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Abstract 

Cancer clinical practice guidelines recommend different treatment options for different cancer 

types and are mainly developed by clinicians. In theory, those recommendation schemes that are 

supported by scientific research should provide better efficacy for patients. However, in actual 

clinical practice: “Is the choice of a specific antineoplastic drug for a specific cancer supported by 

the results of molecular biology mechanisms or based on the subjective experience of the 

clinician?” Answering this question is of significant importance for guiding clinical practice, but 

there is currently no operational method to provide objective judgment in specific cases. This 

paper describes a literature mining method that collates information from specific antineoplastic 

drug-related literature to establish an antineoplastic drug-gene association matrix for global or 

specific cancer scenarios, and further establishes a standard model and scenario models. Based on 

the parameters of these models, we constructed a linear regression analysis method to evaluate 

whether the models in different scenarios deviated from a random distribution. Finally, we 

determined the possible efficacy of an antineoplastic drug in different cancer types, which was 

validated by the Genomics of Drug Sensitivity in Cancer (GDSC) database. Using our mining 

method, we tested 18 antineoplastic drugs in 16 cancer types. We found that cisplatin used in 

ovarian cancer was more efficacious and may benefit patients more than when used in breast 

cancer, which provides a new paradigm for rational knowledge-driven drug distribution patterns in 

clinical practice. 

 

Keywords: Literature mining method, Antineoplastic drug, Different cancer types, Linear 

regression analysis, Antineoplastic drug-gene association matrix 

 

Introduction 

More and more in-depth studies of antineoplastic drugs have revealed that the same antineoplastic 

drug can have drastically different effectiveness in tumors originating from different tissues. 

Excluding a limited number of potential immune pharmaceuticals that have broad-spectrum 

activity against a wide range of cancer types [1, 2], the majority of approved chemotherapeutic 

drugs and targeted drugs, as well as their combinations, generally target specific pathological 

types and specific cancer types for which they were primarily intended. Clinicians in different 

cancer research fields often recommend different treatment options for specific cancer types based 

on clinical practice guidelines that are primarily aggregated by experience. Given that clinical 

trials are conducted on humans, researcher must fully consider the complexities of these studies, 

including the type of trial, subjects, controls, sample sizes, main outcomes, as well as their 

implementation. In addition, clinical trials are limited by time and cost, and ethical issues, as well 

as subject to relevant methodological quality assessments. Therefore, most expert consensus 

statements in clinical practice guidelines are often based on 1) the urgency of the clinical needs, 2) 

the small sample size and data size of clinical trials, 3) the clinical experience of experts, and 4) 

the collation and analysis of some published literature results in related fields, which often leads to 

uncertain therapeutic effects after the implementation of clinical drug regimens. For example, 

sorafenib is the first-line treatment for advanced hepatocellular carcinoma (HCC), but it is not 

effective in Chinese HCC patients. More than 90% of HCC cases in China are caused by hepatitis 

B virus (HBV) infection[3], and sorafenib has limited effect in HCC caused by HBV[4, 5]. This 

shows that the current application of antineoplastic drugs in different clinical treatments for cancer 
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still mainly depend on experience, with considerable uncertainty. 

 

In the past decade, there has been an increasing number of scientific studies on the application and 

mechanisms of specific antineoplastic drug in different cancer scenarios. This research can be 

accessed in various literature databases. For example, we searched the PubMed database on 

October 9, 2019 and retrieved 72,820 papers with ‘cisplatin’ as the keyword and 6,528 papers with 

‘erlotinib’ as the keyword [6]. With rapid developments in biomedical research, the amount of 

scientific literature has increased rapidly, and it is becoming increasingly difficult for human 

researchers to assimilate all the knowledge related to a subject. Therefore, the research models 

adopted for antineoplastic drugs by researchers are more likely to follow a causal relationship 

hypothesis proposed by researchers based on incomplete information, and such incomplete 

research might form the description of the pharmacological mechanisms. Subsequently, this 

incomplete research mechanism may be used to refine search key terms to screen references 

supporting this deficient research hypothesis in the literature databases, and finally form a 

description of the antineoplastic drug mechanism guided by subjective experience. This 

incomplete grasp of the information leads to "subjective" operation in the use of prior knowledge 

by a single human researcher, which strengthens the empirical judgment of the causal relationship 

hypothesis. 

 

This study adopted a gene-based literature mining method to establish a standard model of an 

antineoplastic drug and different scenario models of the antineoplastic drug in various cancer 

scenarios by constructing a gene-antineoplastic drug association matrix displayed in a 

standardized interface. We can initially answer the following question using these models: “Is the 

application of a specific antineoplastic drug in an actual clinical scenario of cancer based on a 

molecular biology mechanism derived from solid scientific evidence (rational basis), or is the 

judgment based on human subjective experience (empirical basis)?” Experience-based treatment 

outcomes tend to use drugs randomly, whereas scientific research results can lead to better clinical 

outcomes. Therefore, we have established a mathematical model for judging whether medication 

utilization is experience-based or evidence-based in a specific scenario, which can then be 

validated using the Genomics of Drug Sensitivity in Cancer (GDSC) database. This method not 

only evaluates the applicability of antineoplastic drugs in different cancer types, but also 

automatically delineates its biological mechanisms, helping researchers better understand the 

efficacy of the antineoplastic drug for various cancer types, as well as the possible causes of 

tolerance. 

 

Methods 

Construction of data interface  

We used PubMed to provide the biological literature for the text mining. The schematic 

representation of the overall study architecture is shown in Fig 1 and can be summarized in the 

following steps. Step 1, information retrieval. PubMed is searched and relevant information is 

downloaded and used to build the subject dictionary (SD) and public health dictionary (PD). Step 

2, identify gene entities accurately related to the subject. Step 3, identify all biological entities that 

are accurately related to the subject (disease, drugs, phenotypes, treatments, and other relevant 

clinical terms). Step 4, calculate and rank the strength of associations between extracted genes and 
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entities. Step 5, establish association matrix between subject-related antineoplastic drug entities 

and genes by alignment with antineoplastic drug name database. The details of each step are 

described below and each algorithm consists of custom scripts unless otherwise stated. 

