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Abstract

Balanced excitation and inhibition is widely observed in cortical recordings. How does this balance
shape neural computations and stimulus representations? This problem is often studied using computa-
tional models of neuronal networks in a dynamically balanced state. However, these balanced network
models predict a linear relationship between stimuli and population responses, in contrast to the nonlin-
earity of cortical computations. We show that every balanced network architecture admits some stimuli
that break the balanced state and these breaks in balance push the network into a “semi-balanced
state” characterized by excess inhibition to some neurons, but an absence of excess excitation. The
semi-balanced state is unavoidable in networks driven by multiple stimuli, consistent with experimental
data, has a direct mathematical relationship to artificial neural networks, and permits nonlinear stimulus
representations and nonlinear computations.

Introduction

An approximate balance between excitatory and inhibitory synaptic currents is widely reported in cortical
recordings [1, 2, 3, 4, 5, 6]. The implications of this balance are often studied using large networks of model
neurons in a dynamically stable balanced state. Despite the complexity of spike timing dynamics in these
models, their population-level firing rates [7, 8, 9, 10, 11] and correlations [12, 13, 14, 15, 16, 17] in response
to a given stimulus can be derived using a simple mean-field theory.

This classical mean-field theory of balanced networks has two critical shortcomings. First, it predicts a
linear relationship between stimuli and population responses, in contrast to the nonlinear computations that
must be performed by cortical circuits. Secondly, parameters in balanced network models must be tuned
so that the firing rates predicted by the mean-field theory are non-negative. In networks with many neural
populations – such as multiple neuron subtypes, neural assemblies, or tuning preferences – the proportion
of parameter space for which predicted rates are non-negative becomes exponentially small. Moreover, we
show that for any network architecture, there are infinitely many excitatory stimuli for which the mean-field
theory predicts negative rates.

We develop a theory of semi-balanced networks that quantifies network responses when the classical bal-
anced network state is broken. In this semi-balanced state, balance is only enforced in one direction: neurons
can receive excess inhibition, but not excess excitation. Neurons receiving excess inhibition are silenced and
the remaining neurons form a balanced sub-network. Unlike balanced networks, semi-balanced networks
implement nonlinear computations and stimulus representations. We establish a mathematical relationship
between semi-balanced networks, artificial recurrent neural networks used for machine learning [18], and
threshold-linear networks [19, 20, 21, 22]. We demonstrate that balance and semi-balance are achieved on a
neuron-by-neuron basis in networks with large in-degrees and homeostatic inhibitory plasticity when exposed
to a time-constant stimulus [23, 24, 25], but only semi-balance is achieved in the presence of time-varying
stimuli. In this setting, semi-balanced networks implement richly nonlinear stimulus representations. We
demonstrate the computational power of these representations using the hand-written digit classification
benchmark, MNIST.

In summary, the large in-degrees typical of cortical neurons combined with the presence of time-varying
stimuli imply that local cortical circuits are in a semi-balanced state. Our analysis of this state shows a direct
correspondence to artificial neural networks used in machine learning and therefore has deep implications
for the computational properties of cortical circuits.
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Results

Balanced networks implement linear stimulus representations and computations

To review balanced network theory and its limitations, we consider a recurrent network of N = 3 × 104

randomly connected adaptive exponential integrate-and-fire (adaptive EIF) neuron models. The network is
composed of two excitatory populations and one inhibitory population (80% excitatory and 20% inhibitory
neurons altogether) and receives feedforward synaptic input from two external populations of Poisson pro-
cesses, modeling external synaptic input (Fig. 1A). The firing rates, rx = [rx1 rx2], of the external popula-
tions form a two-dimensional stimulus space (Fig. 1B).

Simulations of this model showed asynchronous-irregular spiking activity and excitatory-inhibitory bal-
ance (Fig. 1Ci-iii). How does connectivity between the populations determine the mapping from stimulus,
rx, to firing rates, r = [re1 re2 ri] in the recurrent network? Firing rate dynamics are often approximated
using models of the form

τ ṙ = −r + f(JK[Wr + X]) (1)

where ṙ denotes the time derivative, f is a non-decreasing f-I curve, and W is the effective recurrent con-
nectivity matrix. External input is quantified by X = Wxrx. Components of W and Wx are given by
wab = JabKab/ JK where Kab is the mean number of connections from population b to a and Jab is the
average connection strength. The coefficient, JK = average(|Jab|Kab), quantifies coupling strength in the
network. Since JK is multiplied in the equation for ṙ and divided in the equation for wab, it does not affect
dynamics, but serves as a notational tool in the calculations below, which require JK ∼ JabKab so that
wab ∼ O(1) even when JabKab is large.

The key idea underlying balanced network theory is that JK is typically large in cortical circuits because
neurons receive thousands of synaptic inputs and each postsynaptic potential is moderate in magnitude.
Total synaptic input,

I = JK[Wr + X], (2)

can only remain O(1) if there is a cancellation between excitation and inhibition. In particular, to have
I ∼ O(1), we must have Wr + X ∼ O(1/JK) so, in the limit of large JK, firing rates satisfy [8, 26, 11, 27]

r = −W−1X. (3)

In classical balanced network theory, one considers the N →∞ limit while taking Jab ∼ 1/
√
N and Kab ∼ N

so that JK →∞ and Eq. (3) is exact in the limit [8]. Experimental evidence for this scaling has been found in
cortical cultures [6]. Note that, while Eq. (1) is a heuristic approximation to spiking networks, the conclusion
that Eq. (3) must be satisfied to keep I ∼ O(1) as JK →∞ does not depend on the approximation in Eq. (1),
but is implied by Eq. (2) alone and is therefore mathematically valid for spiking networks [8] for which firing
rates can depend on the variance, and higher order moments of neurons’ synaptic input. Even though it
is derived as a limit, Eq. (3) provides a simple approximation to firing rates in networks with finite JK.
Indeed, it accurately predicted firing rates in our spiking network simulations (Fig. 1Civ, compare dashed
to solid) for which JK = 5.9 mV/Hz.

While the simplicity of Eq. (3) is appealing, its linearity reveals a critical limitation of balanced networks
as models of cortical circuits: Because r depends linearly on X and rx, balanced networks can only implement
linear representations of stimuli and linear computations [8, 11, 27].

