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Abstract 
Cognition and behavior emerge from brain network interactions, suggesting that causal interactions 
should be central to the study of brain function. Yet approaches that characterize relationships among 
neural time series—functional connectivity (FC) methods—are dominated by methods that assess 
bivariate statistical associations rather than causal interactions. Such bivariate approaches result in 
substantial false positives since they do not account for confounders (common causes) among neural 
populations. A major reason for the dominance of methods such as bivariate Pearson correlation (with 
functional MRI) and coherence (with electrophysiological methods) may be their simplicity. Thus, we 
sought to identify an FC method that was both simple and improved causal inferences relative to the 
most popular methods. We started with partial correlation, showing with neural network simulations 
that this substantially improves causal inferences relative to bivariate correlation. However, the 
presence of colliders (common effects) in a network resulted in false positives with partial correlation, 
though this was not a problem for bivariate correlations. This led us to propose a new combined 
functional connectivity method (combinedFC) that incorporates simple bivariate and partial correlation 
FC measures to make more valid causal inferences than either alone. We release a toolbox for 
implementing this new combinedFC method to facilitate improvement of FC-based causal inferences. 
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Introduction 
 
A goal of brain connectivity research is to estimate mechanistic network architectures that define 
functional interactions between neural populations (e.g., brain regions). Ideally, the recovered network 
can differentiate between direct and indirect interactions, and the orientation and strength of such 
interactions. A common strategy is to collect brain signals from a set of neural populations (termed 
“nodes” from here on) and compute a number of statistical association tests on the signals to infer the 
connectivity profile governing the set of brain nodes. 
 
For brain signals collected using functional magnetic resonance imaging (fMRI) the most popular 
method to estimate associations and define networks is Pearson bivariate correlation. A significant 
bivariate correlation coefficient between two nodes will imply a connection or edge between those two 
nodes. This method is fast to compute, every scientific software has a function to do it, and 
straightforward statistical tests are available. Nevertheless, for the task of recovering a connectivity 
architecture it has important limitations. This is especially clear from a causal inference perspective, 
which provides a variety of well-developed concepts that are useful for illustrating the limitations with 
typical FC research (Pearl, 2009; Reid et al., 2019; Spirtes et al., 2000). First, if two nodes are not 
connected but both have a common cause (a confounder) such as A ← C → B, where C is the 
common cause, A and B will be correlated and a spurious or false positive edge will be defined 
between them (Figure 1a ). False positive errors from common causes are costly for various reasons, 
for example, after observing a spurious edge a researcher could end up investing in an experiment to 
affect B by manipulating A, which clearly will result in no observed effect and waste time and 
resources.  
 
Second, if a bivariate correlation is observed between two nodes A and B, it is not possible to 
determine if this correlation was produced by a direct interaction A → B, an indirect interaction 
through other nodes (a chain; Figure 1b ) such as  A → C → B, or both a direct and an indirect 
interaction. In this sense, edges obtained with correlation are ambiguous about the direct or indirect 
nature of functional interactions. In contrast to the common cause case above, in the presence of a 
causal chain an experiment manipulating A to affect B will have the desired effect, yet information 
about the mechanism through which A is affecting B will be incomplete. 
 
Partial correlation has been suggested as an alternative to correlation that alleviates the 
aforementioned problems (Smith et al., 2011, 2013) (Figure 1a & 1b). Partial correlation consists in 
computing the correlation between two nodes conditioning or controlling on the rest of the nodes in 
the dataset. Thus, partial correlation reveals correlations driven by variance shared uniquely by each 
pair of time series—relative to the set of included time series. Intuitively, partial correlation detects any 
direct association between two nodes after taking into account associations through indirect 
interactions or due to the presence of a common cause. For example, for a causal architecture A → C 
→ B, the partial correlation of A and B conditioning on C is zero, indicating no direct interaction 
between A and B and thus no edge in the estimated connectivity network. In the case of a common 
cause structure A ← C → B, the partial correlation of A and B controlling for C is also zero, and no 
edge between A and B will be part of the estimated model. Conversely, the presence of an edge 
between two nodes in the estimated network will imply that the two nodes have a direct interaction. 
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Figure 1. The pattern of spurious causal inferences for bivariate and partial correlations. Switching from 
correlation to partial correlation improves causal inference (but is not perfect). We propose integrating inferences 
from both correlation and partial correlation, which we predict will produce further improvements to causal 
inferences. Red lines indicate spurious causal inferences. Note that, in the case of a collider, when A → C and B 
→ C are positive then the spurious A – B connection induced by partial correlation will be negative (this becomes 
relevant in the Results). 
 
 
In the presence of chains and confounders partial correlation is a preferable alternative to correlation 
for the goal of estimating a connectivity network, as the method is able to differentiate between direct 
and indirect interactions and avoid spurious edges (Figure 1a & 1b). However, partial correlation has 
an important limitation, for a causal structure A → C ← B, where C is a common effect and A and B 
are unrelated (i.e., C is a collider), the partial correlation of A and B conditioning on C will be non-zero 
and thus a spurious edge between A and B will be included in the inferred network (Figure 1c ). 
Importantly, such spurious association also arises when conditioning on any other node that is an 
effect of a collider (Pearl, 1986). This “conditioning on a collider” effect is well-known in the causal 
inference and machine learning literatures (Bishop, 2006; Hernán, Hernández-Díaz, & Robins, 2004; 
Pearl, 1986; Spirtes et al., 2000), with application to inferring causal directionality based on the 
principle of testing for conditional independence (Chickering, 2002; Meek, 1995; Spirtes & Glymour, 
1991). 
 
An example may be helpful for understanding why conditioning on a collider creates a spurious 
association between two unrelated nodes. Assume that nodes A, B and C have two states: active or 
not-active, and that for node C to be active it requires both nodes A and B to be active. A researcher 
that only analyzes data for the states of node A and node B will reach the correct conclusion that A 
and B are not associated. In other words, information about the state of A does not provide any 
information about the state of B and vice versa. But, if the researcher also takes into account the state 
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of C, which formally entails controlling or conditioning on C, then information about the state of A 
together with information about the state of C will provide information to correctly infer the state of B. 
For example, if A is active and C is not-active then we can correctly infer that B is not-active. This 
implies that region A and region B will be associated conditional on region C. The above example 
assumes discrete variables but the phenomenon equally holds with continuous variables. 
 
