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Abstract 

Deep learning have made great successes in traditional fields like computer vision (CV), 

natural language processing (NLP) and speech processing. Those achievements greatly inspire 

researchers in genomic study and make deep learning in genomics a very hot topic. Convolutional 

neural network (CNN) and recurrent neural network (RNN) are frequently used for genomic 

sequence prediction problems; multiple layer perception (MLP) and auto-encoders (AE) are 

frequently used for genomic profiling data like RNA expression data and gene mutation data. 

Here, we introduce a new neural network architecture, named residual fully-connected neural 

network (RFCN) and demonstrate its advantage for modeling genomic profiling data. We further 

incorporate AutoML algorithms and implement AutoGenome, an end-to-end automated genomic 

deep learning framework. By utilizing the proposed RFCN architectures, automatic hyper-

parameter search and neural architecture search algorithms, AutoGenome can train high-

performance deep learning models for various kinds of genomic profiling data automatically. To 

make researchers better understand the trained models, AutoGenome can assess the feature 

importance and export the most important features for supervised learning tasks, and the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 15, 2019. ; https://doi.org/10.1101/842526doi: bioRxiv preprint 

https://doi.org/10.1101/842526
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 
 

representative latent vectors for unsupervised learning tasks. We envision AutoGenome to become 

a popular tool in genomic studies. 

Keywords: AutoGenome, AutoML, Residual fully-connected neural network, Genomic, 

Deep learning 

 

In the last decades, the emergence of high throughput sequencing technology revolutionized 

the biomedical research and generated tons of omics data. In genomics area, microarray1 and next 

generation DNA-Seq2 are widely used to identify genome-wide copy number variations, single-

nucleotide polymorphism (SNP) and DNA mutations; in epigenomics area, MeDip-Seq3, BS-Seq4 

are used to profile DNA methylations; ChIP-Seq is used to identify chromatin associate proteins5; 

in transcriptomics area, microarray1 and RNA-Seq6 are used to quantify whole RNA expressions 

profile; in proteomics area; LC-MS7 and ICAT8 are used to analyze protein complex and quantify 

proteins; in metabolomics area, MNR9 and mass spectrometry 10 are used to profile metabolic 

markers. Omics data provide comprehensive information at different molecular system levels, and 

have been widely used in biomedical researches11,12, and at the same time numerous 

bioinformatics tools been developed for analyzing omics data.   

Deep learning have been proved to be very effective in areas like computer vision13,14, natural 

language processing15 and speech processing16–18. By leveraging properly designed, deep, stacked 

neural network architecture, low/middle/high level features could be extracted automatically and 

combined together to predict the learning target in an end-to-end fashion. Inspired from the 

achievements of deep learning in the traditional areas, researchers are now actively designing 

neural network architectures for genomic study, which makes deep learning in genomics study a 

very hot topic (Fig 1a). 

Convolutional neural network14 (CNN) and recurrent neural network16 (RNN) are widely 

used neural network architectures. CNN could effectively extract multiple-dimension spatial 

features from 1-D to N-D data14,19,20, and RNN could capture long short-term features21 from time 

series data. By treating the DNA/RNA/protein sequence as image data or sequence data, CNN and 

RNN could then be used to model the genomic sequence problems like variant discovery22, DNA 

motif finding23, sgRNA on-target site prediction24,25, protein-protein-interaction prediction26,27, 

and drug design28–30.  
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However, for non-sequence data like genomic profiling data, where RNA expression value, 

gene mutation status, or gene copy number variations from whole genome are profiled, CNN or 

RNN will be invalid because there are no spatial or temporal relationships in the data. For 

genomic profiling data, the underlying mechanism is the gene regulatory pathway/network: 

several genes interact with (activate or inhibit) each other and compose a structured hieratical 

network to regulate the biological functions31, which is the key to model genomic profiling data 

using deep learning. 

