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Abstract 
If the brain processes incoming data efficiently, information should degrade little between early 
and later neural processing stages, and so information in early stages should match behavioral 
performance. For instance, if there is enough information in a visual cortical area to determine 
the orientation of a grating to within 1 degree, and the code is simple enough to be read out by 
downstream circuits, then animals should be able to achieve that performance behaviourally. 
Despite over 30 years of research, it is still not known how efficient the brain is. For tasks 
involving a large number of neurons, the amount of information encoded by neural circuits is 
limited by differential correlations. Therefore, determining how much information is encoded 
requires quantifying the strength of differential correlations. Detecting them, however, is 
difficult. We report here a new method, which requires on the order of 100s of neurons and 
trials. This method relies on computing the alignment of the neural stimulus encoding direction, 
f′, with the eigenvectors of the noise covariance matrix, Σ. In the presence of strong differential 
correlations, f′ must be spanned by a small number of the eigenvectors with largest eigenvalues. 
Using simulations with a leaky-integrate-and-fire neuron model of the LGN-V1 circuit, we 
confirmed that this method can indeed detect differential correlations consistent with those that 
would limit orientation discrimination thresholds to 0.5-3 degrees. We applied this technique 
to V1 recordings in awake monkeys and found signatures of differential correlations, consistent 
with a discrimination threshold of 0.47-1.20 degrees, which is not far from typical 
discrimination thresholds (1-2 deg). These results suggest that, at least in macaque monkeys, 
V1 contains about as much information as is seen in behaviour, implying that downstream 
circuits are efficient at extracting the information available in V1. 
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Introduction 
 
A fundamental question in neuroscience is: do neural circuits, and in particular cortical circuits, 
perform efficient computation over behaviourally relevant variables? If computation is 
efficient, then behavioural performance should be only slightly worse than neural performance; 
if it is inefficient, it should be much worse. For example, humans have an orientation 
discrimination threshold of about 1 degree (Orban, Vandenbussche, and Vogels 1984; Webster, 
Switkes, and De Valois 1990; Mäkelä, Whitaker, and Rovamo 1993; Mareschal and Shapley 
2004). If an ideal observer of V1 activity can read out orientation with an error of about 1 
degree, then computation (of orientation) is efficient; if an ideal observer has an error of 0.001 
degrees, then computation is highly inefficient. The answer to this question is important because 
it gives insight into computational strategies.  
 
Despite 30 years of research, we still do not know the answer to this question. According to 
Shadlen et al (1996), the population response in area MT contains roughly the same information 
as observed in the behaviour for a simple motion discrimination task. This result seems 
surprising because there are many neurons in area MT whose individual responses convey only 
slightly less information than is available in the behaviour (Shadlen and Newsome 1996). Given 
that thousands of MT neurons encode direction of motion, the population information could 
potentially be much larger than the behavioural information. However, Shadlen et al (1996) 
suggested that the population information is in fact small due to the presence of large pairwise 
noise correlations among neurons with similar tuning, with correlation coefficients around 0.2 
on average.  As a result, information saturates as the number of neurons increases, and does so 
at a value close the one seen in behaviour (Saturation Low FIG 1).  

 
This conclusion, however, has been challenged by subsequent theoretical studies. For a 
population of neurons with heterogeneous tuning curves that are approximately random with 
respect to the noise covariance matrix, information is proportional to the size of the population 
(Shamir and Sompolinsky 2006; Ecker et al. 2011) (Unsaturated, FIG 1). Of course, the 
constant of proportionality could be very small, so that with realistic numbers of neurons there 
would not be much information in the neural population. However, this possibility is 
inconsistent with the observation that single neurons carry information that is close to the 
behavioural information in MT (Britten et al. 1996), V4 (Cohen and Maunsell 2010) and V1 
(Graf et al. 2011). Thus, if information is linear in the number of neurons, the slope must be 
sufficiently large that the information in even a small number of neurons would be much larger 
than what is suggested by behaviour. 
 
The problem with these theoretical studies is that they didn’t take into account the fact that 
information-limiting correlations, also known as differential correlations (Moreno-Bote et al. 
2014), must be large. Differential correlations correspond to fluctuations in population activity 
that line up with the vector of tuning curve derivatives, denoted f′. If the variance of these 
fluctuations is proportional to the number of neurons, information saturates (Moreno-Bote et 
al. 2014). Detecting such correlations experimentally is hard because, while being large, they 
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tend to be small compared to non-information-saturating correlations. Nonetheless, for 
sufficiently large populations, such correlations must exist in cortex. That’s because there is 
only a finite amount of information entering the brain, which precludes the possibility of 
information increasing forever as the number of neurons increases. The critical questions, then, 
are: how big are these information limiting correlations, and at what level does information 
saturate relative to behavioural information (Saturation Low versus High, FIG 1)? 
 
In principle, this debate could be settled with a conceptually simple experiment: record the 
spiking activity of many neurons simultaneously, measure information as a function of the 
number of neurons, and ask whether it saturates near the behavioural information. 
Unfortunately, it is often difficult to detect information saturation in populations of ~100 
neurons, the population size typically available in a single area from electrophysiological 
recordings (Semedo et al. 2019; Jun et al. 2017). Calcium imaging can provide recordings from 
1000s of neurons (Ahrens et al. 2013; Stringer et al. 2019), but it is subject to a variety of 
problems: the calcium signal has a long time constant, making it difficult to determine activity 
in short time windows, and extracting spikes is imperfect, making the signal noisy. It is 
therefore important to have methods that can infer information saturation from the spiking 
responses of 100s of neurons 
 
Here we present such a method. It takes advantage of the fact that a population of neurons in 
which information saturates must contain large differential correlations. As we will show 
below, the presence of large differential correlations leads to a characteristic, and detectable, 
signature in the eigenspectrum of the population’s covariance matrix. More precisely, in the 
limit of a large number of neurons, the vector of tuning curve derivatives, f′ , must be embedded 
in the subspace spanned by the first few eigenvectors of the covariance matrix. Importantly, for 
a finite number of neurons, we find in simulations that the more f′  is embedded in the subspace, 
the lower the information. We take advantage of this observation to estimate information. We 
show with a model of V1 circuitry that this method can indeed detect differential correlations 
corresponding to discrimination thresholds of 1 degree, with experimentally attainable numbers 
of trials and neurons. We apply this method to recordings from awake monkeys, and find 
differential correlations corresponding to discrimination thresholds of 0.47-1.20 degrees, 
suggesting that sensory and behavioural information are comparable, and thus that neural 
circuits are efficient.  
 