In the presence of a collider structure A → C ← B, correlation (which does not condition on any other 
node) will correctly infer the absence of an edge between A and B, while partial correlation, due to 
conditioning on the collider C, will incorrectly infer a spurious edge between A and B (Figure 1c). 
 
The behavior of correlation and partial correlation regarding confounders, colliders and chains, 
suggest the possibility of combining the inferences from both methods to minimize the presence of 
false positive edges and at the same time disambiguate between direct and indirect interactions. 
  
We recently proposed an approach (Reid et al., 2019) to combine bivariate correlation and partial 
correlation to improve causal inferences, which is developed and tested for the first time here. The 
basic idea underlying the approach was briefly mentioned as a possibility by Smith (2012), and was 
inspired by existing methods that use conditional independence to infer causality (Smith, 2012; Spirtes 
et al., 2000). The approach involves using partial correlation to estimate an initial connectivity network, 
followed by checking if any of those connections has a bivariate correlation coefficient that is zero. A 
zero correlation will indicate the possible presence of a spurious association due to conditioning on a 
collider and thus the corresponding edge will be deleted from the initial network. The partial correlation 
step is intended to avoid spurious edges from confounders and chains, while the bivariate correlation 
step is meant to avoid spurious edges from conditioning on colliders. We refer to this approach as 
“combined functional connectivity” or combinedFC. 
 
Properly, spurious connections arising from confounders, colliders and chains are not specific 
problems of bivariate correlation and partial correlation but are present for any method that tries to 
infer a causal mechanism from statistical associations (Spirtes et al., 2000). Measures such as mutual 
information and conditional mutual information, for example, will produce spurious edges in the 
presence of a confounder or a collider respectively. Here we focus on linear bivariate correlation and 
partial correlation since they are two of the most-used methods to infer brain connectivity from 
functional MRI data (Cole, Ito, Bassett, & Schultz, 2016; Marrelec et al., 2006; Reid et al., 2019; Ryali, 
Chen, Supekar, & Menon, 2012). Similar considerations apply to all brain measurement methods, such 
as electroencephalography, magnetoencephalography, or multi-unit recording. 
 
We implement combinedFC and compare its accuracy to bivariate correlation and partial correlation 
using simulations under different conditions. We then apply the three methods to empirical fMRI data 
from the Human Connectome Project (HCP) (Van Essen et al., 2013) to illustrate the differences 
between the recovered functional connectivity networks. This demonstrates that it matters in practice 
which method is used. For reproducibility, results are available as a Jupyter notebook at 
github.com/ColeLab/CombinedFC. 
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Materials and Methods 
 
CombinedFC builds an initial connectivity network using partial correlations to avoid spurious edges 
produced by confounders and causal chains, and then removes spurious edges arising from 
conditioning on colliders if the corresponding bivariate correlations are judged as zero. We implement 
the method as follows: 
 
Partial correlations are computed using the inverse of the covariance matrix for the set of variables of 
interest, also known as the precision matrix P. The partial correlation coefficient for two nodes’ time 
series A and B conditioning on C, the set including all nodes in the dataset except A and B, is equal 
to: r AB| C = -PAB / sqrt (PAAPBB), where sqrt ( ) indicates the square root function and PAB the entry for node 
A and B in the precision matrix. This is mathematically equivalent to computing the bivariate 
correlation of each pair of nodes’ time series after regressing out (controlling for) all other nodes’ time 
series. If the dataset has more datapoints than variables computing the precision matrix is a 
computationally efficient way to obtain the partial correlations for all the pairs of variables in the 
dataset.  
 
To determine statistical significance, the partial correlation coefficients rAB| C are transformed to the 
Fisher z statistic Fz = [tanh -1(r AB| C) - tanh -1(r AB| C

Ho )]sqrt (N-| C|-3), where rAB| C
Ho  is the partial correlation 

coefficient under the null hypothesis, N is the number of datapoints and | C| is the number of nodes in 
the conditioning set C. The Fz statistic has a distribution that approximates a standard normal with 
mean 0 and standard deviation 1, and is used in a two-sided z -test for the null hypothesis of zero 
partial correlation, rAB| C

Ho  = 0, at a selected 𝛼 cutoff. For Fz 𝛼/2 ,the value corresponding to the 𝛼 cutoff in 
a two-sided z -test, if Fz ≥ +Fz𝛼/2  or Fz ≤ - Fz𝛼/2 the partial correlation is considered significantly 
different from zero and an edge between A and B is added to the initial network with a weight equal to 
rAB| C. 
 
To check for spurious edges caused by conditioning on a collider in the partial correlation step, the 
bivariate  Pearson correlation coefficient rAB is computed for each pair of connected nodes A and B in 
the initial network. In contrast to the partial correlation step in which edges are added to the network, 
in the correlation step edges are removed if rAB = 0. For bivariate correlation coefficients rAB, the above 
formula for Fz reduces to Fz = [tanh -1(r AB) - tanh -1(r AB

Ho )]sqrt (N-3), since bivariate correlation does not 
condition on other nodes and so the size of the conditioning set | C| = 0. A two-sided z -test for the null 
hypothesis of rAB

Ho  = 0 is conducted at a chosen 𝛼 cutoff. For Fz𝛼/2, the value corresponding to the 𝛼 
cutoff in a two-sided test, if Fz < +Fz𝛼/2  or Fz > - Fz𝛼/2 the bivariate correlation is considered not 
significantly different from zero and the corresponding edge between A and B is removed from the 
initial network.   

Simulation methods 
 
The performance of combinedFC, partial correlation and correlation is tested using data generated 
from linear models of the form X = WX + E, where X = {X1, X2, … , Xv} is a vector of v variables, E = {E1, 
E2, … , Ev} is a vector of v independent noise terms, and W is a matrix of connectivity coefficients with 
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diagonal equal to zero to represent no self-loops. If the entry Wij ≠ 0, then the model implies a direct 
causal interaction Xj  → Xi , otherwise Xi  and Xj  are not directly connected.  
 