A lot of studies using multiple layer perception (MLP), autoencoders (AE) or variational 

autoencoders (VAE) for supervised or unsupervised tasks of genomic profiling data ( Fig. 1b-c), 

and the researchers observed improvements compared with traditional machine learning 

algorithms32–34. Evidences from deep learning studies in computer vision reveal that network 

depth is crucial important14,35,36. However both MLP and VAE face the problem of vanishing 

gradient37,38, which means they cannot train very deep neural network. Most of the published 

paper in genomics deep learning have less than four hidden layers (Fig. S4a).  

Hyper parameter selection and network architecture selection usually take the researchers a 

big paragraph to discuss, and they are even harder for deep learning beginners. The development 

of automated machine learning (AutoML) aims to remove the gaps and make AI more 

democratize to everyone. Automatic model selection, feature selection, hyper-parameter search 

and neural architecture search are commonly used in AutoML39–43. In genomic area, however, 

most studies are still limited to handcrafted DNN structures and parameter space. 

To address those challenges and facilitate genomic studies with deep learning, we build 

AutoGenome, an end-to-end AutoML framework for genomic study. In AutoGenome, we propose 

residual fully-connected neural network (RFCN) and its variants, and validate their performance 

outperforming MLP and VAE. We further adopt hyper-parameter search and efficient network 

architecture search41 (ENAS) algorithm to AutoGenome, to enable it automatically searching for 

novel neural network architectures. We show that AutoGenome can be easily used to train 

customized deep learning model, evaluate the model performances, and interpret the results for 

genomic profiling data. 
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Residual fully-connected neural network outperform MLP in genomic profiling 

data modeling 

Looking back to the success of deep learning in ImageNet challenge44, we could find that 

increasing network depths plays an important role14,35,36. However, simply increased the network 

depth would cause the problem of gradient vanishing37,38. Residual network was then proposed to 

resolve this problem. Residual network prevent vanishing gradient by adding a short cut at each 

layer which makes the gradient backpropagation smoothly (Fig. 1d). ResNets45, HighwayNets46 

and DenseNets47 are major variants of residual network. Residual network could also strengthen 

the feature propagation and encourage feature reuse.  

To make the residual network also works for genomic profiling data, we propose residual 

fully-connected neural network (RFCN). Different from previous residual networks45,47, which 

utilize convolution layer as basic unit, residual fully-connected neural network employs fully-

connected layer as the basic unit, each layer might connect to the next layer directly (Fig. 2a left, 

Path 1), or through a skip connection (Fig. 2a left, Path 2), or through a branch (Fig. 2a left, Path 

3). The basic fully-connected (FC) unit is shown in Fig. 2a right. The FC unit comprises of a 

sequential of fully-connected layer, batch normalization layer and activation function layer.  

By replacing the CNN unit with FC unit in the standard form of ResNet/DenseNet, we 

propose the RFCN variants: RFCN-ResNet and RFCN-DenseNet (Fig. 2b and 2c). In RFCN-

ResNet, for each FC unit, it takes the summation of the output and input of the previous unit as its 

input (Fig. 2b). In RFCN-DenseNet, for each FC unit, it takes the concatenation of all the outputs 

from previous units as its input (Fig. 2c). To make researchers experience RFCN-ResNet and 

RFCN-DenseNet easily, we implemented the algorithms in AutoGenome, which could be used to 

search for the best RFCN-ResNet/RFCN-DenseNet structures and hyper parameters automatically 

(see Methods). 

To assess the performance of RFCN-ResNet/RFCN-DenseNet, we design experiments on 

two independent datasets and compare the performances with XGBoost48 (A popular machine 

learning algorithm) and AutoKeras39 (A popular AutoML tool). In the first experiment, we use 

gene expression profiles from 8,127 samples, corresponding to 24 tumor types from TCGA49 
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dataset to perform a pan-cancer classification task; somatic mutation profiles from 6,186 TCGA 

samples (24 tumor types) are also used to perform the pan-cancer classification task 

independently. In the second experiment, we use the gene expression profile from 10,000 mouse 

single cells, covering 10 different embryonic developmental stages (downloaded from a public 

dataset50) to perform a classification task. After preprocessing the datasets (Details in Methods), 

we train different models with XGBoost, AutoKeras, RFCN-ResNet and RFCN-DenseNet 

separately and evaluate their performances with an independent test dataset. The results shows that 

for pan-cancer classification task using gene expression profiles, the RFCN-ResNet and RFCN-