 
Results 
For simplicity, we consider a scalar stimulus, denoted s. What we want to know is how much 
information an area in the brain contains about that stimulus. As mentioned above, that would 
be easy if we could record from all (or a large fraction of) the neurons. But with current 
technology, we can’t; instead we have to extrapolate from a finite number. Unfortunately, naïve 
extrapolation turns out not to work well (Kohn et al. 2016). We can typically record from 100s 
of neurons, and in that range a plot of information versus number of neurons often does not 
exhibit clear signs of saturation. 
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We thus take a different approach, derived from our knowledge of the nature of neural noise in 
large populations of neurons. This approach starts with the usual tuning curve plus noise model: 
r = f(s) + noise where r is a vector of population responses and f(s) is a vector of tuning curves. 
(In components, ri is the response of neuron i and fi(s) is the mean response of neuron i when 
stimulus s is shown.) Decoding the neural response corresponds to finding the stimulus, s, for 
which r is as close as possible to f(s). As can be seen in FIG 2, noise that has a component in 
the f′ (s) direction is especially bad for decoding. In fact, decoding performance is determined 
almost solely by the amplitude of the noise along that direction. Such noise is known as 
differential correlations (Moreno-Bote et al. 2014). 
 
An important aspect of differential correlations is that when there is a finite amount of 
information in a population of neurons, the size of the differential correlations must be O(N); 
that is, the variance of fluctuations in the f′ (s) direction must be proportional to the number of 
neurons, N, in the large N limit (Moreno-Bote et al. 2014). Consequently any eigenvector of the 
noise covariance matrix that has appreciable overlap with f′ (s) must have an O(N) eigenvalue 
(FIG 2c). This suggests an alternate approach for determining the value at which information 
saturates, at least qualitatively: estimate the amplitude of differential correlations by 
enumerating the eigenvectors that have appreciable overlap with f′ (s). The larger the 
fluctuations in the f′ (s) directions, the more likely it is that f′ (s) will strongly overlap with the 
eigenvectors with largest eigenvalues. Thus if differential correlations are strong (and 
information is low), the angle between f′ (s) and the subspace spanned by the first few 
eigenvectors should be nearly zero (here and in what follows, we’ll rank eigenvectors by their 
eigenvalues). If, on the other hand, differential correlations are weak (and thus information is 
large), the angle between f′ (s) and the subspace spanned by the first few eigenvectors should 
be large. In the next section we develop a quantitative measure based on these ideas. 
 
φ: a measure of differential correlations 
Our approach to estimating the value at which information saturates is simple in principle: 
compute the angle between f′ (s) and the subspace spanned by the first k eigenvectors of the 
noise covariance matrix (FIG 3a), denoted, cos2θk, and plot cos2θk versus k. If differential 
correlations are strong this plot should go rapidly to 1; if differential correlations are weak this 
plot should go slowly to 1. To obtain a quantitative measure of “slow”, we plot the same thing, 
but for the shuffled covariance matrix. This gives us two curves – one for the true and one for 
the shuffled covariance matrix. We then define φ to be the area between them, normalized by 
N (see FIG 3b). In the presence of O(N) differential correlations (which, recall, is the case 
whenever there is a finite amount of information in the population) and in the limit of an infinite 
number of neurons and trials, φ should be close to 1/2. That’s because cos2θk is close to 1 when 
k/N is negligibly small (Blue curve, FIG 3b). For smaller populations, though, k/N is necessarily 
larger when cos2θk is close to 1 (simply because N is smaller). Therefore, the critical question 
is: what level of differential correlations can be detected reliably with the number of trials and 
neurons typically used in experiments?  
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We first explored this question through simulations. These simulations also allowed us to 
address one limitation of our technique, namely, that while the presence of strong differential 
correlations implies that our measure, ϕ, is large, the reverse is not true: ϕ can be large without 
O(N) differential correlations. As we will see, our simulations demonstrate that, in realistic 
simulation of cortical circuits, ϕ is small when differential correlations are small, and grows 
with the amplitude of the differential correlations. 
 
 
Simulations 
To assess the sensitivity of φ to differential correlations, we used realistic simulations of cortical 
circuits, and computed φ as a function of the strength of the differential correlations, the number 
of neurons, and the number of trials. We performed simulations using two biologically plausible 
computational models of the early visual system. The first model (M1) used conductance-based 
leaky integrate-and-fire (LIF) model neurons for all cortical cells, and uncoupled point 
processes for pre-cortical stages (retina and LGN) (Somers, Nelson, and Sur 1995; Seriès, 
Latham, and Pouget 2004). ON-centre and OFF-centre inputs fed into V1, giving rise to Gabor-
like receptive fields. V1 cells were also sparsely recurrently connected (FIG 4, see Methods for 
a more detailed description). The second model (M2) was a simplified version of the one 
presented in Kanitscheider et al. (2015). It was different from M1 in three respects: there were 
no lateral connections in the V1 layer, it used rate-based, rather than leaky integrate-and-fire, 
neurons, and differential correlations were introduced differently (see section “φ is proportional 
to the amplitude of differential correlations”).  
 
φ is close to 0 in the absence of differential correlations 
As mentioned above, when there are O(N) differential correlations and we can record from an 
infinite number of neurons, φ must be close to 1/2. When we can record from only a finite 
number of neurons, however, how φ scales with the strength of the differential correlations is 
unclear. At the very least, φ should go to zero as the strength of the differential correlations 
decreases. To test this prediction, we asked whether φ is significantly different from 0 in 
simulations in which differential correlations are O(1) by construction. To generate O(1) 
differential correlations, we simulated a variation of model M1 in which each cortical neuron 
received its own private set of LGN inputs, thus ensuring that the weighted sums of LGN inputs 
onto each neuron were statistically independent. While this ensured that no correlations were 
present in the LGN input arriving at V1, cortical neurons were still correlated due to the 
presence of lateral connectivity. This connectivity induced a low rank covariance matrix similar 
to what is observed in vivo (Huang et al. 2019) (FIG 5). As can be seen in FIG 6A, in this case 
φ was close to zero (φ = 0.041). It is reassuring to see that φ is close to 0 in the absence of 
differential correlations in realistic simulations. This addresses the point we raised earlier: 
while, in theory, it is possible for φ to be large when differential correlations are small, this is 
not the case in our simulations. 
 
φ is proportional to the amplitude of differential correlations 
Next, we asked whether φ increases with the strength of the differential correlations, using 
simulations of model M1 with LGN inputs that were shared among V1 neurons. To modulate 
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the strength of differential correlations, we injected noise into the orientation of the gratings 
presented to the network. We did this by presenting gratings at slightly different orientations 
on each trial. In our simulations, the orientations were drawn from a Gaussian distribution with 
standard deviation σθ, which is proportional to the orientation discrimination threshold (eqs 16-
18). As expected, φ grew monotonically with the orientation noise, σθ, and thus monotonically 
with the strength of the differential correlations (FIG 6, B-C. We found that with 100 neurons 
and 805 trials (the average number of neurons and trials across all experimental recordings), φ 
becomes statistically different from zero when the orientation noise was around 0.4 degrees, 
corresponding to a discrimination threshold of 0.59 deg in V1 (FIG 7A).  
 
