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ABSTRACT  

Single-cell RNA-sequencing has transformed our ability to examine cell fate choice. For example, in the 

context of development and differentiation, computational ordering of cells along ‘pseudotime’ enables 

the expression profiles of individual genes, including key transcription factors, to be examined at fine 

scale temporal resolution. However, while cell fate decisions are typically marked by profound changes 

in expression, many such changes are observed in genes downstream of the initial cell fate decision. 

By contrast, the genes directly involved in the cell fate decision process are likely to interact in subtle 

ways, potentially resulting in observed changes in patterns of correlation and variation rather than mean 

expression prior to cell fate commitment. Herein, we describe a novel approach, scHOT – single cell 

Higher Order Testing - which provides a flexible and statistically robust framework for identifying 

changes in higher order interactions among genes. scHOT is general and modular in nature, can be 

run in multiple data contexts such as along a continuous trajectory, between discrete groups, and over 

spatial orientations; as well as accommodate any higher order measurement such as variability or 

correlation. We demonstrate the utility of scHOT by studying embryonic development of the liver, where 
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we find coordinated changes in higher order interactions of programs related to differentiation and liver 

function. We also demonstrate its ability to find subtle changes in gene-gene correlation patterns across 

space using spatially-resolved expression data from the mouse olfactory bulb. scHOT meaningfully 

adds to first order effect testing, such as differential expression, and provides a framework for 

interrogating higher order interactions from single cell data.  
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INTRODUCTION 

Understanding the mechanisms that underpin cell fate choices is a key challenge in developmental 

biology. It requires disentangling the complex interplay between cell autonomous factors, such as gene 

expression, and non-autonomous factors such as the signaling environment. In the former context, 

recent technological advances have enabled the rapid and high-throughput measurement of mRNA 

expression levels in individual cells. Such single-cell RNA-sequencing (scRNA-seq) datasets have 

facilitated the generation of atlases of cell types during development in human, mouse, zebrafish and 

the frog1–5. Using such data, cells can be computationally ordered along ‘pseudotime’ and changes in 

the expression profiles of individual genes can be subsequently determined. However, while cell fate 

decisions are typically associated with profound changes in expression, many such changes are 

downstream of the initial cell fate decision. Instead, subtle changes in patterns of variation and 

coexpression of genes across developmental time, sometimes not associated with substantial changes 

in mean expression, have been argued to play a more critical role in symmetry breaking6,7. Consistent 

with this, higher order interactions (i.e., looking beyond changes in mean expression) have proved 

highly informative for understanding genomics data, for example in supervised machine learning 

settings8 and for estimation of unknown spatial patterning9. Additionally, with recent developments in 

high-throughput and high-resolution spatially resolved gene expression mapping (e.g., Spatial 

Transcriptomics10; seqFISH11; MERFISH12) it is now possible to explore the relationship between 

higher-order interactions and spatial location. For example, in the context of embryogenesis, do small 

numbers of spatially-localized cells display aberrantly higher variability in expression profiles prior to 

committing to a downstream fate?  

From a computational perspective, methods for studying higher-order interactions are currently lacking. 

Although numerous methods have been developed for ordering cells along pseudotime, a 

computationally derived prediction of cell-type differentiation trajectories13–17, methods for identifying 

individual genes that significantly change their expression levels across the pseudotemporal 

trajectory18–20 typically focus on changes in mean expression of single genes and do not characterize 

subtle changes in patterns of covariation between subsets of genes across this trajectory. In those 

cases where higher-order interactions have been studied, a typical analysis aiming to compare 

correlation patterns along pseudotime first defines strict nonoverlapping sets of cells before estimation 
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of a covariance network, either through direct thresholding on the correlation matrix or using other 

methods21,22. However, estimation of such networks is noisy23, and ignores potentially subtle but 

consistent changes across a continuum, as well as requiring an often ad hoc dichotomization or 

classification of cells into discrete groups. As we have previously discussed24, treating the sample 

ranking as a covariate and testing for an interaction effect in a linear model is restricted to identifying 

linear and thus monotonic interactions, which may not be present, especially in highly dynamic or 

complex trajectories going through multiple changes in the differentiation process. In the context of 

spatially resolved gene expression data, fewer methods exist, with the focus being on testing the 

existence of pre-defined patterns25 (e.g., a signaling gradient); however, these require a priori 

knowledge about the spatial structures of interest.  