DenseNet achieve accuracy of 95.9% and 95.7%, and outperform those obtained by using 

XGBoost and AutoKeras by 4.8% and 4.9%, respectively (Fig. 2c); with only genomic somatic 

mutation profiles, the RFCN-ResNet and RFCN-DenseNet achieve accuracy of 64.1% and 60.1%, 

and outperform XGBoost and AutoKeras by 5.7% and 19.1% (Fig. S1a). In the mouse single cell 

classification experiment, RFCN-ResNet and RFCN-DenseNet achieve accuracy of 95.9% and 

96.5%, and outperform those obtained by using XGBoost and AutoKeras, by 6.1% and 5.5%, 

respectively (Fig. 2d). These results show us that the proposed RFCN-ResNet and RFCN-

DenseNet have significantly better performances than the MLP based architectures (from 

AutoKeras) in genomic profiling data modeling. 

 

Randomly-wired residual fully-connected neural network is a promising 

architecture in genomic research 

According to the definition of ResNet and DenseNet, the skip-connection structures in 

RFCN-ResNet and RFCN-DenseNet are fixed. The neural network architectures are still in a 

hand-crafted manner, which might not be the best choice for various kinds of scientific problems. 

We therefore propose another RFCN variant named randomly-wired residual fully-connected 

neural network (RRFCN), which adopt neural architecture search (NAS) to generate and search 

for the best residual fully-connected neural architecture for any given genomic profiling problems. 

With RRFCN, researchers could search for brand new RFCN architectures for their scientific 

problems.  

There are a lot NAS optimization methods40–43, and we implement the efficient neural 
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architecture search41 (ENAS) algorithm into AutoGenome to search for RRFCN. ENAS could 

greatly accelerate the training efficiency by forcing all the child models to share weights41. The 

RRFCN search space are represented as a single directed acyclic graph (DAG, Fig. 2e 

left).Therefore, a RRFCN architecture can be realized by taking a subgraph from the DAG (the 

subgraph is represented as the red path in Fig. 2e left, and the corresponding architecture is shown 

in Fig. 2e right). The building block for RRFCN is the FC unit illustrated in Fig 2a right, and the 

search space are show in Methods.  

We also assesse the performance of RRFCN on the previous two datasets. For the pan cancer 

study, the RRFCN achieve the best accuracy compared with Xgboost, AutoKeras, RFCN-ResNet, 

RFCN-DenseNet for both gene expression and gene mutation data (the accuracy is 96.3% for 

TCGA gene expression profiles and 68.1% for TCGA somatic mutation profiles, Fig. 2d left, Fig. 

S1a). The best RRFCN architectures from both dataset have six hidden layers and four skip 

connections, but the four skip connections connect differently (Fig. 3a, Fig. S1b); both RRFCN 

architectures are brand new neural network architecture in genomic research. For the mouse single 

cell experiment, the RRFCN achieve an accuracy of 96.3%, ranked the second highest, slightly 

lower than RFCN-ResNet (Fig 2d right), the best RRFCN architecture has seven hidden layers and 

seven skip connections (Fig. S2b), which is also a novel neural network architecture in genomic 

research.  

 

Explain predictions for RFCN models  

A lot researchers believe deep learning models are black boxes51–53, which are difficult to 

explain. To facilitate the researchers to investigate into the deep learning models, we bring a 

popular method called SHapley Additive exPlanations54 (SHAP) into AutoGenome. Given a deep 

learning model, SHAP will calculate the marginal contribution for each feature to the overall 

predictions, which is referred as SHAP value54. AutoGenome could visualize the feature 

importance of each gene to the predicted classes (Fig. 3b, d), or the SHAP values distribution of 

each gene to the predicted classes (Fig. 3c, e; Fig. S3). Those visualizations provide meaningful 

insights toward the deep learning models.  