For model M2, we injected noise in the response of the retinal cells, as opposed to the 
orientation of the grating. As shown in Kanitscheider et al (2015), this retinal noise, when large 
enough, generates large differential correlations and leads to strong information saturation. As 
in M1, we found that φ grew monotonically with the amplitude of the injected noise. When 
plotted as a function of the discrimination threshold of the V1 layer, the resulting curve is very 
similar to the one we obtained with model M1 (FIG 7A). These second simulations show that 
the φ measure is not overly sensitive to the details of the model and injected noise.  
 
Experimental data 
Having verified the validity of our methods in silico, at least for a set of reasonably biologically 
plausible models, we analysed 7 data sets recorded in the primary visual cortex of three awake 
monkeys (FIG 7). In all cases the data sets came from chronically implanted Utah arrays. Data 
sets 1-4 came from monkey 1; data sets 5 and 6 from monkey 2; and data set 7 from monkey 3. 
In every animal, φ was significantly different from zero, though this was not the case in all 
sessions in monkey 1 (FIG 7B). Therefore, in all three monkeys, we found evidence of 
differential correlations in V1.  
 
To relate the level of differential correlations present in these data sets to the information the 
V1 population would be expected to provide for orientation, we converted φ into discrimination 
threshold (eqs 16-18) using the plot shown in FIG 7A. This analysis returned a range of 
thresholds from 0.47 to 1.20 degrees (0.51, 0.87, 1.20 and 0.47 degrees for, respectively, data 
set 1, 5, 6 and 7). 
 
 
Discussion 
We have presented a new method that can detect the presence of differential correlations 
corresponding to discrimination thresholds of 0.47 to 1.20 degrees in the spiking activity of 100 
neurons and <1000 trials. Such a method is useful because the vast majority of simultaneous 
recordings of spiking activity are currently limited to a few 100 neurons and information 
saturation in populations of this size may not always be evident.  
 
When applied to V1 recordings in awake monkeys, our approach revealed, in four data sets, the 
presence of strong, information limiting, differential correlations. However, ϕ was not 
significantly different from zero in the remaining three data sets. Intriguingly, these three data 
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sets were obtained from the same implant as a data set in which the value of ϕ suggested a 
discrimination threshold of 0.51 degrees, several months earlier. Assuming the representational 
quality of V1 was not altered by the implant, the reduction in the value of ϕ might reflect the 
established degradation of recording quality in chronic arrays over time (Barrese, Aceros, and 
Donoghue 2016).  
 
In the data sets for which ϕ was statistically significant, the corresponding discrimination 
thresholds were on the order of 1 degree. This is typical of the behavioural thresholds that have 
been reported experimentally (~1 deg, (Webster, Switkes, and De Valois 1990)). This argues 
that information does not saturate at extremely high levels, as suggested by several groups 
(Shamir and Sompolinsky 2006; Ecker et al. 2011) (illustrated in Fig 1). In contrast, it is 
consistent with a previous report in V1 which found discrimination thresholds of the same order 
of magnitude as the behavioural one (2.7% vs 4.8% contrast detection threshold) (Chen, 
Geisler, and Seidemann 2006). The similarity we found in V1 between behavioural and neural 
thresholds has been reported in MSTd, where it was found that about 80% of the information 
in that area is used to drive the behaviour of animals engaged in a heading discrimination task 
(Pitkow et al. 2015; Kim et al. 2016).  
  
A recent rodent study using calcium imaging of more than 20,000 neurons also demonstrated 
the presence of strong differential correlations in V1 (Stringer, Michaelos, and Pachitariu 2019). 
The authors found that information saturates as the number of neurons goes to infinity, and the 
discrimination threshold at saturation is about 0.3 degrees. This is smaller than typical 
discrimination thresholds in mice (which are about 5 degrees; (Glickfeld, Histed, and Maunsell 
2013)). However, the 0.3 deg discrimination threshold was derived from activity presented in 
a full hemifield stimuli for 750 ms. It is unlikely that mice can integrate information over the 
entire visual hemifields and over such a long time. Once these constraints are taken into 
consideration, the gap between behavioural and neural threshold will almost certainly shrink.  
 
Altogether, these results suggest that neural circuits downstream of V1 of macaque monkeys 
are not vastly inefficient, in the sense that information in neural responses is about the same as 
information in behavior. Nonetheless, information loss occurs. This could be the result of 
internal noise in neural activity, but unless the noise is specifically aligned with the f′ (s) 
direction and is O(N), internal noise cannot significantly affect information transmission 
(Zylberberg et al. 2017). A more likely source of information loss is suboptimal computation 
(Beck et al. 2012). For instance, and as mentioned earlier, animals may not integrate 
information properly across space and time, and may not use the optimal synaptic weights 
between cortical areas. This will necessarily lead to information loss in downstream areas which 
will be reflected in a reduction in the norm of f′ (s), an increase in differential correlations, or a 
combination of the two.  
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Figure 1. Information in neural circuits, and across brain areas. Information in early sensory 
areas can scale in different ways with the number of neurons. According to Shadlen et al (1996), 
information in MT saturates to a value close to the behavioural information (black horizontal 
line), suggesting that downstream cortical circuits are efficient (blue curve). On the other 
extreme, information might scale linearly with the number of neurons (red curve), in which case 
cortical circuits downstream would be particularly inefficient, since a small fraction of that 
information would make it to the behaviour. In an intermediate scenario, information might 
saturate at a finite value, but still much larger than what is seen in behaviour. This would again 
correspond to inefficient cortical circuits, since much of the information would be lost.  
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Figure 2. (A) Population patterns of neural activity can be thought as points in an N dimensional 
space in which each axis corresponds to the activity of a single neuron (out of N neurons in the 
population). As the value of the encoded variable varies smoothly, the population activity spans 
a one-dimensional nonlinear manifold whose shape is determined by the tuning curve, f(s), of 
the neurons. Variability in responses to a fixed stimulus s0 is represented as the blue ellipse 
centered at f(s0). (B) In a fine discrimination task, the ability to detect a small stimulus change, 
from s0 to s0-δs, depends on the distance between the average population activity for s0 and s0-
δs and the amplitude of the neural variability. For δs small enough, the average activity 
manifold can be linearly approximated by a line that is tangent to the manifold given by f(s); 
this corresponds to the derivative of the tuning curves evaluated at s0, f′(s0). The projection of 
the neural variability along this axis is what is known as differential correlations. (C) Only a 
finite number of eigenvalues of the covariance matrix of the neural activity, Σ, can be O(N). 
The covariance depicted here was obtained by injecting high orientation noise into our model 
(M1) (σ = 5°). 
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Figure 3. The alignment of the tuning curve’s derivative, f′ , with the principal components of 
the covariance matrix can reveal differential correlations. (A) Schematic showing the 
calculation of the alignment of f′ with the principal components (PCs) of the covariance matrix 
(Σ). (B) The difference in the area-under-the-curve (AUC) between the real (unshuffled, blue) 
and shuffled (red) alignment (cos2) of f′ with the consecutive eigen-subspace of Σ provides a 
measure, denoted φ, for the strength of differential correlations. 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 15, 2019. ; https://doi.org/10.1101/842724doi: bioRxiv preprint 

