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Abstract

We have recently developed bioinformatic tools to accurately assign metagenomic
sequence reads to microbial taxa: SPARSE [1] for probabilistic, taxonomic classification of
sequence reads, EToKi [2] for assembling and polishing genomes from short read sequences,
and GrapeTree [3], a graphic visualizer of genetic distances between large numbers of
genomes. Together, these methods support comparative analyses of genomes from ancient
skeletons and modern humans [2,4]. Here we illustrate these capabilities with 784 samples
from historical dental calculus, modern saliva and modern dental plague. The analyses
revealed 1591 microbial species within the oral microbiome. We anticipated that the oral
complexes of Socransky et al. [5] would predominate among taxa whose frequencies
differed by source. However, although some species discriminated between sources, we
could not confirm the existence of the complexes. The results also illustrate further
functionality of our pipelines with two species that are associated with dental caries,
Streptococcus mutans and Streptococcus sobrinus. They were rare in historical dental
calculus but common in modern plaque, and even more common in saliva. Reconstructed
draft genomes of these two species from metagenomic samples in which they were
abundant were combined with modern public genomes to provide a detailed overview of
their core genomic diversity.
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1.Introduction

Multiple research areas have undergone revolutionary changes in the last 10 years due to
broad accessibility to high throughput DNA sequencing at reduced costs. These include the
evolutionary biology of microbial pathogens based on metagenomic sequencing. Studies on
Mycobacterium tuberculosis [6,7], Mycobacterium leprae [8,9], Yersinia pestis [2,10-14] and
Salmonella enterica [4,15,16] have yielded important insights into the history of infectious
diseases by combining modern and historical genomes. In principle, the same approach
might also help to elucidate the evolutionary history of both commensal and pathogenic
taxa within the human oral microbiome. Periodontitis and dental caries have likely afflicted
humans since their origins [17-20]. They may now be amenable to population genetic
analyses because a landmark publication by Adler et al. in 2013 [21] demonstrated that
dental calculus (calcified dental plaque) from the teeth of skeletons that were up to 7500
years old could contain relatively well preserved ancient bacterial DNA. That publication was
based on 16S rRNA sequences, which are not informative about intra-species genetic
diversity. However, subsequent shotgun sequencing from modern and ancient dental
calculus [22-24] has demonstrated that it should be possible to reconstruct genomic
sequences that span millennia of human history from multiple individual species within the
oral microbiome.

Reconstructing evolutionary history from the oral microbiome faces numerous technical
challenges. Our understanding of the historical evolutionary biology of bacterial pathogens
benefitted greatly from existing frameworks for the modern population genomic structure
of those bacteria [25-27]. However, extensive bacterial population genetic analyses are
largely lacking for the modern oral microbiome. The existing literature largely focuses on
taxonomic binning into a traditional subset of 40 cultivatable species from periodontitis
[28], whose sub-species population structure have not yet been adequately addressed at
the genomic level. Instead, most analyses have focused on the “oral complexes”, which
consist of groups of multiple species whose co-occurrence is statistically associated with
periodontitis [5].

A second barrier to reconstructing evolution history are the limits of the currently existing
bioinformatic tools. The genetic diversity of metagenomic sequences is usually classified by
binning the microbial sequence reads into taxonomic units. Taxonomic assignments can be
performed by the de novo assembly of metagenomic reads into MAGs (metagenomic
assembled genomes) [29,30], or by assigning individual sequence reads to existing reference
genomes. However most current metagenomic classifiers rely on the public genomes in
NCBI, whose composition is subject to an extreme sample bias and which represents a
preponderance of genomes from pathogenic bacteria [31]. Furthermore, shotgun
metagenomes often include DNA from environmental sources, which include multiple
micro-organisms that have never been cultivated, and may belong to unknown or poorly
classified microbial taxa whose abundance is not reflected by existing databases. Recent
evaluations have also demonstrated that current taxonomic classifiers either lack sufficient
sensitivity for species-level assignments, or suffer from false positives, and that they
overestimate the number of species in the metagenome [31-33]. Both tendencies are


https://doi.org/10.1101/842542
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/842542; this version posted July 11, 2020. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

4

76  especially problematic for the identification of microbial species which are only present at
77  low-abundance, e. g. detecting pathogens in ancient metagenomic samples.

78  Over the last few years we have developed a series of tools which can facilitate comparative
79  metagenomics of modern and ancient samples. SPARSE, a novel taxonomic classifier for

80 short read sequences in metagenome, was designed to provide accurate taxonomic

81  assignments of metagenomic reads [1]. SPARSE accounts for the existing bias in reference
82  databases [31,34] by sorting all complete genomes of Bacteria, Archaea, Viruses and

83  Protozoa in RefSeq into sequence similarity-based hierarchical clusters with a cut-off of 99%
84  average nucleotide identity (ANI99%). It subsequently extracts a representative subset from
85 those clusters, consisting of one genome per ANI95% cluster because ANI95% is a common
86  cutoff for individual bacterial species [35,36]. SPARSE then assigns metagenomic sequence
87  reads to these clusters by using Minimap2 [37]. However, such alignments are likely to be
88 inaccurate when they are widely dispersed across multiple ANI95% clusters because such
89  wide dispersion reflects either ultra-conserved elements of uncertain specificity or a high

90 probability of homoplasies due to horizontal gene transfer. SPARSE therefore reduces such
91 unreliable alighments by negative weighting of widely dispersed sequences reads. The

92  remaining metagenomic reads are then assigned to unique species-level clusters on the

93  basis of a probabilistic model, and labelled according to the taxonomic labels and

94  pathogenic potential of the genomes within those clusters. Our methodological

95  comparisons demonstrated that SPARSE has greater precision and sensitivity with simulated
96 metagenomic data than 10 other taxonomic classifiers, and yielded more correct

97 identifications of pathogen reads within metagenomes of ancient DNA than five other

98 methods [1]. SPARSE is also suitable for classifying reads from metagenomes from modern
99  samples, and can extract reads from any ANI95% taxon of interest.