To demonstrate this linearity in our spiking network, we sampled a lattice of points in the two dimensional
space of rx = [rx1 rx2] values and plotted the resulting neural manifold traced out in three dimensions by
r = [re1 re2 ri]. The resulting manifold is approximately linear, i.e., a plane (Fig. 1Di) because r depends
linearly on X, and therefore on rx, in Eq. (3). More generally, the neural manifold is an nx-dimensional
hyperplane in n-dimensional space where n and nx are the number of populations in the recurrent and
external populations respectively. In addition, any linear readout R = w · r is a linear function of rx and
therefore also planar (Fig. 1Dii).
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Figure 1: Stimulus representations are linear in the balanced state and nonlinear in the semi-balanced
state. A) Network diagram. A recurrent spiking network of N = 3×104 model neurons is composed of two excitatory
populations (e1 and e2) and one inhibitory population (i) that receive input from two external spike train populations
(x1 and x2). Recurrent network output is represented by a linear readout of firing rates (R). B) The two-dimensional
space of external population firing rates represents a stimulus space. Filled triangle and circle show the two stimulus
values used in Ci–iv. Ci) Raster plots of 200 randomly selected spike trains from each population across two stimuli.
Cii) Membrane potential of one neuron from population e1. Ciii) Mean input current to population e1 from all
excitatory sources (e1, e2, x1, and x2; red), from the inhibitory population (i; blue), and from all sources (black)
showing approximate excitatory-inhibitory balance across stimuli. Mean input to i and e2 were similarly balanced.
Civ) Firing rates of each population from simulations (solid) and predicted by Eq. (3) (dashed). Di) The neural
manifold traced out by firing rates in each population in the recurrent network as external firing rates are varied
across a square in stimulus space (0 ≤ rx1, rx2 ≤ 30). Dii) The readout as a function of rx1 and rx2 from the same
simulation as Di. Ei–v) Same as Ai–iv, but dashed lines in Dv are from Eq. (4) and input to e2 was additionally
shown. D Fi-iii) Same as Di-ii except the theoretical readout predicted by Eq. (4) was additionally included. All
firing rates are in Hz.

How do cortical circuits, which exhibit excitatory-inhibitory balance, implement nonlinear stimulus repre-
sentations and computations? Below, we describe a parsimonious generalization of balanced network theory
that allows for nonlinear stimulus representations by allowing excess inhibition without excess excitation.

Semi-balanced networks implement nonlinear representations in direct corre-
spondence to artificial neural networks of rectified linear units

Note that Eq. (3) is only valid if all elements of r it predicts are non-negative. Early work considered a single
excitatory and single inhibitory population, in which case positivity of r is assured by simple inequalities
satisfied in a large proportion of parameter space [8, 10]. Similarly, in the simulations described above, we
constructed W and Wx so all components of r were positive for all values of rx1, rx2 > 0.

In networks with a large number of populations, conditions to assure r ≥ 0 become more complicated
and the proportion of parameter space satisfying r ≥ 0 becomes exponentially small. In addition, we
proved that connectivity structures, W , obeying Dale’s law necessarily admit some positive external inputs,
X > 0, for which Eq. (3) predicts negative rates (Supplementary Materials S.1). Hence, the classical notion

3

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2019. ; https://doi.org/10.1101/841684doi: bioRxiv preprint 

https://doi.org/10.1101/841684
http://creativecommons.org/licenses/by/4.0/


of excitatory-inhibitory balance cannot be assured by conditions imposed on the recurrent connectivity
structure, W , alone, but conditions on stimuli, X, are also required.

While it is possible that cortical circuits somehow restrict themselves to the subsets of parameter space
that maintain a positive solution to Eq. (3) across all salient stimuli, we consider the alternative hypothesis
that Eq. (3) and the balanced network theory that underlies it do not capture the full spectrum of cortical
circuit dynamics.

To explore spiking network dynamics when Eq. (3) predicts negative rates, we considered the same
network as above, but changed the feedforward connection probabilities so that Eq. (3) predicts positive
firing rates only when rx1 and rx2 are nearly equal. When rx2 is much larger than rx1, Eq. (3) predicts
negative firing rates for population e1, and vice versa, due to a competitive dynamic.

Simulating the network with rx1 = rx2 produces positive rates, asynchronous-irregular spiking, and
excitatory-inhibitory balance (Fig. 1Ei–v, first 500ms). Increasing rx2 to where Eq. (3) predicts negative
rates for population e1 causes spiking to cease in e1 due to an excess of inhibition (Fig. 1Ei–v, last 500ms).

Notably, however, input currents to populations e2 and i remain balanced when e1 is silenced (Fig. 1Eiv)
so the i and e2 populations form a balanced sub-network. These simulations demonstrate a network state
that is not balanced in the classical sense because one population receives excess inhibition. However,

1. no population receives excess excitation,

2. any population with excess inhibition is silenced, and

3. the remaining populations form a balanced sub-network.

Here, an excess of excitation (inhibition) in population a should be interpreted as Ia ∼ O(JK) with Ia > 0
(Ia < 0). The three conditions above can be re-written mathematically in the large JK limit as two
conditions,

1. [Wr + X]a ≤ 0 for all populations, a, and

2. If [Wr + X]a < 0 then ra = 0.

These conditions, along with the implicit assumption that r ≥ 0, define a generalization of the balanced
state. We refer to networks satisfying these conditions as “semi-balanced” since they require that strong
excitation is canceled by inhibition, but they do not require that inhibition is similarly canceled. Note that
the condition [Wr + X]a ≤ 0 does not mean that Ia ≤ 0, but only that Ia ∼ O(1) whenever Ia ≥ 0 so that
[Wr + X]a = 0 in the large JK limit, i.e., no excess excitation.

How are firing rates related to connectivity in semi-balanced networks? In Supplementary Materials S.2,
we prove that semi-balanced networks satisfy

r = [Wr + X + r]+ (4)

in the limit of large JK where [x]+ = max(0, x) is the positive part of x, sometimes called the rectified
linear or threshold-linear function. Eq. (4) generalizes Eq. (3) to allow for excess inhibition. Even though it
is derived in the limit of large JK, Eq. (4) provides an accurate approximation to firing rates in our spiking
network simulations (Fig. 1Ev, compare dashed to solid). Note that r satisfies Eq. (4) if and only if it
satisfies qr = [Wr + X + qr]+ for any q > 0 (see Supplementary Materials S.2 for a proof), which explains
why terms with different units can be summed together in Eq. (4).

