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Abstract

Background: Technological advances in genomic sequencing are facilitating the reconstruction of transmission
histories during outbreaks in the fight against infectious diseases. However, accurate disease transmission
inference using this data is hindered by a number of challenges due to within-host pathogen diversity and weak
transmission bottlenecks, where multiple genetically-distinct pathogenic strains co-transmit.
Results: We formulate a combinatorial optimization problem for transmission network inference under a weak
bottleneck from a given timed phylogeny and establish hardness results. We present SharpTNI, a method to
approximately count and almost uniformly sample from the solution space. Using simulated data, we show that
SharpTNI accurately quantifies and uniformly samples from the solution space of parsimonious transmission
networks, scaling to large datasets. We demonstrate that SharpTNI identifies co-transmissions during the 2014
Ebola outbreak that are corroborated by epidemiological information collected by previous studies.
Conclusions: Accounting for weak transmission bottlenecks is crucial for accurate inference of transmission
histories during outbreaks. SharpTNI is a parsimony-based method to reconstruct transmission networks for
diseases with long incubation times and large inocula given timed phylogenies. The model and theoretical work
of this paper pave the way for novel maximum likelihood methods to co-estimate timed phylogenies and
transmission networks under a weak bottleneck.

Keywords: Phylogenetics; Phylodynamics; Phylogeography; Migration; Transmission; Infection; Outbreak;
Approximate counting; Almost-uniform sampling; Satisfiability

Background
Accurate inference of the transmission history of an in-
fectious disease outbreak is pivotal for real-time out-
break management, public health policies and devis-
ing disease control strategies for future outbreaks [1].
Traditional epidemiological approaches are fieldwork
intensive and aim to uncover contact histories and ex-
posure times of hosts to disease sources. With decreas-
ing costs of genomic sequencing, molecular epidemiol-
ogy has complemented these traditional approaches to
effectively analyze and manage disease outbreaks.

Given genomic and epidemiological data, the key
challenge is to infer the evolutionary history of the
pathogen isolates and the transmission history of
the hosts. Importantly, while the phylogeny of the
pathogen isolates captures the evolutionary history of
the outbreak, it does not necessarily match the trans-
mission history of the outbreak [2]—this mutation-
migration discordance also arises in metastatic can-
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cers [3]. In particular, methods that assume that
transmission events coincide with branching events
in the phylogeny are only applicable in the context
of pathogens with low mutation rates, short incuba-
tion times and acute infections [4–8]. By contrast,
pathogens with high mutation rates and long incuba-
tion times lead to within-host diversity. This diversity
is either the result of infection by multiple strains or
arose after infection by a single strain. Most current
methods assume the latter, an assumption known as a
complete transmission bottleneck [9–14].

Under a weak transmission bottleneck multiple
genetically-distinct strains of the pathogen are simul-
taneously transmitted from a donor to a recipient
through a non-negligibly small inoculum. Large in-
oculum sizes have been observed in a number of dis-
eases [15]. There are two recent methods that partially
support a weak transmission bottleneck [16,17]. While
SCOTTI allows a single host to be infected by multiple
strains, it does not support the simultaneous transmis-
sion of these strains and considers each in isolation [16].
On the other hand, BadTrIP supports simultaneous
transmission but does so only at single locus resolution
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Figure 1 Overview of the Transmission Network Inference (TNI) problem. (a) The evolutionary history of the pathogenic strains in
an outbreak is described by a timed phylogeny T , assigning a time-stamp τ(v) to every vertex v. In addition, each leaf v is labeled

by the host ˆ̀(v) where the corresponding strain was observed (indicated by colors). Epidemiological data further constrain the
entrance and removal time [τe(s), τr(s)] of each host s. In the TNI problem, we seek a host labeling ` with minimum transmission
number µ and subsequently smallest co-transmission number γ. (b) Host labeling `b with minimum transmission µ∗ = 4 but not the
smallest co-transmission number γ = 4, resulting in a complex transmission network Nb. (c) Host labeling `c with minimum
transmission µ∗ = 4 and smallest co-transmission number γ∗ = 2, resulting in a parsimonious transmission network Nc.
Supplementary Fig. S1 shows all 9 minimum-transmission host labelings.

rather than genome scale [17]. Supplementary Table S1
provides a summary of current methods.

Here, we formulate the Transmission Network Infer-
ence (TNI) problem under a weak bottleneck for a
given timed phylogeny (Fig. 1). In this problem, we
use the principle of parsimony to minimize the num-
ber of co-transmissions, which each may comprise of
multiple transmitted strains. We prove hardness for
the optimization and sampling versions of the problem.
We introduce SharpTNI, a method to uniformly sam-
ple optimal solutions and quantify the size of the solu-
tion space. On simulated data, we show that SharpTNI
accurately counts and samples parsimonious transmis-
sion networks, scaling to large datasets. We analyze
a dataset from the 2014 Ebola outbreak [18], show-
ing that SharpTNI outperforms SCOTTI and recapit-
ulates previously documented co-transmissions.

Results
This section outlines the problem statement, the com-
plexity results and the results obtained by applying
our method SharpTNI to simulated and real datasets.

Problem Statement
Let T be a tree rooted at vertex r(T ) with vertex set
V (T ), leaf set L(T ) and edge set E(T ). We denote the
children of a vertex u by δT (u). Conversely, the unique
parent of a non-root vertex u 6= r(T ) is denoted by
πT (u). We write u �T v if vertex u is ancestral to
vertex v, i.e. vertex u is present on the unique path
from r(T ) to vertex v. Note that �T is reflexive. We
say that u and v are incomparable if neither u �T v
nor v �T u holds. We omit the subscript T from �T ,
δT and πT if it is clear from context. We denote the
subtree of T rooted at vertex v by Tv.

Give a set Σ of hosts, the key objects in this paper are
a timed phylogeny T and host labeling ` : V (T ) → Σ,
which are defined as follows.

Definition 1 A timed phylogeny is a rooted tree T
whose vertices are labeled by time-stamps τ : V (T ) →
R≥0 such that τ(u) < τ(v) for all pairs u, v of vertices
where u �T v.

Definition 2 A host labeling of a timed phylogeny T
is a function ` : V (T ) → Σ, assigning a host `(u) to
each vertex u of T .

