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ABSTRACT 

MXD proteins are transcription repressors that antagonize the E-box dependent 

activation of genes by MYC. MYC together with MIZ1 acts also as a repressor of a 

subset of genes, including cell cycle inhibitor genes such as p15 and p21. A role 

of MXDs in regulation of MYC-repressed genes is not known. Here we report that 

MXDs are functionally expressed in U2OS cells and activate transcription of p15 

and p21, and other MYC-repressed genes. Activation of transcription was 

dependent on the interaction of MXDs with MIZ1, and on an intact DNA binding 

domain. MIZ1-binding deficient MXD mutants interacted with MAX and were active 

as repressors of MYC-activated genes but failed to activate MYC-repressed 

genes. Mutant MXDs with reduced DNA binding affinity interacted with MAX and 

MIZ1 but neither repressed nor activated transcription. Overexpression of MXDs 

attenuated proliferation of U2OS cells predominantly via MIZ1-dependent 

induction of p21. Our data show that MXDs and MYC have a reciprocally 

antagonistic potential to regulate transcription of mutual target genes. 
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Introduction 

MYC-associated factor X (MAX) and its binding partners comprise a family of basic 

helix-loop-helix leucine zipper (bHLH-Zip) transcription factors, which are implicated in 

the regulation of cell growth, proliferation, differentiation, apoptosis and tumorgenesis 

(Carroll et al., 2018; Conacci-Sorrell et al., 2014; Poole and van Riggelen, 2017). 

Complexes of MAX with MYC and its homologs MYCN and MYCL bind to enhancer-box 

motifs (E-boxes) and promote expression of target genes (Conacci-Sorrell et al., 2014). 

Under physiological conditions MYC is expressed in response to mitogens and 

promotes cell growth and proliferation (Armelin et al., 1984; Carroll et al., 2018; Hasmall 

et al., 1997; Lutterbach and Hann, 1994; Wang et al., 2011). Elevated expression or 

activation of MYC is associated with uncontrolled cellular growth and proliferation and 

supports the development of cancer, and MYC or its homologues are overexpressed, 

amplified or deregulated in many cancer types (Dang, 2012; Kalkat et al., 2017). MYC 

has been reported to function as a regulator of specific target genes (Kress et al., 2015; 

Muhar et al., 2018; Sabo et al., 2014; Walz et al., 2014) and/or as a general amplifier of 

transcription of active genes on a genome-wide scale (Baluapuri et al., 2019; Gerlach et 

al., 2017; Lin et al., 2012; Nie et al., 2012). MYC interacts with several coactivators and 

RNA-polymerase II (Pol II) associated factors including chromatin modifiers, 

transcription initiation and elongation factors that are implicated in transcription 

activation, but also with several complexes and assemblies involved in transcriptional 

repression (Baluapuri et al., 2019; Kress et al., 2015; Poole and van Riggelen, 2017). 
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MYC has been shown to facilitate the release of promoter-proximally paused Pol II 

(Rahl et al., 2010), enhance mRNA capping (Cowling and Cole, 2010), facilitate the 

transfers PAF1 to Pol II (Gerlach et al., 2017; Jaenicke et al., 2016), and enhance rate 

and processivity of transcription elongation by loading SPT5 onto Pol II (Baluapuri et al., 

2019), and thereby support transcription of most active genes. In contrast, rapid 

depletion of MYC in leukemia and colon cancer cell lines affects transcription of a small 

subset of genes, suggesting that expression of a rather limited set of activated genes 

might depend on the presence of MYC (Muhar et al., 2018). 

The activation of genes by MYC/MAX is antagonized by the MAX-Dimerization (MXD) 

proteins, MXD1-4, and MAX Network Transcriptional Repressor (MNT), henceforth 

collectively referred to as MXDs and MGA (Carroll et al., 2018). MXDs and MGA are 

bHLH transcription factors that form complexes with MAX and bind to the same E-boxes 

as MYC/MAX (Carroll et al., 2018; Conacci-Sorrell et al., 2014). MXDs recruit via their 

SID domain mSIN3-HDAC1/2 co-repressor complexes and repress transcription 

(Laherty et al., 1997; van Riggelen et al., 2010b). 