Notably, Eq. (4) represents a piecewise linear, but globally nonlinear mapping from X to r. Hence,
unlike balanced networks, semi-balanced networks implement nonlinear stimulus representations (Fig. 1Fi).
Eq. (4) also demonstrates a direct relationship between semi-balanced networks and recurrent artificial neural
networks with rectified linear activations used in machine learning [18] and their continuous-time analogues
studied by Curto and others under the label “threshold-linear networks” [19, 20, 21, 22]. These networks
are defined by equations of the form

τ ṙ = −r + [Ur + X]+.
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Figure 2: The semi-balanced approximation is accurate across models and dynamical states. Ai) Firing
rates from simulations (solid) and Eq. (4) (dashed) as a function of rx2 when rx1 = 10Hz for the same model as in
Fig. 1E-F. Aii) Balance ratio, β (black), and coupling strength coefficient, c (red), averaged across all neurons from
the simulation in Ai. Bi-ii) Same as Ai and Aii, but using dynamical rate equations that implement a supralinear
stabilized network (SSN). Gray shaded areas are states in which the network is not inhibitory stabilized. Ci–ii) Same
as Fig. 1E except using a conductance-based model of synapses. Di-ii) Same as Ai-ii except using a conductance-based
model of synapses.

Taking U = W + Id where Id is the identity matrix establishes a one-to-one correspondence between
solutions to Eq. (4) and fixed points of threshold-linear networks or recurrent artificial neural networks.
Indeed, we used this correspondence to construct a semi-balanced spiking network that approximates a
continuous exclusive-or (XOR) function (Fig. 1Fii–iii), which is widely known to be impossible with linear
networks [18].

Previous work on threshold-linear networks shows that, despite the simplicity of Eq. (4), its solution
space can be complicated [19, 20, 21, 22]: Any solution is partially specified by the subset of populations,
a, at which ra > 0, called the “support” of the solution. There are 2n potential supports in a network
with n populations, there can be multiple supports that admit solutions, and these solutions can depend in
complicated ways on the structure of W and X. Hence, semi-balanced networks give rise to a rich mapping
from stimuli, X, to responses, r.

In Supplementary Materials S.3, we proved that, under Eq. (2), the semi-balanced state is realized and
Eq. (4) is satisfied only if firing rates remain moderate as JK →∞. In other words, Eq. (4) and the semi-
balanced state it describes are general properties of strongly and/or densely coupled networks with moderate
firing rates. To the extent that cortical circuits have large JK values and moderate firing rates, therefore,
Eq. (4) provides an accurate approximation to cortical circuit responses. In summary, our results establish a
direct mapping from biologically realistic cortical circuit models to recurrent artificial neural networks used
in machine learning and to the rich mathematical theory of threshold-linear networks.

Semi-balanced network theory is accurate across models and dynamical states

Recently, Ahmadian and Miller argued that cortical circuits may not be as tightly balanced or strongly
coupled as assumed by classical balanced network theory [27]. They quantified the tightness of balance by
the ratio of total synaptic input to excitatory synaptic input, β = |E + I|/E (where E is the mean input
current from e and x combined, and I is the mean input from i). Small values of β imply tight balance,
for example β ∼ 1/JK in classical balanced networks. They quantified coupling strength by the ratio of
the mean to standard deviation of the excitatory synaptic current c = mean(E)/std(E). Strongly coupled
networks have large c, specifically c ∼ JK. Since Eq. (4) was derived in the limit of large JK, it is only
guaranteed to be accurate for sufficiently large c, but it is not immediately clear exactly how large c must
be for Eq. (4) to be accurate.

In our spiking network simulations, Eq. (4) was accurate across a range of stimulus values even when
β and c were in the range deemed to be biologically realistic by Ahmadian and Miller (Fig. 2Ai,ii). We
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conclude that Eq. (4) can be a useful approximation for networks with biologically relevant levels of balance
and coupling strength.

We next tested the accuracy of Eq. (4) against simulations of stabilized supralinear networks (SSNs)
proposed and studied by Ahmadian, Miller, and colleagues [28, 29, 27]. In particular, we simulated the
three-dimensional dynamical system

τ ṙ = −r + kJK[Wr + X]2+

where [x]2+ = ([x]+)2 denotes the square of the positive part of x. Simulations of this network with parameters
matched to our spiking network simulations show that the network transitioned between an inhibitory-
stabilized network (ISN) state to a non-ISN state as rx2 varied (Fig. 2Bi), which is a defining property of
SSNs. Simulations show agreement with Eq. (4), even when balance was relatively loose (Fig. 2Bi,ii).

A seemingly unrealistic property of semi-balanced networks is that the total mean synaptic current to
some populations is O(JK) and negative (Fig. 1Eiii, black). In our simulations, this strong inhibitory
input clamped the membrane potential to the lower bound we imposed at −85mV (Fig. 1Eii). The strong
inhibitory current is an artifact of using a current-based model of synaptic transmission [30].

In a more realistic, conductance-based model, the magnitude of inhibitory current is limited by shunting
at the inhibitory reversal potential. Repeating our simulations using a conductance-based synapse model
shows similar overall trends to the current-based model (Fig. 2Ci,ii) except the mean synaptic input to
population e1 is no longer so strongly inhibitory (Fig. 2Cii, compare to Fig. 1Eiii) and membrane potentials
of e1 neurons still exhibit variability near the inhibitory reversal potential (Fig. 2Ci). Eq. (4) can be modified
to account for conductance-based synapses (see Methods and [31, 32, 11]) and this corrected theory accurately
predicted firing rates in our simulations across a range of c and β values (Fig. 2Di,ii).

Homeostatic plasticity achieves semi-balance at single neuron resolution, pro-
ducing high-dimensional nonlinear representations

So far, we have only considered firing rates and excitatory-inhibitory balance averaged over discrete neural
populations. Cortical circuits implement distributed neural representations that are not always captured
by homogeneous population averages [33]. Balance is realized at the level of synaptic currents to individual
neurons (as opposed to currents averaged over populations) is often referred to as “detailed balance” [34, 25].
Due to the use of this term for a different purpose in Markov process theory, we instead refer to it as balance
“at single-neuron resolution.”