For the pan-cancer classification task with gene expression profiles, the top important genes 
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for each cancer type are visualized by AutoGenome (Fig. 3b, c; Fig. S3a, b; Supp. Table 1), and a 

lot of literature support are found for the genes in the top list. For example, the top 1 rank gene 

across all 24 cancer types is RPS27 (Fig. 3b), which has been observed highly expressed in 

various human cancers55,56; the pseudogenes PA2G4P4 and H3F3C are reported to be functional 

in many cancers57,58 (Fig. 3b); in cervical and endocervical cancers (CESC), a long non-coding 

RNA gene, MALAT1, ranks top 3 among all 8449 genes (Fig. 3c), and its high expression predicts 

a poor prognosis of cervical cancer59; in lung adenocarcinoma (LUAD), ST3GAL5 ranks top 9 

(Fig. S3a), and this gene participates in modulation of cell proliferation and maintenance of 

fibroblast morphology, and is known to be associated to in situ pulmonary adenocarcinoma60; in 

lung squamous cell carcinoma (LUSC), BMS1P20 ranks top 8 (Fig. S3b), it is known to associate 

with lung cancer61. The full list of top important genes for each cancer type are shown in Supp. 

Table 1, those results offer potential biomarker candidates for cancers. 

We also analyze the top important genes for the somatic-mutation-profile-based pan-cancer 

classification. TP53 and PICK3CA rank top 1 contribution for the prediction of ovarian serous 

cystadenocarcinoma (OV) and breast invasive carcinoma (BRCA) respectively, showing positive 

effect to the model output with positive SHAP values for their mutated status in most samples 

(Fig. S3c-d). It is consistent with TP53 and PICK3CA being most frequently mutated in OV and 

BRCA among the 24 cancer types, with frequency of 87.34% and 32.41% respectively (276 OV 

patients with TP53 mutations vs. 316 total OV patients; 318 BRCA patients with PIK3CA 

mutation vs. 981 total BRCA patients). Both TP53 and PICK3CA mutations are reported to be 

potential diagnostic and prognostic biomarkers for ovarian cancer62 and breast cancer63 

respectively. 

For the single-cell embryonic developmental stage classification task, the top important genes 

for each developmental stage are also visualized by AutoGenome (Fig. 3d-e; Supp. Table 2). A lot 

ribosomal genes are observed in the top list, which is consistent with previous finding that 

ribosome genes play an important role in embryonic development and stem cell 

differentiation64,65. From the gene SHAP value distributions per developmental stage, researchers 

could better understand how the genes contribute to the development stages, for example, the top 

1 rank gene, Rpl35 (Fig. 3d-e), has been reported to be important during early embryogenesis66,67, 

and the Rpl35 SHAP distribution in developmental stage E7.5 (Fig. 3e) shows clearly that high 
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Rpl35 expression value will predict E7.5 and low Rpl35 expression value will not predict E7.5; 

Dppa5a, Tdgf1 are also on the top list and have been reported to regulate early embryonic 

development and pluripotency68–71. By looking into their SHAP distribution in developmental 

stage E7.5 (Fig. 3e), it’s also clear that their low expression will predict E7.5 and their high 

expression will not predict E7.5. The observations are also consistent with another independent 

dataset, where Dppa5a and Tdgf1 have relatively high expression values in E6.0, E6.5 and E7.0 , 

but drop significantly in E7.5 (Fig. 3f, g).  

Residual fully-connected VAE outperform traditional VAE in omics data 

RFCN-ResNet, RFCN-DenseNet and RRFCN implemented in AutoGenome could be used 

for supervised learning tasks like regression or classifications, we also extend RFCN to 

unsupervised learning by proposing a new neural network architecture named residual fully-

connected variational auto-encoder (Res-VAE, Fig. 4a) by adding skip connections to the 

traditional variational auto-encoder72 (VAE) architecture. In traditional VAE architecture (Fig. 

1c), the encoder compress input into latent vectors by decreasing the number of neurons in each 

subsequent layer, the decoder reconstruct the input data from the latent vectors. Res-VAE add 

skip-connections to both the encoder and the decoder, to strengthen the feature propagation and 

encourage feature reuse for each module. By minimize the sum of reconstruction loss and 

Kullback–Leibler divergence (KLD) loss, Res-VAE learns the representative features from the 

data, the representative features are stored in the latent vectors and could be used for further 

analysis73–75.  