100  SPARSE assigns sequence reads to taxa, but does not create genomic assemblies from the
101  selected metagenomic reads. That task is performed by EToKi, a stand-alone package of
102  useful pipelines that are used by EnteroBase [2] for manipulations of 100,000s of microbial
103  genomes. EToKi is used to merge overlapping paired-end reads, remove low quality bases
104  and trim adapter sequences. It then excludes sequence reads with greater sequence

105  similarities to genomes from a related but distinct out-group than to an in-group of

106  genomes from the target taxon of interest. EToKi then masks all nucleotides in an

107  appropriate reference genome, and creates a pseudo-MAG by unmasking nucleotides with
108  sufficient coverage among the reads that have passed the in-group/out-group comparisons.
109  Finally, EToKi can create a SNP matrix from pseudo-MAGs plus additional draft genomes,
110  and generate a Maximum-Likelihood phylogeny (RAXxML 8.2 [38]), which can be visualized
111  together with its metadata in GrapeTree [3].

112  Here we demonstrate the power of this combination of pipelines by examination of the

113  metagenomic diversity of the human oral microbiome from a large number of historical and
114  modern samples from diverse geographic sources. We address the question of which

115  microbial taxa are uniformly present in human saliva, dental plaque and dental calculus, and
116  which are specific to individual niches. We test the associations of oral taxa within the

117  traditional oral complexes, and conclude that their very existence needs re-examination.
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Finally, we examine the population genomic structures of Streptococcus mutans and
Streptococcus sobrinus, which are associated with dental caries in some human populations
[39-41].
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122 2. Results

123 (a) SPARSE analysis of oral metagenomes

124  We identified 17 public archives containing 1,016 sets of metagenomic sequences (table 1)
125  from 791 oral samples from a variety of global sources which had been obtained from

126 modern human saliva, modern human dental plaque or historical dental calculus (electronic
127  supplementary material, table S1). Individual sequence reads from those metagenomes

128  were assigned to taxa with SPARSE. The assignments were made according to an upgraded
129  database of 20,054 genomes of Bacteria, Archaea or Viruses, one genome per ANI95%

130  cluster among 101,680 genomes in the NCBI RefSeq databases in May 2018. Seven

131 metagenomes (ancient dental calculus: 5; modern saliva: 2) lacked bacterial reads from the
132 oral microbiome (electronic supplementary material, table S2). These seven metagenomes
133  were ignored for further analyses, leaving assignments to 1,591 microbial taxa from 1,009
134  metagenomes (784 samples) (table 2). Table S3 in electronic supplementary material

135  reports the percentage assignment of the reads in each sample to each of the 1,591 taxa,
136  except for assignments with a sequence read frequency of <0.0001%, which are reported as
137  0%. Table S3 includes a column identifying assignments to the oral microbial complexes

138  defined by Socransky et al. [5]. SPARSE also identified 152 samples containing Archaea from
139  four species, 214 samples containing at least one of four human viruses and 146 samples
140  containing at least one of 12 bacteriophages (table 3). This dataset may represent the

141  currently broadest sample of the oral microbiome from global sources and over time.

142  (b) Comparisons of microbiomes from saliva, plaque and historical dental calculus
143  We tested whether individual oral taxa were particularly enriched or depleted according to
144  source with multiple quantitative approaches, including UMAP (Uniform Manifold

145  Approximation and Projection), principal component analysis (PCA), and hierarchical

146  clustering.

147  UMARP is a recently described, high performance algorithm for dimensional reduction of
148  diversity within large amounts of data by non-linear multidimensional clustering [42]. A

149  UMAP plot of the taxon abundances in each sample showed three clusters (figure 1A). The
150 three clusters are totally discrete (electronic supplementary material, figure S1A) according
151  to a machine learning approach, optimal k-mean clustering of the first three components
152 from the UMAP analysis). With minor exceptions, the three UMAP clusters were also

153  predominantly associated with source, with one cluster for taxa from modern saliva, a

154  second one for taxa from modern dental calculus and the third for taxa from ancient dental
155  calculus (figure 1A). Similar results were obtained with a classical principal component

156  analysis (PCA), except that the clusters were not as clearly distinguished as with UMAP, and
157  the proportion of exceptions was greater (electronic supplementary material, figure S1B).
158  The assignments of source affiliations to cluster were also largely consistent between UMAP
159  and PCA, with occasional exceptions (electronic supplementary material, figure S1C).

160  For the third approach, we calculated the Euclidean p-distances between each pair of

161  samples, and subjected them to hierarchical clustering by the neighbor-joining algorithm
162  with the results shown in figure 1B. Hierarchical clustering also largely separated the

163  samples by source with only few exceptions. Samples from modern saliva formed one large
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164  cluster. Samples from modern dental plaque formed two related but discrete sub-clusters,
165  one of which included a sub-sub cluster of samples from historical dental calculus. These
166  clusters also largely corresponded to the clusters found by k-mean clustering of UMAP data.

167  Thus, three primary and distinct clusters were consistently identified by three independent
168 methods from the quantitative numbers of reads in individual microbial taxa. The three

169 clusters were largely source-specific for modern saliva, modern plaque and historical dental
170  calculus. This finding predicts that the microbiomes from these three sources contain

171  source-specific taxa.

172 (c) Source-specific taxa

173  We attempted to identify the most important bacterial taxa for the observed clustering by
174  sample source with a second, powerful machine learning approach. A supervised Support
175  Vector Machine (SVM) [43] classification was used to identify the most optimal of 300 SVM
176  model variants, and the 40 most discriminating ANI95% taxa according to that model are
177  shown in figure 2, together with mini-histograms that summarize the relative abundance of
178  sequences by source. As predicted from the discrete clustering described above, multiple
179  taxa were dramatically more prominent in samples from one source than from either of the
180  two other sources. The results also show that the most prominent sample source varied
181  with the taxon (figure 2).