Intuitively, time moves forward when traversing
down a timed phylogeny T starting from the root r(T ).
A leaf u of T corresponds to a strain that has been re-
moved from the population at time τ(u), due to treat-
ment or death of the corresponding host `(u). On the
other hand, an internal vertex u of T corresponds to a
strain that infected host `(u) at time τ(u).

A timed phylogeny T combined with a host labeling `
constrains the set of allowed transmissions in the fol-
lowing three ways. First, an edge (u, v) of T is a trans-
mission edge if `(u) 6= `(v). Second, a transmission
event Ψ is a subset of transmission edges between the
same pair of hosts that have occurred simultaneously.
Third, a transmission network N = {Ψ1, . . . ,Ψ|N |} is
a partition of transmission edges into disjoint trans-
mission events. More formally, we have the following
definitions.

Definition 3 Given a timed phylogeny T and host
labeling `, an edge (u, v) of T is a transmission edge
if `(u) 6= `(v).
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Definition 4 Given a timed phylogeny T and host
labeling `, a transmission event Ψ is a subset of edges
of T such that (i) each edge (u, v) ∈ Ψ is a trans-
mission edge, (ii) each edge (u, v) ∈ Ψ has the same
source host `(u) = s and target host `(v) = t and
(iii) for all pairs (u, v), (u′, v′) ∈ Ψ it holds that
[τ(u), τ(v)] ∩ [τ(u′), τ(v′)] 6= ∅.

Definition 5 Given a timed phylogeny T and host
labeling `, a transmission network N is a partition of
the transmission edges of (T, `) into disjoint transmis-
sion events.

As suggested by the name, a transmission network
N = {Ψ1, . . . ,Ψ|N |} can be equivalently viewed as a
graph. More specifically, N is directed, edge-labeled
multi-graph, where the vertex set V (N) equals the set
of hosts Σ, the edge multi-set E(N) is composed of
transmission edges of T incurred by the host label `
associated with N , and the edge labeling ψ : E(N)→
{1, . . . , |N |} assigns each transmission edge (u, v) ∈ Ψi

to transmission event ψ((`(u), `(v))) = i. We say that a
transmission network N is consistent with timed phy-
logeny T and host labeling ` if the set of transmission
edges N equals the set of transmission edges in (T, `).

We evaluate a transmission network N by two dif-
ferent quantities. First, the transmission number µ(N)
equals the number of transmitted strain, i.e. µ(N) =∑

Ψ∈N |Ψ|. Second, the co-transmission number γ(N)
equals the number of transmission events, i.e. γ(N) =
|N |. By definition, we have that the transmission num-
ber is greater or equal to the co-transmission number,
i.e. γ(N) ≥ µ(N) for all transmission networks N .

Note that all transmission networks that are consis-
tent with (T, `) have the same transmission number,
but may have varying co-transmission numbers. Under
the principle of parsimony, we may assume that trans-
missions and co-transmission are rare, leading to the
following optimization problem.

Problem 1 (`-Transmission Network Inference
(`-TNI)) Given a timed phylogeny T with time-
stamps τ and host labeling `, find a transmission
network N consistent with (T, `) with minimum co-
transmission number γ(N).

We consider the two criteria in lexicographical or-
der, where the first criterion seeks to minimize the
number of transmitted strains, whereas the second
criterion seeks to minimize the number of transmis-
sion events. Thus, we assume that the transmission of
additional strains is less likely than co-transmission
events by an order of magnitude. We leave explor-
ing the trade-off between the two criteria as future

work. We note that the transmission number crite-
rion was introduced previously by Slatkin and Mad-
dision [19], while a time-invariant version of the co-
transmission number has been applied to the analyses
migration in metastatic cancers [3,20]. Supplementary
Table S2 provides nomenclature for topological fea-
tures of transmission networks.

In practice, we do not observe a timed phylogeny T
and host labeling `. Rather, we obtain the genomic
sequences of the strains present in individual hosts Σ.
The set of extracted strains from each host forms the
leaf set L(T ) of an unknown timed phylogeny T . The

function ˆ̀ : L(T ) → Σ records the presence of strains
in each host. As each host s ∈ Σ is removed from
the population at time τr(s), we have identical time-
stamps τr(s) for all strains u present in host s (i.e.
ˆ̀(u) = s). In addition, based on epidemiological data,
we have an entrance time τe(s) for each host s.

Fig. 1 shows an overview of the entities defined so
far. Fig. 1a shows a timed phylogeny T with a leaf
labeling ˆ̀ and three hosts with different entry and re-
moval times. Figures 1b and 1c show two host label-
ings `b and `c respectively, both of which are consistent
with the leaf labeling ˆ̀. Both host labelings `b and `c
have the same transmission number µ = 2. Further,
two transmission networks Nb and Nc are shown that
are consistent with the host labelings `b and `c respec-
tively. In this case, the transmission network Nc has
a smaller co-transmission number γ = 2 and is there-
fore more parsimonious compared to Nb which has a
co-transmission number of γ = 4.

The key challenge in phylodynamics is to infer a
timed phylogeny T and host labeling ` given leaf set
L(T ), host-leaf labeling ˆ̀, entrance times τe and re-
moval times τr. Various tools have been developed
for the simpler task of inferring T given L(T ) and
τr [21–25]. Here, we focus on inferring a parsimo-
nious transmission networkN and host labeling ` given
timed phylogeny T , host-leaf labeling ˆ̀, entrance times
τe and removal times τr.

Problem 2 (Transmission Network Inference (TNI))
Given a timed phylogeny T with time-stamps τ , host-
leaf labeling ˆ̀, entrance times τe and removal times τr,
find a transmission network N and corresponding host
labeling ` with minimum transmission number µ(N) =
µ∗ and subsequently smallest co-transmission number
γ(N) = γ∗ such that τ(u) ∈ [τe(s), τr(s)] for all hosts s
and vertices u where `(u) = s.