To test for semi-balance above, we compared firing rates from simulations to those predicted by Eq. (4)
(see Figs. 1Ev and 2Ai,Bi,Di). For semi-balance at single neuron resolution, or “detailed semi-balance,”

Eq. (4) becomes [J~r+ ~X +~r]+ = ~r. However, solving this equation is intractable for large networks because
it would require searching for solutions across 2N potential supports. Instead of comparing firing rates from
simulations to those predicted by theory, we can test for semi-balance by verifying that synaptic currents to
all neurons are only large in magnitude when they are negative (see Supplementary Materials S.2).

To explore balance and semi-balance at single-neuron resolution, we first considered the same randomly
connected network of N = 3 × 104 neurons considered above, but with only a single excitatory, inhibitory,
and external population (Fig. 3A). We kept the firing rate of the external population fixed at rx = 10Hz.
To model a stimulus with a distributed representation, we added an extra external input perturbation that
is constant in time, but randomly distributed across neurons. Specifically, the time-averaged synaptic input
to each neuron was given by the N × 1 vector

~I = JK[J~r + ~X] (5)

where J is the N ×N recurrent connectivity matrix and ~r is the N × 1 vector of firing rates. External input
is given by ~X = Jx~rx + ~Z where, Jx and ~rx are the feedforward connectivity matrix and external rates. The
distributed stimulus, ~Z, is defined by

~Z = σ1 ~Z1 + σ2 ~Z2
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Figure 3: Balance, semi-balance, and neural representations at single-neuron resolution with homeo-
static plasticity. A) Network diagram. Same as in Fig. 1A except there is just one excitatory and one external
population and an additional input ~Z = σ1

~Z1 + σ2
~Z2. Bi) Excitatory (red), inhibitory (blue), and total (black)

input currents to 100 randomly selected excitatory neurons averaged over 2s time bins. During the first 40s, synaptic
weights and σ1 = σ2 were fixed. During the next 40s, homeostatic iSTDP was turned on and σ1 = σ2 were fixed.
During the last 40s, iSTDP was on and σ1 and σ2 were selected randomly every 2s. Bii) Firing rates of the same
100 neurons averaged over 2s bins. Biii) Histograms of input currents to all excitatory neurons averaged over the
first 40s (gray, imbalanced), the next 40s (yellow, balanced), and the last 40s (purple, semi-balanced). Ci) Firing
rates of three randomly selected excitatory neurons as a function of the two stimuli, σ1 and σ2 (the neuron’s “tuning
surface”) in a network pre-trained by iSTDP. Cii) Three neural manifolds. Specifically, the surface traced out by the
firing rates of the three randomly selected neurons as σ1 and σ2 are varied. Ciii) Percent variance unexplained by
PCA (purple) and Isomap (green) applied to all excitatory neuron firing rates from the simulation in Ci-ii. Network
size was N = 3× 104 in Bi-iii and reduced to N = 5000 in Ci-iii to save runtime (see Methods).

where ~Z1 and ~Z2 are standard normally distributed, N×1 vectors. The vector, ~Z, lives on a two-dimensional
hyperplane in N -dimensional space and the plane is parameterized by σ1 and σ2. Hence, ~Z models a two-
dimensional stimulus whose representation is distributed randomly across the neural population.

Simulations show that this network does not achieve balance at single-neuron resolution: Some neurons
receive excess inhibition and some receive excess excitation (Fig. 3Bi, first 40s), leading to large firing rates
in some neurons (Fig. 3Biii) and a broad distribution of total input currents (Fig. 3Bii, blue). Indeed, it has
been argued previously that randomly connected networks are imbalanced at single-neuron resolution when
stimuli and connectivity are not co-tuned [9, 25]. This is consistent with previous results on “imbalanced
amplification” in which connectivity matrices with small-magnitude eigenvalues values can break balance
when external inputs are not orthogonal to the corresponding eigenvectors [11]. When J is large and random,
it will have eigenvalues near the origin purely by chance, which can lead to imbalanced amplification if the
corresponding eigenvectors are not orthogonal to ~X.

Previous work shows that single-neuron resolution balance can be realized by a homeostatic inhibitory
spike-timing dependent plasticity (iSTDP) rule [23, 25]. Indeed, when iSTDP was introduced in our sim-
ulations, balance was obtained and firing rates became more homogeneous (Fig. 3Bi-ii, second 40s) with a
much narrower distribution of total input currents (Fig. 3Biii, red), at least while σ1 and σ2 were fixed.

Of course, real cortical circuits are exposed to multiple, time-varying stimuli. To simulate time-varying
stimuli, we randomly selected new values of σ1 and σ2 every 2s (Fig. 3Bi-ii last 40s). This transition to a
time-varying stimulus caused the total input to some neurons to become strongly inhibitory, but no neurons
received excess excitation (Fig. 3Biii, yellow), indicating that the network was in a semi-balanced state at
single-neuron resolution. These results show that the semi-balanced state is a natural state for cortical
circuits exposed to time-varying stimuli. This is consistent with findings that inhibition dominates sensory
responses in awake animals ([35], compare to dominance of inhibition in Fig. 3Bi, last 40s). Repeating
these simulations in a model with conductance-based simulations shows that shunting inhibition prevents
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an excess inhibitory currents in the semi-balanced state, but a measure of effective excitatory and inhibitory
conductances recovers the imbalanced, balanced, and semi-balanced states observed in the current-based
model (Supplemental Figure S.1).

We next investigated the properties of the mapping from the two-dimensional stimulus space to the N -
dimensional firing rate space. We sampled a uniform lattice of 17× 17 = 289 points in the two-dimensional
space of σ1 and σ2 values, simulated a network of size N = 5000, then plotted the resulting firing rates of
three randomly selected neurons as a function of σ1 and σ2. The resulting surfaces appear highly nonlinear
and multi-modal (Fig. 3Ci). Next, we plotted two randomly selected neural manifolds, each defined by
the firing rates of three random excitatory neurons. These manifolds also appear highly nonlinear with
rich structure (Fig. 3Cii). Note that there are over 1010 such manifolds in the network, suggesting a rich
representation of the two-dimensional stimulus.

To understand how these surfaces get their shape, note that semi-balance at single-neuron resolution
is realized when [J~r + ~X + ~r]+ = ~r in the JK → ∞ limit. This equation is piecewise linear in the sense

that sufficiently small changes to ~X cause linear changes to ~r. Nonlinearities occur whenever a change to ~X
causes an individual rj value to transition between zero and non-zero values, i.e., at transitions between two
of the 2N “supports” (see above). The enormous number of supports in large networks (over 101500 potential
supports in the network from Fig. 3C) implies that nonlinearities are prevalent in the solution space and the
underlying piecewise linearity is not visible in practice.