Opposite to MYC, MXDs support cell cycle arrest and differentiation (Chen et al., 1995; 

Lahoz et al., 1994; Yang and Hurlin, 2017). Genetic studies in mice confirmed the 

antagonism between MYC and MXDs. MXD1-/- mice show increased proliferation and 

detained differentiation of granulocyte precursors (Foley et al., 1998). Mice lacking 

MXD2(MXI1) display multiple histological abnormalities due to increased cell 

proliferation in several tissues, and are more susceptible to spontaneous and induced 

cancerogenesis (Schreiber-Agus et al., 1998). Depletion of MNT triggers increased cell 
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proliferation (Hurlin et al., 2003; Nilsson et al., 2004). Mice bearing a deletion of Mnt in 

mammary glands develop spontaneous tumors with increased frequency, phenocopying 

transgenic overexpression of MYC (Toyo-oka et al., 2006). Finally, human MNT, MXD1 

and MXD2 genes are located in regions that are frequently mutated in different cancer 

types (Cvekl et al., 2004; Edelmann et al., 2012; Schaub et al., 2018; Shapiro et al., 

1994; Wechsler et al., 1994).  

MYC, in particular in oncogenic or overexpressed conditions, has also the potential to 

repress transcription. The underlying mechanisms are not fully understood and a 

comprehensive set of bona-fide MYC-repressed genes is not known. This is in part due 

to the fact that MYC supports cell growth and proliferation, and thus, directly or indirectly 

promotes expression of all genes when compared to the transcription rates of resting 

cells. Hence, upon normalization lower than average activation of genes may appear as 

relative repression even though the genes are actually activated (Wolf et al., 2015). 

However, MYC has been shown to interact with the zinc-finger transcription factor MIZ1 

(ZBTB17) and the related transcription factors, SP1 and YY1 (Poole and van Riggelen, 

2017). MIZ1 regulates embryonic development and differentiation (Adhikary et al., 2003; 

Walz et al., 2014; Wolf et al., 2013; Wolf et al., 2015). MYC in association with MIZ1 has 

been shown to repress genes, including the cyclin-dependent kinase (CDK) inhibitor 

genes p15 (CDKN2B), p21 (CDKN1A) and p27 (CDKN1B) and the circadian 

transcription factor genes BMAL1 (ARNTL), CLOCK and NPAS2 (Shostak et al., 2016; 

Staller et al., 2001; Walz et al., 2014; Wu et al., 2003; Yang et al., 2001). Mutations 

compromising the interaction of MYC with MIZ1 specifically affect the repressing but not 

the activating potential of MYC (Herold et al., 2002; Shostak et al., 2016; Si et al., 
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2010), indicating that MYC together with MIZ1 has the potential to directly repress 

transcription. In oncogenic conditions overexpressed MYC may recruit MIZ1 to a larger 

number of genes and attenuate their transcription (Lorenzin et al., 2016; Walz et al., 

2014; Wolf et al., 2015). A low ratio of MYC versus MIZ1 occupancy (Lorenzin et al., 

2016) and/or low relative affinity of promoters for MYC (de Pretis et al., 2017) appear to 

correlate with repression of transcription, suggesting that the ratio of activating 

MYC/MAX versus repressing MYC/MAX/MIZ1 complexes determines transcriptional 

outcome. 

The development of lymphoma in mice is critically dependent on the interaction of MYC 

with MIZ1 (van Riggelen et al., 2010a). When the MYC/MIZ1 interaction is challenged 

by mutation, the repressive capacity of MYC is decreased, its pro-proliferative functions 

are reduced, and self-renewal of stem cells is compromised (Kerosuo and Bronner, 

2016; Shostak et al., 2016).  