To simulate data for a linear model the above equation can be expressed as X = (I - W)-1E, where I is 
the identity matrix, and datapoints for the X variables are obtained by specifying the coefficients of the 
connectivity matrix W and datapoints for the E noise terms. A common strategy is to sample noise 
terms E from a standard normal distribution with mean 0 and standard deviation 1. But to simulate 
more realistic scenarios it is possible to implement a pseudo-empirical approach to define the E noise 
terms and produce synthetic variables X that better resemble the empirical data of interest. The 
approach consists in selecting an empirical dataset from the domain of interest and randomize the 
variable labels and each variable vector of datapoints individually, with the aim of destroying existing 
associations while keeping the marginal distributional properties of the empirical variables. The newly 
randomized empirical variables are used as noise terms E, and together with W define synthetic 
datapoints for X by the above equation. In these simulations pseudo-empirical noise terms E were 
built using fMRI resting state data from a pool of 100 random subjects of the HCP and parcellated into 
360 brain cortex regions (Glasser et al., 2016) (see subsection below). 
 
The simulation of the coefficient matrix W consists in the definition of a connectivity architecture (i.e., 
the non-zero entries in W) and the choice of coefficient values for the non-zero entries. Two different 
causal graphical models are used to define connectivity architectures. The first model is based on an 
Erdos-Renyi process (Erdős & Rényi, 1960) and produces architectures with a larger proportion of 
confounders than colliders. In contrast, the second model is based on a power-law process (Goh, 
Kahng, & Kim, 2001) and generates architectures with a larger proportion of colliders than 
confounders. These two models illustrate the performance of combinedFC in conditions in which 
partial correlation will perform better than correlation and conditions where the opposite is true.  
 
The coefficient values for W were sampled from a uniform distribution with an interval from -1 to 1. To 
avoid zero or close to zero coefficients, values in the interval (-0.1, 0) were truncated to -0.1 and those 
in the interval [0, +0.1) were truncated to +0.1. 
 
We analyzed the performance of the methods across simulations that vary four parameters: number of 
datapoints = {250, 600, 1200}, number of regions = {50, 200, 400}, connectivity density or percentage 
of total possible edges = {5%, 10%, 20%}, and  𝛼 cutoff for the significance of the two-sided null 
hypothesis tests  = {0.001, 0.01, 0.05}. When one parameter is varied the other three are fixed to the 
value in bold. For example, in the simulations where the number of datapoints varies, the number of 
regions is fixed to 200, the connectivity density to 5%, and the 𝛼 cutoff value to 0.01.  
 
To compare the performance of the three methods in recovering the true connectivity architectures, 
we used precision and recall as measures of effectiveness (Rijsbergen, 1979). Precision is the 
proportion of true positives or correctly inferred edges out of the total number of inferences: precision 
= true positives / [true positives  + false positives]. Precision ranges from 0 to 1 and a value of 1 implies 
no false positives (Figure 2b & 3b ). Recall is the proportion of correctly inferred edges out of the total 
number of true edges: recall = true positives / [true positives  + false negatives]. Recall ranges from 0 to 
1 and a value of 1 implies no false negatives (Figure 2b & 3b). Given that correlation and partial 
correlation do not recover information about the causal direction of edges, precision and recall only 
reflect the accuracy of the methods to recover edges regardless of their orientation. We instantiate 
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100 times each simulated condition and report averages and standard error bars for precision and 
recall across the runs. 
 

Empirical fMRI analysis methods 
 
For the pseudo-empirical simulations described above and for the empirical analysis we use fMRI 
resting state data from a pool of 100 random subjects from the minimally preprocessed HCP 1200 
release (Glasser et al., 2013), with additional preprocessing following Ito et al. (2019) and Ciric et al. 
(2017). HCP data was collected in a 3T Siemens Skyra with TR = 0.72 s, 72 slices and 2.0 mm 
isotropic voxels. For each subject 4 resting state fMRI scans were collected, each lasting 14.4 minutes, 
resulting in 1200 datapoints per scan. The data was parcellated into 360 brain cortex regions (180 per 
hemisphere) defined in Glasser et al. (2016).  Additional preprocessing on the parcellated data include 
removing the first 5 datapoints of each scan, demeaning and detrending the time series and performing 
nuisance regression with 64 regressors to remove the confounding effect of various motion and 
physiological artifacts. No global signal regression was implemented. Finally, the time series of the 360 
regions were individually standardized to bring them to the same scale with mean 0 and standard 
deviation 1. Specific details about the nuisance regression are in Ito et al. (2019). 
 
For the empirical fMRI data, we illustrate the use of combinedFC in a group level analysis and 
compared its result to bivariate correlation and partial correlation. We only use the first resting state 
session data (1195 datapoints x 360 regions) for each subject analyzed. The goal of the group analysis 
is to obtain a connectivity network reflecting group average significant connections. The group analysis 
for bivariate correlation and partial correlations follows Smith et al. (2013). Let Ms for s = {1, … , n} 
denote a group of n subjects bivariate correlation (or partial correlation) matrices, and Mg the group 
average connectivity matrix we want to infer. First, each Ms is transformed into a Fisher z statistics 
matrix Fs. Then, for each ij entry we compute the group average 1/n Σs(F

s
ij ) and perform a two-sided 

one-sample t-test for the null hypothesis H0 : 1/n Σs(F
s
ij ) = 0. Finally, if H0 is rejected at the chosen 𝛼 

value, the ij entry of the group connectivity matrix Mg is defined as Mgij = 1/n Σ s(Msij ), otherwise Mgij = 0. 
 