182  Eleven of the 40 most discriminatory taxa belonged to the oral complexes that are

183  associated with periodontitis according to Socransky et al. [5]. Seven species from oral

184  complexes (Veillonella parvula, Fusobacterium nucleatum, Capnocytophaga gingivalis,

185  Streptococcus gordonii, Actinomyces naeslundii, Actinomyces viscosus, and Capnocytophaga
186  sputigena) were most abundant in modern plague and two other species (Streptococcus
187  sanguinis, Tannerella forsythia) were most abundant in historical dental calculus. The yellow
188  complex includes Streptococcus mitis, which encompasses over 50 distinct ANI95% clusters
189  [44]. Two of these ANI95% clusters, designated S. mitis s8897 (ANI95% cluster in electronic
190 supplementary material, table S3; MG_43 in [44]) and S. mitis s126097 (MG_56) were

191  included among the 40 most discriminatory taxa, and each of them was more frequent in
192  saliva than in dental plaque or dental calculus.

193  Seventeen other taxa that were assigned to an oral complex by Socransky et al. [5] are not
194 included in figure 2 because they were not among the 40 most discriminatory taxa. We

195  therefore examined the relative abundances of all 28 taxa from oral complexes in greater
196  detail (figure 3). Three of the four taxa in the Blue and Purple Complexes are very abundant
197  in oral metagenomes, and all four are preferentially found in modern plaque. However, the
198  other oral complexes are heterogeneous in their patterns of relative abundances. For

199  example, within the Red complex, both T. forsythia and Treponema denticola were most
200 frequently found in historical dental calculus but Porphyromonas gingivalis is most frequent
201  in modern plaque, and is generally much less abundant. Similar intra-complex discrepancies
202  were found for the Orange, Yellow, and Green Complexes. These inconsistent frequencies
203 by source raise questions about the consistency of the compositions of those complexes in
204  individual samples
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205 (d) Existence of “oral complexes”?

206  Socransky et al. [5] initially treated the oral complexes as a hypothesis. However, they have
207  now attained the status of accepted wisdom, and even play a prominent role in routine

208 laboratory investigations and treatment of periodontitis. The oral complexes included 28
209  cultivated bacterial species, whose presence or absence was determined by DNA

210  hybridization against a small number of probes. This technology is now outdated; the

211 number of known oral taxa has increased dramatically; and the data presented here are for
212 relative abundance rather than presence or absence. However even after weighting for

213  genome size, we do not find a close correspondence between the frequencies of cells in
214 sub-gingival dental plague measured by Socransky [28] and the results presented here

215  (Supplementary Text). We therefore re-examined the strengths of association with the oral
216  complexes from the data presented here according to similar criteria and similar methods as
217  those used in the Socransky et al. 1998 publication [5].

218  The original assignments to the oral complexes depended strongly on results from

219  hierarchical clustering of the pairwise concordance between species for presence or

220  absence in individual samples. The tree in figure 4 shows neighbor-joining clustering of the
221  common microbial taxa in our dataset by the similarities of their abundances over all

222  samples in our dataset according to SPARSE. This tree contradicts the original composition
223 of the oral complexes: the four areas of the tree where oral complex taxa are clustered each
224  contain representatives from multiple complexes, and none of those four clusters

225  corresponds to the original compositions proposed by Socransky et al. [5].

226 It seemed possible that the discrepancies between figure 4 and the original compositions of
227  the oral complexes might reflect the fact that this study identified many additional taxa,

228  some of which were as common as those used to define the oral complexes (Supplementary
229  Text). We therefore performed cluster analyses of our current data for the original set of 31
230  cultivatable bacterial species examined by Socransky et al. [5]. We compared the neighbor-
231  joining algorithm used here with the less powerful, agglomerative clustering method

232 (UPGMA, Unweighted Pair Group Method with Arithmetic Mean) that had been used by
233 Socransky et al. We also compared the abundances across all samples with abundances in
234  plaque, which was the primary source for bacteria tested by Socransky et al. The results

235  (electronic supplementary material, figure S3) show dramatic inconsistencies between

236  independent trees in regard to the clustering of the oral complex bacteria. For example, T.
237  forsythia, T. denticola and P. gingivalis of the Red Complex cluster together (and also with C.
238  rectus) in electronic supplementary material, figures S3A,C,F,G. However, T. denticola and T.
239  forsythia are separated from P. gingivalis in the four other graphs in electronic

240  supplementary material, figure S3. And none of the three cluster together with each other
241  in electronic supplementary material, figure S3E. Similar, or even greater, discrepancies are
242  visible for the other oral complexes in electronic supplementary material, figure S3.

243 Inconsistencies in clustering patterns across minor differences in sampling and clustering
244  algorithms raise severe doubts about the very existence of the oral complexes as defined by
245  Socransky et al. [5].
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246  (e) Numbers of taxa per source

247  The rarefaction curves in figure 5A provide a breakdown of taxa by sample source as

248  additional samples are tested. SPARSE detected 1591 microbial taxa over all 784

249  metagenomic samples: 1,389 from modern saliva; 842 from modern plague and 696 from
250 historical calculus. These estimates will increase as additional samples are added, but at
251  increasingly slower rates because the rarefaction curves seem to be reaching a plateau,
252  except for historical dental calculus where the fewest samples have been evaluated until
253 now.

254  The median numbers of taxa per sample range from 177 (historical dental calculus) to 288
255  (modern saliva), and were much smaller than the total numbers. These median values
256  reflect a bimodal distribution for numbers of taxa per sample (figure 5B), wherein a few
257  samples had jackpots of large numbers of taxa but all other samples had only few.