It is possible to define two counting versions of the
above problem. The first counting problem seeks the
number of transmission networks N with minimum
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Figure 2 Reduction from 3-SAT to TNI. Let φ be a 3-SAT
formula with k clauses and n variables. We construct a timed
phylogeny T (φ) with vertex time-stamps indicated on the left.
The host set is Σ = {⊥, x1, . . . , xn,¬x1, . . . ,¬xn}. We set
τe(⊥) = τr(⊥) = 0. For each variable xi where i ∈ [n], we set
τe(xi) = τe(¬xi) = ε and τr(xi) = τr(¬xi) = (2k + 3)ε. We
have that φ is satisfiable if and only if there exists a minimum
transmission host labeling ` of T (φ) with co-transmission
number γ = 2k + 2n (Supplementary Lemma 5).
Supplementary Fig. S2 shows an example.

transmission number µ(N) and subsequently small-
est co-transmission number γ(N). The second count-
ing problem seeks the number of host labelings ` that
incur a transmission network N with minimum trans-
mission number µ(N) and subsequently smallest co-
transmission number γ(N). In this study, we restrict
ourselves to the second version of the counting prob-
lem. Let L∗ be the set of host labelings that are solu-
tions to Problem 2. The counting problem, denoted as
#TNI, is to find the cardinality of the set L∗ denoted
by |L∗|. The corresponding sampling problem seeks to
uniformly at random sample host labelings `∗ ∈ L∗.

Complexity
The inclusion of the co-transmission number in the ob-
jective function renders the optimization and sampling
versions of the TNI problem hard.

Complexity of the Optimization Problem We have the
following theorem.

Theorem 1 TNI is NP-hard.

We prove this theorem by reduction from 3-SATIS-
FIABILITY (3-SAT), which is NP-complete [26]. In 3-

SAT, we are given a Boolean formula φ =
∧k
i=1(yi,1 ∨

yi,2 ∨ yi,3) with n variables {x1, . . . , xn} and k clauses
in 3-conjuctive normal form (3-CNF) form. The task
is to decide whether there exists a truth assignment θ :
[n]→ {0, 1} that satisfies all the clauses of φ. Without
loss of generality, we may assume that each clause of
φ consists of three distinct variables.

To relate literals to variables, we use the function
ν : [k] × {1, 2, 3} → [n] such that ν(i, j) is the vari-
able corresponding to literal yi,j . We define σ(i, j) to
be 1 if yi,j is a positive literal (i.e. yi,j = xν(i,j)),
otherwise σ(i, j) = 0 if yi,j is a negative literal (i.e.
yi,j = ¬xν(i,j)). A truth assignment θ satisfies φ if for
each clause i ∈ [k] there exists a j ∈ {1, 2, 3} such that
σ(i, j) = θ(ν(i, j)).

Given φ, we construct a timed phylogeny T (φ)

with leaf labeling ˆ̀ and time-stamps τ, τe, τr, as de-
picted in Fig. 2 and detailed below. We set Σ =
{⊥, x1, . . . , xn,¬x1, . . . ,¬xn}. Let ε > 0 be a small
positive constant. As for entry and removal time-
stamps, we set τe(⊥) = τr(⊥) = 0, and τe(xi) =
τe(¬xi) = ε and τr(xi) = τr(¬xi) = (2k + 3)ε for
each variable i ∈ [n]. Timed phylogeny T (φ) is com-
posed of k clause gadgets and n variable gadgets,
each corresponding to a subtree that is directly at-
tached to the root r(T (φ)). The root vertex has time-
stamp τ(r(T (φ)) = 0. The leaves of T have identi-
cal time-stamps (2k + 3)ε. For each variable i ∈ [n],
we have a subtree T [vari] whose root has time-stamp
τ(r(T [vari])) = ε. The two children of r(T [vari]) have
identical time-stamps 2ε, with one child leading to two
leaves labeled by positive literal xi and the other child
leading to two leaves labeled by negative literals ¬xi.
Similarly, for each clause i ∈ [k], we have a subtree
T [clausei]. The root of this subtree has time-stamp
(2i+1)ε and three children corresponding to the three
literals of the clause. The three children have identi-
cal time-stamps (2i + 2)ε, each leading to two leaves
labeled by the corresponding literal. Clearly, T (φ) can
be obtained in polynomial time from φ. We refer to
the supplement for the hardness proof (Supplemen-
tary Section 1.2). The supplement also shows how the
reduction can be adapted to bifurcating timed phylo-
genies.

Complexity of Sampling It would be desirable to sam-
ple solutions from L∗, the set of host labelings `
with minimum transmission number and subsequently
smallest co-transmission number, almost uniformly at
random. Such a desirable algorithm is known as a fully-
polynomial almost uniform sampler (FPAUS). In gen-
eral, an FPAUS for a sampling problem is a random-
ized algorithm that takes as input an instance x of
the problem and a sampling tolerance δ > 0, and out-
puts a solution in time polynomial in |x| and log δ−1

such that the difference of the probability distribution
of solutions output by the algorithm and the uniform
distribution on all solutions is at most δ [27].

Recall the complexity class RP (randomized poly-
nomial), which is composed of decision problems that
admit randomized polynomial time algorithms that re-
turn no if the correct answer is no and otherwise return
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yes with probability at least 1/2. Using our reduction
from 3-SAT to TNI, the existence of an FPAUS to
sample the solutions of TNI would imply an FPAUS
for 3-SAT. This in turn would imply that RP=NP as
3-SAT is NP-complete.

Theorem 2 There exists no FPAUS to sample solu-
tions of TNI unless RP=NP.

Simulations
To show the efficiency of our method in sampling parsi-
monious transmission networks, we simulate outbreaks
following the procedure described in [10]. We were un-
able to compare to existing methods, as our simula-
tions consider timed phylogenies which can not be used
as input for joint inference methods like SCOTTI [16]
and have multiple samples per host which are not
supported in timed phylogeny based methods like
TransPhylo [12]. However, to put the performance of
our method in context we use the naive sampling al-
gorithm as a baseline method.

We employ a two stage approach where we are
given a number m of hosts, a transmission bottle-
neck size κ and additional epidemiological model pa-
rameters (Supplementary Section 1.5). First, we sim-
ulate a transmission process between m hosts using
the SIR (Susceptible-Infectious-Recovered) epidemic
model [28]. Under the SIR model, the outbreak be-
gins with a single infected host and the remaining
m − 1 individuals are infected from a unique host,
each with at most κ co-transmitted strains. As such,
the resulting transmission network N is a multi-tree.
In the second phase, we simulate the evolution of the
pathogens within each infected host using a simple
coalescence model [29] with constant population size.
Stitching together the resulting phylogenies according
to N results in a single timed phylogeny T . We vary
m ∈ {5, 10, 15, 20, 30} and κ ∈ {1, 2, 3}, with 5 in-
stances for each combination, amounting to a total of
75 simulated instances. For each instance, we generate
K = 11, 000 samples using SharpTNI and the naive
sampling algorithm.