To assess the performance of Res-VAE, we design an experiment using a new single-cell 

RNA-seq dataset provided by 10X platform76 and compare the result of Res-VAE with PCA, T-

SNE and VAE (Fig. 4b). In general, the unsupervised learning of PCA, T-SNE, VAE and Res-

VAE are trying to mapping the high dimensional gene expression data (16653 genes in total, see 

Methods) in to a low dimensional space. For fare comparison, the first two dimensions from PCA 

and T-SNE results are visualized in Fig. 4c. For VAE and Res-VAE, the number of latent 

variables are set to 128, which means in the encoder module, the expression value of 16653 genes 

are compressed into 128 variables, T-SNE are then used to map the 128 latent variables into 2 

dimensional space, also shown in Fig. 4c. The color in Fig.4 indicate the cell types, and it’s quite 
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straight forward that Res-VAE results have more clear boundaries between different cell types and 

tight clusters for each cell type. Davies-Bouldin score77 is usually used to measure the clustering 

goodness, and smaller Davies-Bouldin score indicate better clustering. The results showed Res-

VAE have the smallest Davies-Bouldin score, indicating all the cell type clusters are very compact 

(Fig. 4b). 

 

AutoGenome - An AutoML tool for Genomic Research 

Researchers usually encounter a lot challenges in applying deep learning in their research, for 

example “ which deep learning framework shall I use”, “ how to prepare the data”, “ how to 

choose a good model architecture” and “how to set the hyper parameters”. AutoML aim to solve 

these problems by combining many advanced technologies like automated data clean78, automated 

feature engineering79, hyper parameter optimization80 and neural architecture search40–43. Some 

AutoML tools have been developed like AutoKeras, Auto-sklearn, H2O AutoML, but currently 

they are only able to search MLP, CNN or RNN based architectures. 

Here we developed a new AutoML tool called AutoGenome for genomic research, to enable 

researchers to perform end-to-end learning with the best cutting edge neural network architectures 

easily. When a gene matrix data from genomic profiling is provided, for supervised learning tasks, 

AutoGenome could automatically search for the best MLP architectures, the proposed RFCN-

ResNet architectures, RFCN-DenseNet architectures and RRFCN architectures; after 

AutoGenome find the best model, the evaluation confusion matrix is also provided; at last, 

AutoGenome could calculate and visualize the feature importance score and SHAP value 

distributions, which could be used for the researchers to further investigate and explain the 

models(Fig. 5a). For unsupervised learning tasks, AutoGenome could automatically search for the 

best Res-VAE architectures, after AutoGenome find the best model, the latent variable matrix and 

reconstruction matrix are also provided for further analysis (Fig. 5a). 

With AutoGenome, researchers only need to execute five lines of code to perform the whole 

analysis (Fig. 5b). Along with the great convenience, AutoGenome also provide the expert mode 

for sophisticated deep learning researchers, all the parameters in AutoGenome could be manually 

changed by modify configure file, you can even change the hyper parameter search space to your 
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favorite sets, the configure file is well organized in JSON format (Fig. 5b). 

 

Discussion 

Genomic profiling data grows rapidly, and they are very important in biomedical researches. 

Similar to the recent achievements in computer vision, natural language processing and speech 

processing, novel neural network architectures are needed to overcome the challenges in this area. 

Compared with the widely used MLP architecture, the advantages of the RFCN architecture are 

obvious: a. RFCN could be used to train deeper neural network; b. RFCN could strengthen the 

feature propagation and encourage feature reuse; c. RRFCN could be used to generate novel 

RFCN architectures. With AutoGenome, it would be easy for researchers to practice RFCN in 

their research.  

After reviewed several publications in genomic research, we found that most of the published 

MLP based neural network have less than 4 layers (Fig. S4a). We also summarized the depth 

(number of hidden layers) of the best model for RFCN architectures in experiments 1 and 2 (Supp. 