 

Step 1: Information retrieval 

The dataset used in this pipeline uses only PubMed articles. First, PubMed is searched for articles 

containing the subject keywords, including abstracts, titles, and author/unit information sections. 

The search results are downloaded in txt format to obtain structured information. Then, the text in 

the subject abstract set is organized and cleaned, and compiled into the subject dictionary (SD). To 

enhance the accuracy of the effective entities associated with the keyword, we use a random 

corpus for comparison. We search for article abstracts containing “public health” as the keyword 

and compile this abstract set into the public health dictionary (PD), which contains a wide range of 

proteins, genes, and related biological entities. Meanwhile, we also consider the balance of the 

amount of information by setting relevant parameters to adjust the amount of text before carrying 

out the statistical analyses. 

 

Step 2: Identify gene entities precisely related to the subject  

Biological entity identification is a key step in the literature mining process[7, 8]. To ensure 

functionality of the extracted entity, we first compare the entity from SD with the human official 

gene symbols in the Hugo Gene Nomenclature Commission (HGNC)[9] database to generate 

subject candidate genes using standard nomenclature. In addition, the entities in the abstract are 

capitalized to avoid errors in the identification process. To obtain widely used gene entities that 

are precisely related to the subject, we search for the subject candidate genes in the SD and the PD, 

respectively, and count the number of abstracts containing each subject candidate gene in each 

abstract set, respectively. Finally, we calculate the odds ratio of each subject candidate gene and 

sort them into a list of precisely related gene entities. Formula (1) is used to calculate the odds 

ratio of each gene:  

 

ORi =   
𝑓𝑖

𝐴  ∕  𝑓𝑖
�̅�

𝑓𝑖
𝐵/𝑓𝑖

�̅�
  （ 1）  

 

where i is a subject candidate gene, f is the number of abstracts, A is the subject abstract set 

containing gene i, 𝐴̅ is the subject abstract set that does not contain gene i, B is the public health 

abstract set containing gene i, and �̅� is the public health abstract set that does not contain gene i. 

The screening criteria for genes precisely related to a subject is 𝑓𝑖
𝐴>1, ORi≥6. As we are 

focusing on extracting subject-gene associations, we retain only those abstracts that have at least 

one subject-gene mentioned and define this as the subject gene abstract set (SGA).  

 

Step 3: Identify all biological entities that are accurately related to the subject 

We first compare the entities in PD and SD to obtain the subject-specific entity dictionary (SPE) 

containing unique entities in SD and the subject-shared entity dictionary (SHE) containing shared 

entities between PD and SD. To further improve the accuracy of the recognition rate of the 

subject-related entities, we compare SGA with the entities in SPE and SHE, respectively. We first 

perform a comparison screening in SHE. We count the number of abstracts containing each 
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subject-shared entity (HEj) in SGA. Next, the same number of abstracts in SGA are randomly 

extracted from the public health abstract dataset as the reference abstract dataset and this is 

repeated 100 times. For each randomly extracted reference abstract dataset, it is compared with the 

entities in SHE and the number of abstracts containing each subject-shared entity (HEj) is counted. 

The standard score of each entity (HEj) is then calculated in SGA and in the reference abstract set 

to obtain the first part of the entity precisely related to the subject. Formula (2) is used to calculate 

the standard score of each entity: 

Zj=
𝑓𝑗

𝐶−𝑚ⅇ𝑎𝑛(𝑓𝑗
𝐷)

𝑆𝑡 ⅆ(𝑓𝑗
𝐷)

  （2） 

where j is the entity in the SHE, 𝑓 is the number of abstracts, C is the SGA, and D is the 

randomly extracted reference abstract set from public health abstract set. The screening criteria for 

the first part of the candidate subject entity is Zj≥6. 

 

We next perform an alignment screening in SPE. We count the number of abstracts containing 

each subject-specific entity (PEk) in SGA. If the number of abstracts containing PEk is more than 

3 in SGA, then this is designated as the second part of the subject-related entity. A consensus of ≥ 

3 has been decided by the authors, with the convention that < 3 articles published may be a 

random co-occurrence or without any unidirectional scientific evidence. Hence, the articles with 

<3 may not be of significance. Finally, the two parts are merged to obtain the subject-related entity. 

In addition, some entities have singular and plural noun forms, and synonyms with multiple forms 

in the context of the abstract. Therefore, we number the subject-related entity and automatically 

combine the nouns with plural forms and the homologous words with adjectives and adverb roots 

into the same entity and assign this same number. 

 

Step 4: Calculate and rank the strength of associations between extracted genes and entities 

We first need to define the association between gene and entity. If “n” entities and “m” genes 

co-occur in any literature abstract, the algorithm will automatically extract all “n” and “m” 

possible entity-gene pairs. The extraction algorithm is probabilistic and does not consider the 

syntactic relationships between entities and gene entities independently in sentences. The strength 

of their association is then analyzed by calculating the relationship distance between the subject 

gene and the entity. For each gene Gi that is precisely related to the subject, the abstract set 

containing the gene Gi and the abstract set not containing the gene Gi are extracted from SGA. 

Then, we count the average number of abstracts containing the subject-related entity Ej in the 

abstract set AGi containing the gene Gi; and count the average number of abstracts containing the 

subject-related entity Ej in the abstract set NAGi not containing gene Gi according to 

co-occurrence. We then calculate the difference in the average number of abstracts containing 

entity Ej between the abstract set AGi and NAGi. We thus obtain the first relationship distance 

RD1ij between subject gene Gi and subject entity Ei. To obtain more meaningful results and filter 

possible false positives, we define the significance of the relationship distance by standard scores. 

First, we mark the subject gene abstracts in the SGA and then rank the abstracts markers randomly, 

so that the corresponding relationship between the abstract marker and the abstract content is 

randomly changed to generate 100 random matrices. Then, we separately count the average 

number of abstracts containing the entity Ej in the abstract set SAGi containing gene Gi; and count 
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the average number of abstracts containing the entity Ej in the abstract set SNAGi not containing 

gene Gi from the random subject gene abstract set generated by each random cycle. We then 

calculate the difference of the average number of abstracts containing entity Ej between the 

abstract set SAGi and SNAGi. We thus obtain the second relationship distance RD2ij between 

subject gene Gi and subject entity Ej. Next, we determine the relationship distance between 

subject gene Gi and subject entity Ej by calculating the standard scores of RD1ij and RD2ij. In 

order to show the strength of the association between subject gene and subject entity more 

intuitively, we sort the standard scores, where a smaller number represents a closer association 

between subject gene and subject entity. Finally, we obtain the association matrix of all subject 

genes and subject entities according to the above method. 