The nonlinearity of the stimulus representation is more precisely quantified by comparing the results of
the dimension reduction techniques isometric feature mapping (Isomap) and principal component analysis
(PCA) applied to the sampled firing rates. Both methods find a low-dimensional manifold in N -dimensional
rate space near which the sampled rates lie. However, PCA is restricted to linear manifolds (hyperplanes)
while Isomap finds nonlinear manifolds. We applied both methods to the set of all excitatory firing rates
across all 289 stimuli from the simulations above.

Despite the fact that firing rates represent 289 points in a 4000-dimensional space, the points lie close
to a two-dimensional manifold because they are approximately a function of the two-dimensional stimulus.
Applying Isomap shows that the vast majority of the variance was explained by a two-dimensional manifold
(Fig. 3Ciii, green; 1.76% residual variance at 2 dimensions). However, PCA required more than 8 dimensions
to capture the same amount of variance and generally captured less variance per dimension (Fig. 3Ciii,
purple). This implies that the two-dimensional neural manifold in 4000-dimensional space is nonlinear, i.e.,
curved, so that it cannot be captured by a two-dimensional plane.

In summary, when networks are presented with time-varying stimuli, iSTDP produces a semi-balanced,
but not balanced state at single neuron resolution. The mapping from stimuli to firing rates is richly nonlinear
in this state. We next explore how this nonlinearity improves the computational capability of the network.

Nonlinear representations in semi-balanced networks improve computations.

To quantify the computational capabilities of our spiking networks, we used a network identical to the one
from Fig. 3 except we replaced the random stimulus, ~Z, with a linear projection of pixel values from images
in the MNIST data set (Fig. 4A, layer 1; see below for description of layer 2). Unlike the 2-dimensional
stimuli considered previously, the images live in a 400-dimensional space (20× 20 pixels).

We first trained inhibitory synaptic weights with iSTDP using 100 MNIST images presented for 1s each.
We then presented 2000 images to the trained network and recorded the firing rates over each stimulus
presentation. Applying the same Isomap and PCA analysis used above to these 2000 firing rate vectors
confirms that the network implements a nonlinear representation of the images (Supplementary Figure S.2).

We wondered if the nonlinearity of this representation imparted computational advantages over a linear
representation. The 10 different digits (0-9) form ten clusters of points in the 4000-dimensional space of
layer 1 excitatory neuron firing rates. Similarly, the raw images represent ten clusters of points in the
400-dimensional pixel space. Are these clusters of points linearly separable?
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Figure 4: Nonlinear representations in a semi-balanced network improve computations. A) Network
diagram. Pixel values provided external input to a semi-balanced network identical to the one in Fig. 3, representing
layer 1. Layer 2 is a competitive, semi-balance network receiving external input from excitatory neurons in layer 1
with inter-laminar weights trained using a supervised Hebbian-like rule to classify the digits. B) Error rate (percent
of 2000 images misclassified) of a linear readout of excitatory firing rates from layer 1 with readout weights optimized
to classify the images, plotted as a function of the number, n, of neurons sampled (red). Black asterisk shows the
error rate of an optimized readout of the n = 400 image pixels. Dashed gray shows the error rate of an optimized
readout of a random projection of the pixels into n dimensions. The error rate of the rate readout (red curve) is zero
for n ≥ 1600. Hence, the digits are linearly separable in rate space, but not pixel space, which is only possible for
nonlinear mappings. C) Diagram illustrating linear separability in rate space, but not pixel space. Different colors
represent different digits and black lines are separating hyperplanes. D) Raster plot of 500 randomly selected neurons
from layer 2 (50 from each population, ek) when images at top were provided as external input to layer 1.

To answer this, we trained an optimal linear readout of the 2000 firing rate vectors and found that
the 10 different clusters of points in firing rate space were perfectly linearly separable. Specifically, we
found a 10 × 4000 matrix, Wr, such that the 10-dimensional vector, ~x = Wr~re, is maximized at the entry
corresponding to the correct digit across all 2000 images. Here, ~re is the 4000×1 vector of excitatory neuron
firing rates in layer 1.

For comparison, we used the same method to train an optimal linear readout of the 2000 raw MNIST
images, treated as vectors in 400-dimensional pixel space. This analysis revealed that 6.6% of the images were
misclassified (Fig. 4B, asterisk), implying that the digits are not linearly separable in pixel space. Hence, the
digits are separable in rate space, but not in pixel space (Fig. 4C). Since the images are not linearly separable
in pixel space, any linear representation of the images is not linearly separable. Hence, the separability in
rate space is due to the nonlinearity of the neural representation.

We next investigated how many neurons or encoding dimensions were necessary to achieve linear sepa-
rability. First, we trained an optimal linear readout on n randomly selected layer 1 excitatory neurons and
computed the percentage of the 2000 images that were misclassified. The error decreased with n and perfect
linear separation (zero error) was achieved for n ≥ 1600 (Fig. 4B, red).

To compare this to pixel space, we projected each raw image randomly into n-dimensional space and
trained a linear readout. The error of this readout for n ≤ 400 was similar to the error in rate space
(Fig. 4B, compare gray dashed to red). However, the error in pixel space saturated to 6.6% at n = 400
because a linear projection of pixels into a higher dimensional space cannot improve linear separability
(Fig. 4B, gray dashed curve saturates at n = 400).

These results demonstrate that the nonlinearity of our network improves linear discriminability of stimuli,
but they do not address how well the trained linear readout performs on images that were not used in
training. Moreover, the readout weights have mixed sign and do not respect Dale’s law. We next considered
a downstream spiking network, layer 2, that receives synaptic input from excitatory neurons in layer 1
(Fig. 4A). Layer 2 has ten excitatory populations and one inhibitory population. Excitatory populations are
coupled to themselves and bi-directionally with the inhibitory population, but do not connect to each other,
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producing a competitive dynamic between the excitatory populations in layer 2.