In this study we addressed specifically the question whether and how MXDs have the 

potential to impact expression of genes that are repressed by MYC together with MIZ1. 

Using U2OS cells, which endogenously express MXDs, we report the surprising 

observation that MNT, MXD1, and MXD2 activate transcription of specific MYC-

repressed genes, in parallel to their known function as transcriptional repressors of 

MYC-activated genes. We show that activation of transcription by MXDs relies on their 

physical interaction with MIZ1, and requires functional DNA binding and corepressor 

recruitment domains. We show that MXDs inhibit U2OS cell growth and proliferation 

through activation of MYC-repressed genes, and MXD-dependent activation of p21 was 

particularly crucial. 
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Results 

Endogenous MXDs activate the p21 core promoter in U2OS cells 

MXDs repress genes that are activated by MYC but a role of MXDs in the regulation of 

genes that are repressed by MYC has not been investigated. Since MXDs belong, like 

MYC, to the bHLH-ZIP family, we analyzed available ENCODE ChIP-seq data of MXD2 

(GSM935498), MNT (GSE91968) and MYC (GSM822286, GSM822301). As expected, 

the analysis revealed that MXD2 and MNT binding overlaps with MYC binding (Fig. 1A). 

MXD2 and MNT were also recruited to MIZ1 binding sites in genes that are repressed 

by MYC such as p21 and VAMP4 (Fig. 1A). A genome-wide comparison of the 

cistromes of MNT and MYC (ENCODE data from MCF7 cells) and of MXD2 and MYC 

(ENCODE data from HELA cells) with the cistrome of MIZ1 in U2OS cells (Walz et al., 

2014) revealed a significant overlap of MNT and MXD2 with MYC as well as with MIZ1 

binding sites (Supplemental Fig. S1A). It should be noted that due to low sequence 

coverage we pooled binding sites of native MIZ1 from several ChIP-seq experiments 

published by Walz et al. Although the published ChIP-seq analyses are from different 

cell lines, the data suggest that MXDs and MYC might be recruited in a similar manner 

to genes that are co-occupied by MIZ1. 

Expression of MXDs is tightly regulated and cell-type specific (Hooker and Hurlin, 

2006). Available RNA-seq data indicate that MIZ1, MYC as well as its antagonists 

MXD1, MXD2, and MNT are expressed in U2OS cells (Fig. 1B) (Elkon et al., 2015; 

Ibarra et al., 2016). To assess whether MXDs are functional and impact expression of 

MYC repressed genes we analyzed expression of a p21-luc reporter. This luciferase 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2019. ; https://doi.org/10.1101/842799doi: bioRxiv preprint 

https://doi.org/10.1101/842799
http://creativecommons.org/licenses/by/4.0/


7 

 

reporter contains only the core promoter of the p21 gene. Hence, it is highly likely that 

putative changes in p21-luc repression are directly due to regulation of transcription. 

p21-luc was previously shown to be repressed by MYC in MIZ1-dependent manner 

(Shostak et al., 2016; Wu et al., 2003). When U2OS cells were transfected with siRNAs 

against MYC the expression level of p21-luc was elevated (Fig. 1C), indicating that 

endogenous MYC had limited its expression. Surprisingly, expression of p21-luc was 

reduced when cells were treated with previously validated siRNAs against MXDs (Corn 

et al., 2005; Wu et al., 2012; Xu et al., 2007) (Fig. 1C and Supplemental Fig. S1B). The 

data demonstrate that MXDs are expressed at functional levels in U2OS cells, and that 

endogenous MXDs supported the expression of p21-luc. Expression of p21-luc in MXD-

depleted cells was restored when cells were additionally transfected with siRNA against 

MYC (Fig. 1C). Together the data strongly suggest that the expression level of p21-luc 

in U2OS cells was established by the ratio of endogenous MYC versus MXDs. 