To assess the counting and sampling accuracy of
our method, we restrict our attention to a subset of
simulated instances (where m ∈ {5, 10, 15, 20} and
κ ∈ {1, 2}) that can be exhaustively enumerated us-
ing dynamic programming (Section Methods). We find

that the approximate number |L̂∗| of solutions inferred
by SharpTNI is nearly identical to the actual number
|L∗| of solutions, with 69/75 instances having the cor-
rect number (Fig. 3a). Next, we compute for each so-
lution ` in the solution set L∗, the fraction of samples
generated by SharpTNI that are identical to `. Un-
der uniformity, this relative frequency should be close

to the expected sampling frequency of 1/|L∗|. Indeed,
Fig. 3b shows that the ratio between, respectively, the
minimum and maximum relative frequency, and the
expected sampling frequency is close to 1.

The ratio between the number |L̂∗| of solutions to
TNI and the number of |L| to the relaxed problem
decreases exponentially with increasing number m of
samples and the transmission bottleneck size κ, render-
ing the naive sampling algorithm impractical (Fig. 3c).
Thus, we cannot expect the solutions obtained from
the naive sampling algorithm to have the smallest
co-transmission number γ. This in turn should lead
to larger deviations from ground truth compared to
SharpTNI. Indeed, defining recall as the fraction of la-
beled transmission edges in the ground truth host la-
beling `∗ that are correctly inferred, we observe a large
relative improvement in recall by SharpTNI compared
to the naive sampling algorithm (Fig. 3d). We are not
showing precision, as this was identical to recall due to
the ground truth transmission networks having min-
imum transmission number. Supplementary Fig. S3
shows the total wall time spent on a Intel Xeon 2.2
GHz processor, generating K = 11, 000 samples for an
instance with m = 30 and κ = 3 in under 10 hours
with a single thread. Since the underlying SAT sam-
pling problem is embarrassingly parallel, SharpTNI is
able to leverage UniGen’s multi-threading capabilities
to cut down this running time by a factor that is equal
to the number of threads.

In summary, our simulations show that SharpTNI
accurately and quickly counts and samples parsimo-
nious transmission networks, outperforming the naive
sampling algorithm.

Ebola 2014 Outbreak
To demonstrate the applicability of SharpTNI to real
data, we infer parsimonious transmission networks
among chiefdoms of Sierra Leone and Guinea during
the 2014 Ebola outbreak [18]. The available data con-
sist of 81 Ebola virus genomic sequences from 78 pa-
tients from Sierra Leone and 3 patients from Guinea,
with metadata that include sampling date and the
chiefdom where the sample was collected. There are
a total of 14 Sierra Leonan chiefdoms in the data
(with one chiefdom designated as unknown). Along
with Guinea that makes m = 15 possible host labels
for each node in the timed phylogeny of the 81 genomic
sequences.

Comparison to SCOTTI. We first run SCOTTI [16],
which is a Bayesian approach to co-estimate a timed
phylogeny and transmission network using a Monte-
Carlo Markov Chain (MCMC). We run SCOTTI for
5 × 106 MCMC iterations with a burn-in percentage
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Figure 3 Simulations show that SharpTNI accurately counts and samples parsimonious transmission networks. Simulations were
performed using a standard compartmental epidemiological model, with bottleneck size κ ∈ {1, 2, 3} and number m ∈ {5, 10, 20, 30}
of hosts. SharpTNI generated K = 11, 000 transmission networks for each instance. (a) Ratio between the approximated number

|L̂∗| and actual number |L∗| of solutions. (b) Minimum and maximum relative deviation from uniform sampling frequency (|L∗|/K).

(c) Ratio between the approximate number |L̂∗| of solutions to TNI and the number |L| of solutions to the relaxed problem. This
ratio corresponds to the success probability of the naive sampling algorithm. (d) Percentage improvement in recall of ground truth
transmission edges by SharpTNI compared to the naive sampling algorithm. Supplementary Fig. S3 shows the running times.
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Figure 4 Transmission networks inferred by SharpTNI for
the 2014 Ebola outbreak are more parsimonious compared to
the transmission networks inferred by SCOTTI under a weak
transmission bottleneck. (a) The transmission number µ of
100 sample trees drawn from the posterior inferred by SCOTTI
are compared to the minimum transmission number inferred
by SharpTNI. (b) The smallest co-transmission number γ of
the host labeling inferred by SharpTNI is significantly smaller
than the host labeling inferred by SCOTTI.

of 10%. We draw 100 samples of host-labeled timed

phylogenies from the resulting posterior distribution.

To compare the host labelings inferred by SCOTTI

to those inferred by SharpTNI, we set the entry time

τe and removal time τr for each host equal to the

time-stamps of the first and the last node labeled by

the host in that SCOTTI tree. Fig. 4a shows that

the transmission numbers µ of the host labelings in-

ferred by SCOTTI and SharpTNI are comparable, but

that the minimum co-transmission numbers incurred

by the host labelings inferred by SharpTNI are sig-

nificantly smaller than those obtained using SCOTTI.

This shows that SharpTNI infers a more parsimonious
transmission network compared to SCOTTI.

To further illustrate this point, we pick an in-
stance where both methods inferred host labelings
with the same transmission number µ = 24 but a
co-transmission number of γ = 20 for SCOTTI and
γ = 19 for SharpTNI. The transmission networks are
nearly identical, except for the infection between Lu-
awa and Jawie (Fig. 5). Notice that in both the net-
works, Luawa is infected by both Kissi Teng and Jawie.
However, SCOTTI infers a re-infection from Luawa to
Jawie whereas SharpTNI infers a transmission network
with no re-infection event while keeping the transmis-
sion number the same. This leads to a simpler and
more parsimonious transmission network.