Table 3), the depth of RFCN-ResNet and RRFCN are around 6 to 7, the depth of RFCN-DenseNet 

are around 11, it’s obvious that RFCN architectures tend to train deeper neural networks. We also 

investigate the correlations between the depth of RRFCN and accuracy (Fig. S4b), and found that 

the best accuracy is from the model with the depth around 6 to 7, further increasing the depth 

wouldn’t improve the performance any more. This might be relevant to the complexity of the 

problems as well as the underlying gene regulatory pathway/network.  

In our experiments, RFCN architectures are proved to have better performances than MLP 

architectures, but for the three RFCN variants (RFCN-ResNet, RFCN-DenseNet and RRFCN), the 

performances are similar (Fig. 2d). Compared with RRFCN, RFCN-ResNet and RFCN-DenseNet 

are easier to train and the architectures are easier to understand (Fig. 2a, b, c, e). 

AutoGenome is open source and free available for everyone. Notebook examples are also 

provided to help researchers experience AutoGenome smoothly. 
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Methods 

AutoGenome AutoML tool. AutoGenome is built on Tensorflow81 and implemented as a Python 

package. The parameters required for training are specified in the JSON configuration file. It can 

be saved, revised and loaded to temporary workspace. The JSON configuration file comprises of 

the following modules. 1) Data loader module. User can specify the path to the training, 

evaluation and test data set, or set the number of threads, capacity when loading data. 2) Model 

trainer module. In this module, Users can specify the general training parameters, like batch size, 

number of GPUs utilization, learning rate range, and so on. 3) Loss function module. User can 

specify the loss calculation method. Now we support “cross entropy” for classification task, 

“mean-square error” for regression task, “area under curve” for imbalanced binary classification 

task. 4) Search mode module. There are five mode that can be selected, MLP, FC-ResNet, FC-

DenseNet, ENAS for supervised learning and Res-VAE for unsupervised learning. Each mode 

have different search space and we will discuss in the following context 5) Best model save path 

and reload module. User can specify the path to save the best model for sharing or future re-

loading. 

 

Hyper-parameter search. Hyper-parameter search method refers to previous described 

approach82. The general hyper-parameters in search space are learning rate, total batch size, 

momentum, weight decay, number of layers in neural networks and number of neurons in each 

layers. The specific search space for each mode is follows: 

MLP Search Space. Search space are as followings.1) The number of neuros in each layer, 

default value is [8, 16, 32, 64, 128, 256, 512, 1024]. 3) The drop-out ratio of the first layer 

compared with the input layer, selected from [0.6, 0.8, 1.0] 

RFCN-ResNet Search Space. Search space are as followings. 1) The number of blocks for 

ResNet, default value is [1, 2, 3, 5, 6]. 2) The number of neuros in each layer, default value is [8, 

16, 32, 64, 128, 256, 512]. 3) The drop-out ratio of the first layer compared with the input layer, 

selected from [0.6, 0.8, 1.0] 

RFCN-DenseNet Search Space. Search space are as followings. 1) The blocks structure for 

DenseNet, default value is [[2, 3, 4],[3, 4, 5]]. 2) The growth rate of neuros in each block, default 
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value is [8, 16, 32, 64, 128, 256, 512]. 3) The drop-out ratio of the first layer compared with the 

input layer, selected from [0.6, 0.8, 1.0] 

Res-VAE Search Space. Search space are as followings. 1) The number of layers, selected 

from [3, 4, 5]. 2) The drop-out ratio of the first layer compared with the input layer, selected from 

[0.6, 0.8, 1.0]. 3). The number of neuro in the first layer, selected from [4096, 2048, 1024, 512, 

256, 128]. 4) The neuro number decay ratio of the next layer compared with previous layer, 

selected from [0.8, 0.6, 0.5].  

 

ENAS search. We improve the original ENAS42 methods in two ways to adjust to our framework. 

1) We alter the original convolutional layer into fully-connected layer to adjust the input of 

modeling of genomic data. 2) We combine the output of different layers by concatenation 

operation. The number of layer in this mode should be fixed, default is 6. And the number of 

neuro in the first layer should be set in the JSON file (default is 2048). Search space are as 

followings. 1) The number of neurons in from the 2rd layer to the last layer, selected from [16, 32, 

64, 128, 256, 512, 1024, 2048]. 2) The connection relationship between different layers. 