https://doi.org/10.1101/842724
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 4. Summary of the computational model of the early visual system. We used biologically 
plausible feedforward connectivity between layers and recurrent connectivity within layers; that 
successfully generated orientation-tuned receptive fields in V1. An oriented grating was 
presented to the stimulus, and differential correlations were induced by introducing random 
orientation noise. The mean population response of all 1200 neurons to the stimulus 
(presentation epoch marked as Stimulus) is shown on the right as well as the spike raster over 
the same time period. 
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Figure 5. Example eigenspectrum of Σ in the absence of strong differential correlations. The 
sharp drop in magnitude of the eigenvalues (from ~40 to ~1) within the first couple of PCs is 
an indication that this covariance matrix is effectively low-rank. 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 15, 2019. ; https://doi.org/10.1101/842724doi: bioRxiv preprint 

https://doi.org/10.1101/842724
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 
Figure 6. Differential correlations can be induced in the computational model with an injection 
of orientation noise, and show behaviour consistent with theoretical predictions. (A-C) 
Alignment of f′ with the principal components of the covariance matrix Σ of a subpopulation 
of 100 simulated neurons for low (A), plausible (B), and high (C) levels of orientation noise, 
showing both unshuffled (blue) and shuffled (red) data. Insets show the growth of the 10 largest 
eigenvectors (principal components: PCs) of Σ as a function of population size. Note that with 
strong orientation noise, the first PC (PC1) is O(N); this generates the large jump in alignment 
with f′ in panel C. The orientation discrimination thresholds (ODTs) above the graphs indicate 
the equivalent ODT according to the Fisher information calculated from the total population 
(N=1200 neurons). φ was 0.041, 0.373, and 0.481 for A-C respectively. 
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Figure 7. Differential correlations in experimental data. (A) A series of simulations with two 
models (blue, red) and varying orientation noise injections (dots). This was fit with a logistic 
sigmoid (solid curves), which allowed us to estimate the equivalent orientation discrimination 
threshold for the mean φ value observed in the experimental data. (B) Data from 4 out of 7 data 
sets (blue +) recorded in V1 show a signature of information-limiting correlations (see C). (C) 
φ curves for the four data sets that showed a significant effect (p=7.0 x10-5, p=3.9 x10-15, p<1.0 
x10-308, and p=1.6 x10-3 respectively). 
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Methods 
Computational model for large-scale simulations 
Summary of network architecture 
Model M1 contains two types of model neurons, which are described in more detail below. Pre-
cortical stages, i.e. Retina and LGN, are uncoupled point processes, where the Retina is a filter-
based 2D activity map with i.i.d. Gaussian noise on top of the filter response, and the LGN turns 
this activity map into spikes, using a stochastic firing probability. This LGN stage feeds into 
the first fully simulated cortical stage (V1), using a connectivity pattern that gives rise to Gabor-
like receptive fields in V1, similar to (Seriès, Latham, and Pouget 2004) and (Somers, Nelson, 
and Sur 1995). All cortical cells are simulated using a conductance-based leaky-integrate-and-
fire model. V1 cells are sparsely recurrently connected, as described below.  
 

Filter-based input layers: Retina, LGN 
The Retina layer in our model consists of two separate streams (ON-centre and OFF- centre) 
that are arranged in arrays of 32 x 32, with a spacing of 0.2 degrees visual angle between cells. 
For a patch of 6.4 x 6.4 degrees we simulated a visual input twice the size (12.8 x 12.8) to avoid 
edge effects. The rate-based activation in Retina for a cell at location (x,y) for ON-centre and 
OFF- centre streams were: 

𝑅𝑅𝑂𝑂𝑂𝑂(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = [𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑰𝑰 ∗ 𝜅𝜅(𝑥𝑥,𝑦𝑦, 𝑡𝑡|𝐾𝐾c,𝜎𝜎c) − 𝑰𝑰 ∗ 𝜅𝜅(𝑥𝑥,𝑦𝑦, 𝑡𝑡 − 𝛿𝛿|𝐾𝐾s,𝜎𝜎s)]+,  1 
  

𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = [𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑰𝑰 ∗ 𝜅𝜅(𝑥𝑥, 𝑦𝑦, 𝑡𝑡|𝐾𝐾c,𝜎𝜎c) + 𝑰𝑰 ∗  𝜅𝜅(𝑥𝑥, 𝑦𝑦, 𝑡𝑡 − 𝛿𝛿|𝐾𝐾s,𝜎𝜎s)]+.  2 
  

Here, [·]
+
=max(·,0) denotes rectification, I is the input image, c indicates centre response, s 

indicates surround response and δ is a 3 ms delay between centre and surround responses. These 
responses are in turn generated by convolving the visual stimulus I with a spatiotemporal kernel 
κ, consisting of a circularly symmetric Gaussian spatial profile G and an exponential temporal 
impulse function F: 

𝜅𝜅(𝑥𝑥, 𝑦𝑦, 𝑡𝑡|𝐾𝐾,𝜎𝜎) =  𝐺𝐺(𝑥𝑥′ − 𝑥𝑥,𝑦𝑦′ − 𝑦𝑦|𝐾𝐾,𝜎𝜎)𝐹𝐹(𝑡𝑡′ − 𝑡𝑡) 3 
 

Here, the x’, y’ and t’ denote the spatiotemporal location of the filter in the corresponding x, y, 
t space of the input image I. We truncated the filter for locations more than four times the 
standard deviation of the Gaussian profile away from its mean for computational efficiency. 
The spatial circularly symmetric Gaussian G and decaying exponential function F are defined 
as: 

𝐺𝐺(𝑥𝑥,𝑦𝑦|𝐾𝐾,𝜎𝜎) =
𝐾𝐾

2𝜋𝜋𝜎𝜎2
𝑒𝑒−

𝑥𝑥2+𝑦𝑦2
2𝜎𝜎2 , 4 

 

𝐹𝐹(𝑡𝑡) =  
1
𝜏𝜏
𝑒𝑒−

𝑡𝑡
𝜏𝜏. 5 
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We used the following parameters, taken from (Somers, Nelson, and Sur 1995): σc = 0.176, σsd 
= 0.53, Kc = 17, Ks = 16, τc = 10, τs = 20, and rbaseline = 15. The LGN layer simply transforms 
the RON and ROFF analogue activity levels into stochastic spiking events, with an average rate 
of 40 Hz at full stimulus contrast. 