For combinedFC, the group analysis starts by computing an initial partial correlation group average 
connectivity matrix Mg as above. Then, for each non-zero entry Mgij ≠ 0 we perform a two-sided 
one-sample t-test for the null hypothesis H0 : 1/n Σs(φ  sij ) = 0, where φ sij  is the Fisher z transform of the 
bivariate correlation between node i and node j for subject s. In other words, we want to determine if the 
group average bivariate correlation between two nodes is significantly different from zero or not. As 
mentioned before, the correlation step looks to remove connections with non-zero partial correlation but 
zero bivariate correlation since that indicates a possible spurious connection from conditioning on a 
collider. So, if the H0

 is not rejected at the chosen 𝛼 value —meaning that the group average correlation 
is not significantly different from zero —we remove the connection by setting Mgij = 0, otherwise we keep 
the initial value of Mgij . 
 
An alternative approach for inferring if bivariate correlations are zero (or close enough to zero that we 
consider them to be null effects) is to use an equivalence test (Goertzen & Cribbie, 2010; Lakens, 
2017). Formally, it is not appropriate to use non-significance to infer that the null effect was true. This 
is clear in the case of high uncertainty (e.g., high inter-subject variance), since even large correlations 
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would be considered non-significant. Non-significance implies that we do not have sufficient evidence 
of a correlation, not that we have strong evidence that the correlation is zero. This is also clear in the 
case of very small effects with large sample size, in which extremely small correlations are still 
considered significantly non-zero. Significance in this case implies that we have sufficient evidence of 
a correlation, but that correlation might be so small that it is not above zero in a meaningful sense. For 
instance, rAB = 0.20 is such a small effect size that only 4% of linear variance is shared between time 
series. Unlike non-significance in a two-sided one-sample t-test, equivalence tests allow one to 
properly infer that the null effect is true by choosing a minimum effect size of interest (e.g., we 
consider rAB to be zero, if abs (r AB) < 0.20, where abs ( ) is the absolute value function). Equivalence tests 
are very straightforward, simply using standard null hypothesis testing (e.g., a t-test) to determine if an 
effect is significantly closer to zero than the chosen minimum effect size of interest. We implement the 
equivalence test in the group analysis as follows: 
 
In an equivalence test to determine if a group average bivariate correlation is zero, two one-sided 
one-sample t-tests are conducted. First, FzL and FzU are defined as the Fisher z-transformed values of 
the negative (lower bound) and positive (upper bound) of a chosen minimum bivariate correlation 
coefficient of interest—minimum effect of interest. The lower bound t-test is a right-sided test for the 
null hypothesis H0

L : 1/n Σ s(F
s
ij ) = Fz L, and alternative hypothesis HA

L : 1/n Σ s(F
s
ij ) > Fz L. The upper 

bound t -test is a left-sided tests for the null hypothesis H0
L : 1/n Σ s(F

s
ij ) = Fz U, and alternative 

hypothesis HA
L : 1/n Σ s(F

s
ij ) < FzU. For a selected 𝛼 cutoff, if both H0

L and H0
U are rejected, the 

equivalence test concludes that significantly FzL < 1/n Σs(F
s
ij ) < Fz U. This result implies that the group 

average bivariate correlation of node i and node j is inside the bounds of the minimum effect of interest 
and will be judged as zero. In combinedFC this result implies setting Mgij = 0, otherwise keeping the 
initial value of Mgij . 
 
Code to implement combinedFC at the individual and group level is available as a toolbox at 
github.com/ColeLab/CombinedFC. 

Results 

Validating combinedFC using simulations 
 
As combinedFC benefits from the capacity of partial correlation to avoid false positive edges from 
confounders and chains, and from the capacity of correlation to avoid false positive edges from 
conditioning on colliders, it is expected to have a lower number of false positives than either of the two 
methods alone. Consistent with this the results of all simulations show that combinedFC has better 
precision than both bivariate and partial correlation. As combinedFC starts with the partial correlation 
connectivity network and does not add any more edges, its number of true positives is the same as for 
partial correlation, so any improvement in precision relative to partial correlation necessarily comes 
from a reduction in false positives. As expected, partial correlation has a better precision than bivariate 
correlation in the simulations from models with a large number of confounders and chains (Figure 2), 
while bivariate correlation precision is higher in simulations from models with a large number of 
colliders (Figure 3 ). CombinedFC precision is the highest for both types of graphical models. 
 

7 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841890doi: bioRxiv preprint 

https://doi.org/10.1101/841890
http://creativecommons.org/licenses/by-nc-nd/4.0/


CombinedFC’s recall upper bound is determined by partial correlation’s recall. CombinedFC true 
positives are the same as partial correlation true positives, so any reduction in recall relative to partial 
correlation comes from an increase in the number of false negatives. An increase in false negatives 
means that combinedFC is incorrectly removing some true edges.  
 
 

 
 
Figure 2. Precision and recall for simulated networks with a larger number of confounders and chains 
than colliders. (a) An example of a 5 node network generated with an Erdos-Renyi process, with more 
confounders and chains than colliders. (b) Formulas for precision and recall based on the sum of true positive, 
false positive and false negative inferred edges, relative to a true network. Results show average and standard 
deviation across 100 instantiations. Four different parameters are varied independently: (c) number of datapoints 
= {250, 600, 1200}, (d)  number of regions = {50, 200, 400}, (e)  connectivity density = {5%, 10%, 20%} and (f)  𝛼 
cutoff for the significance test = {0.001, 0.01, 0.05}. In panel f the values are plotted in logarithmic scale for 
better visualization. When one parameter was varied the other three were fixed at the value in bold.  
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Figure 3. Precision and recall for simulated networks with a larger number of colliders than confounders 
and chains. (a) An example of a 5 node network generated with a power law process, with more colliders than 
confounders and chains. (b) Formulas for precision and recall based on the sum of true positive, false positive 
and false negative inferred edges, relative to a true network. Results show average and standard deviation 
across 100 instantiations. Four different parameters are varied independently: (c) number of datapoints = {250, 
600, 1200}, (d)  number of regions = {50, 200, 400}, (e)  connectivity density = {5%, 10%, 20%} and (f)  𝛼 cutoff for 
the significance test = {0.001, 0.01, 0.05}. In panel f the values are plotted in logarithmic scale for better 
visualization. When one parameter was varied the other three were fixed at the value in bold.  
 