Here we introduce single cell Higher Order Testing (scHOT), a framework for examining changes in 

higher order structure, such as correlation among genes across differentiation pseudotime, among 

discrete groups, and across spatial landscapes. scHOT builds on our previous work, DCARS 

(Differential Correlation Across Ranked Samples), which used bulk RNA-sequencing data to test for 

changes in gene-gene correlation across ranked individual samples24. Our approach requires one of 

the following types of cell-specific information (Figure 1): A) a ranking of cells, which will typically be 

across pseudotime, or B) spatial coordinates in either two or three dimensions. In the case where spatial 

coordinates are inferred26, scHOT is also applicable using either the cell ranking along a gradient or in 

the inferred 2/3D space. Given this cell-specific information, as well as a scheme for determining local 

sample-specific weights, we calculate local higher order interaction vectors among single genes or pairs 

of genes, uncovering local changes in variability or covariation respectively (Figure 1). Sample-wise 

permutation testing is then used to assess statistical significance, while retaining the global variability 

or correlation structure of the original data. This framing of the significant genes and gene-pairs in terms 

of the set of local higher order interaction estimates allows patterns of changes across the trajectory, 

groups, or space to be characterized in terms of the higher order interaction, rather than simply by 

changes in the mean. Moreover, scHOT identifies groups of genes for which similar higher order 

patterns arise. For a more detailed discussion of how scHOT can be applied in practice, see the 

Supplementary Note. We demonstrate the utility of scHOT by studying the inferred trajectories of mouse 

liver hepatoblasts into structural cholangiocytes or functional liver hepatocytes, and illustrate its 
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generalizability in a spatial setting by performing higher order testing on a Spatial Transcriptomics 

dataset generated to study the mouse olfactory bulb.  

RESULTS 

scHOT identifies multiple higher order associations during liver development 

We first analyzed four single-cell RNA-sequencing datasets designed to study the early development 

of the mouse liver27–30 (Methods, of which three contained hepatic cells). The integrated data 

encompassed 7 days of development (from embryonic (E) day 10.5 to E17.5), which covers the period 

where progenitor hepatoblasts transition towards more mature hepatocytes and cholangiocytes (Figure 

2A). As expected, when using Monocle17 to order the cells in pseudotime, we observed a clear 

bifurcation where hepatoblasts differentiated into either cholangiocytes or hepatocytes (Figure 2B). This 

was supported by a higher proportion of differentiated cells in the later embryonic time points as well as 

cell-type specific expression of known marker genes (Figure 2C).  

Building on this, we first examined higher order patterns as cells transitioned from naïve hepatoblasts 

towards the bifurcation point where they commit to one of the two downstream lineages (Figure 2D). In 

total 68 genes showed a change in variability (false discovery rate (FDR) adjusted P-value < 0.1, all 

shown in Supplementary Figures S2C and S2D) along the trajectory independent of changes in gene 

expression. Of these, 58 (85%) displayed significantly increased variability along the branch (Figure 

2D). These genes were enriched for involvement in processes associated with cell division, 

chromosomal organization and DNA replication (Figure 2E; Methods), consistent with the notion that 

increased plasticity can precede cell fate commitment6,7.  

We next focused on the full trajectory from naïve hepatoblast through to hepatocytes. Specifically, we 

investigated whether scHOT could identify changes in correlation, independent of differential 

expression, thus providing insight into the potentially complementary set of gene regulatory modules 

that are activated during the process of commitment from hepatoblast to the hepatocyte lineage. 