 

LGN-V1 connectivity structure: Gabor fields 
Each V1 cell has a Gabor-like receptive field, with several preferred parameters that varied 
across cells: phase (ψ), orientation (θ), spatial frequency (1/λ), spatial length (σy), spatial width 
(σx), horizontal centre (ξ), and vertical centre (υ). We created a Gabor patch G by combining 
these parameters as follows:  

𝐺𝐺�𝑥𝑥,𝑦𝑦, 𝜐𝜐, 𝜉𝜉,𝜎𝜎𝑥𝑥,𝜎𝜎𝑦𝑦, 𝜆𝜆,𝜃𝜃,𝜓𝜓� = 𝑒𝑒𝑥𝑥𝑒𝑒�−  
1
2
�
𝑥𝑥′2

𝜎𝜎𝑥𝑥2
+
𝑦𝑦′2

𝜎𝜎𝑦𝑦2
�� 𝑐𝑐𝑐𝑐𝑐𝑐 �2𝜋𝜋

𝑥𝑥′

𝜆𝜆
+  𝜓𝜓�. 6 

Here x’ and y’ are defined as: 

𝑥𝑥′ = 𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 + 𝑦𝑦 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃 − 𝜉𝜉, 7 
  

𝑦𝑦′ = −𝑥𝑥 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃 + 𝑦𝑦 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 − 𝜐𝜐 . 8 
 

With each V1 cell assigned a Gabor field, we next calculated the connection probability for 
ON-centre cells at retinoptic locations (x, y) from LGN to a V1 cell as follows, 

𝜋𝜋(𝑥𝑥,𝑦𝑦)𝑉𝑉1,𝐿𝐿𝐿𝐿𝑂𝑂 =
[𝐺𝐺(𝑥𝑥,𝑦𝑦)]+

∑ [𝐺𝐺(𝑥𝑥,𝑦𝑦)]+𝑥𝑥,𝑦𝑦
 . 9 

 

For OFF-centre cells, we used the same formula, but inverted the sign of G. We then connected 
the required number of LGN cells (72 for pyramidal cells, 48 for interneurons) from each stream 
to a V1 cell by choosing an LGN cell to project with a probability proportional to its weight 
described above, relative to that of other cells. If a connection was made, we assigned to each 
a weight equal to its corresponding probability, π(x,y), a conductance (0.264 and 0.288 for 
pyramidal cells (E) and interneurons (I) respectively) and a Gaussian delay (E: 0.01 ± 0.007, I: 
0.05 ± 0.003; mean ± SD, rectified to ≥ 0). 

 

Leaky-integrate-and-fire (LIF) layer V1 
For the fully simulated cortical layers, we used a conductance-based leaky-integrate-and-fire 
model of pyramidal cells and interneurons, as described in (Seriès, Latham, and Pouget 2004) 
and originally in (Somers, Nelson, and Sur 1995). We simulated 1200 V1 cells, of which 80% 
were excitatory and 20% were inhibitory. For post-synaptic cell i, the membrane voltage, Vi, 
evolves according to 
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𝐶𝐶𝑏𝑏
𝑑𝑑𝑉𝑉𝑏𝑏(𝑡𝑡)
𝑑𝑑𝑡𝑡

=   −𝐸𝐸𝐸𝐸𝑥𝑥𝐸𝐸(𝑉𝑉𝑏𝑏(𝑡𝑡) − 𝑉𝑉𝑏𝑏𝐸𝐸𝑥𝑥𝐸𝐸) − 𝐸𝐸𝐼𝐼𝑏𝑏ℎ�𝑉𝑉𝑏𝑏(𝑡𝑡) − 𝑉𝑉𝑏𝑏𝐼𝐼𝑏𝑏ℎ�

− 𝑔𝑔𝐿𝐿𝑏𝑏𝑏𝑏𝐿𝐿�𝑉𝑉𝑏𝑏(𝑡𝑡) − 𝑉𝑉𝑏𝑏𝐿𝐿𝑏𝑏𝑏𝑏𝐿𝐿� − 𝑔𝑔𝐴𝐴𝐴𝐴𝐴𝐴�𝑉𝑉𝑏𝑏(𝑡𝑡) − 𝑉𝑉𝑏𝑏𝐴𝐴𝐴𝐴𝐴𝐴�. 

 

10 

Here, EExc denotes the total excitatory post-synaptic potential (PSP) due to feedforward and 
recurrent connections, EInh denotes the total inhibitory PSP, gLeak denotes the passive leak 
conductance, and gAHP the after-hyperpolarization conductance due to prior spiking (see eqs. 
11-13 for the calculation of the PSPs).  VExc, VInh, VLeak and VAHP denote the reversal potentials 
for excitatory, inhibitory, leak and AHP inputs respectively. Vi(t-dt) denotes the cell’s 
membrane voltage at the previous time step, and Ci the membrane capacitance for neuron i. 
Whenever a cell’s membrane voltage exceeded -55 mV, we used a delta function to simulate 
spiking behaviour, and reset the cell’s membrane voltage to its resting potential (VLeak) on the 
next time step. As the simulation time step was 0.5 ms, our cells had an absolute refractory 
period of 1 ms. We used the following (approximately) biologically plausible parameters for 
all cells: VExc = 0 mV, VInh = -70 mV, VLeak = -65 mV, VAHP = -90 mV. For excitatory cells, we 
used gLeak = 25 nS, gAHP = 40 nS, Ci = 0.5 nF; and for inhibitory cells we used gLeak = 20 nS, 
gAHP = 20 nS, Ci = 0.2 nF. The membrane voltage at t = 0 was chosen randomly according to a 
Gaussian distribution with μ = -55.6 and σ = 1.  