We then produced U2OS cells overexpressing FLAG:MIZ1 in doxycycline-inducible 

fashion (Supplemental Fig. S1C) and measured expression of p21-luc (Fig. 1D). 

Expression of p21-luc increased when FLAG:MIZ1 was induced, indicating that MIZ1 

was limiting in U2OS cells (Fig. 1D). The cells were then transfected with siRNAs 

against MNT, MXD1 and MXD2. Downregulation of MXDs resulted in substantially 

reduced expression of p21-luc and overexpression of FLAG:MIZ1 failed to activate p21-

luc when MXDs were depleted (Fig. 1D). The data indicate that both, endogenous and 

overexpressed MIZ1 required endogenous MXDs to activate p21-luc transcription.  

 

MXDs interact with MIZ1 to activate MYC-repressed genes 
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To analyze the impact of MXDs on MYC-repressed genes we generated stable U2OS 

cells expressing V5-tagged MXD1, MXD2, and MNT under control of a doxycycline-

inducible promoter (see Supplemental Fig. S3B). Chromatin immunoprecipitation (ChIP) 

from these cells and from U2OS cells expressing MYC:V5 and FLAG:MIZ1, 

respectively, revealed that tagged MYC, MXDs and MIZ1 bound to the promoter of the 

NCL gene, which is a MYC activated gene, suggesting that the tagged TFs were 

functional in DNA binding (Fig. 2A). In agreement with the published ChIP-seq data 

shown in Fig. 1A, tagged MYC, MXDs and MIZ1 were also recruited the p21 promoter 

(Fig. 2A), which is repressed by MYC. 

We have previously shown that doxycycline-induced overexpression of MYC supported 

expression of a 6xEbox-luc reporter and inhibited expression of p15-luc and p21-luc 

reporters (Shostak et al., 2016). Doxycycline-induced overexpression of MNT, MXD1, 

and MXD2 attenuated expression of a 6xEbox-luc while they supported elevated 

expression of p15-luc and p21-luc reporters (Fig. 2B, C, and D). Activation and 

repression of the reporters were strongest for MNT and rather moderate for MXD2, yet 

even these moderate increases in expression were significant and highly reproducible. 

Interestingly, MNT, MXD1, and MXD2 did not support elevated expression of p21-luc 

when MIZ1 was depleted by siRNA (Fig. 2D and Supplemental Fig. S2A). These data 

indicate that activation of the reporter required endogenous MIZ1. 

In accordance with the reporter assays, MXDs also impacted the expression levels of 

endogenous genes. Thus, induction of MNT, MXD1, and MXD2, attenuated expression 

of NCL and SNHG15, confirming the repressive role of MXDs on MYC-activated genes. 
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In contrast, MNT, MXD1, and MXD2 supported expression of endogenous p15, p21, 

p27, and CEBPA (Supplemental Fig. S2B). As observed with the gene reporters, MNT 

was the strongest activator under our conditions while the activating potential of MXD2 

was rather modest. The activation of p15 by MXDs was pronounced while the activation 

of p27 was significant but rather small. Together the reporter assays and the 

measurement of the expression levels of the corresponding endogenous genes indicate 

that overexpressed MXDs have the potential to activate in U2OS cells the cyclin-

dependent inhibitor genes p15 and p21, and p27 as well as CEBPA. The extend of 

activation by the individual MXDs differs between genes and is dependent on MIZ1. 

Furthermore, overexpression of ectopic MXDs and downregulation of endogenous 

MXDs, respectively, have the opposite effect on p21-luc expression. Thus, our data 

indicate that MXDs (endogenous and ectopic) have the potential to activate these MYC-

repressed genes in U2OS cells under conditions where they are active as repressors of 

MYC-activated genes. 