Correlation patterns identified as cells transition from naive hepatoblast to cholangiocytes can be found 

in Supplementary Figures S3B and S3C. 
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When focusing on the hepatoblast to hepatocyte lineage, we identified numerous changes in correlation 

between pairs of genes that did not change their individual mean expression (Methods). An example of 

such a gene-pair is Cdt1 and Top2a (Figure 3A, FDR adjusted P-value < 0.03), which are protein-

protein interacting partners31 that have been implicated in regulation of the cell cycle in human and 

mouse stem cells32. This pair of genes changes from being strongly negatively correlated in the 

progenitor population to displaying no correlation in the more differentiated hepatocytes. Interestingly, 

when considering each gene separately, neither Cdt1 nor Top2a are significantly differentially 

expressed along the trajectory, or significantly differentially variable (FDR adjusted P-value = 0.70 and 

0.12 respectively), indicating that the association between these two genes would not be identified 

without using scHOT. Top2a encodes a DNA topoisomerase, which controls and alters the topologic 

states of DNA during transcription33, while Cdt1 is a chromatin licensing and DNA replication factor that 

is required for DNA replication and mitosis34. Our observation that these genes move from being 

negatively correlated to displaying no correlation suggests a trade-off between chromatin remodeling 

and transcription at the earlier stages of differentiation, potentially facilitating both proliferation and the 

global changes in gene regulatory architecture that arise when cells commit towards the hepatoblast 

lineage.  

Across all gene-pairs tested, 224 displayed different patterns of correlation (FDR adjusted P-value < 

0.2), encompassing 136 unique genes. Gene-pairs that were differentially correlated were not found to 

be associated with genes that were also differentially variable along the trajectory (Fisher’s Exact Test 

P-value > 0.4) for either hepatocyte or cholangiocyte branch, suggesting an independent relationship 

between changes in correlation of gene-pairs and variability of the genes. The majority of local 

correlation patterns of these gene-pairs exhibited either a ‘gain’ or a ‘loss’ of correlation, across 

developmental time reflecting the prior understanding of a continuous differentiation towards the end 

fate (Figure 3B). Functionally annotating these clusters revealed that, in general, clusters associated 

with a loss of correlation (e.g., Cluster 9) contained genes linked with DNA replication and cell division. 

By contrast, clusters that ‘gained’ correlation (e.g., Cluster 7) along the trajectory were associated with 

hepatocyte-linked functions such as lipoprotein particle remodeling, lipoprotein metabolism, as well as 

mitotic cell cycle and cell division (Figure 3C, all clusters shown in Supplementary Figure S3A). A small 

number of gene-pairs displayed more unexpected correlation patterns, with a transient peak of co-
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expression at an intermediate point along the trajectory (e.g., Clusters 5 and 10) near the bifurcation 

point, suggesting a transient role in cell fate commitment.                               

Finally, we explored whether the differential patterns of higher order interactions were associated with 

specific differentiation into the hepatocyte or cholangiocyte lineages, or a common pattern associated 

with maturation of cells. To do this, we used the network strength metric as a statistic to assign genes 

as common to either branch, or branch specific (Methods). Permuting over the topology of the gene 

network allowed assessment of statistical significance, revealing five genes that were associated with 

both branches, and ten and four genes significantly specific to the hepatocyte and cholangiocyte 

branches respectively (Figure 3D). In particular, the gene Cdt1 appears associated to differentiation in 

general, i.e. from the hepatoblast state to either differentiated state, rather than any of the two terminal 

states. By contrast, genes like Apom and Apoa2, encoding apolipoprotein, were more associated with 

hepatocyte function. More surprisingly, we identified histone gene H2afz as more specific to the 

hepatocyte lineage, indicating a potential association with changes in global chromatin organization as 

cell’s commit towards a hepatocyte fate. 

scHOT identifies local patterns of correlation in the mouse olfactory bulb 

Finally, we considered whether scHOT could also be used to identify cryptic local correlation when gene 

expression information is available in a spatial context. Specifically, to date, most studies of spatially 

resolved gene expression data have focused on clustering cells into groups or testing known patterns 

of correlation – we reasoned that scHOT would provide an unbiased approach for identifying local 

patterns of correlation that might be missed by such approaches, which rely on changes in mean 

expression only. To this end we considered the mouse olfactory bulb (MOB), which displays a highly 

stereotypical structure, with clear patterns of concentric layers corresponding to granule, internal 

plexiform, mitral, external plexiform, glomerular and olfactory nerve layers moving from the inside out 

(Figure 4A), along with distinct patterns of gene expression along this space35. Recently, spatial 

transcriptomics10 was used to measure gene expression levels in small spatially-distinct regions of the 

MOB, thereby facilitating the unbiased identification of patterns of gene expression in space.   