We increased computational efficiency of our model by vectorising the calculation of spike-
induced post-synaptic potentials across spike history and synaptic connections, thereby 
requiring at each time step only a for-loop across cells, rather than across synaptic connections. 
This is difficult to achieve in a setup such as ours, where heterogeneous synaptic delays and 
exponentially decaying PSPs act on a single target neuron, because calculating the resulting 
action on the membrane voltage requires incorporating all heterogeneous pre-synaptic spike 
times from various time steps in the past. We achieved this vectorization by using a sparse 
dynamic cylindrical array to store recent spiking activity for all neurons in a reusable buffer 
variable, as described originally by (Brette and Goodman 2011). The algorithm (see below for 
a pseudo-code description) uses a vector ν that stores the number of recently emitted spikes per 
cell, a vector π that keeps track of the current position on the cylindrical array for each cell, and 
a cylindrical array Τ of size [cells x spikes] that stores the time stamps of recent spikes. Looping 
across cells, single-synapse PSPs are stored in a vector, where each element q corresponds to a 
single synaptic connection from cell j to cell i. For each source cell j, the PSPs in all its output 
synapses can be calculated using vector operations. We loop through all neurons in ν, ignoring 
all cells that have zero recent spikes, yielding another performance boost. Let n be a non-zero 
element for cell j in ν, and p be an n-dimensional vector of indices computed from π that 
correspond to the locations in Τ where the most recent spikes are stored. Now, the recent spike 
times of cell j can be accessed simply through Τ(j,p), providing a vector τ of time stamps. We 
next created a matrix Δ of size [spikes x synapses] that contains the spiking time relative to the 
current simulation time t, normalised for the synaptic delays δ. For spike k and synapse l, this 
relative spiking time can thus be written as: 

𝛥𝛥𝐿𝐿,𝑏𝑏 =  𝑡𝑡 − 𝛿𝛿𝐿𝐿 −  𝜏𝜏𝑏𝑏 . 11 
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Note that this operation is easily written as a vectorised calculation in any Matlab 
implementation. The PSPs s for all target synapses of j are now given by:  

𝒔𝒔 = 𝒘𝒘 ∗ 𝒄𝒄 ∗ 𝒇𝒇�𝜟𝜟, 𝜏𝜏𝑗𝑗�. 12 
  

Here, * indicates element-wise multiplication, w is a vector of synaptic weights, and c is a vector 
of synaptic conductances, τj denotes the synaptic time constant for cell j, which depends only 
on whether the cell is excitatory or inhibitory, and f is the exponential PSP function that outputs 
a sum total value for each synapse. As above, note that this function is completely vectorised 
over synapses, but for clarity we here write the function for a single synapse l: 

𝑓𝑓𝑏𝑏�𝜟𝜟𝑏𝑏 , 𝜏𝜏𝑗𝑗� =  ���𝛥𝛥𝐿𝐿,𝑏𝑏�
+ 1
𝜏𝜏𝑗𝑗
𝑒𝑒
1−

𝛥𝛥𝑘𝑘,𝑙𝑙
𝜏𝜏𝑗𝑗 �

𝐿𝐿

. 13 

We used the following parameters: τInh = 2 ms, τExc = 1 ms, and cylindric buffer size tbuffer = 200 
ms. Synaptic delay and conductance parameters are provided in their corresponding paragraphs 
detailing the connectivity structure. Finally, the resulting excitatory and inhibitory input per cell 
(EExc and EInh) can be calculated by summing all synaptic PSPs in s to their postsynaptic targets. 
This step is also easily vectorised, using the built-in Matlab function accumarray(). In Matlab 
pseudo-code, this algorithm can be written as follows: 

Matlab pseudo-code description for the algorithm based on (Brette and Goodman 2011) 

             

V1 recurrent connectivity: similarity- & locality-based 
Our V1 connectivity was determined on the basis of receptive-field similarity, where the 
weighting of the similarity is controlled by a locality hyperparameter λ, in the interval [-1 1]. In 
this range, λ = -1 corresponds to a uniform connectivity (i.e., ignoring similarity), λ = 1 
corresponds to a maximally local connectivity (i.e., connect n most similar cells), and λ = 0 
corresponds to a proportional weighting, as described above for LGN-V1 connectivity. We set 
λ = 0 for excitatory neurons, and λ = -0.5 for inhibitory neurons. This means that inhibitory 

%loop through all source neurons that have > 0 recent spiking events 
for j=find(nu > 0) 
    %get indexing vector of positions on cylindrical array 
    p = getCycPosVec(pi(j), nu(j));  
 
    %get vector of spike times from cylindrical array 
    tau = T(j,p); 
 
    %get indices of target synapses for this cell 
    vecTargetSynapses = cellSynTargets{j}; 
     
    %get synaptic time constant for this cell 
    tau_j = vecTauSyn(j); 
     
    %get normalised spike time matrix 
    Delta = bsxfun(@minus,t-delta(vecTargetSynapses),tau); 
 
    %calculate PSPs 
    s(vecTargetSynapses) = w(vecTargetSynapses) .* ... 
        c(vecTargetSynapses) .* f(Delta, tau_j); 
end 
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neurons project more uniformly to less similarly tuned cells than excitatory neurons, as has 
been shown in mouse visual cortex (Ko et al. 2011). We calculated an element-wise similarity 
ρ in receptive fields of cells i,j as follows. First, we normalised each receptive field F of size [x 
by y] to be mean-zero: 

𝑭𝑭′ = 𝑭𝑭 −  
∑𝑭𝑭
𝑥𝑥 ∙ 𝑦𝑦

. 14 

Here, Σ F denotes the sum over all elements in F, and ∙ denotes a scalar multiplication. The 
similarity metric ρ (in the range [-1 1]) is given by 

𝜌𝜌𝑏𝑏,𝑗𝑗 =  
𝑭𝑭′𝑏𝑏𝑇𝑇𝑭𝑭′𝑗𝑗

�𝑭𝑭′𝑏𝑏𝑇𝑇𝑭𝑭′𝑏𝑏𝑭𝑭′𝑗𝑗𝑇𝑇𝑭𝑭′𝑗𝑗
. 15 

Here, T indicates transpose. We rectified all negative ρ values to 0, and created a cumulative 
probability vector l based on [ρ]+, as described above for LGN-V1 connectivity. For a number 
of connections n originating from a source neuron, we randomly chose nproportional = n*(1-|λ|), 
rounded to the nearest integer, connections based on l. The remaining nnon-proportional = n - 
nproportional connections were chosen either according to a uniform random distribution across 
neurons when λ < 0, or the nnon-proportional most similar cells were connected when λ > 0. This 
way, connectivity is a mixture of uniform and [ρ]+-proportional connections for -1 < λ < 0, and 
a mixture of most-similar and [ρ]+-proportional connections for 0 < λ < 1. 

 

Programmatic implementation 
The computational model was programmed in Matlab R2015b, compiled as a stand-alone 
executable, and run in a massively parallel manner on the University of Geneva High 
Performance Computing cluster Baobab. Each cluster node ran a set of stimulus repetitions 
with randomised initialization parameters, and the resulting simulated data were post-hoc 
combined into a single data set. 

 

Visual stimulus parameters 
Visual stimuli were always centred in the middle of the simulated patch of visual space and 
consisted of drifting sinusoidal gratings within a circular aperture 5° in diameter, with a cosine-
ramped edge (period of 1°) leading to a neutral-grey background. Unless stated otherwise, all 
stimuli had a pre-stimulus uniform neutral-grey blank period of 100 ms, after which the 
stimulus was presented for 500 ms, and ended with another 100 ms blank period. We used a 
spatial frequency of 0.25 cycles per degree, a temporal frequency of 2 Hz, full contrast and 
luminance, and a random starting phase. We presented a single pair of orientations separated 
by five degrees (42.5 and 47.5 degrees from vertical). 