The above measurements were done with confluent U2OS cells, which are growing 

rather slowly. We chose these conditions to avoid or minimize potential indirect effects 

on gene expression that could be associated with MXD-dependent differences in cell 

number (due to growth or apoptosis). Colorimetric cell counting by WST-8 staining 

indicated that induction of MXDs had little impact on cell growth and viability under such 

conditions (Supplemental Fig. S2C), and quantification of GAPDH expression from the 

entire cultures confirmed the results of the WST-8 assay (Supplemental Fig. S2D). 

Hence, the MXD-dependent increase in expression levels of p15, p21, and p27 (luc-

reporters and endogenous genes) is due to transcriptional regulation. 
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MXDs interact with MIZ1 and directly activate MYC-repressed genes 

The bHLH domains of MYCs and MXDs are highly conserved (Fig. 3A) (Hurlin et al., 

1997). In order to analyze whether MXDs physically interact with MIZ1, we expressed in 

HEK293 cells V5 tagged versions of MXD1, MXD2, and MNT together with FLAG-

tagged MIZ1. Pull-down assays revealed that FLAG-tagged MIZ1 formed complexes 

with MXD1, MXD2, and MNT (Fig. 3B and Supplemental Fig. S3A). We then set out to 

generate MXD mutants that are compromised in their ability to interact with MIZ1. The 

interaction of MYC with MIZ1 is critically dependent on V393 and V394 in the bHLH 

domain of MYC (Herold et al., 2002; Shostak et al., 2016). A sequence comparison 

revealed that V393 is conserved in MYC proteins, while MXDs carry a leucyl residue in 

the corresponding position (Fig. 3A). To assess whether MXDs interact with MIZ1 via a 

similar interface as MYC we expressed in HEK293 cells V5-tagged versions of MNT, 

MXD1, and MXD2 with leucyl to aspartyl (L-D) substitutions in the position 

corresponding to V393 of MYC. Subsequent pull-down assays revealed that the 

mutation abolished the interaction of MNTL258D with MIZ1 (Fig. 3C). MXD1L95D, and 

MXD2L106D were substantially compromised in their capacity to interact with MIZ1 (Fig. 

3D and Supplemental Fig. S3B). The potential of the mutant MXDs to bind MAX was not 

affected (Supplemental Fig. S3C). The data suggest that MYC and MXDs interact with 

MIZ1 in corresponding manner. 

We then generated U2OS cells expressing doxycycline inducible L-D versions of MXDs 

(Supplemental Fig. S3D). The capacity of MNTL258D, MXD1L95D, and MXD2L106D to 
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repress 6xEbox-luc was not affected (Fig. 3E and Supplemental Fig. S3E), indicating 

that the mutant proteins were functional repressors. However, the L-D versions of MXDs 

did not support elevated expression p21-luc (Fig. 3F and Supplemental Fig. S3F), 

suggesting that the capacity to activate this promoter was dependent of their interaction 

with MIZ1. Furthermore, MNTL258D, MXD1L95D, and MXD2L106D attenuated expression of 

endogenous NCL and SNHG15 genes as efficiently as the corresponding WT proteins 

but showed reduced activation of p15, p21, p27, and CEBPA genes (Supplemental Fig. 

S3G). Together the data suggest that activation of these MYC-repressed genes by 

MXDs was supported by their interaction with MIZ1. The data are not compatible with 

an indirect activation of transcription by sequestration of MAX and thereby relieving 

MYC-dependent repression. 

 

MYC and MXDs require DNA binding to modulate MIZ1 activity 

To test whether MYC and MXDs require an intact bHLH domain in order to associate 

with MIZ1-target genes, we replaced in the basic region of the DNA binding domain two 

critical neighboring arginyl residues (RR) by aspartyls (DD) (see Fig. 3A). Recruitment 

of the corresponding mutants, MYCRR367DD, MNTRR232DD, MXD1RR68DD, and MXD2RR79DD, 

to MYC-activated and MYC-repressed genes was reduced (Fig 4A). However, the RR-

to-DD substitutions in the DNA-binding domains of MYC and MXDs did not affect their 

ability to interact with MIZ1 in a pull-down assay (Supplemental Fig. S4A).  