Using scHOT, we identified a set of 167 gene-pairs as significantly differentially correlated across space 

(FDR adjusted P-value < 0.2), with 42 non-differentially expressed highly variable genes appearing at 
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least once among this set (Methods). Interestingly, we found that numerous pairs of genes displayed 

diffuse patterns of local correlation that were not apparent when visually comparing their individual 

expression profiles. For example, Arrb1 (beta-arrestin-1) is widely expressed in the brain36, consistent 

with its diffuse expression across the MOB in the spatial transcriptomic data. Similarly, mTOR 

(mammalian target of rapamycin), Uchl1 (Ubiquitin carboxyl-terminal esterase L1), and Dnm3 

(Dynamin-3) are all broadly expressed37–39. Nevertheless, we identified all three genes as positively 

spatially correlated with Arrb1 (Figure 4B and Supplementary Figure S4C). Consistent with this 

correlation, Arrb1 can regulate mTor activation40 and interact with the ubiquitination pathway to down 

regulate receptor signaling41. Further, both Arrb1 and Dnm3 function in endocytosis42.  

To explore more general patterns, we clustered all significant gene-pairs using their local spatial 

correlation patterns into 8 distinct groups (Figure 4C). Despite the relatively low-resolution of the data 

(spatial transcriptomic data is limited to a resolution of ~10 cells (approximately 100 μm)10), a variety of 

local correlation patterns were observed, often associated with distinct biologically meaningful regions 

of the bulb. Giving confidence in our analysis approach, clustering the cells based on their local 

correlation pattern largely recapitulated the symmetry of the MOB, with multiple cell groups 

corresponding to symmetric sets of cells, e.g. Cell groups 3, 4, and 5 (Figure 4C). Additionally, Cluster 

1 contained genes that were positively correlated within the Olfactory Nerve Layer and Clusters 3 and 

6 were associated with the Mitral and External plexiform layers (Figure 4D). Functional annotation of 

the genes belonging to these clusters revealed associations with distinct neuronal terms including 

signaling events such as endocytosis, phosphorylation and ubiquitination (all clusters shown in 

Supplementary Figure S4D). Interestingly, “myelin sheath” was highly ranked in multiple clusters 

(Clusters 3-7). In these clusters, the strongest patterns of correlated spatial expression occurred within 

more internal layers of the bulb, overlapping with the mitral and granule layers. This is consistent with 

the myelination of the lateral olfactory tract as it exits the bulb43. Clusters 1, 2, and to some extent 8, in 

contrast, possess spatial correlation patterns that encompass more external layers such as the olfactory 

nerve layer, and genes within these clusters are not highly associated with the term ‘myelin sheath.’ 

This is consistent with the fact that olfactory sensory neurons entering the bulb in the more external 

olfactory nerve layer are not myelinated. In sum, we have shown here that exploiting higher-order 

structure can reveal unexpected and spatially-coherent regions of structured heterogeneity that are 
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independent of mean expression changes, and that approaches that focus only on the latter will fail to 

fully exploit the wealth of information contained within such data.  

DISCUSSION 

In this paper we have demonstrated the utility of higher order testing for single cell data. We examined 

scHOT in the context of two biological systems with distinct data characteristics – liver development 

and the mouse olfactory bulb. scHOT is robust due to the choice of underlying higher order metrics 

such as rank-based Spearman correlation; powerful as it uses a permutation framework retaining the 

global variability and covariance structure for inference; and extremely flexible as it can be tuned by 1) 

Varying the local weighting scheme in terms of shape (triangular, block, any other user defined weight) 

and span, 2) Choice of underlying higher order effect function (weighted Pearson correlation, weighted 

Spearman correlation, weighted zero-inflated Spearman or Kendall correlation, or any choice of higher 

order estimate when using the block weighting scheme), and 3) Choice of summarization estimate for 

the local higher order vector (by default the standard deviation). In general, this contrasts with other 

methods that estimate changes in expression across either a pseudotime trajectory or across space, 

which require a set of candidate hypotheses to test explicitly. In the spatial context, scHOT differs 

substantially to other methods such as SpatialDE25, in that we can test either a single gene (identifying 

spatially variable) or two genes (identify spatially differentially correlated), and no prior suite of potential 

spatial structures need be provided to identify genes that are of interest. 