Our goal was to train feedforward weights from excitatory neurons in layer 1 to those in layer 2 that
are strictly positive and encourage the kth excitatory population in layer 2 to be most active when layer 1
receives the digit k as input. We used a simple, Hebbian like learning rule in which the weight from neuron i
in layer 1 to neuron j in population ek of layer 2 is increased when neuron i is active during the presentation
of digit k. This rule is not optimal, but maintains positive weights. We applied the rule to the same 2000
images mentioned above, then tested the performance of the learned weights on 200 images not previously
presented to the network. In 72.5% of these 200 test images, the network guessed the correct digit in the
sense that population ek in layer 2 had the highest firing rate when digit k was presented (Fig. 4D).

Discussion

We introduced the semi-balanced state, defined by an excess of inhibition without an excess of excitation.
This state is realized naturally in networks for which the classical balanced state cannot be achieved and
networks in this state implement nonlinear stimulus representations, which are not possible in classical
balanced networks. We established a direct mathematical relationship between firing rates in semi-balanced
networks, artificial neural networks, and the rich mathematical theory of threshold-linear networks. The
semi-balanced state is realized at single-neuron resolution in networks with iSTDP, which implement high-
dimensional nonlinear stimulus representations that improve the network’s computational properties.

Previous work revealed multi-stability and nonlinear transformations at the level of population averages
by balanced networks with short term synaptic plasticity [36]. Future work should consider how the non-
linearities introduced by short term plasticity combine with the non-linearities introduced by semi-balance.
Other work studied spike timing reliability and nonlinear representations at single-neuron resolution in non-
plastic networks that satisfy balance at the level of population-averages [37, 38]. Since these studies did
not implement iSTDP or similar mechanisms, our results suggest that their networks were not balanced at
single-neuron resolution. Hence, these studies combined with our results support the general conclusion that
while networks can only perform linear computations at the resolution over which they are balanced, they
can perform non-linear computations at a finer resolution. A deeper mathematical understanding of this
idea is a potential topic for future work.

An alternative theory of nonlinear computations in cortical circuits is given by the theory of SSNs with
power-law f-I curves [28, 29, 27]. For large JK, fixed point firing rates in these networks converge to the
balanced fixed point, Eq. (3), when it is positive. At finite JK, they implement nonlinearities that are
not accounted for by Eq. (3). These nonlinearities are necessary to capture some experimentally observed
response properties [29] and are distinct from the nonlinearities produced by semi-balance and discussed here.
Indeed, fixed point firing rates in SSNs can be expanded in a series for which Eq. (3) is the first term [28].
This expansion is derived under the assumption that rates are positive, which implies that the nonlinearities
produced by semi-balance are not present. Semi-balanced network theory (dashed) gives a piecewise-linear
approximation of firing rates that captures the overall trends, but misses the curvature of firing rates as the
stimulus changes (Fig. 2Bi, compare solid to dashed). Balanced network theory and the series expansion for
SSNs are restricted to the regime in which all rates are positive. The fact that spiking networks and SSNs
deviate from semi-balanced network theory in similar ways (solid and dashed differ similarly in Fig. 2Ai and
Bi) suggests that SSNs can be used to refine the analysis of spiking network simulations beyond the more
coarse-grained description provided by semi-balanced network theory. A key component of this analysis
would be to generalize the series expansion for SSNs so that Eq. (4) is the first term instead of Eq. (3).

One limitation of our approach is that it focused on fixed point rates and did not consider their stability
or the dynamics around fixed points. Previous work shows that balanced networks can exhibit spontaneous
transitions between attractor states [39] which can be formed by iSTDP [23, 40]. Attractor states in those
studies maintained strictly positive firing rates across populations, keeping the networks in the classical
balanced state. This raises the question of whether similar attractors could arise in which some populations
are silenced by excess inhibition, putting them in a semi-balanced state. Tools for studying these states
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could potentially be developed from the mathematical theory of threshold-linear networks [19, 20, 21, 22].

Another limitation is that, in our network trained on MNIST digits, the recurrent connections in the
network were only trained via an unsupervised iSTDP rule, which is agnostic to the image labels. Hence,
the recurrent network did not learn a label-dependent representation of the stimuli. Moreover, recurrent
excitatory weights were not trained. Gradient-descent based learning rules for excitatory weights are easy to
derive using Eq. (4) since r depends linearly on X wherever r is positive and the gradient is zero elsewhere.
Future work should consider excitatory synaptic plasticity in the recurrent network and supervised learning
rules for recurrent weights to learn more informative representations.

We considered violations of the balanced state arising when Eq. (3) predicts negative rates. Previous work
has shown that balance can also be broken when the connectivity matrix, W , in Eq. (3) is singular [9, 26,
11]. While singular W may at first seem contrived, it has been shown that singular or nearly singular
W arise naturally when modeling structural heterogeneity of network architectures [9, 26], optogenetic
stimulation [11], or connectivity structures that depend on continuous quantities like neuron distance or
orientation tuning [10, 11]. In networks with singular W , Eq. (4) can admit a solution even when Eq. (3) does
not. Hence, semi-balanced network theory can be applied to these models for which classical balanced network
theory fails. Applying semi-balanced network theory to networks with spatially continuous connectivity
structure would require extending the theory of spatially extended balanced networks [41, 10, 42, 11] to
account for semi-balance, i.e., for spatially localized regions of neurons with quenched firing rates, which
could be a fruitful direction for future work.

The semi-balanced state is defined by an excess of inhibition without a corresponding excess of excitation.
This is consistent with findings that inhibition dominates cortical responses in awake animals [35]. However,
it should be noted that the dominance of inhibitory synaptic currents is reduced to some extent when
shunting inhibition is accounted for (see Fig. 2Cii and Supplementary Figure S.1). A more precise prediction
of our model is that time-varying stimuli will silence a subset of neurons through shunting inhibition and
an effective imbalance between excitatory and inhibitory conductances (see Supplementary Figure S.1 and
its caption). This is consistent with evidence that visual inputs evoke shunting inhibition in cat visual
cortex [43]. These predictions should be tested more precisely using in vivo recordings.