Overexpression of MYCRR367DD in U2OS cells (Supplemental Fig. S4B) neither activated 

6xEbox-luc nor repressed p21-luc (Fig. 4B) (Shostak et al., 2016), suggesting that the 

DNA-binding domain of MYC is required for both, activation and repression of genes. 
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Similarly, RR-to-DD substitutions in the DNA binding domains of MXDs impaired their 

potential to repress 6xEbox-luc and their capacity to activate p21-luc (Fig. 4B). These 

data suggest that the DNA-binding domains of MXDs are required for repression and 

activation of genes. Since the RR-to-DD substitutions did not affect the interaction of 

MXDs with MIZ1, the data also indicate that MXDs did not indirectly activate p21-luc by 

squelching MIZ1 away from MYC/MIZ-repressed promoters. 

MXDs harbor a SID domain by which they recruit co-repressor complexes (Laherty et 

al., 1997). The SID domains of MXDs are short N-terminal segments of about 20 amino 

acid residues (aa). We deleted the SID domains of MNT (aa 2-16), MXD1 (aa 2-20), 

and MXD2 (aa 2-20) (Supplemental Fig. S5). It has been previously shown that 

deletion of the SID domain does not affect the interaction of MXDs with MAX (Ayer et 

al., 1995). ChIP analysis revealed that binding of MXDSID mutants to the promoters of 

NCL and p21 was not compromised (Fig. 5A). Previous data (Hurlin et al., 1997) had 

shown that MXDSID mutants failed to repress MYC-activated genes. In agreement 

with these data MXDSID mutants failed to repress the 6Ebox-luc reporter in HEK293 

cells (Fig. 5B). MNTSID even activated 6Ebox-luc. Surprisingly, however, the SID 

versions of MXDs were compromised in their ability to activate p21-luc (Fig. 5C), 

suggesting that the SID domain is also required for MIZ1-dependent transactivation of 

MYC-repressed genes. 

 

MXDs inhibit cell growth in MIZ1-dependent manner 

Expression of MXDs reduces cell growth and proliferation in various cellular models 

(Chin et al., 1995; Delpuech et al., 2007; Hurlin et al., 1997). Doxycycline-induced 
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overexpression of MXDs also reduced proliferation of growing U2OS cells that were 

seeded at low density (Fig. 6A). To analyze whether MXDs inhibit growth in MIZ1-

dependent fashion we overexpressed the MIZ1-interaction mutants, MNTL258D, 

MXD1L95D, and MXD2L106D, which are functional repressors of MYC-activated genes 

(see Fig. 3E and Supplemental Fig. S3E, G). The capacity of MNTL258D, MXD1L95D, and 

MXD2L106D to inhibit cell growth and proliferation was severely blunted (Fig. 6A and 

Supplemental Fig. S6A), suggesting that inhibition of U2OS cell growth and proliferation 

by MXDs relies critically on their interaction with MIZ1. 

We then asked whether the reduced apparent kinetics of cell growth was due to an 

increase in apoptosis of U2OS cells or a reduction in cell cycle frequency. Cell cycle 

stage-specific FACS-sorting of propidium iodide stained cells revealed that 

overexpression of MXDs reduced the fraction of cells in G2 and M phases, while 

overexpression of L-D mutants of MXDs had no significant effect on the cell cycle (Fig. 

6B). Measurement of caspase activity revealed that cells gradually started to undergo 

apoptosis only after about 60 h of growth, long after cells reached confluence 

(Supplemental Fig. S6B). Overexpression of MXDs reduced apoptosis while 

overexpression of MYC increased apoptosis, as reported previously (Herkert et al., 

2010) (Supplemental Fig. S6B). Together the data demonstrate that MXDs inhibit 

proliferation of U2OS cells by inhibiting the cell-cycle. 