From a biological perspective, the concept of characterizing coordinated changes over time could 

enable better characterization of the molecular processes underpinning cell fate choice. In particular, it 

will help us to better understand whether increased plasticity, as manifested in increased cell-to-cell 

variability, is a general feature that precedes cell commitment or whether this is restricted to specific 

systems such as hepatoblast differentiation. Such heterogeneity could also be a driver of differential 

cell fate or cell function in a spatial context: specific patterns of local correlation could indicate that a 

specific region of a tissue or organ is primed towards a specific fate. Intriguingly, our reanalysis of data 

from the mouse olfactory bulb identified patterns that were independent of changes in mean expression 

but associated with known spatial structure of the bulb. 
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In summary, scHOT is a method for inference of changes in higher order interactions, not just changes 

associated with the mean, and as such offers a new lens to interrogate single cell data and describe 

patterns of variation and covariation, offering additional and complementary insight to that obtained by 

examining changes in mean expression. It is enabled by a statistical framework that captures nonlinear 

changes in correlation structure and that uses sample ranking approaches to avoid having to discretize 

responses. This is especially important for continuous single cell trajectories and for studying spatial 

structure within ostensibly homogeneous cell types. By facilitating such analysis, scHOT will enable 

investigations into how highly localized patterns of variation and co-variation influence cell fate and cell 

function. 

 

MATERIAL AND METHODS 

Datasets 

The following datasets were used to examine scHOT, and demonstrate its utility in extracting insights 

from diverse sources of single cell and/or spatially resolved data. 

Developmental Liver Data  

The ‘Developmental Liver Data’ is a full-transcript scRNA-Seq dataset generated using plate-based 

protocols from four distinct sources27–30, across multiple mouse embryonic time points from Embryonic 

Day (E)10.5 to E17.5. The data were integrated using scMerge44, taking advantage of genes that are 

found to be stably expressed in single cells45. These data comprise several cell types including hepatic 

cells such as hepatoblasts, cholangiocytes, and hepatocytes, among other cell types such as immune 

cells (Figure 2A). Monocle was used to infer a differentiation trajectory exclusively for the hepatic cells. 

We applied scHOT to these data, considering the following testing scenarios: changes in variability 

across the first branch from hepatoblasts to the cell fate decision point; and changes in correlation 

between pairs of highly variable genes along the entire branch from hepatoblasts to hepatocytes and 

the full branch from hepatoblasts to cholangiocytes. 

To select genes for downstream analysis, we considered genes that were highly variable (HVGs)46 

(Supplementary Figure S2A) but that had consistent mean expression along the trajectory. To do this, 
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we performed liberal differential gene expression testing along pseudotime by fitting, for each gene, two 

linear models (slope and intercept, and polynomial of degree two) and identifying a gene as differentially 

expressed if it was significant (F-test; unadjusted P-value < 0.05) in at least one of the tests when 

compared to an intercept only model. This differential expression testing was performed for the 

hepatoblast to hepatocyte trajectory and for the hepatoblast to cholangiocyte trajectory. The resulting 

sets of genes (i.e., highly variable and non-differentially expressed) were combined to form all pairwise 

combinations as the scaffold for higher order gene-pair testing.  

Spatial data from the mouse olfactory bulb (MOB) 

The ‘Mouse Olfactory Bulb’ data is a Spatial Transcriptomics dataset, where an array spotted with 

probes that have barcodes corresponding to defined locations was used to measure spatially-resolved 

gene expression levels10. We consider data where this technology was used to measure expression 

levels across a section of the mouse olfactory bulb (MOB), where each spatially resolved region 

contains a measure of gene expression averages across approximately 10 cells10. This cross section 

of the MOB comprises concentric layers visible with H&E staining (Figure 4A), associated with the 

granule, internal plexiform, mitral, external plexiform, glomerular and olfactory nerve layers moving from 

the inside out. The resulting expression data is derived from high throughput RNA sequencing using 

barcodes corresponding to the spatial locations, as well as unique molecular identifier (UMI) barcodes. 