 

Step 5: Establish association matrix between subject-related antineoplastic drug entities and 

genes. 

We have collected the names of antineoplastic drug from multiple data sources, including drug 

information for 622 antineoplastic drugs included in My Cancer Genome 

(https://www.mycancergenome.org/)[10], drug information of 267 virtual sieve drugs included in 

Sanger Drug (https://www.cancerrxgene.org/translation/Drug), and drug information of 62 

clinically available antineoplastic drugs (S1 Table) that we have summarized. This list of 

antineoplastic drugs included kinase inhibitors KI, antibody drugs, antibody-conjugated drugs, 

chemotherapeutic drugs, hormones, and other classes. We manually performed deduplication and 

inspections and obtained a total of 803 antineoplastic drug names. We compare the subject-related 

entity with the name of the antineoplastic drugs in this compiled antineoplastic drug name 

database and then combine the association matrix between the gene and the subject-related entity 

obtained from the above process to form the gene-antineoplastic drug association matrix. 

 

Establish the standard model for antineoplastic drug-X. 

We selected 18 common antineoplastic drugs to build data interfaces based on the automated 

literature mining method and separately obtained 18 antineoplastic drug standard models. They 

were bevacizumab, capecitabine, carboplatin, cetuximab, cisplatin, cyclophosphamide, 

dexamethasone, doxorubicin, erlotinib, etoposide, fluorouracil, gemcitabine, melphalan, 

methotrexate, pemetrexed, rapamycin, sorafenib, and vincristine. Each antineoplastic drug-X 

standard model was constructed as follows: 1) genes with accurate relevance to the antineoplastic 

drug-X were identified, 2) entities with precise relevance to the antineoplastic drug-X were 

identified, 3) the association strength between entities and genes was calculated, and 4) relative 

ranking of the association strengths between antineoplastic drug-X and genes was determined. 

Finally, for each standard model of antineoplastic drug-X, we obtained the genes and entities 

precisely related to the antineoplastic drug-X, and obtained the association matrix between 

antineoplastic drug-X and genes. 

 

Establish the cancer Y scenario model 

Similarly, we selected 16 common cancer types to build data interfaces based on the automated 

literature mining method and separately obtained 16 cancer scenario models. They were breast 

cancer, cervical cancer, colon cancer, colorectal cancer, epithelioid sarcoma, esophageal cancer, 

glioma, hepatocellular carcinoma (HCC), head and neck cancer, Hodgkin lymphoma, melanoma, 
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non-Hodgkin lymphoma, non-small cell lung cancer (NSCLC), ovarian cancer, pancreatic cancer, 

and thyroid carcinoma. Each scenario model for cancer Y was constructed as follows: 1) genes 

with accurate relevance to the cancer-Y were identified, 2) entities with precise relevance to the 

cancer-Y were identified, 3) the association strength between entities and genes was calculated, 

and 4) alignment with the antineoplastic drug name database was performed to obtain the relative 

ranking of the association strength between antineoplastic drug entities and genes. Finally, for 

each cancer-Y scenario model, we obtained the gene entities, antineoplastic drug entities, and the 

association matrix between antineoplastic drug entity and gene entity that are precisely related to 

the cancer. 

 

Model fitting in a binary phase diagram 

To evaluate the effectiveness of antineoplastic drugs in different cancer scenarios, we need to 

obtain the key parameters of antineoplastic drug-X in the standard model and different cancer-Y 

scenario models, respectively. For the standard model of antineoplastic drug-X, we obtained the 

number of genes Gx that were precisely related to antineoplastic drug-X and the cumulative 

association strength (T) between genes and antineoplastic drug-X. For the antineoplastic drug-X in 

different cancer-Y scenario models, the gene Gy associated with the cancer-Y was obtained and 

compared with Gx in the antineoplastic drug-X standard model to calculate the number (N) of 

intersecting genes. Then, we calculated the sum of the association strengths between Gx and 

antineoplastic drug-X to obtain T based on the association matrix between the gene Gy and 

antineoplastic drug-X in cancer-Y scenario model. In addition, we need to standardize the 

association matrix between gene Gy and antineoplastic drug entities to compare the association 

strength between the same antineoplastic drug-X and gene Gy in different cancer-Y scenarios. In a 

specific cancer-Y scenario model, we normalized the rank number of the antineoplastic drug-X 

divided by the number of entities precisely related to cancer-Y. Next, we compared the standard 

model with the scenario models of various cancers to obtain the scenario model of antineoplastic 

drug. We placed each antineoplastic drug scenario model based on the two parameters T and N in 

a binary phase diagram for function fitting and model evaluation. We defined the number N of 

intersecting genes as the X-axis and the cumulative association strength T as the Y-axis. We fitted 

the linear regression model according to the number N of the intersecting genes of the 

antineoplastic drug-X in different cancer-Y scenario models and the cumulative association 

strength T. Next, the residual value of the model was calculated and the outliers with the minimum 

negative residual value were eliminated for a better linear fitting to obtain a stochastic scenario 

model. At the same time, the removed parameter points were fitted to a new linear model to obtain 

a rational scenario model. Finally, we introduced the standard model of antineoplastic drug into 

the binary phase diagram: 1) the standard model parameter point was fitted in the rational scenario 

model parameter points to get the R1-square and 2) the standard model parameter point was fitted 

in the stochastic scenario model parameter points to get the R2-square. The optimal linear model 

was evaluated by comparing R1-square with R2-square. 

 

Validation using the Sanger Genomics of drug sensitivity database 

We downloaded the publicly available drug sensitivity database from the Genomics of Drug 

Sensitivity in Cancer (GDSC) (www.cancerrxgene.org), which contains 256 drugs or compounds 

for more than 1000 tumor cell lines. We combined the drug IC50 data of all tumor cell lines to 
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calculate the average response rate of antineoplastic drugs in tumor cell lines from different 

sources. To increase the reliability of our results, we selected the stochastic scenario model in the 

biphasic graph of antineoplastic drug to compare with the tumors enriched with the most genes in 

the rational scenario model, and then calculated the standard scores of the relative global changes 

in the average response rate of the antineoplastic drug in the tumor cell lines. For a standard score 

of Zstochastic>Zrational, we define the effect of antineoplastic drugs as more sensitive in rational 

scenario models, whereas the opposite tends to be more resistant effects. 