258  The analyses described above focused on differences in taxon composition by source.

259  However, the Venn diagram in figure 5C shows that 447 taxa were common to all three

260  sources, even if their relative abundances varied. Modern plaque yielded only 34 taxa which
261  were not found in either historical dental calculus or modern saliva. More source-specific
262  taxa were found in historical dental calculus, which may possibly reflect some

263  contamination with environmental material. Alternatively, some taxa may be absent in

264  modern dental plaque because historical lineages have become extinct [4]. Saliva yielded
265 504 unique taxa, some of which might be transient, and do not persist long enough to be
266  incorporated into plaque.

267 (f) Population genomics of organisms associated with dental caries

268  The microbiome associated with early stages of dental caries is an unresolved topic that
269  remains under active investigation [40,45-47]. However, it is generally accepted that

270  Streptococcus mutans and Streptococcus sobrinus are routinely associated with caries [48].
271 Our data confirm that reads belonging to these two taxa are abundant in modern dental
272 plaque, and also show that they are even more abundant in modern saliva (figure 6A,C).
273  However, there was no significant correlation between the relative frequencies of these
274  species across multiple metagenomes (electronic supplementary material, figure S9). Prior
275  analyses based on 16S RNA OTUs indicated that S. mutans was extremely rare in historical
276  dental calculus, and argued that this increase was caused by the introduction of high levels
277  of sugar to human diets in industrialized societies in the last 200 years [21]. Our data show
278  that S. sobrinus was undetectable in historical samples (frequency of <0.0001% of reads or
279 <10 reads per metagenome) (figure 6C). S. mutans was also undetectable in most of these
280  samples, but up to 0.04% of all reads in 10 historical samples spanning the last 1500 years
281  were assigned to S. mutans (figure 6A), in accordance with archaeological findings that

282  dental caries has been common in multiple eras over the last 10,000 years [17]. The few
283  reads from historical samples that were assigned to S. mutans showed increased

284  deamination at their 5’-ends when tested by MapDamage?2 [49] (electronic supplementary
285  material, figure S4), confirming that they were truly from ancient DNA.

286  We exploited the high frequency of sequence reads from these two Streptococcus species in
287  modern dental plaque and saliva to illustrate how SPARSE and EToKi can be used to extract
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288  pseudo-MAGs from metagenomic sequence reads, and combine them with genomes

289  sequenced from cultivated bacteria (Methods). These procedures resulted in a total of 31
290  pseudo-MAGs for S. mutans and 15 pseudo-MAGs for S. sobrinus in which over 70% of the
291  reference genome had been unmasked (figures 6E,F, electronic supplementary material,
292  table S6). Most of these pseudo-MAGs were from Chinese samples [50]. The pseudo-MAGs
293  were combined with genomes from cultivated bacteria of the same species from Brazil, the
294  U.S. and the U.K. as well as other countries (table 2) and Maximum Likelihood (ML)

295  phylogenies of non-repetitive SNPs (figure 7) were created with EToKi (Methods).

296  The ML phylogenies of the two species showed interesting differences. All 13 Chinese

297  pseudo-MAGs clustered together within the S. sobrinus ML tree (figure 7B), whereas almost
298  all the other 44 bacterial genomes from Brazil and elsewhere clustered distantly. In contrast,
299 inthe S. mutans tree (figure 7A), 20 Chinese pseudo-MAGs did not show any obvious

300 phylogeographic specificities, and were inter-dispersed among 196 bacterial genomes from
301  multiple geographic locations. Similar conclusions about a lack of phylogeographic

302  specificity were previously reached by Cornejo et al. [51] on a subset of 57 of these S.

303  mutans genomes.

304 3. Discussion

305 Several years ago, we accidentally became interested in comparing historical and modern
306 genomes reconstructed from metagenomic short read sequences with draft genomes

307 assembled from high throughput sequencing of cultivated bacteria. Our initial efforts

308 involved the deployment of individual bioinformatic tools, comparisons of multiple publicly
309 available algorithms, and compilation of draft genomes from publicly available sequence
310 read archives of short read sequences [7]. In parallel, we were also involved in developing
311  EnteroBase, a compendium of 100,000s of draft genome assemblies from multiple genera
312  that can cause enteric diseases in humans, including Salmonella [2,27]. These two projects
313  were synergistic for elucidating the evolutionary history of Salmonella enterica based on
314 metagenomic sequences from 800-year old bones, teeth and dental calculus [4]. In that
315 case, sequence reads from S. enterica were found in teeth and bone, but not in dental

316  calculus. Our attempts to examine further samples of dental calculus quickly demonstrated
317 that optimized pipelines were needed because manual analyses were too time-intensive.
318 However, none of the existing tools were both reliable and sufficiently sensitive for

319  assigning sequence reads from historical metagenomes to the tree of microbial life. We
320 therefore took a step back, and developed SPARSE [1] to satisfy our requirements. SPARSE
321  replaces the current reference databases, which are strongly biased to multiple, closely
322 related genomes from bacterial pathogens, by a representative subset consisting of one
323 genome per ANI95% hierarchical cluster within RefSeq, and assigns sequence reads to these
324  clusters using a probabilistic model. That model penalizes non-specific mappings of reads,
325 and hence reduces false-positive assignments. SPARSE was more reliable than multiple

326  other taxonomic classifiers, and both more sensitive and more reliable for identifying low
327 numbers of reads from ancient metagenomes than multiple other pipelines [1]. In parallel,
328 we expanded the capacities of EToKi [2], an efficient backend pipeline for genomic

329 manipulations, such that it can accurately identify individual sequence reads sieved through
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330 SPARSE that are more similar to an in-group of reference genomes from the target species
331 than to an out-group of genomes from a closely related, but distinct taxon. Those reads are
332  then used to unmask nucleotides in a reference genome and generate a pseudo-MAG for
333  SNP-based maximum likelihood phylogenies. Finally, we developed GrapeTree [3], which
334 facilitates the graphic visualization and manipulation of phylogenetic trees based on large
335 numbers of genomes. Here we demonstrate how to combine all three tools in order to

336  obtain an overview of the microbial flora in samples from human oral saliva, modern dental
337 plaque and historical dental calculus. We also reconstructed genomes of two taxa present at
338 moderate concentrations within the oral microbiome, and compare them with conventional
339 draft genomes. The experimental procedures for processing 1016 metagenomes consisted
340 of running SPARSE in the background for 2 months (~100,000 CPU hours). The pipelines

341  described here permitted all other procedures and evaluations described here to be

342  completed in less than two weeks.