Re-analysis using BEAST and SharpTNI. We now
re-analyze the same data using BEAST [22] to infer
a timed phylogeny followed by SharpTNI to infer a
transmission history. Similarly to [18], we run BEAST
(version 2) for 106 MCMC iterations with a burn-in
percentage of 10%. Supplementary Fig. S5 shows the
resulting Maximum Clade Credibility (MCC) consen-
sus tree, which resembles the tree reported in [18]. We
assume that a transmission from a chiefdom is pos-
sible from three weeks prior and three weeks follow-
ing the first and the last sample collected from the
chiefdom respectively, which is in line with reported
Ebola incubation periods [30]. In addition, we allow
one unsampled host in our inference with an entry
and removal time that covers the entire outbreak pe-
riod. Since more than 70% of the patients diagnosed
in Sierra Leone were sampled, the unsampled host is
most likely from Guinea. Out of a total of 324 host la-
belings with minimum transmission number µ∗ = 26,
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Figure 5 The influence of minimization of co-transmission
number by SharpTNI on the inferred transmission network.
(a) Transmission network inferred by SCOTTI with µ = 24
and γ = 20. (b) Transmission network inferred by SharpTNI
with µ∗ = 24 and γ = 18. The transmission network inferred
by SCOTTI has a re-infection from Luawa to Jawie
(highlighted in red) whereas in the transmission network
inferred by SharpTNI there is no re-infection event.
Supplementary Table S4 maps chiefdom abbreviations to full
names. Supplementary Fig. S4 shows the corresponding host
labelings on the timed phylogeny.

SharpTNI identifies 9 transmission networks with min-
imum co-transmission number γ∗ = 19 (Supplemen-
tary Fig. S6).

Gire et al. [18] hypothesize that the Sierra Leone
outbreak stemmed from the introduction of two genet-
ically distinct viruses from Guinea around the same
time. This is because the first 12 Ebola virus dis-
ease (EVD) patients in Sierra Leone were all be-
lieved to have attended a funeral of an EVD case
from Guinea and the samples from these patients fell
into two distinct clusters according to their analysis.
SharpTNI corroborates this hypothesis, i.e. all 9 par-
simonious transmission networks (with γ∗ = 19) con-
tain a co-transmission of two strains from an unsam-
pled host (most likely from Guinea as discussed above)
to Kissi Tengi, a chiefdom located on the border of
Sierra Leone and Guinea. By contrast, the majority
(216/324) of host labelings that have minimum trans-
mission number but not the smallest co-transmission
number do not identify this co-transmission (Supple-
mentary Fig. S7). This example highlights the utility
of SharpTNI’s ability to analyze outbreaks under a
weak bottleneck.

Discussion and Conclusions
This paper introduces the Transmission Network In-
ference (TNI) problem for estimating a parsimonious

ti
m

e

e1

e2e3 e4

e5

e6

e7

e8

e9 e10

(a)

time

e1

e2

time

e8

e7

e10

e9

(b)

Figure 6 The `-TNI problem is solvable in polynomial time.
(a) An example timed phylogeny T with vertices colored
according to a given host labeling `. There are two sets of
transmission edges, composed of two edges {e1, e2} from
green to red, and four edges {e7, e8, e9, e10} from red to blue.
(b) To identify a transmission network N with minimum
co-transmission number γ(N) = |N |, we solve two clique
partitioning problems on interval graphs. Given a list of
transmission events between the same pair of hosts sorted by
end time, we greedily identify transmission events as maximal
cliques. This yields N = {{e1, e2}, {e7, e8}, {e9, e10}}.

transmission network under a weak transmission bot-

tleneck given a timed phylogeny. Weak transmission

bottlenecks arise in phylogeographic analyses of dis-

ease outbreaks as well as phylodynamics analyses of

pathogens with high mutation rates, long incubation

times or chronic infections. After establishing hardness

of the optimization and sampling versions of the TNI

problem, we present SharpTNI, a novel method for

counting and sampling the solution space. The hard-

ness of the counting problem #TNI remains open,

whereas the given reduction may be used to show

#P-completeness when the co-transmission number is

fixed. Our method leverages recent progress in ap-

proximate counting and sampling of SATISFIABIL-

ITY [31–34]. We envision that other previously con-

sidered counting [35–39] and sampling [31,32,40] prob-

lems in computational biology can benefit similarly.

In the future, we plan to extend the current frame-

work to co-estimation of the timed phylogeny and

the transmission network by formulating a maximum

likelihood version of TNI. In such a likelihood-based

model, we will consider the time of transmission rela-

tive to known characteristics of the pathogen (such as

incubation time). Moreover, we may assign higher like-

lihood to reciprocal transmissions between the same

pair of hosts. In addition, we will support additional

constraints such as contact maps, bottleneck sizes and

other epidemiological constraints. Finally, we wish to

study the problem of deriving one or more consensus

transmission networks from the solution space, akin to

our recent work in cancer genomics [41].
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Figure 7 Dynamic programming for a relaxation of TNI. 4.2 example with f, g and h for the timed phylogeny shown in Fig. 1.
Colored boxes (u, s) correspond to vertex-host pairs where g[u, s] = 1. Outgoing edges from a vertex-host pair (u, s) with identical
target vertex v comprise the set Γ((u, v), s). (a) Shows the value of f [u, s], i.e. the minimum transmission number of the subtree Tu
when labeling vertex u with host s. (b) Shows the value of h[u, s], i.e. the number of minimum transmission labelings in the subtree
Tu when labeling vertex u with host s.

Methods
We number the vertices of a timed phylogeny T from
1 to n, i.e. V (T ) = {v1, . . . , vn}. Similarly, we number
the hosts from 1 to m, i.e. Σ = {1, . . . ,m}.

Polynomial Time Algorithm for `-TNI
In the `-TNI problem, we seek a transmission network
N consistent with a given (T, `) with minimum co-
transmission number γ(N). Let Vs,t be a list of edges
(u, v) of T where `(u) = s and `(v) = t sorted in as-
cending order by time-stamp τ(v) of the target vertex
v (ties may be broken arbitrarily). In the following,
we show that the `-TNI problem can be reduced to(
m
2

)
= O(m2) vertex partitioning problems of an in-

terval graph, each of which can be solved by a simple
greedy algorithm in time linear in |Vs,t| [42].