 

Results: 

Construct gene-knowledge map of antineoplastic drugs in specific cancer scenarios by 

automated methods 

To create the knowledge map in a specific scenario, we automatically build a standard user 

interface based on genes from a large number of studies in the literature, including the entities and 

genes associated with the scenario, and the matrix that describes the relationship between the 

entity and the gene. Using the "ovarian cancer" scenario as an example, our first step was to search 

PubMed database with the "ovarian cancer" keyword to obtain text data for all peer-reviewed and 

published in studies relevant to this scenario. On Apr 14, 2018, we had obtained 46,594 articles, 

including the title of the article, author/unit information, and abstracts. We organized and cleaned 

the text data and compiled it into the subject dictionary (SD). This dictionary contained entity 

nouns and gene symbols that were related or unrelated to the scenario, as well as a large number of 

common entities that were unrelated to the subject scenario. If we directly performed frequency 

statistics, then the limited sample size results might have significantly reduced interference from 

noise in the information, but would result in the loss of the valuable associations. In addition, if we 

used a background text database obtained as a generic control corpus, then we would generate 

generic entities and gene symbols related to biomedicine, but not necessarily related to the subject 

scenario. Therefore, to obtain the entities most relevant to the subject scenario, we searched the 

literature using “public health” as the keyword and compiled this set into the public health 

dictionary (PD) as the reference corpus, which contains a wide range of commonly used medical 

related entities and their associations. The comparisons between SD and PD should then exclude 

specific entities of the non-scenarios and low correlation scenarios (the specific process is shown 

in Fig 1). In the analysis, we also considered the balance of information by setting the relevant 

parameters to adjust for the size of the abstract set before carrying out the statistical analyses. 

Each word in SD was compared with the HUGO Gene Nomenclature Committee (HGNC) 

database to obtain potential candidate genes with official nomenclature. Common words with the 

same name as genes were also removed through case verification, such as identifying the 

difference between the gene 'WAS' and the verb 'was'. 

 

To obtain gene symbols related to the ovarian cancer scenario, we counted the number of abstracts 

containing each candidate gene in the “ovarian cancer” abstract set and the “public health” 

abstract set. The gene symbols associated with ovarian cancer scenario were determined by a 

higher odds ratio (for example, odds ratio≥6). In this case, we obtained 1,441 gene symbols 

associated with ovarian cancer. Then, we obtained the subject gene abstract set (SGA) associated 

with the ovarian cancer scenario based on the distribution of these gene symbols in the text. In this 

abstract set, we took a similar approach of comparing with the entities in the PD, and finally 
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screened 1,926 biological entities (W1) associated with ovarian cancer, including clinical 

observations, phenotypes, treatments, drugs, and other related clinical concepts (see Methods). At 

the same time, entities were rendered case-insensitive, and nouns with plural forms and 

homologous words with adjectives and adverbs were automatically merged into the same entity 

and assigned the same number. 

 

After obtaining subject entities and gene symbols associated with the specific cancer scenario, the 

next step was to build the association matrix between the subject gene and the subject entity. An 

association is based on whether the gene and the entity co-occur in the same literature abstract. In 

the ovarian cancer scenario, we mined and linked 1,926 entities with 1,441 genes into a 

association matrix C (see Methods). Each column in matrix C represents the co-occurrence 

intensity of a gene with different entities, and the distribution of this intensity may be different for 

different entities associated with different genes. Therefore, we ranked the associations, with a 

smaller number representing a stronger association between the gene and the current entity. To 

extract the antineoplastic drug associated with the specific cancer scenario, we compared the 

entities in W1 with the antineoplastic drug name database, which gave us an association matrix 

between 29 antineoplastic drugs and 1,441 subject genes. The approach presented is an automated 

method to mine and organize relevant knowledge from literature abstracts of specific clinical 

medical scenarios. This information is provided in the form of a table that is not only convenient 

for users to read and understand, but also provides standardized input data for future machine 

learning or artificial intelligence methods. 

 

Literature mining can verify the recommended drugs in the medication guidelines for 

ovarian cancer based on a similar mechanism. 

Based on the abstracts set from published ovarian cancer literature, 29 antineoplastic drugs and 

1,441 genes were associated by different intensities. By manually searching the above-mentioned 

drugs in the antineoplastic drug name database, we confirmed that most of the antineoplastic drugs 

are widely used in clinical practice for treating ovarian cancer with significant therapeutic effects, 

such as platinum compounds. We can obtain the gene regulation mechanism via the distribution of 

the association strength of genes related to different antineoplastic drugs. We screened the genes 

with relative rankings of the association strengths in the top 10% of all entities as a subset among 

the 1,441 genes, which we defined as the significantly associated genes of ovarian cancer related 

to antineoplastic drugs. We further constructed a network based on the association between 29 

antineoplastic drugs and significantly associated genes, as shown in Fig 2A. In this network, an 

association between an antineoplastic drug and a gene is called a linkage. We found that different 

antineoplastic drugs were usually linked to a group of genes with different intensities (Table 1), 

and 24 of the 29 antineoplastic drugs had a number of uniquely linked genes that was less than 5% 

of the total number of genes linked.   

 

The clustering results can more intuitively reflect the strength of a particular research mechanism. 

Based on the data matrix of antineoplastic drugs and precisely related genes in ovarian cancer 

scenarios, we performed cluster analysis on the antineoplastic drugs (Fig. 2B). As expected, 

antineoplastic drugs closer together in such clusters tended to share similar mechanisms of action 

and were grouped into one category. At the same time, we further explored the correlation 
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between antineoplastic drugs from the perspective of the drugs recommended in clinical practice 

guidelines. We compared the antineoplastic drugs in the clustering results with the drugs 

recommended in the National comprehensive cancer network (NCCN) clinical practice guidelines 

for ovarian cancer. We found 11 drugs were recommended in the ovarian cancer clinical guidelines, 

including cisplatin, platinum, carboplatin, doxorubicin, gemcitabine, cyclophosphamide, 

bevacizumab, pemetrexed, tamoxifen, etoposide, and vincristine (labeled with an asterisk in the 

Fig 2C). Our clustering results showed that most of the antineoplastic drugs recommended by 

NCCN guideline were significantly clustered into one category (p=0.0359), whereas all 

antineoplastic drugs were assumed to be classified into two categories (Fig 2C). 