 
Since combinedFC is based on partial correlation and bivariate correlation, increasing datapoints 
(Figure 2c  & 3c) will also have a positive impact on recall. We found that combinedFC recall was 
improved by increasing datapoints, likely due to more statistical power to detect the presence of true 
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edges. In contrast, the reduction in precision is possibly an effect of the fixed significance level (𝛼 = 
0.01). Properly, an increase in the number of datapoints may increase the risk of false positives, thus 
the 𝛼 level must be reduced to account for this possible effect. It is expected that with lower 𝛼 values 
the precision will improve for these simulations. 
 
CombinedFC has a strong positive effect in precision for all the number of regions we simulated 
(Figure 2d & 3d ). This effect diminishes to a degree in the larger model we tested, possibly due to the 
fact that in larger simulated networks there is a higher probability that nodes with common causes, 
common effects or indirect interactions are also directly connected, such that combinedFC removes 
fewer false connections. 
 
Figures 2e & 3e  show an excellent precision improvement of combinedFC in sparse problems (low 
connectivity density). This is expected since in sparse causal architectures any two nodes have a 
higher probability of not being connected, while still potentially having a common cause, common 
effect or an indirect interaction (such that combinedFC removes more false connections). As the true 
causal architecture becomes denser the benefit in precision from combinedFC is reduced, since 
now—as with the simulations with large number of regions—there is a higher probability that nodes 
with common causes, common effects or indirect interactions are also directly connected (such that 
combinedFC removes fewer false connections).  
 
Changes in recall and precision of combinedFC can be achieved by changing the 𝛼 cutoff for the 
significance tests. Figures 2f & 3f show that in these simulations a smaller 𝛼 value improves the 
precision and decreases the recall for combinedFC. In the opposite direction, by choosing a larger 𝛼 
the hypothesis tests will be more lenient by increasing the recall (more true edges will be judged 
significant) at the cost of a lower precision (more false edges will be judged significant). When using 
combinedFC the preference between precision or recall is a decision that depends on the researchers’ 
goals. Scientists generally tend to value precision over recall, since false positives are thought to be 
more costly to scientific progress than false negatives (Parascandola, 2010). 
 
For the network inference problem, simple and multiple linear regression can be used to obtain 
measures of unconditional and conditional linear association for a node and a set of node regressors. 
This makes them straightforward alternatives to partial correlation and bivariate correlation to 
implement combinedFC. In this case, we would first compute the multiple regression of each node on 
the rest of the nodes, for example X1 = β0 + β2X2 + … + βvXv + E1. Then, for each non-zero multiple 
regression coefficient βj  ≠ 0 we would compute the simple  regression between the node and the 
corresponding regressor X1 = 𝛾j Xj  + E1. The simple regression coefficient 𝛾j  is a measure of 
unconditional association and thus an alternative to the bivariate correlation coefficient for the collider 
check. If two nodes have a non-zero multiple regression coefficient βj  ≠ 0, but a zero simple regression 
coefficient 𝛾j  = 0, then we have evidence of a spurious edge from conditioning on a collider. We 
applied a combinedFC implementation with ordinary least squares multiple linear regression and 
simple linear regression to our simulations, and obtained equivalent inference precision and recall to 
the ones of combinedFC with bivariate correlation and partial correlation. This is expected given the 
theoretical relationship between the methods. We include this linear regression implementation of 
combinedFC in the accompanying toolbox.   
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Applying combinedFC to empirical resting state fMRI data 
 
We used the same pool of 100 HCP subjects from the pseudo-empirical simulations to perform group 
analyses and assess whether it mattered in practice which method (bivariate correlation, partial 
correlation, or combinedFC) is used in empirical fMRI data analyses. This also allowed us to assess 
the relative performance of the methods as a function of sample size, and as a function of how false 
connections are identified. 
 
We began by measuring the sensitivity of the three approaches to increasing number of subjects in the 
group. Groups with 10, 40, 70 and 100 subjects were evaluated. For each case the three functional 
connectivity methods were applied as described in Materials and Methods. A significance cutoff of 𝛼 = 
0.01 was used for the significance tests of correlation, partial correlation and combinedFC, for all 
group sizes. 
 
Figure 4  shows the number of edges inferred by each method (bivariate correlation excluded from 
visualization) at each of the four group sizes analyzed. The number of inferred edges for all methods 
increase with the size of the group. The results for bivariate correlation are not plotted in Figure 4, 
since they are one order of magnitude larger than for the other methods, but they are included here for 
completeness: 45,120 edges (with 10 subjects); 58,019 (40); 60,442 (70); 61,206 (100). The results 
labeled as “CombinedFC non-significance”, refer to combinedFC using non-significant correlations for 
the collider check as described in Materials and Methods. As can be seen, the number of inferred 
edges for this implementation of combinedFC are very similar to the ones from partial correlation. One 
reason behind this result is that in group analyses with high statistical power, very small spurious 
bivariate correlations (e.g., rAB = 0.10) may be judged significant and thus combinedFC will not judge 
them as spurious edges from conditioning on a collider. 
 
As mentioned in Materials and Methods, an alternative approach for inferring zero correlations is to 
use an equivalence test. By choosing a minimum effect of interest, an equivalence test allows us to 
make a significance judgment of zero correlation and overcome the problem of very small significant 
correlations described above for the non-significance implementation. We applied combinedFC with 
an equivalence test, choosing a minimum bivariate correlation coefficient of interest of 0.2 and a 
significance cutoff of 𝛼 = 0.01. Results are shown in Figure 4 as “CombinedFC equivalence test”. 
CombinedFC with an equivalence test inferred a smaller amount of edges than combinedFC with the 
non-significance judgement. As the group size increases, the equivalence tests gain more statistical 
power to correctly judge the presence of zero mean group effects (Lakens, 2017) and thus 
combinedFC becomes more effective in removing potential spurious edges from conditioning on 
colliders. 
 