We identified genes as spatially differentially expressed by performing scHOT using a first-order metric 

of local weighted mean expression (2,542 differentially expressed genes; unadjusted P-value < 0.05). 

After identifying the intersection between genes that were highly variable46 but not differentially 

expressed we used scHOT to test all pairwise combinations for this set of genes. 

Choice of local weighting scheme 

For the trajectory-based analyses we selected a triangular weight matrix with a span of 0.25. For the 

spatial-based analysis we selected a two-dimensional triangular weight matrix (i.e. a cone) also with a 

Euclidean distance span of 0.05 (here corresponding roughly to 9 surrounding sampled points).  

scHOT test statistic and inference 

For single gene testing we use a local weighted variance estimate 
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where &'" is the cell-specific weight for cell /	and position 1, and )' is the gene expression measure for 

gene ) and cell /. For testing pairs of genes we use a weighted Spearman correlation 
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:
 

where 

3456 = ;<=>?)' × A{&'" > 0}F, 

and  

3756 = ;<=>?G' × A{&'" > 0}F, 

where additionally G' is the gene expression measure for gene G and cell /.  

The scHOT test statistic is a measure of variability associated with this vector of local variances or 

correlations. To compute this, we first calculate the sample standard deviation to estimate the variability 

associated with the set of local variance estimates {!"#, 1 = 1,2,3,… } or local correlation estimates {2", 1 =

1,2,3,… }.  

Statistical testing is then performed by randomly permuting cell labels, while keeping the overall gene 

expression structure constant. Thus, within each permutation round, the global correlation or global 

variance remains the same, while the vectors of local variability or local correlation vary. In all cases, 

we used sample or cell permutation and defined significance by controlling for a 0.2 Benjamini-

Hochberg47 FDR in all differential correlation tests, and at 0.1 FDR for variability tests. For correlation-

based tests, we used the fact that the null distribution is based only on the two matched gene expression 

vectors to interpolate null distributions given the global correlation value and the number of samples 
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(see Computational efficiency section) in order to speed up computation. In the case of discrete 

groupings, we use a normal approximation to the null distribution to estimate high resolution p-values. 

Downstream analysis 

After identifying significant gene-pairs, we took their local correlation profiles and hierarchically 

clustered them to identify patterns of differential correlation across either pseudotime or space, using 

maximum distance and Ward’s minimum variance method. For the Liver Developmental Dataset 

correlation analysis, we smoothed local correlation vectors before hierarchical clustering using loess. 

For both datasets we extracted discrete clusters from the hierarchical clustering using the R function 

cutree with number of clusters estimated using dynamicTreeCut48. 

Comparing between trajectory branches 

We implemented a statistical test for comparing the change in correlation between the two branches, 

by examining the normalized network strength across the tested networks per branch. We defined 

network strength for a given gene (node) as the sum of edge weights for significant gene-pairs 

associated with the gene, divided by the total edge weights across the entire network. The edge weight 

we selected was the -log(FDR-adjusted P-value) for each gene-pair. For each gene, we calculated the 

network strength of all genes per branch. We then compared these network strength values between 

branches using an MA-plot, i.e. comparing the sum of network strengths with the difference of network 

strengths. To assess significance associated with a single gene – i.e. a gene that tends to have a higher 

network strength than expected by chance, we repeatedly permuted the gene-pair edge weights across 

the network and calculated the permuted MA-plot. Individual genes were identified with a significantly 

nonzero network strength using the Euclidean distance from the origin as the test statistic. To identify 

genes with a branch-specific network strength, we considered the ratio of significance towards each 

branch as the test statistic. 

Computational efficiency 

We previously observed a relationship between the total number of samples and the null distribution of 

the DCARS test statistics24. Here we uncovered further association between the null distribution of the 

scHOT test statistics and the global correlation across all samples. This represents an opportunity to 
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significantly decrease computational time as one can ‘borrow’ permutations from similarly distributed 

genes and gene-pairs to estimate the p-value. Our approach is to first calculate global correlations for 

all gene-pairs to be tested, and then take a uniform sample among the gene-pairs according to the 

global correlations. For this subset of gene-pairs we permute sample labels and calculate scHOT test 

statistics. Then for any given gene-pair of interest, we extract the desired number of permutations from 

this set of permuted scHOT test statistics, according to how similar their global correlation is. These are 

shown in Supplementary Figure S2E and S4B for the liver and MOB data respectively.  