 

Feature importance estimation. We implement the SHAP54 package into AutoGenome to 

estimate the feature importance. When calling the function “autogenome.explain()”, AutoGenome 

take the best model and raw data as input for the SHAP module, with “GradientExplainer” mode 

specified. SHAP module automatically return the SHAP value of each feature for each sample. 

We also sum the absolute SHAP value of within each class and return the importance score of 

each feature for each class.  

 

Dataset preprocessing. All the dataset utilized in our study are public data. Data is first 

downloaded, followed by preprocessing procedures. AutoGenome automatically split the dataset 

into training, validation and test set with a proportion of 8:1:1. Details procedures of each case 

study are as followings: 

Experiment 1 – Pan-cancer classification. We downloaded gene expression profiles and 

somatic mutation profiles for pan-cancer patients’ tumor samples covering 28 human cancer types 

from The Cancer Genome Atlas (TCGA [https://gdac.broadinstitute.org/]) database. Log2-
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transformed Transcripts Per Million (TPM) was used to represent gene expression values. Somatic 

mutation profiles were extracted from TCGA mutation annotation files and represented by 0 or 1 

indicating a gene is mutated or not in a sample. To avoid misleading classification, we filtered 

cancer types with a precise definition and removed four cancer types e.g. KIPAN, STAD, 

GBMLGG and COADREAD that included overlapped samples to other types, thus remained 24 

cancer types for analysis. Then gene expression values of the 24 cancer types were processed by 

zero-one scaling in a gene-wise manner and input for model building.  

Experiment 2 - Mouse single cell. We utilized a dataset of single cell50 to perform a 

classification task. Expression matrix was downloaded as described in 

https://github.com/MarioniLab/EmbryoTimecourse2018. Due to the sample size is very large 

(more than 100,000 single cell), we randomly selected 10,000 single cell for downstream 

classification. The expression matrix we utilized contains 22018 genes for 10,000 single cells. 

These single cells belong to predefined 10 cell types, each have 1,000 cells. Expression matrix 

was subjected to 0-1 scale within feature before input to AutoGenome. 

 Experiment 3 - 10X PBMC single-cell RNA-seq. The dataset was provided by 10X 

platform76. We downloaded the processed expression matrix and cell labels from 

(https://github.com/ttgump/scDeepCluster/tree/master/scRNA-seq%20data). This expression 

matrix contains 16,653 expressed genes for 4,271 single cells. These single cell belong to 8 pre-

defined cell types, which corresponding to the colors in  3. Expression matrix was subjected to 0-

1 scale within features, before input to AutoGenome. 

 

Reproducing the case studies. We will provide the source code and notebook examples to help 

researchers reproduce the case studies easily. 

 

Xgboost and Autokeras. We select “gbtree” in XGBoost as ‘booster’ to train the model, with the 

following parameters generated from a grid-like searched parameters, ‘objective’ : “multi : 

softmax”, ‘gamma’ : “0.1”, ‘max_depth’ : “6”. We choose “MlpModule” in AutoKeras for 

genomics data modeling, with the parameter “loss = classification_loss” and “metric = Accuracy” 

and searched 10 hours for classification task 
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PCA and T-SNE. “PCA” and “TSNE” function from “sklearn”83 were utilized for unsupervised 

learning for genomic data. After dimensionality reduction, the first two dimensions were utilized 

for further visualization. Then we calculate the pair-wise Euclidean distance of sample in the first 

two dimensions. As the raw data contain golden standard labels, so that we can calculate the 

Davies-Bouldin score to evaluate the performance of dimensionality reduction. “sklearn” was 

utilized to calculate the Davies-Bouldin score. 

 

Data Availability. 

All the data sets utilized in our study are public data. Pan-cancer classification is from TCGA. 

Single-cell classification data is from accessions: Atlas: E-MTAB-6967 and the processed data is 

downloaded following the instructions at https://github.com/MarioniLab/EmbryoTimecourse2018. 