343  Our traditional understanding of oral ecology is largely based on taxonomic assignments of
344  cultivatable bacteria, often performed by checkboard DNA-DNA hybridization [28].

345  Currently, 756 species have been cultivated from the human oral cavity and respiratory tract
346  [52]. A subset of 40 are used for checkboard DNA-DNA hybridization [28], of which 28 were
347 used to define the oral complexes that were thought to be of importance for periodontitis
348  [5]. Our comparisons of those data with the results from the metagenomic analyses

349 presented here shows that the frequencies of individual taxa determined by the

350 checkerboard assay were inconsistent with the frequencies determined by our

351 metagenomic analyses (electronic supplementary material, figures S5 and S6). The

352  checkerboard assays also lacked 17 common taxa from dental plaque and dental calculus
353  that were found by metagenomic analyses. These results are not unexpected because our
354  metagenomic analyses included saliva samples as well as ancient dental calculus, and

355 identified 1591 taxa, many of which have not been cultivated. Furthermore, it is now well
356 established that the frequencies of certain supposed members of the oral complexes differ
357  very dramatically with geographical source [53]. However, we had anticipated that we might
358  be able to expand the compositions of the oral complexes to include previously uncultivated
359  organisms. Instead, we were unable to reliably identify their very existence (figure 4)

360  because clustering of taxa was affected by minor changes in choice of samples and choice of
361  clustering algorithm (electronic supplementary material, figure S3). We therefore conclude
362 that the existence and composition of the oral complexes needs independent verification by
363  modern techniques and new samples.

364  The data presented here provide an unprecedented comparative overview of the relative
365 proportions of the predominant taxa in public available metagenomes from the modern and
366  historical oral microbiome. Figure 2 identifies 15 taxa, which are particularly common in

367 historical calculus, 13 others that are preferentially found in modern dental plaque and 11
368 that seem to be specific for saliva. These associations with a particular source in the oral

369  cavity might be used to identify currently undefined ecological complexes of oral taxa that
370  share a common niche. However, species-level OTUs are likely to be conglomerates of

371  multiple microbial populations, each of which may inhabit a somewhat different ecology.
372  For some organisms such as Salmonella or Escherichia, efforts are currently underway to
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373  develop hierarchical clustering of such populations in order to categorize their ecological
374  and pathogenic differentiation [2]. A step in this direction for the oral microbiome is the
375  recognition of ANI95% clusters s8897 and s126097, both of which were preferentially found
376  insaliva. A large study of all streptococci [44] identified multiple other ANI95% clusters

377  within S. mitis but their preferential location in the oral cavity have not yet been addressed.
378 Indeed, little is yet known about the sub-species population structure of almost all of the
379 taxaidentified here.

380  Our more detailed investigation of S. mutans and S. sobrinus may represent a forerunner of
381  future studies on sub-species ecological differences within the oral microbiome. S. mutans
382 and S. sobrinus are commonly associated with dental caries, and may play a causal role in
383 that disease [48]. However, once again these taxa were more common in saliva than in

384  dental plaque (figure 6). We chose S. mutans and S. sobrinus for more detailed analysis

385  because sufficient reads were found in multiple metagenomes from modern samples to
386 allow the partial reconstruction of multiple genome sequences (pseudo-MAGs). In addition,
387  multiple draft genomes from cultivated bacteria existed in the public domain which were
388  available for genomic comparisons. We were also intrigued by the claim that S. mutans was
389 rarein historical plaque [21]. Our data support that claim, and we found only few historical
390 samples of dental calculus that contained any reads of S. mutans, and none with S. sobrinus.
391  Our data also support prior conclusions of a lack of phylogeographic differentiation within S.
392  mutans [51]. However, although the data are still somewhat limited, S. sobrinus from China
393  tend to cluster distinctly from genomes from Brazil (figure 7). Distinct clustering might

394 reflect phylogeographical signals but other causes of clustering cannot currently be

395 excluded because the Chinese genomes were pseudo-MAGs reconstructed from

396 metagenomes from dental plaque and saliva while the Brazil genomes were from bacteria
397  cultivated from dental plaque. Additional genomes of S. sobrinus from other geographical
398 areas would be needed to determine whether the apparent phylogeographical trends are
399  robust. Such analyses could also be facilitated by creating an EnteroBase for Streptococcus,
400  which could be done relatively easily [44] if there were interested curators and sufficient
401 interest in the Streptococcus community.

402 Insummary, we illustrate the use of a variety of reliable, high throughput tools for

403  determining microbial diversity within metagenomic data, and for extracting microbial
404  genomes from metagenomes. We illustrate these tools with metagenomes from both
405 modern and historical samples, and release all the data and methods for further use by
406  others.

407
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408 4. Methods

409 (a) SPARSE database update

410 Inits original incarnation in August 2017 [1], SPARSE used MASH [54] to assign 101,680

411  genomes from the NCBI RefSeq database to 28,732 ANI99% clusters of genomes. By May
412 2018, 21,540 additional genomes had been added to NCBI RefSeq. These were merged into
413  the existing database in the same manner as previously, by merging that genome into an
414  existing ANI99% cluster or by creating a new cluster containing one genome if the ANI to all
415  existing clusters was less than 99%. An ANI99% representative microbial database was

416  generated which contained one representative genome for each of the 32,378 ANI99%

417  clusters containing Bacteria, Archaea or Viruses plus a human reference genome (Genome
418  Reference Consortium Human Build 38) such that reads from human DNA could also be
419 called. All the representative genomes were assigned to a superset of 20,054 ANI95%

420  clusters, and this was used for species assignments and genomic extractions as described
421 [1].