DATA AND SOFTWARE AVAILABILTY 

All data analysis was performed on publicly available data. The liver developmental dataset and 

description is available from  

https://sydneybiox.github.io/scMerge/articles/Mouse_Liver_Data/Mouse_Liver_Data.html and the 

specific R data file downloaded from 

http://www.maths.usyd.edu.au/u/yingxinl/wwwnb/scMergeData/liver_scMerge.rds 

The mouse olfactory bulb data was downloaded from the Spatial Research website 

https://www.spatialresearch.org/resources-published-datasets/doi-10-1126science-aaf2403/ and 

count matrix data and H&E stained brightfield image related to MOB replicate 11 was downloaded. 

Instructions to access data, software, and scripts to perform the analysis presented here is available 

at https://github.com/MarioniLab/scHOT2019. 
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FIGURE AND TABLE LEGENDS 

Figure 1. Methods workflow. A. Example showing a differentiation trajectory where genes are tested 

for changes in higher order interactions such as variability and correlation along the trajectory. A set of 

local higher order statistics are calculated, and significance is compared by repeatedly permuting 

samples (grey curves). The vector of local estimates of higher order statistics are combined using the 

sample standard deviation to assess how variable it is across time. B. Example showing that in a spatial 

context, scHOT calculates a field of local estimates of correlation across space, and compares the 

variability associated with these with permuted sample points across space.  

Figure 2. A. Charts showing relative proportion of hepatic and non-hepatic cells in the Developmental 

Liver Data, across original dataset and embryonic stage. B. Monocle trajectory of hepatic cells showing 

a bifurcating trajectory of hepatoblasts into either hepatocytes or cholangiocytes. C. Panel of embryonic 

stage for each cell along the differentiation trajectory, and gene expression of markers of each cell type. 

D. A selection of genes significantly associated with a change in variability along the first branch of the 

differentiation trajectory, scatterplots show the expression of genes against the pseudotime estimates, 

and line plots show the local estimate of variance for the first branch (thick lines) and further for the two 

branches (thin lines). Examples are shown of genes that increase in variability via ‘fanning’ of gene 

expression along the trajectory (Birc5), by a skewed distribution arising (H2afz), and by changes in the 

modality of the expression (Tacc3 from unimodal to bimodal). Hmgcs2 is an example of a gene that 

decreases in variability.  E. Functional enrichment analysis of genes that significantly increase in 

variability along the first branch.  

Figure 3. A. Sequence of scatterplots showing expression of Cdt1 and Top2a at equally spaced points 

along the entire trajectory from hepatoblast to hepatocyte. Points are colored by their position along the 

trajectory, and point size corresponds to the weight given to that region of the trajectory. Neither gene 

is significantly differentially expressed or differentially variable along the trajectory, but the gene-pair is 

significantly differentially correlated. B. Clustering of local weighted correlation of all significant gene-

pairs for the hepatocyte branch, showing groups of gene-pairs that appear to gain or lose correlation 

across the trajectory. C. Functional enrichment analysis of genes belonging to the set of gene-pairs 

among Clusters 9 and 7 respectively for the hepatocyte branch. D. Comparison of hepatocyte and 
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cholangiocyte branches using network strength across all significant gene-pairs for either branch. Black 

labelled genes are significantly branch specific, while red labelled genes are significantly common 

across both branches (FDR-adjusted P-value < 0.05).  

Figure 4. A. H&E image of mouse olfactory tissue section with labeling of known anatomical layers. B. 

Spatial expression plots of two genes, Arrb1 and Mtor, which are not significantly differentially 

expressed across space, and are significantly differentially correlated across space. The third plot 

shows the local spatial correlation estimated for these two genes, recapitulating the layered pattern of 

the olfactory bulb. C. Heatmap showing all sampled points (rows) and clusters of significantly spatially 

differentially correlated gene-pairs (columns), with spatial maps of mean local correlation (bottom row) 

for each group, and highlighted positions (column on right) for the sampled points grouped into clusters. 