 

We propose two explanations for the above phenomenon: 

1) In the ovarian cancer scenario, different antineoplastic drugs may share similar molecular 

mechanisms, such as platinum-based drugs, cisplatin and carboplatin;  

2) Researchers studying the molecular mechanism of antineoplastic drug will begin with a 

group of commonly used genes according to their expertise. 

 

Different antineoplastic drugs have different mechanisms of action; for example, 

cyclophosphamide interstrand DNA cross-links to inhibit DNA replication and initiates cell 

death[11-13], whereas bevacizumab inhibits angiogenic cytokines[14], and similarly, tamoxifen has 

actions different from platinum compounds[15, 16]. However, we found that most of the genes 

studied in the above drugs were limited to a small number of genes in the large-scale text data. It 

is possible that a gene will confer different functional meanings in different abstracts in the 

literature. Therefore, the finding supports the latter of the two previous explanations that there is a 

preference when studying antineoplastic drug mechanisms, in that researchers tend to scrutinize 

functions of familiar genes in specific scenarios to explain the possible mechanisms. To test the 

universality of the above findings, we continued to analyze the intensity distribution of the 

drug-gene linkage of antineoplastic drugs used in treatments of NSCLC and HCC. The results 

showed that most of the recommended antineoplastic drugs in NCCN guidelines clustered in the 

same category with P values ranging from 0.0011 to 0.0609 (Fig 2D), in a similar way to the 

results for ovarian cancer. These findings show that there is a certain preference in the decision 

making for clinical treatments for ovarian cancer, lung cancer, liver cancer, and possibly other 

cancers based on human experience. 

 

The above results raise several questions that need to be addressed. 1) Does the knowledge 

accumulated by researchers in a specific clinical scenario really follow such a remarkable trend? 2) 

Is the knowledge in published literature abstracts clinically applicable? 3) Specifically, when an 

antineoplastic drug is used in the clinical treatment of a specific cancer type, is the basis for the 

application of such a treatment regimen a rational design or inclined to be a random selection? To 

address these issues, we need to establish a new quantitative method for rational evaluation. 

 

Antineoplastic drug-X standard model 

In this study, we used a set of genes linked to antineoplastic drugs at different intensities to 

characterize the extent and depth of the current knowledge of an antineoplastic drug. This set of 

genes comes from all the knowledge about the antineoplastic drug, i.e., genes associated in 
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different ways with the antineoplastic drug in different clinical or laboratory scenarios. Fig 3 

shows the method for obtaining a standard model of an antineoplastic drug. We have obtained 

standard models for 18 antineoplastic drugs and counted the number of literature abstracts on 

which each model is based, the number of genes associated with the antineoplastic drug, and the 

most relevant gene information (Table 2, S2 Table). 

 

Cancer-Y Scenario Model  

Similar to the standard model of antineoplastic drugs, we also used a set of genes to describe a 

cancer that is linked to the related entity at different intensities to reflect the different aspects of 

the cancer, such as diagnosis, treatment, drug resistance mechanism, or side effects. Fig 4 

illustrates the method of obtaining a scenario model for cancer. We have obtained scenario models 

for 16 cancer types and counted the number of literature abstracts on which each model is based, 

the number of genes and antineoplastic drugs associated with different cancer types, and the most 

relevant gene information (Table 3, S3 Table). 

 

Non-empirical dependent assessment of an antineoplastic drug used in a specific cancer 

Binary phase diagram 

The standard model of antineoplastic drug-X shows gene Gx associated with an antineoplastic 

drug. Two parameters of Gx can be observed in the scenario model of cancer-Y: 1) the cumulative 

association strength T of Gx with antineoplastic drug-X in the cancer-Y scenario model, and 2) the 

number of intersecting genes N of Gx in the cancer-Y scenario model. The former shows that the 

antineoplastic drug-X in cancer-Y scenario has a stronger association with related genes 

suggesting that the mechanism of the antineoplastic drug may be studied more frequently in this 

cancer-Y scenario (emphasizing the depth of research), whereas the latter reflects the degree of 

overlap between the study of the mechanisms of antineoplastic drug-X and cancer-Y. This is 

related to the degree of research on antineoplastic drug-X itself, as well as on the degree of 

research on antineoplastic drug-X in cancer-Y scenario (emphasizing the breadth of research). The 

specific calculation methods of T and N can be found in Methods. Therefore, we represent these 

two parameters on a binary phase diagram and obtain the scenario models of antineoplastic drug 

according to T and N parameters of antineoplastic drug-X in different cancer-Y scenarios. 

 

Stochastic model 

In the stochastic model, we compare the standard model of antineoplastic drug with the scenario 

models of multiple cancers to obtain various scenario models of the antineoplastic drug, and then 

mark the parameters T and N in each antineoplastic drug scenario model on a binary phase 

diagram. For example, with methotrexate, we can clearly observe that each point on the binary 

phase diagram falls near a straight line, reflecting that there may be a positive proportional 

relationship between T and N. Therefore, we fit the function with the parameters T and N, which 

is equivalent to random sampling in the standard model of antineoplastic drugs with the number of 

intersecting genes N of different antineoplastic drug scenario models as variables, and calculate 

the corresponding cumulative association strength T to fit the function. The results showed a linear 

function, indicating that the cumulative association strength increases proportionally with the 

increase in the number of intersecting genes N. Furthermore, when linearly fitting each point of 

the above different antineoplastic drug scenario models, we found the standard model of 
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antineoplastic drugs fell near the extended line, indicating that the linear positive correlation 

actually reflects a randomness. Therefore, we call this model a stochastic model (Fig 5).  