For each pair (s, t) of distinct hosts (where s < t),
we construct the interval graph Gs,t with vertex set
Vs,t and an edge between (u, v) and (u′, v′) if the cor-
responding time intervals [τ(u), τ(v)] and [τ(u′), τ(v′)]
overlap. By construction, a clique in Gs,t forms a set of
transmission edges that can be part of the same trans-
mission event. Thus, the minimum co-transmission
number for the host pair (s, t) is then given by the
smallest number of cliques that cover all the nodes in
the interval graph. Applying the algorithm described
in Ref. [42], we compute such a minimum cardinality
clique partition in O(|Vs,t|) time by greedily remov-
ing the maximal clique that contains the first avail-
able edge until the graph is empty (Fig. 6). Construct-
ing the ordered sequences Vs,t requires O(n log n) time,
which dominates the overall running time.

Relaxation of TNI
To obtain a randomized algorithm for TNI, we con-
sider a relaxation where we are interested in all host

labelings ` that admit transmission networks N with
minimum transmission number µ(N) and any co-
transmission number γ(N). While the TNI problem,
where we additionally require γ(N) = γ∗, is NP-hard,
the relaxed problem can be solved in polynomial time
using dynamic programming. In the following, we de-
scribe how to solve the optimization, enumeration,
counting and sampling versions of this relaxed prob-
lem.

Optimization. Let f [v, s] be the minimum transmis-
sion number of the subtree Tv rooted at vertex v that
can be attained when labeling vertex v by host s, i.e.
`(v) = s. The following recurrence defines f [v, s].

min



0, if v ∈ L(T ), ˆ̀(v) = s,

∞, if v ∈ L(T ), ˆ̀(v) 6= s,

∞, if v 6∈ L(T ), τ(v) 6∈ I(s),∑
w∈δ(v)

min
t∈Σ
{c(s, t)

+f [w, t]},
if v 6∈ L(T ), τ(v) ∈ I(s).

where I(s) = [τe(s), τr(s)], and c(s, t) = 1 if s = t
and c(s, t) = 0 otherwise. The above recurrence is an
adaptation of the recurrence used in the Sankoff al-
gorithm for the small phylogeny maximum parsimony
problem [43, 44]. We compute f bottom up from the
leaves L(T ) to the root vertex r(T ) of T in O(nm) time
(Supplementary Algorithm S1). The minimum trans-
mission number µ∗ is given by

min
s∈Σ
{f [r(T ), s]}.
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Fig. 7a shows an example of the recurrence of f [v, s]
on a timed phylogeny.

Enumeration. We now identify vertex-host pairs
(v, s) that are part of minimum transmission host la-
belings, indicated by g[v, s] = 1. We define g[v, s] as

0, if v = r(T ), f [v, s] 6= min
t∈Σ

f [r(T ), t],

1, if v = r(T ), f [v, s] = min
t∈Σ

f [r(T ), t],

0, if v 6= r(T ), g[π(v), s] = 0,

0, if v 6= r(T ), g[π(v), s] = 1, t 6∈ Γ((π(v), v), s),

1, if v 6= r(T ), g[π(v), s] = 1, t ∈ Γ((π(v), v), s).

where Γ((u, v), s) is the set of host labels of vertex
v that are part of minimum transmission host label-
ings ` where the parent vertex u is labeled by host
s, i.e. Γ((u, v), s) = {t ∈ Σ | c(s, t) + f [v, t] =
mint′∈Σ{c(s, t′)+f [v, t′]}}. We note that g can be com-
puted in a top down fashion in O(nm) time (Supple-
mentary Algorithm S2), whereas Γ can be computed
in O(m) time. Using g and Γ, we enumerate all mini-
mum transmission host labelings of T (Supplementary
Algorithm S3 and S4).

Counting. Next, we consider the counting version of
this problem. This number can also be solved using dy-
namic programming [45]. Let h[v, s] denote the number
of minimum transmission labelings in the subtree Tv of
T rooted at vertex v when `(v) = s. We define h[v, s]
recursively as

1, if v ∈ L(T ), ˆ̀(v) = s,

0, if v ∈ L(T ), ˆ̀(v) 6= s,

0, if v 6∈ L(T ), τ(v) 6∈ I(s),∏
w∈δ(v)

∑
t∈Γ((v,w),s)

h[w, t], if v 6∈ L(T ), τ(v) ∈ I(s).

The total number of solutions is given by

|L| =
∑

s∈Σ:g[r(T ),s]=1

h[r(T ), s].

Directly translating the above recurrence into a re-
cursive function results in a O(nm) time algorithm.
Fig. 7b shows an example of the recurrence of h[v, s]
on a timed phylogeny.

Sampling. Using the count matrix h[u, s], we intro-
duce a subroutine that takes a vertex v and host s
as input, and uniformly samples a host labeling `u of
subtree Tu rooted at u subject to the restriction that

`u(u) = s (Supplementary Algorithm S5). Supplemen-
tary Section 1.3 gives a correctness proof of our algo-
rithm.

Let Σ∗ = {s1, . . . , sk} be the set of hosts of the root
vertex r(T ) that are part of minimum transmission
labelings, i.e. Σ∗ = {s ∈ Σ | g[r(T ), s] = 1}. The frac-
tion ps of minimum transmission host labelings ` where
`(r(T )) = s equals h[r(T ), s]/

∑
s′∈Σ∗ h[r(T ), s′].

Thus, to sample all minimum transmission host label-
ings uniformly at random, we draw a s ∈ Σ∗ according
to the categorical probability distribution defined by
(p1, . . . , pk). Supplementary Algorithm S6 is then used
on T with `(r(T )) = s to sample minimum transmis-
sion host labeling ` of T uniformly at random. This
takes O(nm) time per sample.

Naive sampling algorithm. To identify host label-
ings with minimum transmission number and subse-
quently smallest co-transmission number, we may re-
peatedly generate a uniformly random sample using
the above algorithm and retain only those host label-
ings that have smallest co-transmission number. The
success probability of this naive sampling algorithm is
1− (|L∗|/|L|)K where K is the number of repetitions.

Solving TNI via SAT
We focus our attention on a decision version of the gen-
eral TNI problem: is there a host labeling ` that admits
a transmission network N with transmission number
µ(N) = µ∗ and co-transmission number γ(N) = α,
where α ∈ N? Since γ∗ ∈ {|Σ| − 1, . . . , |E|}, we may
solve the optimization problem of finding N with mini-
mum γ(N) = γ∗ by initially setting α = |Σ|−1 = m−1
and incrementing α until the decision problem has a
yes-answer or α = |E(T )| = n− 1.