Recurrent spiking neural networks are notoriously difficult to train in part because the mathematical
analysis of firing rates in biologically realistic recurrent spiking neural networks is largely intractable, though
some approximations have been developed for some models in some parameter regimes []. Hence, gradient-
based methods for firing rates in recurrent spiking networks are difficult to derive because the firing rates
themselves are unknown. The piecewise linearity of firing rates in the semi-balanced state (see Eq. (4))
could greatly simplify the training of recurrent spiking networks because the gradient of the firing rate with
respect to the weights can be easily computed. Future work should consider the derivation of gradient-based
learning rules from Eq. (4)

Artificial recurrent neural networks for machine learning often use sigmoidal activation functions instead
of the rectified linear activations typically used in feedforward networks because the unboundedness of
rectified linear units make recurrent networks susceptible to instabilities and large activations [18]. However,
sigmoidal activations introduce the potential for vanishing gradients that can be problematic for training [18].
Our results suggest that a homeostatic learning rule akin to an iSTDP rule could help stabilize artificial
recurrent neural networks with rectified linear activations while avoiding the problem of vanishing gradients.

In summary, semi-balanced networks are more biologically parsimonious and computationally powerful
than widely studied balanced network models. The foundations of semi-balanced network theory presented
here open the door to several directions for further research.

Methods

We modeled a network of N adaptive exponential integrate-and-fire (adaptive EIF) neurons with 0.8N excitatory
neurons and 0.2N inhibitory neurons. For the current-based model used in all figures except Fig. 2B,C, the membrane
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potential of neuron j = 1, . . . , Na in population a obeyed

τm
dV aj
dt

= −(V aj − EL) +DT e
(V a

j −VT )/DT − w + Iaj (t)

τw
dwaj
dt

= −waj

with the added condition that each time V aj (t) crossed Vth = −55, a spike was recorded, it was reset to Vre =, and
waj was incremented by B =mV. A hard lower bound was imposed at Vlb = −85mV. Other neuron parameters were
τm =, EL =, DT =, VT =, and τw =. Input was given by

Iaj (t) =
∑
b

∑
k

Jabjk
∑
n

αb(t− tbk,n)

where tbk,n is the nth spike of neuron k in population b and αb(t) = e−t/τb/τbH(t) is an exponential postsy-
naptic current with H(t) the Heaviside step function. Synaptic time constants, τb, were 8/4/10 ms for excita-
tory/inhibitory/external neurons. Synaptic weights were generated randomly and independently by

Jabjk =

{
jab/
√
N with probability pab

0 otherwise
.

In Fig. 1C,E and Fig. 2C, external input rates were rx = [15 15]Hz for the first 500ms and rx = [15 30]Hz for the
next 500ms.

In Figs. 1 and 2, postsynaptic populations were a = e1, e2, i and presynaptic populations were b = e1, e2, i, x1, x2
with Ne1 = Ne2 = 1.2× 104, Ni = 6000, and Nx1 = Nx2 = 3000 so that N = Ne1 +Ne2 +Ni = 3× 104. Neurons in
external populations, x1 and x2, were not modeled directly, but spike times were generated as independent Poisson
processes with firing rates rx1 and rx2. Connection strength coefficients were jejek = 37.5, jeji = −225, jiek = 168.75,
jii = −375, jejxk = 2700, and jixk = 2025mV/Hz for j, k = 1, 2. Note that these were scaled by

√
N to get

the actual synaptic weights as defined above. Connection probabilities in Fig. 1C,D were pe1e1 = pe2e2 = 0.15,
pe1e2 = pe2e1 = 0.05, pe1x1 = 0.08, pix1 = pix2 = 0.12, and pab = 0.1 for all other connection probabilities.
Connection probabilities in Fig. 1E,F and in Fig. 2 were the same except pe1x1 = pe2x2 = 0.15, pe1x2 = pe2x1 = 0,
and pix1 = pix2 = 0.15.

For Fig. 2C,D, we used the model except

τm
dV aj
dt

= −(V aj − EL) +DT e
(V a

j −VT )/DT − w − gae,j(t)(V − Ee)− gae,j(t)(V − Ei)

where Ee = 0mV, Ei = −75mV,

gae,j(t) =
∑
b

∑
k

Jabjk
∑
n

αb(t− tbk,n)

with the sum taken over excitatory presynaptic populations (b = e1, e2, x1, x2), and

gai,j(t) =
∑
k

Jaijk
∑
n

αi(t− tik,n).

The excitatory presynaptic weights (jae1, jae2, jax1, and jax2) were the same as above, but multiplied by (Ee − V0)
to account for the change of units. Similarly, presynaptic weights (jai) were multiplied by (Ei − V0). We took
V0 = VT = −55mV, but the accuracy of the theory did not depend sensitively on this choice. To obtain the dashed
curves in Fig. 2Di, we used Eq. (4), but with the original values of W (those used for the current-based model).
This is equivalent to dividing the conductance-based synaptic weights by (Ee − V0) and (Ei − V0), which is the
approximation produced by a mean-field theory derived in previous work [31, 32, 11].

For Fig. 2B, we solved τ ṙ = −r + kJK[Wr + X]2+ using the forward Euler method with r = [re1 re2 ri]
T ,

X = Wxrx,

W =

 we1e1 we1e2 we1i
we2e1 we2e2 we2i
wie1 wie2 wii

 ,
and

Wx =

 we1x1 we1x2
we2x1 we2x2
wix1 wix2
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where wab = JabKab/JK = jabpabNb/JK. Note that JK is multiplied in the differential equation and divided in the
definition of wab. We set k = 44Hz2/(mV)2 which provided a rough match to the sample f-I curves in our spiking
network while still exhibiting transitions between ISN and non-ISN regimes.

For Fig. 3, the model was the same as above except there was just one excitatory, one inhibitory, and one external
population with Ne = 0.8N and Ni = Nx = 0.2N where N = 3 × 104 in Fig. 3A,B. We reduced network size to
N = 5× 103 for Fig. 3C because simulations for Fig. 3C required 289 simulations for 400s each. The long simulation
time, 400s, was needed for accurate estimation of individual neuron’s firing rates at each stimulus value, which requires
a longer runtime than population averaged rates. The simulation for Fig. 3C took around 54 CPU hours and run
time grows quadratically with N , so a simulation with N = 3 × 104 would have taken prohibitively long. Stimulus
coefficients in Fig. 3B were set to σ1 = σ2 = 22.5mV (about 1.4 times the rheobase) for the first 80s and randomly
selected from a uniform distribution on [−30, 30]mV for the last 40s. In Fig. 3C, σ1 and σ2 values were sampled from
a uniform 17×17 lattice on [−18, 18]× [−18, 18]mV (-18mV to 18mV with a step size of 0.15 mV for each of σ1 and
σ2). Connection probabilities between all populations in Fig. 3 were pab = 0.1. Initial synaptic weights were given
by jee = 37.5, jei = −225, jie = 168.75, jii = −375, jex = 2700, and jix = 2025mV/Hz as above. Only inhibitory
weights onto excitatory neurons (jei) changed, all others were plastic.