 

Non-empirical independent model  

However, we found that the parameter points obtained by certain antineoplastic drugs in different 

cancer scenarios were not a perfectly random distribution, such as cisplatin. Therefore, we adopted 

an algorithm that gradually eliminates outliers for a better linear fitting by removing some 

parameter points to obtain the linear stochastic scenario model. With a good enough fitting model, 

we found that the excluded parameter points could also fit a new linear model called a rational 

scenario model (Fig 6). The results showed a variety of antineoplastic drugs displayed this 

characteristic, suggesting some antineoplastic drugs may have substantially different mechanisms 

in different cancer scenarios. 

 

In the binary phase diagram of antineoplastic drugs, we found a characteristic of the rational 

scenario model in that when the number of genes was the same, the cumulative correlation 

intensity T was smaller than in the stochastic scenario model, suggesting that a cancer represented 

by the parameter points in rational scenario model might actually be more closely related to the 

current antineoplastic drug. To verify this, we added the standard model of the antineoplastic drug 

into the binary phase diagram together with rational scenario model. We found the linear model 

fitted by the parameter points of the standard model and rational scenario model was better than 

the linear model fitted by the parameter points of the standard model and stochastic scenario 

model (Fig 7). From the above findings, we can infer that the clinical application of antineoplastic 

drugs such as cisplatin and erlotinib are recommended for ovarian cancer based on research 

evidence. Whereas gemcitabine in NSCLC may have a tendency to be recommend based on 

human experience, indicating the research on mechanism of antineoplastic drugs is less applicable 

across different cancers and that there exists a possible disconnect between basic research and 

clinical application. 

 

The clinical application of antineoplastic drugs guided by research, in theory, should be more 

effective. We analyzed the pharmacodynamic data of antineoplastic drugs in different cancer types 

using the Genomics of Drug Sensitivity in Cancer (GDSC) database to obtain the average 

sensitivity of antineoplastic drugs to tumors containing the largest number of genes in the 

stochastic scenario model and rational scenario model, respectively. We found the response rate of 

tumor cells to cisplatin, gemcitabine, erlotinib, and sorafenib on a stochastic scenario model was 

lower than that of tumor cells on a rational scenario model (Zstochastic>Zrational, Fig 8). This suggests 

the guidelines are actually a hybrid system based on human experience and research knowledge 

that may not be the most effective for specific application scenarios.  

 

Discussion 

Collating and mining information from the literature has become important approaches for 

biological knowledge discovery and biomedical research. The biomedical literature is growing 

exponentially and abstracts contain a large number of experimental results, gene-phenotype 

description, and pharmacodynamic information. Currently, most biomedical literature mining 

research related to drugs focus on several aspects. 1) Functional information of genes, such as 
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building structured resources for drug-gene correlation, providing intuitive graphical user 

interfaces and documented application programming to query the correlations between the gene 

and the drug[17-24]. 2) Identifying molecular biomarkers of drug efficacy in cancer patients and 

providing evidence for precision medicine by extracting drug-gene correlation information from 

published literatures, databases and other web resources[25-28]. 3) Using machine learning to 

identify the most effective pharmacogenomic information for drug repositioning[29-35]. 4) 

Predicting drug side effects[36-38], susceptibility, and antitumor drug resistance, to guide 

hypothesis-driven basic scientific research[39].  

 

Nonetheless, the purpose of our research is different from the previous studies, in that the main 

aim is to evaluate the effectiveness of common antineoplastic drugs in different clinical scenarios 

of cancer, particularly from the view of drugs recommended by clinical guidelines. Our definition 

of effectiveness in this context is that the more studies in the literature that report the molecular 

mechanisms of antineoplastic drugs on a certain cancer, the higher the probability that the 

mechanism has being fully elaborated, and thus the antineoplastic drug would be more effective as 

a clinical treatment for the cancer, which would facilitate the decision to use it. Therefore, we 

quantitatively determined the association between antineoplastic drugs and genes based on the 

literature abstracts of studies on specific cancer scenarios using our automated literature mining 

method. The dataset was displayed in a format that users could understand. We obtained 18 

antineoplastic drug standard models and 16 cancer scenario models. The confidence evaluation 

parameters of these models were extracted and fitted to the multiple linear regression model. We 

found six antineoplastic drugs were effective in some cancer scenarios, which were validated 

using high-throughput antineoplastic-drug screening database, such as the GDSC database. 

 

To increase the accuracy of genes associated with antineoplastic drugs in the automated literature 

mining methods, we used “public health” literature abstracts containing rich entities as the random 

corpus for the comparison study. Public health covers a wide variety of disciplines ranging from 

social sciences to business to biological sciences, such as flu pandemics, disaster preparedness, 

and obesity. Therefore, the probability of each disease or gene being mentioned in public 

health-related literature should be the same, which excludes specific entity information in 

non-scenarios and low-association scenarios. Meanwhile, we used “gene” as the prerequisite to 

identify all the entities in the literature abstracts that were accurately related to genes with high 

co-occurrence frequency, and then quantified the degree of association between the gene and the 

entity. This process increases the comprehensiveness of the description of the subject and its 

association with genes. To prove that the recommended drugs in the clinical guidelines for ovarian 

cancer, such as the NCCN clinical practice guidelines, are based on similar research mechanisms, 

we conducted cluster analyses based on the distribution of the association strengths between genes 

and antineoplastic drugs. The antineoplastic drugs recommended by NCCN for a specific scenario 

were significantly clustered into one category. For example, carboplatin has a close relationship 

with cisplatin and are both clustered into one category. We found that ABCC3, TRPM8[40, 41], 

ATOX1[42, 43] genes were closely related to carboplatin and cisplatin by querying the association 

matrix between genes and antineoplastic drugs. For example, ABCC3 is a member of ATP binding 

cassette (ABC) transporter family. Carboplatin chemotherapy induces hyaluronan production 

which can contribute to chemoresistance by regulating ABC transporter expression[44]. A study 
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reported that the resistance gene ABCC3 was co-expressed with lncRNA CTD-2589M5.4 by 

integrating the published data with data on cisplatin resistant lncRNA in ovarian cancer cell lines 

or ovarian cancer patients[45]. There appears to be a tendency to study antineoplastic drug 

mechanisms in terms of researcher experience of familiar genes in specific scenarios, which when 

referenced multiple times, reinforces these possible mechanisms. 