Finally, we addressed the role MXDs in regulating growth of U2OS cells via p21. When 

p21 was depleted in growing U2OS cells the growth rate did not further increase, 

suggesting that growth was limited by other factors. Overexpression of MXDs 

attenuated proliferation of U2OS cells but failed to do so when MXD-induced 
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accumulation of p21 was prevented by siRNA treatment (Supplemental Fig. S7C, D). 

Hence, the induction and/or repression of other genes by MXDs could obviously not 

compensate for the lack of p21. These data indicate that regulation of the CDK inhibitor 

gene, p21, is a major pathway by which MXDs and MIZ1 impact proliferation of U2OS 

cells. 

 

Discussion 

MXD proteins encompass a group of transcriptional repressors that antagonize the 

activation of genes by MYC (Conacci-Sorrell et al., 2014). The aim of this work was to 

investigate whether and how MXDs impact on such genes that are not activated but 

repressed by MYC. We therefore focused specifically on the regulation of a selected 

group of gene promoters (mainly p15, p21, and p27) that were previously shown by 

various means to be directly repressed by MYC in MIZ1-dependent manner (Shostak et 

al., 2016; Si et al., 2010; Staller et al., 2001; Walz et al., 2014; Wu et al., 2003; Yang et 

al., 2001), and we restricted our analyses on U2OS cells, which express MXDs as well 

as MYC at functional levels. We report the unexpected and surprising finding that MXDs 

activated transcription of this validated group of MYC-repressed genes. Thus, the 

antagonizing role of MXDs appears to extends to the limb of genes that are repressed 

by MYC, i.e., gene that are activated MYC are repressed by MXDs, and vice versa, 

genes that are repressed MYC are activated by MXDs. Since the activating function of 

MYC is antagonized by MXDs is seems conceivable that also the repressing function of 

MYC requires regulatory counterbalance, in particular since MYC-repressed genes 

include crucial inhibitors of the cell cycle. 
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Several lines of evidence support that transcription of genes such as p15, p21, and p27 

was directly activated by MXDs. Most importantly, MXDs are functionally expressed in 

U2OS cells and MXD downregulation resulted in elevated expression of the selected 

MYC-repressed genes. We controlled WST-8 staining that the apparent induction of 

these MYC-repressed genes was not artificially due to differences in number and size of 

living cells (biomass) in MXD-induced versus control-treated cultures (e.g. by less 

apoptosis of MXD-induced cells).  

In addition to the analysis of endogenous gene expression we measured the impact of 

MXDs on luciferase reporter genes to assess the transcriptional regulation of the core 

promoters. The p21-luc reporter contains a short, truncated core promoter with binding 

sites for SP1, MIZ1, and MYC (Wu et al., 2003), and also for MXDs. Thus, analysis of 

p21-luc minimizes the potential impact of other transcription factors implicated in the 

complex regulation of the endogenous p21 gene. Induction of MXDs in confluent 

cultures of U2OS cell triggered an increase in p21-luc bioluminescence measured from 

the entire culture while the number of viable cell did not increase relative to control 

cultures. Moreover, depletion of endogenous MXDs had the opposite effect (reduced 

expression of p21-luc) than overexpression of MXDs (elevated expression of p21-luc). 

Together, our data show that MXDs have the potential to activate in U2OS cells 

transcription of selected MYC-repressed genes.  

We then analyzed the molecular basis underlying the MXD-dependent transcription 

activation. These analyses were based on functional comparison of overexpressed WT 

MXDs with mutant MXD versions defective in MIZ1 interaction, DNA binding and co-

repressor recruitment, respectively. In principle, overexpressed MXDs could induce 
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MYC-repressed genes indirectly by sequestering MAX, and thereby reducing the levels 

of repressive MYC complexes. However, DNA-binding mutants as well as MIZ-

interaction mutants of MXDs interacted with MAX as efficiently as WT MXDs but did not 

induce MYC-repressed genes, which is not compatible with indirect gene activation by 

sequestration of MAX. 