422 (b) SPARSE analyses.

423  ‘EToKi prepare’ was used to collapse paired-end reads and trim all sequence reads.

424  Subsequent SPARSE analyses were performed on all the metagenomes in table 1 and

425  additional metagenomes in electronic supplementary material, figure S7 as described in the
426  SPARSE manual (https://sparse.readthedocs.io/en/latest/). The first step was ‘SPARSE

427  predict’, which identifies ANI95% groups containing >10 specific reads. Subsequently,

428  ‘SPARSE report --low 0.0001’ was used to assign taxon designations to the ANI95% groups,
429  and produce a table of all metagenome results (electronic supplementary material, table S3)
430  which lists distinct taxa for each metagenome that accounted for >0.0001% of all its reads.
431  Table S3 also includes the designations of oral complexes and other known pathogens

432 according to a manually curated dictionary. Sequence reads were extracted from the

433  metagenomes for assembling pseudo-MAGs with ‘SPARSE extract’.

434  For electronic supplementary material, figures S5-S8, the taxonomic assignments were
435  inversely weighted by genome size in order to render them comparable to DNA-DNA

436  Checkerboard data and output from Metaphlan2, which calculate cell counts. To this end,
437  the number of metagenomic reads assigned to each species within a metagenome was
438  divided by the genome size of the SPARSE reference genome for that species. These data
439  were then expressed as a proportion of the summed data for all microbial species within
440  that metagenome.

441  (c) Metagenomes lacking reads from the oral microbiome.

442  We tested all metagenomes to identify any that might be grossly contaminated by collating
443  the fifty most abundant microbial species over all metagenomes (electronic supplementary
444  material, table S4A). The percentage of reads in these 50 taxa was summed for each

445  metagenome, and expressed as a percentage of all microbial reads. Seven metagenomes
446  (ancient dental calculus: 5; modern saliva: 2; electronic supplementary material, table S2)
447  were excluded because the percentages of those top oral microbes constituted < 15% of
448  their total microbial reads.
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449  (d) Dimension reduction of frequencies of reads.

450 Two forms of dimensional reduction of diversity were used to detect source-specific

451  clustering within the SPARSE results. UMAP analysis was performed with its Python

452  implementation [42], using the parameters min_neighbors=5 and min_dist=0.0. PCA was
453  performed using the decomposition.PCA module of the scikit-learn Python library [55].
454  Optimal k-mean clusters of the first three components from the UMAP analysis were
455  calculated with the sklearn.cluster module of the scikit-learn Python library.

456  (e) Ranking of microbial species by their associations with source.

457  Microbial species were ranked by their weighting according to a Support Vector Machine
458  (SVM) classification [43]. A supervised SVM classification of samples was performed using
459  the SVM module of the scikit-learn Python library on the raw SPARSE results (electronic

460 supplementary material, table S3). The SVM classification was performed 300 times on a
461 randomly chosen training set consisting of 60% of all samples with varying penalty hyper-
462  parameter C, and scored using 5-fold cross-validation. The model was then tested with the
463  optimal hyper-parameter from all runs on the remaining 40% of samples, and correctly

464  inferred the oral source for >96% of the test samples. The optimal SVM coefficients for each
465 individual species were estimated by training that model once again on all the oral samples.
466  The order of the species in figure 2 consists of the SVM weights (squares of the coefficients;
467  [56]) in descending order. The Python scripts described in sections d and e, as well as their
468  outputs are freely accessible online as Dataset S3 in

469  https://github.com/zheminzhou/OralMicrobiome.

470 (f) Genome reconstructions for Streptococcus mutans and Streptococcus sobrinus
471  SPARSE identified samples in which the metagenomic sequence reads covered at least 2MB
472  of the reference genome for S. mutans (ANI95% cluster s5; 66 samples) or S. sobrinus

473  (s3465; 28 samples) (figures 4B,D). The cleaned, species-specific reads generated from these
474  samples as in Methods b were processed with the standalone version of EToKi as described
475  infigure S6 of Zhou et al. 2020 [2] and in greater detail in the online manual

476  (https://github.com/zheminzhou/EToKi). EToKi assemble was then used to identify genome-
477  specific reads after specifying a reference genome, an in-group of related genomes, and a
478  related but distinct out-group of other genomes. For S. mutans the reference genome was
479  UA159 (accession code GCF_000007465), the in-group was 194 other S. mutans genomes in
480 RefSeq (electronic supplementary material, table S5) and the outgroup was 62 genomes
481  from other species in the Mutans Streptococcus group according to Zhou and Achtman,

482 2020 [44]. For S. sobrinus the reference genome was NCTC12279 (accession code

483  GCF_900475395), the ingroup was 45 other S. sobrinus genomes and the outgroup was 211
484  genomes from other Mutans streptococci (electronic supplementary material, table S5). The
485  assemble module replaces nucleotides in the reference genome by their calculated SNVs
486  after checking that they are supported by at least 70% of at least 3 metagenomic reads, and
487  that the supporting read frequencies are at least one-third of the average read depth. The
488  resulting pseudo-MAGs are listed in electronic supplementary material, table S6 and are
489  freely accessible online as Datasets S1 and S2 in

490  https://github.com/zheminzhou/OralMicrobiome.
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491  ‘EToKi align’ was used to create an alighment of non-repetitive SNPs from 31 S. mutans

492  pseudo-MAGs plus all 195 S. mutans genomes plus the sole S. troglodytae genome in RefSeq
493  (electronic supplementary material, table S5). The alignments spanned 1.73 MB that were
494  shared by 2 95% of the genomes, and covered 181,321 core SNPs. Similarly, an alignment of
495 15 S. sobrinus MAGs, 46 draft or complete S. sobrinus genomes plus 6 genomes of