 

Finally, to evaluate the effectiveness of the 18 antineoplastic drugs in 16 cancer scenarios, we 

performed the literature mining analysis of 16 cancer types and 18 antineoplastic drugs to generate 

34 data interfaces. The data interface for the antineoplastic drug was used as a standard model to 

describe the degree of current understanding of the antineoplastic drug at the gene level. Similar to 

the standard model of the antineoplastic drug, we also used a set of genes to describe a cancer type 

and associated the genes with the cancer-related entities at different intensities, and generated data 

interfaces for different cancer types as the cancer scenario models. In order to evaluate the 

effectiveness of antineoplastic drugs in different cancer scenarios, we compared the standard 

model of antineoplastic drug with a variety of cancer scenario models to obtain the cumulative 

association strength T of gene Gx with antineoplastic drug-X in cancer-Y scenario model, and the 

number of intersecting genes N of Gx in cancer-Y scenario model. The above two parameters 

were placed on a binary phase diagram to fit the antineoplastic drug scenario model. The model is 

equivalent to random sampling in the standard model of antineoplastic drug. By taking the number 

of intersecting genes N as a variable and calculating the cumulative association intensity 

corresponding to each variable, the number of intersecting genes N and the cumulative association 

strength T of antineoplastic drugs was found to be a linear function of N. This indicates that there 

is a positive quantitative relationship between T and N in the binary phase diagram, and the 

cumulative association strength increases proportionally with the increase in the number of genes. 

We obtained a linear fitting of the parameter points representing different antineoplastic drug 

scenario models. When the standard model of antineoplastic drug falls near the fitted line, we 

called it a stochastic model. When the standard model of antineoplastic drug falls below the fitted 

line, we use this standard model as a reference point that shows some antineoplastic drug scenario 

models could be better linearly fitted with this reference point, which we then called a rational 

scenario model. As X-axis represents the number of genes and the Y-axis represents the 

cumulative association strength between genes and antineoplastic drugs, the cumulative 

association strength of genes and antineoplastic drugs thus deviate from the random distribution in 

the specific cancer scenario. At the same time, the cumulative association strength decreases, 

indicating that the functional association between genes and antineoplastic drugs may be closer in 

this cancer scenario. 

 

Therefore, the validity of antineoplastic drugs in different cancer scenarios can be well evaluated 

by model fitting in the binary phase diagram. In addition, we used the antineoplastic drug-relative 

sensitivity data of more than 1000 tumor cell lines in the Genomics of Drug Sensitivity in Cancer 

(GDSC) database for the verification. It was found that the analyzed tumor cell lines were 

significantly more sensitive to the antineoplastic drugs used in rational scenario models than in 

stochastic scenario models. For example, we found that the sensitivity of cisplatin in ovarian 

cancer was higher than that in breast cancer. A variety of clinical studies have reported that 

cisplatin combination therapy can be used for the effective treatment of ovarian cancer[46-50]. 
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Ovarian cancer was highly sensitive to this chemotherapy compared to many other types of cancer 

as shown by the overall 5-year survival of over 50%[51]. Similarly, cisplatin has been widely used 

for the treatment of patients with breast cancer [52-54], with efficiency of only 25% but its 

effectiveness is still unclear. Cisplatin chemotherapy has high activity in women with a BRCA1 

mutation and metastatic breast cancer, with a complete remission rate of 61%[5555]. Based on the 

above results, our method was shown to be a valid and effective tool to evaluate the rationality of 

medicine decision depending on the conformity of pharmacological mechanisms in the research 

and in a clinical setting.  

 

Conclusions 

Our literature mining method provides a practical tool to evaluate the applicability of an 

antineoplastic drug in various cancer types. This study combined automated knowledge-driven 

methods to establish the antineoplastic drug standard model and cancer scenario models based on 

the accurate antineoplastic drug-gene association matrix for global or specific cancer scenarios. 

Then, we used a linear regression analysis method based on the parameters in above models to 

determine the possible efficacy of an antineoplastic drug in different cancer types. The results can 

be verified by the Genomics of Drug Sensitivity in Cancer (GDSC) database. This approach has 

two advantages: 1) it assesses the efficacy of antineoplastic drug in various cancer types to allows 

more accurate judgments of the use of antineoplastic drugs in clinical practice providing better 

clinical benefits to patients, and 2) it is a general method that provides a comparable quantitative 

description of the association between generic entities and genes to delineate molecular 

mechanisms, and can present a comprehensive knowledge landscape in specific research scenarios 

for researchers in a specific research field. 
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Fig. 1. Overview of the components of literature mining. The process of retrieving evidence-based sentences from 

PubMed abstracts and the basic steps of the literature mining: (A) retrieve information, (B) identify genes with 

accurate relevance to the subject, (C) identify entities with accurate relevance to the subject, (D) calculate the 

association strengths between entities and genes, and (E) align with antineoplastic drug name database to establish 

an association matrix between antineoplastic drug subject-entities and genes.  

 

Fig. 2. (A) The network analysis of antineoplastic drugs and subject genes in ovarian cancer (relative ranking of 

antineoplastic drug-gene correlations ≤ top 10%). The edges between them represent the antineoplastic drug-gene 

interactions. The antineoplastic drugs and the genes considered for the network assembly are highlighted in red 

and white, respectively. The correlation between antineoplastic drugs and potential genes can be easily observed 

from this network. (B) Cluster heatmap of the association strengths between 29 antineoplastic drugs and genes in 

"ovarian cancer" literature abstracts. (C) Clustering map of the association strengths of antineoplastic drugs and 

genes in ovarian cancer, showing that most NCCN guidelines recommend drugs were significantly clustered into 

one category (p=0.0157). (D) Clustering map of the association strengths between genes and antineoplastic drugs 

in non-small cell lung cancer (NSCLC) (P=0.0011) and in hepatocellular carcinoma (HCC) (P=0.0609). The 

recommend drugs in the NCCN guidelines are labeled by "*". 

 

Fig. 3.  Steps of the antineoplastic drug-X standard model building process. 

 

Fig. 4.  Steps of the cancer-Y scenario model building process. 