In the following, we will show how to reduce a TNI
instance (T, τ, ˆ̀, τe, τr, α) to a Boolean formula φ. To
facilitate almost uniform sampling and approximate
counting, we require that there is a bijection between
the solutions to TNI instance (T, τ, ˆ̀, τe, τr, α) and the
corresponding SAT instance φ. As such, we must intro-
duce variables and constraints that encode (i) a host
labeling `, (ii) ` has minimum transmission number
µ∗, (iii) ` admits a transmission network N with co-
transmission number γ(N) = α and (iv) uniqueness of
N given `.

For clarity, we will not present constraints in clause
normal form (CNF). Rather, we refer the reader to
Supplementary Section 1.4 for a CNF representation
of φ with O(n2 + nm+ nα) variables and O(nm2α2 +
n2m2 + n2α2) clauses.

Host labeling. Variables x ∈ {0, 1}n×m encode a host
labeling. That is xi,s = 1 if vertex vi is labeled by host
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`(vi) = s, and xi,s = 0 otherwise. To encode a host
labeling, we introduce the following constraints for all
vertices vi ∈ V (T ).

onehot({xi,1, . . . , xi,m}). (1)

The function onehot(X) encodes that exactly one bi-
nary variable x ∈ X is true, which can be accomplished
by the following constraint.[ ∨

x∈X
x

]
∧

[ ∧
x,y∈X

(¬x ∨ ¬y)

]
. (2)

Minimum transmission number µ∗. Next, we need to
ensure that x encodes a host labeling with minimum
transmission number µ∗. To this end, we use the func-
tions f , g and Γ defined in the previous section. First,
we prevent labeling a vertex vi by a host s if this
is not part of a minimum transmission host labeling
(i.e., g(vi, s) = 0). That is, for all vertex-host pairs
(vi, s) ∈ V (T )× [m] where g[vi, s] = 0, we have

¬xi,s. (3)

Labeling a vertex vi by host s restricts the set of
host for each child vj of vi to Γ((vi, vj), s). Thus, for
all edges (vi, vj) ∈ E(T ) and hosts s ∈ [m], we have

xi,s ⇒ onehot(Γ((vi, vj), s)). (4)

Transmission network. We now need to encode
that x admits a transmission network N with co-
transmission number γ(N) = α. We order the edges
E(T ) = {e1, . . . , en−1} in ascending order by the time-
stamp of the target vertex, breaking ties arbitrarily.
We introduce a variable cij,kl for each pair (i, j), (k, l)
of distinct edges where (i, j) < (k, l). We require
cij,kl = 1 if and only if (i, j) and (k, l) are transmission
edges between the same pair of hosts with overlapping
time intervals. This is achieved by the following three
sets of constraints. First, we have

¬cij,kl (5)

for all edge pairs (i, j) < (k, l) that do not
have overlapping time intervals, i.e. [τ(vi), τ(vj)] ∩
[τ(vk), τ(vl)] = ∅. Second, we have that cij,kl = 0
for all edges (i, j) < (k, l) where `(vi) = `(vj) or
`(vk) = `(vl). That is, for all edge pairs (i, j) < (k, l)
and hosts s ∈ [m], we have

(xi,s ∧ xj,s)⇒ ¬cij,kl, (6)

(xk,s ∧ xl,s)⇒ ¬cij,kl. (7)

Third, cij,kl = 1 if (i, j) and (k, l) are transmission
edges between the same pair of hosts with overlap-
ping time intervals. That is, for all pairs (i, j) < (k, l)
of distinct edges with overlapping time intervals, i.e.
[τ(vi), τ(vj)] ∩ [τ(vk), τ(vl)] 6= ∅, and hosts s, t ∈ [m]
where 1 < s < t < m, we have

(xi,s ∧ xk,s ∧ xj,t ∧ xl,t)⇒ cij,kl. (8)

We now introduce variables y ∈ {0, 1}(n−1)×α such
that yij,p = 1 if and only if (i, j) is a transmission
edge and assigned to transmission event p. We require
that each transmission edge (i, j) is assigned to exactly
one transmission event. That is, for all edges (i, j) and
distinct hosts s < t, we have

(xi,s ∧ xj,t)⇒ onehot({yij,1, . . . , yij,α}). (9)

Next, if (i, j) is not a transmission edge then it must
not be assigned to any transmission event p. That is,
for all edges (i, j), hosts s and transmission events p ∈
[α], we have

(xi,s ∧ xj,s)⇒ ¬yij,p. (10)

Finally, edges (i, j) < (k, l) that are not time-
overlapping, transmission edges between the same pair
of hosts (i.e. cij,kl = 0), must not be assigned to
the same transmission event p ∈ [α]. That is, for all
distinct edges (i, j) < (k, l) and transmission events
p ∈ [α], we have

¬cij,kl ⇒ ¬(yij,p ∧ ykl,p). (11)

Uniqueness. To ensure bijectivity between the set of
satisfying assignments of φ and the set of host labelings
` that admit a transmission network N with transmis-
sion number µ(N) = µ∗ and co-transmission number
γ(N) = α, we require that each host labeling ` encodes
a unique transmission network N . To that end, we in-
troduce constraints that will pick the exact same trans-
mission network N given ` as the greedy algorithm
described in Section Methods. Specifically, each trans-
mission edge (k, l) must be assigned to the same trans-
mission event p as the first transmission edge (i, j) that
overlaps in time and hosts with (k, l) (i.e. cij,kl = 1).
That is, for all edges (i, j) < (k, l) and transmission
events p ∈ [α], we havecij,kl ∧ yij,p ∧ ∧

i′j′:
i′j′<ij

¬ci′j′,kl

⇒ ykl,p. (12)
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While variables x uniquely determine variables c,
they do not uniquely determine variables y as there
exist α! permutations of the α transmission events. To
break this symmetry, we use the edge ordering E(T ) =
{e1, . . . , en−1} to designate the smallest transmission
edge of each transmission event p as its representa-
tive. We require that these representatives are assigned
to transmission events according to the edge ordering.
Specifically, we introduce variables z ∈ {0, 1}n−1 such
that zij = 1 if and only if edge (i, j) is a representative
transmission edge of some transmission event.