496  Streptococcus downei from RefSeq spanned 1.16 MB and contained 160,863 core SNPs.

497  These alignments were subjected to Maximum Likelihood phylogeny reconstruction by

498  EToKi phylo. Both ML trees were then visualised with GrapeTree [3].

499 (g) DNA damage patterns for ancient S. mutans reads

500 SPARSE assigned low numbers of sequence reads to S. mutans in 10 metagenomes from
501 ancient dental calculus (figure 6, electronic supplementary material, table S3). In order to
502  assess their authenticity, these reads were assessed with MapDamage2 [49]for patterns of
503  cytosine deamination that are characteristic of authentic ancient DNA. To this end, all S.
504  mutans-specific reads were extracted with SPARSE. They were aligned to the S. mutans

505 reference genome UA159 with Minimap2 [37], and reads which were >95% identical with
506 the reference genome were used to create BAM alignments. SouthAfr2 contained 11

507 specific reads according to SPARSE, but only eight survived this filtering step. SouthAfr2 was
508 therefore excluded from further analyses because these were too few reads to provide

509 reliable analyses. The BAM alignments from the remaining nine metagenomes consist of
510  both fully aligned reads (46-72%) and others which were “soft-clipped”, i.e. terminal bases
511  were not aligned to the reference genome. In order to ensure that these soft-clipped reads
512  were also specific, we compared the alignment scores for all reads against UA159 with the
513  alignments scores against the 62 outgroup genomes in Mutans Streptococci (electronic

514  supplementary material, table S5), and found that the scores with UA159 were highest. We
515 also tested the alignment scores against two other S. mutans genomes (SA38,

516  [GCF_000339615]; 4VF1 [GCF_000339215]; electronic supplementary material, table S5),
517  but neither yielded higher alignment scores than UA159. The outputs from MapDamage2
518 show the soft-clipping ends by a yellow line (electronic supplementary material, figures S4A-
519 D).

520
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521 Data availability

522  The pseudo-MAGs reconstructed from metagenomes for S. mutans and S. sobrinus are

523  freely accessible in tar.gz files containing Datasets S1 and Dataset S2 at

524  https://github.com/zheminzhou/OralMicrobiome, respectively. Python scripts that were
525  used to prepare data for figures 1-5 and S1-S3 are available as Dataset S3 in the same

526  repository. The taxonomic profiling by SPARSE of all 784 metagenomes is available in

527  electronic supplementary material, table S3. Interactive versions of Figure 7 are available at
528  http://enterobase.warwick.ac.uk/a/42277 (figure 7A) and

529  http://enterobase.warwick.ac.uk/a/42279 (figure 7B)

530  Authors’ contributions. Z.Z. analysed data and prepared the figures. M.A. and Z.Z.
531 interpreted the results and wrote the manuscript.
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Archive Accession Sets of Number Source Institute Citation
short of.
reads samples

1 PRJNA445215 62 48 ancient calculus | Max Planck Institute for the Science of Human History | [57]
2 PRJEB30331, PRINA454196 45 44 ancient calculus | University of Oxford [24]
3 PRJNA216965 9 2 ancient calculus | University of Oklahoma [22]
4 PRINA383868 87 87 plaque J. Craig Venter Institute [58]
5 PRINA255922 48 48 plaque University of California, Los Angeles [59]
6 PRINA78025 7 4 plaque University of Maryland [60]
7 PRINA289925 1 1 plague University of Washington [61]
8 PRJEB6997 298 298 plague & saliva BGlI [50]
9 PRINA230363 12 12 plaque & saliva Chinese Academy of Sciences [62]
10 PRJEB24090 61 61 saliva University of California San Diego [63]
11 PRINA380727 56 55 saliva Peking University School of Stomatology
12 PRINA396840 30 30 saliva University of Copenhagen [64]
13 PRJEB14383 28 28 saliva University College London [65]
14 PRJDB4115 26 26 saliva University of Tokyo [66]
15 PRINA217052 217 18 saliva Broad Institute [67]
16 PRJNA188481 8 8 saliva Broad Institute [68]

http://dx.doi.org/10.4225/5 21 21 ancient calculus | OAGR, University of Adelaide [69]
17 5/584775546a409

Table 1. Sources of metagenomic reads.

Note: Ancient calculus refers to ancient dental calculus from historical samples. Plaque and saliva refer to modern dental plaque and saliva.

Sets of short reads were downloaded from GenBank except for Archive 17, which was downloaded from the Online Ancient Genome Repository.

Seven metagenomes (electronic supplementary material, table S2), (Archive 11:2; Archive 17: 5) were excluded from further analyses because

they contained too few reads from common microbial taxa in the oral microbiome.
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Table 2. Sources of genomes from cultivated bacteria and metagenomic samples.

Category Sub-category Number
Bacterial genomes 262
S. mutans 195
S. sobrinus 50
others 17
Metagenome source 784
Ancient dental calculus 110
Modern plaque 287
Modern saliva 387

Metagenome size (nucleotides)
0-2GB 343
2-4GB 129
4-6GB 162
6-8GB 93
8-10GB 45
>10GB 12

Country

Asia 442
China 375
Japan 32
Philippines 28
Others 7
North America 159
U.S.A. 157
Guadeloupe 2
Europe 166
U.K. 75
Ireland 36
Denmark 31
Others 24
Oceania 111
Australia 92
Fiji 18
Papua New Guinea 1
Africa 9
South Africa 6
Sudan 2
Sierra Leone 1

Additional details can be found in electronic supplementary material, table S1.
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Table 3. Detailed summary of Archaea and Viruses in all 786 samples.