We can quantify the amount of information encoded about a stimulus at both the neural level 
as well as at the final behavioural level. A comparison of these two quantities would tell us 
whether neural computations are efficient or not. If information about the stimulus in V1 
exceeds the information we can extract from the behavioural output, then computations must 
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not have been efficient; the difference must have been lost as information was transmitted up 
the cortical hierarchy to frontal regions and ultimately to the behavioural motor output. 
Conversely, if V1 information saturates close to behavioural information, then all intermediary 
neural computations between the two levels must have been extremely efficient. 

Behavioural information is usually quantified using the just-noticeable-difference (JND), 
defined as the smallest orientation difference where the subject is still able to report accurately 
which of two orientations is more tilted clockwise.  For humans, this is around 1° (Webster, 
Switkes, and De Valois 1990), with the JND being defined at the orientation where responses 
were on average 75% correct. 

Neural information is usually quantified instead using Fisher information, and in the rest of this 
paper, we shall use this metric rather than the JND; compared to a JND analysis, it has some 
desirable features such as its applicability to neuronal activity within the framework of 
information-limiting correlations (Moreno-Bote et al. 2014). Thus, to compare information at 
the two levels, we must convert the JND into its equivalent Fisher information. 

For a scalar stimulus, linear Fisher information (defined in a later section) can be related to the 
sensitivity index d’ by (Averbeck and Lee 2006; Seung and Sompolinsky 1993) 

𝐼𝐼 =  
𝑑𝑑′2

(𝛥𝛥𝜃𝜃)2
, 16 

and in visual space, d’ is defined by 

𝑑𝑑′ =  
𝜇𝜇𝑏𝑏1 −  𝜇𝜇𝑏𝑏2

�1 2(𝜎𝜎𝑏𝑏12 +  𝜎𝜎𝑏𝑏22 )⁄
; 17 

 

here, μs1 and μs2 are the means of the two noisy stimuli and 𝜎𝜎𝑏𝑏12  and 𝜎𝜎𝑏𝑏22  their variances. JND is 
measured using a 1AFC task, and for such a task, the proportion-correct can be related to d’ by 
(Micheyl, Kaernbach, and Demany 2008) 

𝑑𝑑′ =  2 ∙ 𝛷𝛷−1(𝑃𝑃𝐶𝐶), 18 
  

where Φ-1(x) is the inverse of a cumulative Gaussian from -∞ to +x. Thus using (17), we can 
convert a 75% proportion-correct into the d’ value of 1.35, and using (16), we can convert this 
into a Fisher information of I = 1.82 for an orientation discrimination threshold of 1 degree. 

It is currently not possible to directly measure the information in V1, as the required number of 
trials and neurons still vastly exceeds the capabilities of even the latest recording techniques. 
Therefore, we instead used a biologically plausible computational model of early visual primate 
cortex to simulate the strength of information-limiting neural correlations when orientation 
information saturates at a 0.85 deg orientation discrimination threshold; that is, our model 
simulates neural activity assuming information would not be lost in the subsequent neural 
computations up to the motor output. To do this simulation, we artificially saturated the input 
information in our model at the required level by randomly perturbing the stimulus with 
orientation noise. In effect, we created a non-zero variance in the feature dimension over 
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multiple presentations of the same stimulus. Using equation (17) with 𝜎𝜎𝑏𝑏12 = 𝜎𝜎𝑏𝑏22 = 𝜎𝜎2, 𝑑𝑑′ =
1.35, and Δ𝜇𝜇 = 0.85°, we deduced the necessary orientation-noise level to be around σ = 0.63°. 
Using equation (17) with Δ𝜇𝜇 = 2° instead for a 2-degree discrimination threshold, the necessary 
orientation-noise level is σ = 1.48°. 

 

Analyses for simulated and experimental data 
Data pre-processing and general steps 
We transformed all spike-time based data into a matrix A of total spiking activity during 
stimulus presentation per neuron and trial, giving a [t x m] spike count matrix of m neurons and 
t trials. Unless stated otherwise, our shuffling procedure shuffled neural responses per neuron 
across repetitions of the same stimulus type. This shuffling procedure destroys all temporal 
correlations, but keeps single neuron firing statistics (e.g., tuning curves) intact. 

 

Computations of Fisher information and 𝐟𝐟′ 
Much of our analysis involved estimating from data derivatives 𝐟𝐟′ of the tuning curve vector 𝐟𝐟 
with respect to the scalar stimulus parameter 𝜃𝜃.  This was done by finite differencing where 

𝒇𝒇′ ≈
𝒇𝒇(𝜃𝜃2) − 𝒇𝒇(𝜃𝜃1)

𝛥𝛥𝜃𝜃
. 19 

 

Linear Fisher information is defined to be 

𝑰𝑰 ∶= 𝒇𝒇′ ∙ 𝜮𝜮�−1 ∙ 𝒇𝒇′ , 20 
  

where 𝚺𝚺� is the mean of the covariance matrices at 𝜃𝜃1 and 𝜃𝜃2, that is, 

𝜮𝜮�  ∶=
𝜮𝜮1 + 𝜮𝜮2

2
. 21 

 

Linear Fisher information provides a lower bound on the total Fisher information encoded in 
the population.  We note that in the 1-dimensional case, this definition of Fisher information 
(20) reduces to (16). 

An estimator of 𝚺𝚺�−1 obtained by taking the matrix inverse of an estimator of 𝚺𝚺� will generally 
be biased.  We have therefore used a bias-corrected estimator of Fisher information as derived 
by (Kanitscheider et al. 2015) and given by 

𝐼𝐼 =  𝐟𝐟′ ∙ 𝚺𝚺�−1 ∙ 𝐟𝐟′ �
2𝑇𝑇 − 𝑁𝑁 − 3

2𝑇𝑇 − 2 � −
2𝑁𝑁
𝑇𝑇Δ𝜃𝜃2

, 

 
22 

where T is the number of trials and N is the number of degrees of freedom.  This estimator is 
only valid when 𝑇𝑇 > (𝑁𝑁 + 2)/2.  Where this condition is not satisfied, we forgo the bias-
correction. 
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Projections of 𝐟𝐟′ 
Our analysis examined the behaviour of 𝐟𝐟′ when projected into a variety of subspaces, where 𝐟𝐟′ 
denotes 𝐟𝐟′ normalised.  For all subspaces, the method of projection was the same.  Suppose we 
are working in an n-dimensional neural activity space and are interested in projecting into a k-
dimensional subspace.  Then given a set of n-dimensional normal bases vectors {𝒗𝒗𝒊𝒊} spanning 
our subspace, the projection of 𝐟𝐟′ is given by 