The inhibitory plasticity rule was taken directly from previous work [23]. The variables, xaj (t), represent filtered
spiking activity and are defined by τxdx

a
j /dt = −xaj with the added condition that xaj (t) was incremented by one each

time neuron j in population a = e, i spiked. After each spike in excitatory neuron j, inhibitory synaptic connections
onto that neuron were updated by ∆Jeijk = −ηxik(t) for all non-zero Jeijk. After each spike in inhibitory neuron, k,
its outgoing synaptic connections were updated by ∆Jeijk = −η(xej(t)− α). We used τx = 200ms and α = 2 to get a
“target rate” of rte = α/(2τx) = 5Hz.

Layer 1 in Fig. 4 was identical to the model in Fig. 3C (with N = 5000) except the external input was replaced
by ~Xi(t) = Xi where Xi is the mean external input to inhibitory neurons in simulations with an external population
(as in previous figures), so the time-varying input to inhibitory neurons was replaced by a time-constant input with
the same mean. The external input to excitatory neurons was ~Xe(t) = Xe + ~Z where ~Z = Q~x where ~x is a 400× 1
vector of pixel values in the presented MNIST digit and Q is a Ne × 400 projection matrix where Ne = 4000. We
constructed Q so that the kth pixel projected to 100 neurons, specifically to neuron indeices j = 100(k − 1) + 1
through 100k with strength σ. This corresponds to setting Qjk = σ for 100(k − 1) + 1 ≤ j ≤ 100k and Qjk = 0
otherwise. We set σ =?.

We first trained the inhibitory synaptic weights by presenting 100 MNIST inputs for 1 s each with iSTDP turned
on. We then froze the inhibitory weights and presented an additional 2000 MNIST digits for 10 s each and saved the
resulting excitatory firing rates for each digit and each excitatory neuron. Weights were frozen for this simulation
because the goal is to study the (fixed) representation of digits by the trained recurrent network.

To compute the optimal readout of firing rates from Layer 1, we defined a readout Y = WrR1 where ~R1 is the
4000 × 2000 matrix of the Ne = 4000 Layer 1 excitatory neuron firing rates for each of 2000 MNIST digit inputs,
averaged over the 10 s that it was presented to the network. To train the 10×4000 readout matrix, Wr, we minimized
the `2 (Euclidean) norm between the 10 × 2000 matrix, Y , and the binary matrix H for which H(m,n) = 1 only if
digit n = 1, . . . , 2000 was labeled with m−1 = 0, . . . , 9. In other words, H is a matrix of one-hot vectors encoding the
labeled digit. Since the `2 loss is quadratic, the minimizing Wr can be found explicitly. Accuracy was then computed
by checking if the maximum index of Y was at the correct digit, i.e., by taking Ỹ (m,n) = 1 if Y (m,n) ≥ Y (m′, n)
for all m = 1, . . . , 10. As reported in Results, we obtained perfect accuracy with this procedure, i.e., we obtained
Ỹ = H exactly. To compute the optimal readout of pixel values, represented by an asterisk in Fig. 4B, we repeated
these procedures except we used the 400×1 vector of pixel values in place of the 4000×1 vector of excitatory neuron
firing rates. For the red curve in Fig. 4B, we performed the same procedure, but restricted to a randomly chosen
subset of the 4000 excitatory neuron firing rates (subset size indicated on the horizontal axis). For the dashed gray
curve in Fig. 4B, we used a random projection, U~x, of the pixel values where ~x is the 400× 1 vector of pixel values
and U is a K × 400 matrix with K being the number on the horizontal axis of the plot.

Layer 2 in Fig. 4 had N = 5000 neurons. The inhibitory population contained Ni = 1000 neurons and there were
ten excitatory populations each with 400 neurons. Neurons in the same excitatory population were connected with
probability pejej = 0.1 and neurons in different excitatory populations were connected with probability pejek = 0
for j 6= k. Connection probabilities between the inhibitory population and each excitatory population were peji =
piej = 0.1. Recurrent connection weights, jab, were the same as for all networks considered above. Layer 2 received
feedforward input from Layer 1, i.e., Layer 1 served as the external input population to Layer 2.

Connectivity from Layer 1 to Layer 2 was determined as follows. We first defined a 10 × 400 matrix, U , with
entries Umn ≥ 0 representing connectivity from neurons in Layer 1 receiving input from pixel k = n, . . . , 400 to
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neurons in Layer 2 representing digit m − 1 = 0, . . . , 9. We trained these weights on a simulation of Layer 1 with
2000 different MNIST digit inputs. For each digit, if the digit label was m − 1 = 0, . . . , 9, we increased Umn by the
sum of all excitatory firing rates of neurons in Layer 1 receiving input from pixel m. In other words, ∆Umn = η~r1 ·L
where ~r1 is a vector of Layer 1 firing rates and L = [0 · · · 1 · · · 0] is a 10 × 1 vector which is equal to 1 in the place
of the labeled digit, i.e., a one-hot vector [18]. We then normalized each column and row of U by its norm. This
normalization makes the choice of η arbitrary, so we chose η = 1. The 4000 × 4000 feedforward connection matrix,
J21, from excitatory neurons in Layer 1 to excitatory neurons in Layer 2 was then defined by J21

jk = Umn where
m−1 = 0, . . . , 9 is the population to which neuron j = 1, . . . , 4000 belongs and n = 1, . . . , 400 is the pixel from which
neuron k receives input. Inhibitory neurons in Layer 2 did not receive feedforward synaptic input, only recurrent
input. Since excitatory neurons in Layer 2 are only connected to other excitatory neurons within their population, but
all excitatory populations connect reciprocally to the inhibitory population, this creates a winner-take-all dynamic
in which the excitatory population with the strongest external input spikes at an elevated rate and suppresses other
excitatory populations. Combined with the supervised Hebbian plasticity rule, this creates a dynamic where the
network learns to activate population em when an image is presented that is similar to training images that were
labeled with digit m. Fig. 4D and the accuracy reported in Results reflects spiking activity in Layer 2 after training
of the feedforward weights is turned off.

Matlab code to produce all figures will be included with a revised submission. Until that time, code may be
requested from the corresponding author via email.
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