No. ancient Percent | No. plaque | Percent | No.saliva | Percent

Taxonomy samples (110) | of reads (287) of reads (387) of reads
Host (Human) 110 0.32 243 9.12 335 7.05
Archaea (4) 81 1.78 26 2E-4 45 1E-4
Methanobrevibacter oralis 79 1.76 26 2E-4 43 1E-4
Methanobrevibacter smithii 1 3E-5 2 2E-6

Candidatus Nitrosoarchaeum koreensis 1 1E-5 0
Thermoplasmatales archaeon BRNA1 1 7E-6 0

Human viruses (4) 0 25 3E-4 189 4E-3
Human betaherpesvirus 7 0 8 9E-6 150 6E-4
Human gammaherpesvirus 4 0 16 3E-4 86 3E-3
Human alphaherpesvirus 1 0 1 5E-6 9 8E-5
Human betaherpesvirus 6B 0 7 2E-5
Bacteriophages (12) 3 1E-5 26 3E-5 117 2E-4
Streptococcus EJ-1 0 14 1E-5 56 8E-5
Streptococcus SM1 2 5E-6 11 1E-5 41 3E-5
Streptococcus SpSL1 0 0 9 2E-5
Streptococcus Dp-1 0 0 7 2E-5
Streptococcus DT1 0 0 7 2E-5
Streptococcus PH10 1 6E-6 2 3E-6 7 6E-6
Klebsiella KP15 0 0 6 6E-6
Lactococcus rit 0 0 6 4E-6
Streptococcus YMC-2011 0 0 4 1E-5
Propionibacterium PHLO60L00 0 0 2 2E-6
Propionibacterium PHL179 0 0 1 2E-6
Propionibacterium PAD20 0 0 1 2E-6

No. refers to the numbers of samples after combining metagenomes from a common sample.
Percentage of reads refers to the percentage of all reads attributed to a taxon in all the metagenomes
from that sample.
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Figure 1. Source specificity of the percentage of species composition in 784 oral metagenomes
according to SPARSE. (A) X-Y plot of the first three components from a UMAP (Uniform
Manifold Approximation and Projection) [42] dimensional reduction of taxon abundances. (B)
Neighbour-joining (FastMe2; [70]) hierarchical clustering based on the Euclidean distances
between pairs of metagenomes. Euclidean p-distances were calculated between each pair as
the square root of the sum of the squared pairwise differences in the percentage of reads
assigned by SPARSE to each microbial taxon. Nodes whose cluster location was inconsistent
with the UMAP clustering in part A are highlighted with black perimeters. Tree visualization:
GrapeTree [3].
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Figure 2. Average percentage abundance (left axis) of bacterial species by source for the 40
most discriminating species according to Support Vector Machine analysis. The relative
abundances for each of the three sources are indicated by mini-histograms for each species;
error bars indicate standard deviations. Species are sorted in descending order by predominant
source and then by SVM weight (squared coefficient) in the optimal model. Species belonging
to oral complexes are indicated by oral-complex-specific shapes and colours. Key legend:
Source colours used in the mini-histograms and symbol for SVM weight. *species designations
assigned by RefSeq to single genomes which have not (yet) been confirmed by taxonomists. S.
mitis is separated into multiple ANI95% clusters, two of which (s8897; s126097 [electronic
supplementary material, table S3]) are among the predominant taxa associated with saliva.
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Figure 3. Average percentage abundances in 784 metagenomes by oral source (key legend) of
28 species from six oral complexes described by Socransky et al. [5]. The oral sources are
indicated by three mini-histogram bars for each species. Species are ordered from left to right
by oral complex, whose colours designation is indicated at the top. Within each oral complex,
the species order is by decreasing total abundance.
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Figure 4. Neighbour-joining (FastMe2; [70]) hierarchical clustering based on the Euclidean
distances between pairs of 245 microbial species whose percentage abundance was >2% in at
least one metagenome. Members of the six oral complexes [5] are highlighted by coloured
species names, whose colours indicate their oral complex membership. These species do not
cluster by oral complex, but by other unnamed groupings, four or which are highlighted in gray.
An expanded version of the same tree including all species labels is available in electronic
supplementary material, figure S2. Branch length distance scale bar is next to the distance of
0.1.
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Figure 5. Numbers of microbial taxa by source. A). Rarefaction curves of numbers of species by
source, with 95% confidence estimates (shadow). Inset data indicates median numbers of
species per sample by source, as well as the total numbers for all sources. Rarefactions were
performed with the program script called SPARSE_curve.py, using 1000 randomized
permutations of the order of samples. B). Binned histograms of number of species by
percentage of samples. The data for this plot was also calculated with SPARSE_curve.py. C)
Venn diagram of overlapping presence of taxa (20.0001% abundance) for the three oral
sources.
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Figure 6. Reconstruction of pseudo-MAGs (metagenomic assembled genomes) of S. mutans and
S. sobrinus from oral metagenomes. (A, C) Numbers of oral samples by source binned by the
percentage of reads specific to S. mutans (A) and S. sobrinus (C). (B, D) Numbers of oral samples
by source with an average coverage of at least 1x. The data are binned by the predicted read
coverage against a reference genome of S. mutans (UA159) (B) and S. sobrinus (NCTC12279)
(D). (E, F) Read coverage (Dots; left) and percentage of the reference genome that was
unmasked (23 reads; 270% consistency) (Histogram; right) in S. mutans (E) and S. sobrinus (F).
Ordered by decreasing coverage.
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Figure 7. Maximum Likelihood phylogenies of S. mutans and S. sobrinus genomes. (A) A RaxML
[38] tree of 226 genomes of S. mutans (RefSeq: 195; pseudo-MAGs: 31) plus one genome of S.
troglodytae as an outgroup. The tree was based on 181,321 non-repetitive SNPs in 1.73 Mb. (B)
A RaxML tree of 61 genomes of S. sobrinus (RefSeq: 46; pseudo-MAGs: 15) plus six S. downei
genomes as an outgroup. The tree was based on 160,863 non-repetitive SNPs in 1.13 Mb.
Pseudo-MAGs are highlighted by thick black perimeters. Visualisation with GrapeTree [3].
Branches with a genetic distance of >0.1 were shortened for clarity, and are shown as dashed
lines. Legend: Numbers of strains by country of origin for both trees.
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