For illustration and comparison we plotted in Figure 5 the connectivity networks for the 100 subjects 
group analysis. Connection weights represent mean values across 100 subjects. The network for 
combinedFC with non-significance judgments is not plotted since, as explained above and shown in 
Figure 4 , the results are very similar to partial correlation. The rows and columns of the matrices are 
ordered according to 12 functional networks described in Ji et al., (2019) (Figure 5e).  
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Figure 4. Empirical data analyses comparing strategies to identify false connections due to colliders. 
Number of inferred group edges for partial correlation and combinedFC implemented with non-significant 
correlations and with equivalence tests for the collider check. Only the equivalence test strategy identifies more 
false connections with a larger sample size, consistent with more data providing greater evidence of no (or a very 
small) bivariate correlation in these cases. See text for results with bivariate correlation. 
 
 
In the 100 subjects group analysis, correlation (Figure 5a) produced a dense network with 61,206 
significant edges (out of 64,620 possible), while partial correlation (Figure 5b) inferred a sparser model 
with 7,815 significant edges (Figure 5d). This massive reduction in inferred edges from using partial 
correlation likely reflects the widespread presence of confounders and causal chains among brain 
regions. Partial correlation removes false edges from confounders and indirect connections, producing 
a brain connectivity network in which edges between regions can be interpreted (under certain 
assumptions) as direct connections. 
 
It is worth noticing that the number of negative edges in the partial correlation matrix increased to 
2,073 from 818 in the correlation matrix (Figure 5d). Two unconnected nodes will have a negative 
spurious partial correlation from conditioning on a collider if their connectivity coefficients with the 
collider have the same sign. In contrast, they will have a positive spurious partial correlation if their 
associations have opposite signs (Reid et al., 2019; Smith, 2012). Anatomical studies in non-human 
primates have established that most long-range cortico-cortical connections are positive (i.e., 
glutamatergic) (Barbas, 2015), such that we can reasonably assume that most true connections 
among brain regions have the same sign (positive). This suggests that most spurious partial 
correlations will be negative. Consistent with the removal of spurious partial connections caused by 
colliders, combinedFC (Figure 5c) reduced to 895 the number of negative edges from the initial 2,073 
in the partial correlation matrix (Figure 5d). It is interesting that the final number of negative edges in 
the combinedFC matrix is close to the number of negative edges in the bivariate correlation matrix, in 
which no spurious edges from conditioning on collider are present. 
 
All together, these findings confirm the benefit—relative to either bivariate or partial correlation 
alone—of the combinedFC strategy to detect direct connections between regions. 
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Figure 5 . Comparison of bivariate and partial correlation with combinedFC using empirical resting state 
fMRI data. Results for (a) bivariate correlation, (b) partial correlation and (c) combinedFC with equivalence tests. 
(d) Number of positive and negative inferred edges by each method. Partial correlation removed a large number 
of positive edges and increased the number of negative edges relative to correlation. This increase may come 
from spurious edges from conditioning on colliders with same sign associations. Consistent with the removal of 
spurious partial connections caused by colliders, combinedFC removed 57% of the negative partial correlations 
and ended up with a number of negative edges close to the one of the bivariate correlation matrix, for which no 
spurious edges from colliders are present. (e) The 360 regions of interest are ordered according to 12 functional 
networks defined in Ji et al., (2019) using bivariate correlation: VIS1: primary visual; VIS2: secondary visual; SMN: 
somatomotor; CON: cingulo-opercular; DAN: dorsal attention; LAN: language; FPN: frontoparietal; AUD: 
auditory; DMN: default mode; PMM: posterior multimodal; VMM: ventral multimodal; ORA: orbito-affective. 
 
 

Discussion 
 
We have shown that combinedFC provides a strategy to accurately recover connectivity networks by 
taking into account the way that causal relationships such as confounders, causal chains and colliders 
may produce spurious edges when correlation and partial correlations are used separately. Using a 
series of simulations varying the number of datapoints, number of regions, connection density and 
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significance cutoff, we showed that combinedFC consistently improves the inference precision 
(reducing false positive edges) without considerable loss in recall (increasing false negative edges). We 
also presented simulations of graphical models with a majority of confounders, for which partial 
correlation performs better than bivariate correlation, and models with a majority of colliders, for which 
bivariate correlation performs better than partial correlation, and show the superior precision of 
combinedFC in both types of models. This result shows that partial correlation by itself is not a better 
strategy than correlation under all possible scenarios, and that the behavior of correlation and partial 
correlation used separately depend on the particular causal mechanisms governing the true network. 
In contrast, combinedFC takes into account the strengths and limitations of both methods and 
achieves a better performance regardless of the underlying causal topography of the network.  
 
The superior precision of combinedFC in these simulations confirms the benefit of adopting a causal 
perspective about the data generating system of interest. In combinedFC we assume that brain 
signals come from a causal system that can be modelled in terms of direct causal connections 
between nodes, and that those direct connections give rise to patterns in the shape of confounders (A 
← C → B), causal chains (A → C → B) and colliders (A → C ← B), which when incorrectly modeled 
can give rise to spurious edges. These causal assumptions lead to increased confidence that the 
combinedFC inferences are not reflecting indirect connections (because we condition for causal 
chains using partial correlation) nor spurious non-existent edges (because we condition for 
confounders using partial correlation, and account for conditioning on colliders by doing a bivariate 
correlation check).   
 
Critically, because bivariate correlation is by far the most popular FC measure in fMRI research, 
combinedFC should be primarily assessed relative to bivariate correlation. Since the limitations with 
combinedFC are substantially fewer than those of bivariate correlation, widespread adoption of 
combinedFC would meaningfully benefit the field of FC research. To illustrate this improvement, 
consider the empirical fMRI application presented here. It is a whole-cortex 360 region problem for 
which we are trying to infer a network containing relevant information about the strength and 
directness of its connections. It is also a densely connected system with a high probability for the 
presence of confounders (e.g., a primary visual region sending information to various secondary visual 
regions upwards in the visual stream), causal chains (e.g., intermediate regions serving as relays in 
information paths from primary sensory regions to decision-making centers) and colliders (e.g., hubs 
that consolidate information coming from different sensory regions). The problem with using bivariate 
correlation for this problem is that it is impossible to disambiguate if the inferred edges represent real 
direct connections, indirect connections of different degrees or spurious confounded connections. In 
this sense, the only conclusion we can make about an edge between A and B in a bivariate correlation 
network is that time series A and B are associated to a certain degree without knowing anything about 
the mechanism producing their association. Even if we threshold a correlation matrix by correlation 
strength, the remaining edges cannot be disambiguated: It is possible that due to strong connections 
with the intermediate nodes in a chain (or with the common cause), an indirect connection (or spurious 
edge) results in a very strong correlation coefficient that survives the threshold. Due to the inherent 
causal ambiguities of bivariate correlation, we can only conclude that the nodes interact (directly or 
indirectly) and/or are similarly influenced by common node(s) (Reid et al., 2019).  
 