 

Fig. 5. The scatter plot of the standard model and multiple scenario models of antineoplastic drugs. The linear 

regression line (stochastic model line) shown on the scenario models illustrates the similar distribution trends 

between the standard model and multiple scenario models of antineoplastic drug. 

 

Fig. 6. The scatter plot of multiple scenario models of antineoplastic drugs. The distribution trend of rational 

scenario model and random scenario model by fitting the linear regression line to the parameters of the rational 

scenario model (rational scenario model line) and the parameters of the stochastic scenario model (stochastic 

scenario model line). 

 

Fig. 7. The scatter plot of the standard model and multiple scenario models of antineoplastic drug with linear 

regression lines. The rational linear regression model was fitted with the parameters from rational scenario models 

and standard model of antineoplastic drugs; the simulated linear equation, R2 value, and the rational standard 

model line are shown. At the same time, the stochastic linear regression model was fitted with the parameters of 

the stochastic scenario model and the standard model of antineoplastic drugs; the simulated linear equation, R2 
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value, and the stochastic standard model are shown. 

 

Fig. 8. Multiple linear regression models of four antineoplastic drugs in different cancer types in the binary phase 

diagram. The standard scores are the relative global changes in the average response rate of antineoplastic drugs in 

the cancers containing the largest number of genes in stochastic and rational scenario models, respectively. 

 

 

Table 1. Linkage information between antineoplastic drugs and linked genes in ovarian cancer. 

 

Table 2. Basic information about Antineoplastic drug standard models. 

 

Table3. Basic information about cancer scenario models. 

 

Supplementary file 1. 

Information of 622 antineoplastic drugs. 

 

Supplementary file 2. 

The association matrix between antineoplastic drugs and genes in 18 antineoplastic drugs.  

 

Supplementary file 3. 

The association matrix between antineoplastic drugs and genes in 16 cancer types. 
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Table1. Linkage information between antineoplastic drugs and linked genes in ovarian cancer 

No Antineoplastic 

Drug 

The number of genes

（relative rank < 10%） 

The number of 

specific genes 

The percentage of 

specific genes 

The gene of the 

most related with 

drug 

1 leucovorin 500 218 43.60% SHE 

2 anastrozole 282 5 1.77% CCND1 

3 cisplatin 266 10 3.76% ORAI1 

4 bortezomib 252 8 3.17% ADRM1、UCN 

5 lapatinib 245 2 0.81% MED1、PERP 

6 platinum 210 5 2.38% ERCC1 

7 erlotinib 199 2 1.00% GALNT6 

8 gefitinib 199 1 0.50% EMP3 

9 bevacizumab 184 14 7.61% HIPK3 

10 herceptin 169 4 2.37% DSG2 

11 pertuzumab 163 2 1.23% SP3 

12 sunitinib 160 5 3.13% TEC 

13 pemetrexed 155 1 0.65% ROS1 

14 everolimus 152 3 1.97% EIF4B 

15 adriamycin 142 4 2.82% HIPK2、IKBKE 

16 doxorubicin 134 6 4.48% TOP1MT 

17 carboplatin 129 2 1.55% TRPM8 

18 cetuximab 122 2 1.64% CDH2 

19 vincristine 104 5 4.81% COL12A1、

COL1A2、

COL21A1、

EGFL6、MCL1、

POSTN、

SLC16A14、

SLC2A14 

20 temsirolimus 88 2 2.27% RHEB 

21 etoposide 85 1 1.18% BCL2L12 

22 gemcitabine 76 4 5.26% SGK1 

23 imatinib 66 2 3.03% AMN 

24 anthracyclines 54 5 9.26% CENPF 

25 rapamycin 53 2 3.77% MTOR 

26 sorafenib 52 0 0 PIK3IP1 

27 cyclophosphamide 47 2 4.26% KLK15 

28 tamoxifen 40 5 12.50% PTGFR 

29 trastuzumab 28 0 0 ADAM17 
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Table 2. Basic information about Antineoplastic drug standard models 

No. Antineoplastic 

drug 

Gene 

Counts 

Antineoplastic drug Counts the number of Abstracts The most relevant Gene 

1 bevacizumab 160 35 15262 NF2 

2 capecitabine 102 19 5935 CYP2C9 

3 carboplatin 182 29 15330 ATP7B 

4 cetuximab 166 18 6178 DDR2 

5 cisplatin 848 57 45053 LRRC8A 

6 cyclophosphamide 250 47 38720 MICE 

7 dexamethasone 660 41 39221 NAPB 

8 doxorubicin 641 60 40304 CLPTM1' 

9 erlotinib 203 18 5696 CYP2D6 

10 etoposide 365 38 23851 DTNB 

11 fluorouracil 396 52 43583 ATP5J 

12 gemcitabine 311 35 14651 GEM 

13 melphalan 96 21 10362 BROX 

14 methotrexate 191 41 43450 SP2 

15 pemetrexed 92 15 2869 SLC22A8 

16 rapamycin 927 52 35931 MTOR 

17 sorafenib 233 22 6968 FIP1L1 

18 vincristine 221 31 29758 SARM1 
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Table3. Basic information about cancer scenario models 

No. Cancer Type Gene Counts Antineoplastic 

drug Counts 

the number of 

Abstracts 

The most relevant 

Gene 

1 Breast cancer 1777 56 135179 BAX 

2 Cervical cancer 38 8 3485 TIMP2 

3 Colon cancer 68 6 3761 BRAF 

4 Colorectal cancer 103 15 10215 NRP1 

5 Epithelioid sarcoma 985 32 41893 MTOR 

6 Esophageal cancer 598 12 56385 PIK3CA 

7 Glioma 1154 35 80950 ASB1 

8 Head and neck cancer 77 14 9427 BLM 

9 Hepatocellular Carcinoma 

(HCC) 

1328 40 94395 ARF6 

10 Hodgkin lymphoma (HL) 157 15 31503 EFS 

11 Melanoma 560 78 59508 PTN 

12 Non-hodgkin lymphoma 

(NHL) 

151 18 18546 GAN 

13 Non-small cell lung 

cancer (NSCLC) 

1098 27 35523 ERBB3 

14 Ovarian cancer 1441 29 42441 MTOR 

15 Pancreatic cancer 1088 36 88273 BID 

16 Thyroid carcinoma 516 13 65515 TSN 
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