We impose the forward direction of the bi-
implication by modeling the contrapositive using the
following two set of constraints. First, if edges (i, j) <
(k, l) are assigned to the same transmission event p
then edge (k, l) cannot be a representative. That is,
for all distinct edges (i, j) < (k, l) and transmission
events p ∈ [α], we have

(yij,p ∧ ykl,p)⇒ ¬zkl. (13)

Second, if an edge (i, j) is not a transmission edge then
it cannot be a representative. That is, for all edges (i, j)
and hosts s, we have

(xi,s ∧ xj,s)⇒ ¬zij . (14)

To model the reverse direction, we have for all edges
(i, j) < (k, l) and transmission events p ∈ [α]ykl,p ∧ ∧

(i,j):
(i,j)<(k,l)

¬yij,p

⇒ zkl. (15)

Finally, we require that representatives are ordered
correctly. For all representatives (i, j) < (k, l) where
(i, j) is assigned to transmission event q, it cannot be
that (k, l) is assigned to a transmission event p < q.
That is, for all edges (i, j) < (k, l) and transmission
events p < q, we have

(yij,q ∧ zij ∧ zkl)⇒ ¬ykl,p. (16)

Approximate counting and almost uniform sampling.
Now that we have a SAT formula, we look at the
related problems of approximate sampling and al-
most uniform sampling of the solution space [46]. We
use ApproxMC [33, 34] to approximate |L∗| and Uni-
Gen [31, 32] to sample almost uniformly from L∗. We
call the resulting method SharpTNI.

List of Abbreviations

TNI Transmission Network Inference

SAT Satisfiability

CNF Conjunctive Normal Form
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MCC Maximum Clade Crediblity

EVD Ebola Virus Disease
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5. Cottam, E.M., Thébaud, G., Wadsworth, J., Gloster, J., Mansley, L.,

Paton, D.J., King, D.P., Haydon, D.T.: Integrating genetic and

epidemiological data to determine transmission pathways of

foot-and-mouth disease virus. Proceedings of the Royal Society B:

Biological Sciences 275(1637), 887–895 (2008)

6. Harris, S.R., Feil, E.J., Holden, M.T., Quail, M.A., Nickerson, E.K.,

Chantratita, N., Gardete, S., Tavares, A., Day, N., Lindsay, J.A., et al.:

Evolution of mrsa during hospital transmission and intercontinental

spread. Science 327(5964), 469–474 (2010)

7. Ypma, R.J., Bataille, A., Stegeman, A., Koch, G., Wallinga, J.,

Van Ballegooijen, W.M.: Unravelling transmission trees of infectious

diseases by combining genetic and epidemiological data. Proceedings of

the Royal Society B: Biological Sciences 279(1728), 444–450 (2011)

8. Snitkin, E.S., Zelazny, A.M., Thomas, P.J., Stock, F., Henderson,

D.K., Palmore, T.N., Segre, J.A., Program, N.C.S., et al.: Tracking a

hospital outbreak of carbapenem-resistant klebsiella pneumoniae with

whole-genome sequencing. Science translational medicine 4(148),

148–116148116 (2012)

9. Ypma, R.J., van Ballegooijen, W.M., Wallinga, J.: Relating

phylogenetic trees to transmission trees of infectious disease outbreaks.

Genetics 195(3), 1055–1062 (2013)

10. Didelot, X., Gardy, J., Colijn, C.: Bayesian inference of infectious

disease transmission from whole-genome sequence data. Molecular

biology and evolution 31(7), 1869–1879 (2014)

11. Hall, M., Woolhouse, M., Rambaut, A.: Epidemic reconstruction in a

phylogenetics framework: transmission trees as partitions of the node

set. PLoS computational biology 11(12), 1004613 (2015)

12. Didelot, X., Fraser, C., Gardy, J., Colijn, C.: Genomic infectious

disease epidemiology in partially sampled and ongoing outbreaks.

Molecular biology and evolution 34(4), 997–1007 (2017)

13. Klinkenberg, D., Backer, J.A., Didelot, X., Colijn, C., Wallinga, J.:

Simultaneous inference of phylogenetic and transmission trees in

infectious disease outbreaks. PLoS computational biology 13(5),

1005495 (2017)

14. Skums, P., Zelikovsky, A., Singh, R., Gussler, W., Dimitrova, Z.,

Knyazev, S., Mandric, I., Ramachandran, S., Campo, D., Jha, D., et

al.: QUENTIN: reconstruction of disease transmissions from viral

quasispecies genomic data. Bioinformatics 34(1), 163–170 (2017)

15. Leonard, A.S., Weissman, D.B., Greenbaum, B., Ghedin, E., Koelle,

K.: Transmission bottleneck size estimation from pathogen

deep-sequencing data, with an application to human influenza A virus.

Journal of virology 91(14), 00171–17 (2017)

16. De Maio, N., Wu, C.-H., Wilson, D.J.: Scotti: efficient reconstruction

of transmission within outbreaks with the structured coalescent. PLoS

computational biology 12(9), 1005130 (2016)

17. De Maio, N., Worby, C.J., Wilson, D.J., Stoesser, N.: Bayesian

reconstruction of transmission within outbreaks using genomic

variants. PLoS computational biology 14(4), 1006117 (2018)

18. Gire, S.K., Goba, A., Andersen, K.G., Sealfon, R.S., Park, D.J.,

Kanneh, L., Jalloh, S., Momoh, M., Fullah, M., Dudas, G., et al.:

Genomic surveillance elucidates ebola virus origin and transmission

during the 2014 outbreak. science 345(6202), 1369–1372 (2014)

19. Slatkin, M., Maddison, W.P.: A cladistic measure of gene flow inferred

from the phylogenies of alleles. Genetics 123(3), 603–613 (1989)

20. El-Kebir, M.: Parsimonious migration history problem: Complexity and

algorithms. In: 18th International Workshop on Algorithms in

Bioinformatics, WABI 2018, August 20-22, 2018, Helsinki, Finland, pp.

24–12414 (2018). doi:10.4230/LIPIcs.WABI.2018.24

21. Drummond, A.J., Rambaut, A.: BEAST: Bayesian evolutionary

analysis by sampling trees. BMC evolutionary biology 7(1), 214 (2007)
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