Without causal assumptions it is not possible to overcome the ambiguities of bivariate correlation and 
its limitations as an informative FC method. In contrast, combinedFC uses two simple causal 
assumptions. The first is that by conditioning on the proper nodes we can disambiguate between 
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direct, indirect and spurious connections. Properly, by using full partial correlation as a first step we 
attempt to 1) condition on intermediate nodes from causal chains to avoid edges that represent 
indirect connections, and 2) condition on confounders to avoid edges that represent spurious 
connections. The second causal assumption is that conditioning on a collider will associate two nodes 
that were previously independent. This assumption suggests the rule that if we found a partial 
correlation between two nodes but no evidence of bivariate correlation—where no conditioning is 
made—we will be in the presence of a spurious association and the corresponding edge should be 
deleted. These causal assumptions are what provide relevant information about strength and 
directness of associations, allowing the interpretation of edges in an inferred connectivity matrix as 
direct connections between nodes, thus making combinedFC a method more appropriate than 
bivariate correlation for the goals of FC research (Reid et al., 2019). 
 
CombinedFC can be described as a method that builds an initial connectivity network by computing 
the conditional associations between each pair of nodes given the rest, to avoid spurious edges from 
confounders and causal chains, and then removes spurious edges arising from conditioning on 
colliders if the corresponding nodes are not unconditionally associated. This general description 
implies that we can use different methods to compute associations and conditional associations, 
depending on the properties of the data or other theoretical and computational considerations. The 
benefits of combinedFC depend on its causal assumptions and not on any particular implementation. 
So, as with correlation and partial correlation, combinedFC should be a better approach than any of 
the chosen statistical association (e.g., mutual information) and conditional association (e.g., 
conditional mutual information) methods used alone.  
 
As mentioned in Results, multiple and simple regression are straightforward alternatives to partial 
correlation and correlation to implement combinedFC. The βj  coefficients of a multiple regression are a 
measure of the conditional associations between a node and each of its individual j regressors 
controlling for the rest. A multiple regression coefficient βj  = 0 will indicate that the node and its 
regressor j are conditionally independent given the rest of the nodes (assuming linear relationships). 
Conversely, βj  ≠ 0 will indicate a conditional association. This property of multiple regression makes it 
a valid alternative to partial correlation in combinedFC. In the same way, the simple regression 
coefficient is a measure of unconditional association and thus an alternative to bivariate correlation for 
the combinedFC collider check. Multiple regression has been successfully used to build resting state 
connectivity models from which predictions about task activations are made (Cole, et al., 2016; Ito et 
al., 2017) and thus it is expected that using combinedFC to remove spurious connections from these 
models will allow even better predictions—or at least predictions that are more causally accurate.   
 
The general description of combinedFC does not make any assumption about the distribution of the 
data, temporal properties or linear relationship between the nodes. This suggests the adaptability of 
the strategy to different data assumptions. Next we present some future research scenarios and how 
combinedFC can be adapted to them. 
 
To get reliable estimates, partial correlation requires more datapoints than nodes. The simulations and 
empirical data presented here satisfy this requirement. For problems where the number of nodes is 
considerably larger to the number of datapoints, also known as high-dimensional problems, it is 
necessary to apply specially-tailored methods to assess conditional associations (Bühlmann & Van De 
Geer, 2011), otherwise the variance of the estimators increase to infinity, making them unusable 

15 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841890doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?fdZ9wX
https://www.zotero.org/google-docs/?jUWP5N
https://www.zotero.org/google-docs/?jUWP5N
https://www.zotero.org/google-docs/?s4Axk6
https://www.zotero.org/google-docs/?s4Axk6
https://doi.org/10.1101/841890
http://creativecommons.org/licenses/by-nc-nd/4.0/


(James, Witten, Hastie, & Tibshirani, 2013). This is a common situation with fMRI, for instance, 
because of the typically larger number of voxels relative to datapoints.  
 
Two of the most popular high-dimensional methods to recover networks are forms of regression 
regularization such as lasso (Tibshirani, 1996) and ridge regression (Hoerl & Kennard, 1970), which 
compute regressions with an extra regularization parameter that shrinks coefficients to zero or close to 
zero. Other high-dimensional alternatives are methods that estimate a regularized inverse covariance 
matrix from which partial correlation coefficients can be derived. Glasso (Friedman, Hastie, & 
Tibshirani, 2008) is possibly the most popular of these methods. Hinne, et al., (2015) introduce a 
Bayesian solution using priors, and BigQuic (Hsieh, Sustik, Dhillon, Ravikumar, & Poldrack, 2013) is a 
recent algorithm that can scale up to a million variables and has been applied to a whole-cortex voxel 
level problem. One more alternative for high-dimensional problems is to use dimension reduction 
methods (James, et al., 2013) such as principal components regression PCR (Hotelling, 1957; Kendall, 
1957), in which principal components analysis (PCA) is used to obtain a low-dimensional set of 
components which are then used as regressors in a multiple linear regression. In high-dimensional 
problems the combinedFC strategy of computing conditional associations followed by simple 
associations is still valid, but it has to be implemented with regularization methods. For example, the 
first step can be computed with glasso to determine pairs of nodes that are conditionally associated, 
and the second step can be computed with bivariate correlation or simple regression to detect 
possible spurious edges from conditioning on a collider. We include a glasso implementation for 
combinedFC in the accompanying toolbox. 
 