𝒇𝒇′∥ = 𝑷𝑷 ∙ 𝒇𝒇′,  23 
where 𝐏𝐏 is the projection matrix given by 

𝑷𝑷 ∶= (𝑽𝑽𝑻𝑻𝑽𝑽)−𝟏𝟏𝑽𝑽𝑻𝑻 24 
and 𝐕𝐕 is the 𝑠𝑠 × 𝑘𝑘 matrix with columns corresponding to 𝒗𝒗𝒊𝒊; the projection of 𝐟𝐟′ is simply 

𝒇𝒇�′∥ = 𝑷𝑷 ∙ 𝒇𝒇′� ; 25 
  

The projection of 𝐟𝐟′ into 𝐟𝐟′∥ is quantified by the cosine between the two vectors; it can be shown 
that this is equivalent to 

𝑐𝑐𝑐𝑐𝑐𝑐2 𝜃𝜃 = 𝒇𝒇�′∥ ∙ 𝒇𝒇�′∥. 26 
 
Bases vectors for the principal components of 𝚺𝚺 
One of the subspaces considered was that spanned by the first k principal components of 𝚺𝚺.  In 
this case, the bases vectors are orthonormal, and the projection matrix simplifies to 

𝑷𝑷 = 𝑽𝑽𝑻𝑻. 27 
  

Moreover, it can be shown that the projection of 𝚺𝚺 can be expressed as  

𝜮𝜮∥ = �𝜆𝜆𝑏𝑏 𝒗𝒗𝑏𝑏 𝒗𝒗𝒊𝒊𝑇𝑇
𝐿𝐿

𝑏𝑏=1

, 28 

  
The cosine between 𝐟𝐟′ and 𝐟𝐟′∥ can be similarly simplified as well.  Let 𝐕𝐕� denote an 𝑠𝑠 × 𝑠𝑠 matrix 
where the columns comprise all n normalised eigenvectors of 𝚺𝚺 arranged in order of descending 
eigenvalue, and let 𝐟𝐟′� denote the vector given by 

𝒇𝒇′� = 𝑽𝑽� ⋅ 𝒇𝒇�′∥. 29 
Then the cosine can be expressed as 

𝑐𝑐𝑐𝑐𝑐𝑐2 𝜃𝜃 = �𝑓𝑓′� 𝑏𝑏 𝑓𝑓
′�
𝑏𝑏

𝐿𝐿

𝑏𝑏=1

, 30 

 

where 𝑓𝑓′� 𝑏𝑏 denotes the ith vector element of 𝐟𝐟′�. 
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Metric for differential correlation strength 
We wanted to investigate whether experimentally recorded neural data shows differential 
correlations of a similar strength to what we expected from our computational model, where we 
limited the input information to levels that were behaviourally plausible (see the section on 
“Visual stimulus parameters”). To compare differential correlation strengths in data sets of 
varying quality and population sizes, we worked in terms of the fraction, 𝜂𝜂𝐿𝐿, of the total 
resultant length (i.e., cos2θ) of 𝐟𝐟′ after projection into 𝚺𝚺∥𝐤𝐤, which we define as the k-dimensional 
subspace of Σ spanned by its first k principal components, using equations (28) and (30): 

 

𝜂𝜂𝐿𝐿 ∶= 𝑐𝑐𝑐𝑐𝑐𝑐2 𝜃𝜃 �𝒇𝒇�′,𝜮𝜮∥𝒌𝒌� 31 
 

To quantify the strength of differential correlations, we defined a metric comparing the cos2θ 
in the real data set, 𝜂𝜂𝐿𝐿𝑢𝑢, against that in a data set obtained after correlations are destroyed by 
shuffling, 𝜂𝜂𝐿𝐿𝑏𝑏 ; this metric is defined by 

𝜑𝜑 ∶=
1
𝑑𝑑
�𝜂𝜂𝐿𝐿𝑢𝑢 − 𝜂𝜂𝐿𝐿𝑏𝑏
𝑑𝑑

𝐿𝐿=1

, 32 

with k proceeding in order of the principal components of the d-dimensional covariance matrix 
𝚺𝚺. This metric is 0 when the shuffled and unshuffled spaces have the same proportion of their 
respective total information across all subspaces. It is 1 when the unshuffled information in the 
1-dimensional subspace is already equal to the total information, and the shuffled information 
is zero until the last dimension inclusive. φ is 0.5 in the case where shuffled information grows 
linearly, and unshuffled information is already equal to the total information in the 1-
dimensional subspace. This latter case should be taken as a more realistic maximum value that 
φ could take. 

 

Neurophysiology 

General methods can be found in (Jasper, Tanabe, and Kohn 2019). In brief, animals were 
trained to fixate a small spot (0.2 x 0.2 deg), and maintain eye position within a 1-1.6 degree 
window. Eye position was monitored with a high-speed video tracking system (Eyelink II). 
After training, we implanted multi-electrode (‘Utah’) arrays (Blackrock; 1 mm length, 400 
micron inter-electrode spacing). In two animals (Cadet and Monyet), we recorded V1 activity 
using one 96-channel and one 48-channel array. In the third animal, we implanted two 96-
channels in V1. All animals were also implanted with arrays in area V4, not analysed here. 
Signals from each electrode were amplified and band-pass filtered (0.3-7500 Hz) using 
commercial acquisition systems (Blackrock Microsystems and Grapevine, Ripple), and sorted 
offline into single units and small multiunit clusters.  
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Visual responses were measured using full contrast, drifting sinusoidal gratings, presented on 
a calibrated monitor placed 64 cm from the animal (1024 x 768 resolution, 100 Hz refresh). 
After fixation was established and an additional delay of 100 ms, we presented a sequence of 
three gratings, each for 200 ms and followed by an inter-stimulus interval of 150 ms, during 
which a gray screen was presented. Responses were measured as the spike count in the 200 ms 
epoch during a stimulus was on the screen. Each recording involved either 2 gratings (1 session, 
orientation of the two gratings was 5 degrees apart) or 4 gratings (remaining sessions; consisting 
of two sets of gratings, with an orientation difference of 5 deg within a set, and 90 degrees 
between sets). All gratings had a spatial frequency of 2 cyc/deg, and a drift rate of 5 Hz. Grating 
size was between 2.5 and 8.6 deg in diameter. Animals worked an average of 913+/-206 trials, 
resulting in >2700 stimulus presentations per session.  

In one animal (Cadet), we detected cross-talk between channels of the array (1-3% of pairings). 
Cross-talk was evident as frequent, precise synchronous activity between different electrodes. 
To address this issue, we removed, randomly, the spikes from one of the participating units, 
whenever a synchronous event occurred. In the remaining two animals, cross-talk was 
extremely rare (<0.1% of pairings), with the exception of three units in one animal (alcapone), 
which we excluded from our analysis. 
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