10X PBMC single-cell RNA-Seq was provided by 10X platform and we downloaded the 

processed expression matrix and cell labels from 

(https://github.com/ttgump/scDeepCluster/tree/master/scRNA-seq%20data). 

 

Software Availability. 

We will open the utilization of AutoGenome package to the public upon the acceptance of 

manuscript.  
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Figure Legends 

Figure 1. Introduction to deep learning neural network. a). Publication trends of deep learning 

papers vs. deep learning papers in genomics. Data is from https://apps.webofknowledge.com. b). 

Multiple layer perception (MLP) architecture. Information from previous layer is used as input for 

the next layer. c). Variational autoencoder (VAE) architecture. Encoder compresses raw data into 

latent vectors by decreasing number of neurons in each layer. Decoder reconstructs the raw data 
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from latent vectors. d). Residual convolutional network architecture. Residual network involves 

skip-connections in the neural networks. The basic unit in the network are convolutional layers. 

 

Figure 2. Residual fully-connected neural network (RFCN). a). We introduce fully-connected 

(FC) units into residual network and name it as RFCN. Each FC unit contains sequential layers of 

FC, batch normalization and activation function. We construct three kinds of variants for RFCN - 

b) RFCN-ResNet, c) RFCN-DenseNet and e) randomly-wired residual fully-connected neural 

network (RRFCN). b) In RFCN-ResNet, for each FC unit, it takes the summation of the output 

and input of the former unit as its input. “+” indicates the summation operation. c) In RFCN -

DenseNet, for each FC unit, it takes the concatenation of all the outputs from previous units as its 

input. “C” indicate the concatenation operation. d). Performance of the three variants of RFCN 

compared with traditional methods (XGBoost and AutoKeras) for pan-cancer type classification 

and single-cell stage classification based on gene expression profiles. The y-axis indicates top-1 

classification accuracy. e). In RRFCN, ENAS searches for an optimal subgraph from a large 

directed acyclic graph (DAG) as the final best model. Arrows indicate all the potential 

connections among nodes, while red ones indicate the searched optimal subgraph connections 

(left). A searched optimal subgraph corresponds to a neural network (right). 

 

Figure 3. Feature importance analysis for explaining predictions of RFCN. a). The optimal 

model architecture for pan-cancer classification using gene expression profiles. Top-20 genes 

ranked by feature importance scores from gene expression based cancer type classification for b) 

all cancer types and c) a specified-cancer, cervical and endocervical cancer. Top-20 genes ranked 

by feature importance scores from gene expression based single-cell classification for d) all 

single-cell stages and e) E7.5 stage. e). For E7.5 stage, high- and low-gene expression are 

indicated in purple and blue. Red rectangles indicate marker genes for early embryonic 

development. f). Dppa5a and g). Tdgf1 gene expression from E5.5 to E7.5 stages in Peng et al. 

dataset. 

 

Figure 4. Residually fully-connected VAE. a). Res-VAE compresses the raw data into latent 

vectors in the Encoder process, and reconstructs the raw data from latent vectors in the Decoder 
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process. Skip-connections are involved both in the Encoder and Decoder parts. “C” indicate the 

integration methods of information from different layers is concatenation. b). Within-

distance/Total-distance between single-cell categories using their gene expression profiles for 

comparison of Res-VAE and other three unsupervised machine learning methods. c). 2D 

visualization for single cell categories after processing by Res-VAE and other three methods. 

 

Figure 5. Overview of AutoGenome. a). The process of automatically building a model by 

AutoGenome includes three steps: data input and initialization (left), automatic model selection 

(middle) and model evaluation (right). There are two modes of tasks – supervised and un-

supervised tasks, and five model structures – MLP, RFCN-ResNet, RFCN-DenseNet, RRFCN and 

Res-VAE for selection. B) Input data and codes for accomplishing AutoGenome. AutoGenome 

takes a genomic profiling data matrix and configuration JSON file selecting modes and model 

structures as input, and outputs model accuracy, confusion matrix and feature importance scores 

for explaining predictions. All the processes above takes only five lines of code for AutoGenome. 
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