h*) was estimated using a mixed model y = Xp + Zu + &,
79 where y represents the adjusted phenotypes of single trait, B is the vector of fixed
80 effects, including overall mean and age difference. u is a vector of random additive
81 or dominance genetic effect of individuals with a normal distribution, u~N(0, Ac?2),
82 A being the revised, pedigree-based genetic relationships among individuals (Tan
83 etal., 2018); and € is a heterogeneous random residual effects represented different
84 experimental sites. X and Z are incidence matrices for B and u, respectively. We
i85  obtained restricted maximum likelihood (REML) estimates of 62 and £, and

86 estimated h? = 62/(c% + X &/n).

87  Population structure, kinship analysis and GWAS

188 In the association analyses, confounding effects of population structure and
89  kinship between individuals need to be accounted for. Population structure (Q) was
90  estimated using a model-based clustering and through principle component analysis
91  (PCA) using 13,245 independent SNPs obtained by LD-pruning the original SNP
192 data set and including only SNPs that have pairwise linkage disequilibrium (LD)
193 values (") less than 0.2. Model-based clustering was implemented using the
94 software admixture v.1.3.0 which infer population structure by estimating
95 individual admixture proportions using multi-locus SNP data through a maximum-
96  likelihood method (Alexander et al., 2009). The number of ancestral populations (P)
97  was varied from 1 to 100 when using admixture and fastStructure (Raj et al., 2014).

98  Five-fold cross-validation (CV) was performed to choose the optimal P value in
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99  admixture. A PCA was also performed using the smartpca program in eigensoft
00  v6.0 to estimate individual ancestry proportions (Price et al., 2006).

01 GWAS was conducted using a recently developed method, FarmCPU, which
02  explicitly takes into account the confounding that exists between covariates and test
03 marker by using both a fixed effect model and a random effect model (Liu et al.,
04 2016). The results from the PCA and the kinship matrix were used as covariates in
05  FarmCPU to account for population structure and relatedness among samples,
06 respectively. We ran the GWAS using the R package FarmCPU. False positive
)07  errors due to multiple testing were controlled by an adjusted Bonferroni method,
08  simpleM (Gao et al., 2008). This method infers the number of independent SNPs by
09  filtering on LD and performs a standard Bonferroni correction to correct for
10 multiple testing based on the number of ‘independent tests’ performed. For the
11 present data a p-value < 1.7E-06 was selected as a cut-off to indicate significant
12 associations.

13 GWAS for additive and dominance models

114 We conducted GWA analyses in FarmCPU using either an additive or
115 dominance encoding of genotypes. For the additive encoded data, the homozygous
116 major allele was encoded with 0, the heterozygous genotype with 1 and the
117 homozygous minor allele with 2. For the dominance encoding, both homozygous
18  minor and major alleles were encoded as 0 whereas the heterozygous genotype was

119 encoded as 1 (Seymour et al., 2016).

120  Genomic selection (GS) with different informative SNPs
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121 Genomic selection (GS) models were constructed based on four different
122 categories of SNPs using the Genomic Best Linear Unbiased Prediction (GBLUP)
123 method. Details on how the genomic-based additive and dominance relationship
124 matrices are estimated have been previously described in detail in Tan et al. (Tan et
125 al., 2018). Here we focus on the details of how the four categories of SNPs we have
126  used in all subsequent analyses were selected. The four categories of SNPs
127  employed for estimating the additive and dominance relationship matrices were: 1)
128 ‘associated SNPs’ which contain only SNPs that were identified as significantly
129 associated with the corresponding trait at the Bonferroni-adjusted p-value <1.7E-6;
30 2) ‘putative SNPs’ are all SNPs that were significant in the GWAS for the
131 corresponding trait using a more relaxed p-value threshold (p< 1E-3) in order to
132 capture also possible causal SNPs that do not reach significance using the more
)33 stringent criteria in the original GWAS; 3) The ‘top 1% SNPs’ category use the top
134 378 SNPs for each trait in the GWAS ranked after p-value in the GWAS in order to
135 evaluate the same number of SNPs across different traits when building genomic
136  selection models; and finally 4) ‘all SNPs’ which use all of the 37,832 SNPs
)37  available and is therefore identical to the models originally used in Tan et al (2017)

)38  and Tan el al (2018).

139 Two separate GBLUP models were evaluated that included i) either only
40 additive (4) or ii) both additive and dominance (A4D) genetic effects using the four
41 SNP categories described above to create marker-based relationship matrices. The

42 A and AD models have been well described earlier in Tan et. al.(Tan et al., 2018).
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43 The genomic-based narrow- and broad-sense heritability (4* and H* respectively)
44 were calculated after fitting each model across the different traits. Narrow-sense
)45 heritability in the 4 model was estimated as h® = 67 /07 and the broad-sense
46 heritability of 4D model was estimated as h® = (62 + 03) /o5, where 02, 0Zand
47 05 represented the estimated additive, dominance and phenotypic variance,
48  respectively. The prediction ability was estimated for all models and relationship
49 matrices using a ten-fold cross-validation scheme where 100 replications was
)50  implemented to evaluate the prediction accuracy of the different models. For each
)51 replication, the dataset was randomly divided into 10 subsets and nine out of the
)52 ten partitions were used as the training population to fit a model using both
153 phenotypes and genotypes, while the remaining partition was used as the validation
154 set where phenotypic data was removed and then used to predict breeding values or
)55 total genetic values for the model in question. The predictive ability of the model
)56  was evaluated by estimating the correlation between phenotypes and

)57 breeding/genetic values, 7 (Ayqii, Yoaii) OF 7(Gyati» Yoaii)-

158  Assigning significant SNPs to putative candidate genes

159 Genes within +5kb away from a SNP that was significantly associated with a
60  measured phenotypic trait were extracted from the FE.grandis v2.0 reference
61  genome (BRASUZI) in Phytozome (www.phytozome.net) using SnpEff v4.2
162 (Cingolani et al., 2012). The 5kb window threshold used was based on the distance

63 over which LD decays in this population (Tan et al., 2017). The putative functions
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164 of these candidate genes were determined based on their homology to functionally
65  characterized genes in A. thaliana (TAIR).
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