D. Spatial maps of local correlation for selected clusters of gene-pairs and barplots showing functional 

enrichment analysis. 
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SUPPLEMENTARY FIGURE LEGENDS 

Supplementary Figure S1. A. Example showing testing for correlation differences in three distinct 

groups. A set of local higher order statistics are calculated, and significance is compared by repeatedly 

permuting samples (grey boxplots). The set of local estimates of higher order statistics are combined 

using the sample standard deviation to assess how variable they are between groups. B. Possible 

schemes for the testing scaffold using gene networks, including: i) a gene-gene network; ii) a gene set 

scaffold where all pairwise combinations within a gene set are included; and iii) selected genes of 

interest versus all others. C. Examples of weighted higher order functions including weighted Pearson 

correlation, weighted Spearman correlation, weighted variance. Note that any user defined function can 

be used. 

Supplementary Figure S2. A. HVG selection for Developmental Liver Data. B. Barplot for Gene 

Ontology testing for genes showing loss of variability along hepatoblast branch. C. Scatter and ribbon 

plot of genes showing loss of variability along hepatoblast branch. D. Scatter and ribbon plot of genes 

showing gain of variability along hepatoblast branch. E. Global correlation and null scHOT correlation 

test statistics for both hepatocyte and cholangiocyte branches. 

Supplementary Figure S3. A. Gene ontology barplots for all scHOT hepatocyte clusters. B. Line plots 

of clustered significant scHOT gene-pairs for full cholangiocyte branch. C. Gene ontology barplots for 

all scHOT cholangiocyte clusters. 

Supplementary Figure S4. A. HVG selection for Spatial Transcriptomics analysis. B. Global correlation 

and null scHOT correlation test statistics for spatial MOB data. C. Spatial expression plots of two gene-

pairs Arrb1 and Uchl1 as well as Arrb1 and Dnm3 which are not significantly differentially expressed 

across space, but are significantly differentially correlated across space. The third plot shows the local 

spatial correlation estimated for these two genes, recapitulating the layered pattern of the olfactory bulb. 

D. Spatial maps of mean local correlation and gene ontology functional enrichment barplots for all MOB 

scHOT clusters. 
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SUPPLEMENTARY TEXT 

scHOT extensions and considerations 

scHOT is a flexible framework within which multiple aspects can be modified to facilitate bespoke 

analysis. For example, higher order patterns can be studied along trajectories, across space, or among 

discrete groups (Supplementary Figure S1A). Moreover, distinct sets of genes or gene-pairs can be 

interrogated depending on the biological question of interest (Supplementary Figure S1B). Of particular 

interest, the local weighting scheme and concordance function can also be adapted, depending upon 

the biological context (some examples are given in Supplementary Figure S1C). For example, if one 

were interested in identifying changes in higher order interactions along a circular trajectory, e.g. the 

cell cycle, one could define a local weighting scheme that was also circular – by ensuring that the two 

ends match given any starting point. Another example is for discrete groups that are either completely 

distinct, or ordered in some way – e.g. over discrete time points along a time course experiment, one 

may define the weight matrix to incorporate the discrete grouping, while also accounting for the flanking 

groups. More generally, one may wish to place a higher local weight over a particular local region and 

a smaller weight over a different region. We note, however, that these changes to the weighting scheme 

may affect the generalizability of the null distributions across multiple genes or gene-pairs, so the user 

should take care in ensuring that the null distributions appear similar when employing computational 

speed-up steps. 

Any concordance metric can be ‘plugged in’ if using a block type of weight matrix. That is, one is able 

to use the fast implementation of distance correlation between two distributions49, mutual information, 

partial correlation, or any concordance metric suited especially to other data types such as ordinal or 

binarized single cell data50, without needing to explicitly derive weighted formulations of these 

concordance metrics. Additionally, any concordance metric that doesn’t necessarily have a ‘weighted’ 

formulation and/or implementation can be utilized using block weighting scheme. This makes scHOT 

versatile, by enabling user-defined metrics. For summarizing the vector of local higher order statistics, 

users may wish to substitute the sample standard deviation with any other choice of variability or change 

estimate – e.g. if the goal is to examine how monotonic a change in higher order interaction is, a 

measure of monotonicity such as mutual information or Spearman correlation with the weighting 

scheme index could be used. 
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