The simulations used here assume nodes interact in a linear fashion, such as X = bY + E, where b  is 
the association coefficient. Bivariate correlation and partial correlation reliability is guaranteed for 
linear problems, but if the assumption of linearity is not valid, for example X = bY2 + E, it will be 
necessary to adopt non-linear association and conditional association methods. Importantly, the logic 
behind combinedFC is valid (in principle) for non-linear interactions, such that measures of association 
other than bivariate and partial correlation could be used. The conditional mutual information and 
mutual information test from Cover & Thomas (2012), the kernel-based conditional independence test 
from Zhang, Peters, Janzing, & Schölkopf (2011) and the scalable conditional independence test from 
Ramsey (2014), are alternatives to implement combinedFC in the presence of non-linear interactions. 
 
Bivariate correlation and partial correlation, as used here, do not exploit temporal lag properties of 
brain signals. We could do this, for example, by considering a dynamic linear model Xt = WXt-k + Et, 
where the variables are time indexed, there is a temporal lag k ≥ 1, and the W matrix encodes the 
temporal interactions between the variables. To make inferences about the temporal associations and 
conditional associations between nodes when taking temporal lags into consideration, we require 
methods that include assumptions about the dynamics governing the causal mechanisms. The 
challenge of combinedFC in the temporal domain is then to properly model the temporal dynamics of 
common causes, causal chains and colliders. Popular approaches model the connectivity 
mechanisms as structural vector autoregressive processes and try to learn a dynamic network using 
temporal conditional association facts (Malinsky & Spirtes, 2018; Moneta, Chlaß, Entner, & Hoyer, 
2011; Runge, 2018).  
 
The problems described above show the flexibility of combinedFC to different data scenarios. This 
flexibility derives from the fact that the benefits of combinedFC are based on its causal assumptions 
and not on the particular statistical association methods used to implement it. Nevertheless, there are 
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limitations of combinedFC that arise from the presence of particular causal patterns in the true 
networks.  
 
The main limitation of combinedFC is that it is not guaranteed to avoid all possible spurious edges 
from confounders and colliders. Consider a model where A and B are not directly connected but have 
a common cause A ← C → B, together with a common effect, A → D ← B. In the first step of 
combinedFC, the conditional association of A and B conditioning on C and D will be non-zero 
because we conditioned on the collider D, but in the second step the unconditional association of A 
and B will also be non-zero because of the presence of the confounder C. In this model, combinedFC 
will always infer a spurious edge between A and B. Notice that bivariate correlation and partial 
correlation used alone will also infer such spurious edge.  
This kind of causal pattern requires a different strategy, such as choosing conditioning sets of different 
sizes in an iterative way to remove spurious edges from an initially fully connected model. The Peter 
Clark (PC) algorithm—one of the conditional independence strategies for making causal inferences 
(Mumford & Ramsey, 2014; Spirtes & Zhang, 2016)—and its modifications pioneered this strategy to 
recover an undirected network from which logical inferences about the orientation of the edges are 
then made (Colombo & Maathuis, 2014; Spirtes et al., 2000). We recommend the PC algorithm and 
related approaches when it is important to avoid such cases. Notably, PC and related approaches are 
more complex than combinedFC, such that combinedFC might be generally preferred due to the 
ability for researchers to more easily understand how it works. 
 
Cyclic interactions are other causal patterns that pose challenges to the combinedFC strategy. 
Assume a model where two nodes A and B are not directly connected but each one has a feedback 
cyclic interaction with C, such as A ⇄ C ⇄ B. Here, the node C acts both as a confounder and as a 
collider. In data sampled from this network, the conditional association of A and B controlling for C will 
infer a spurious edge due to conditioning on the collider C, and the unconditional association will also 
infer a spurious edge due to the confounder C. CombinedFC will incorrectly infer a spurious edge 
between A and B in this cyclic network. Likewise, bivariate correlation and partial correlation used 
alone will produce a spurious edge in this case. Making causal inferences in cyclic scenarios is an 
active area of research and network learning algorithms are available for particular assumptions of 
domain, linearity, distribution and temporal properties of the data (Runge, 2018; Sanchez-Romero et 
al., 2018).  
 
Finally, there are connectivity patterns for which combinedFC will correctly infer the presence of an 
edge between two nodes but will incorrectly estimate the strength of the direct association. Consider 
three nodes A, B and C, for which combinedFC first inferred a non-zero partial correlation between 
nodes A and B controlling for C, and then inferred a non-zero correlation between nodes A and B. 
According to the combinedFC rules, these two results imply that A and B are directly connected with a 
strength equal to the partial correlation coefficient rAB|C. The problem is that these results are 
underdetermined and can be produced by three different causal structures: If the true structure is A → 
B with a confounder A ← C → B, then the strength of the direct association between A and B will be 
correctly captured by the partial correlation coefficient between A and B controlling for C, rAB|C; the 
same happens in the case of a chain A → C → B. But if the true structure is A → B with a collider A → 
C ← B, then the strength of the direct association between A and B will not be correctly captured by 
the partial correlation coefficient but by the bivariate correlation coefficient between A and B, rAB. In a 
problem like this, combinedFC will correctly infer the presence of an edge between A and B but will 
not be able to disambiguate the correct strength of their direct association. The ambiguity of the 
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association strength can be resolved if information about the orientation of the edges is obtained via 
expert knowledge or causal learning methods (Mumford & Ramsey, 2014; Sanchez-Romero et al., 
2018). For example, if the learned model from the data is A → B and A ← C → B, then a regression of 
node B on its two direct causes A and C will give a correct estimate of the direct association strength 
between B and A. As another example, if the inferred model is A → B and A → C ← B, then the 
regression of B onto its only direct cause A will give a correct estimate of the direct association 
between B and A.  
 
We have demonstrated that, despite these limitations, combinedFC is substantially more accurate 
than either bivariate correlation or partial correlation alone. We therefore recommend use of 
combinedFC in place of bivariate correlation or partial correlation in ongoing functional connectivity 
research. Notably, some other current methods might be just as valid (or even more so), but the 
complexity of those methods is problematic since researchers should not apply methods they do not 
understand well. It will therefore be critical for future research to develop causally valid methods that 
are easily comprehensible to researchers, in addition to providing clear explanations (especially 
regarding assumptions of methods) that aid in valid use of such methods by researchers. 
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