Potentially MXDs could (via the canonical pathway) repress putative MYC-activated 

genes that encode (co)repressors of MYC-repressed genes, and thereby indirectly, i.e. 

by repression of a (co)repressor, induce transcription. However, the MIZ interaction 

mutants of MXDs were active as repressors of MYC-activated genes but failed 

supporting expression of the selected MYC-repressed genes, excluding indirect 

activation via repression of a (co)repressor. 

Together, our data suggest that MXDs activated MYC-repressed genes in direct manner 

in addition to their function as repressors of MYC-activated genes. The dual function of 

MXDs is not unprecedented as MYC itself also acts as activator and repressor, and 

interacts via its MYC-boxes with factors associated with transcription activation and 

repression (Baluapuri et al., 2019; Kress et al., 2015; Poole and van Riggelen, 2017; Tu 

et al., 2018). The conditions and mechanisms specifying MYC as either (general) 

activator or repressor of particular genes are only partly understood. 

MXDs repress MYC-activated genes by recruiting via their short (~20 aa) N-terminal 

SID domains mSIN3-HDAC co-repressor complexes (Laherty et al., 1997) but MXDs do 

not contain known domains for the recruitment of co-activators. SID deletions do not 

affect the recruitment of MXDs to their target genes but compromised repression of 
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6xEbox-luc, and, surprisingly, also activation of p21-luc. The underlying mechanism 

remains obscure and awaits further investigation. 

 

Together, these data indicate that MXDs (at physiological and overexpressed levels in 

U2OS cells) have the potential to directly activate in MIZ1-dependent fashion selected 

genes that are repressed by MYC/MIZ1. While MIZ1 may activate transcription by 

default, it is limiting in U2OS cells and its regulatory potential in the presence of 

endogenous levels of MXDs and MYC is determined by the functional ratio of MXDs 

versus MYC. In growing U2OS cells MYC may dominate and hence MIZ1 is 

predominantly repressing, while in non-growing U2OS cells MDXs may functionally 

dominate and MIZ1 is predominantly activating. The physiological relevance and 

contribution of MXDs to the expression of MYC-repressed in the context of a living 

organism is beyond the scope of this manuscript and remains to be investigated. 

MYC and MXDs are regulators of cell proliferation. We show here that overexpression 

of MXDs attenuated proliferation of growing U2OS cells (non-confluent cultures), 

consistent with their reported role as antagonists of MYC, which stimulated proliferation 

under corresponding conditions. Mutant versions of MXDs with reduced affinity for MIZ1 

were compromised in their capacity to inhibit cell proliferation, just as a corresponding 

MIZ1-interaction mutant of MYC was recently shown to be compromised in its capacity 

to stimulate cell proliferation (Kerosuo and Bronner, 2016; Shostak et al., 2016; van 

Riggelen et al., 2010a). Hence, at least in U2OS cells MXDs antagonized MYC’s pro-

proliferative function predominantly in MIZ1-dependent manner via the regulation of 

MYC-repressed genes. Overexpression of MXDs failed to attenuate cell growth when 
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expression of p21 was suppressed by siRNA, indicating that regulation of p21 was of 

particular importance in U2OS cells. 

In summary, our results reveal that transcription factors of the MXD family, which are 

characterized repressors of MYC-activated genes, show transcription activating 

properties at genes that are repressed by MYC together with MIZ1. Thus, our findings 

suggest that activation and repression of genes by MYC could be coordinated by a 

reciprocal antagonism of MXD proteins. 

 

Materials and Methods 

Cell culture and transfections 

U2OStx and HEK293 cells (Shostak et al., 2016) were maintained in DMEM with 10% 

FBS and 1x PenStrep. Cell culture reagents were obtained from Life Technologies 

unless indicated differently. Inducible U2OStx cells overexpressing different transgenes 

were obtained by stable transfection with AhdI-linearized pcDNA4/TO vector using Xfect 

(Clontech).  Resistant clones were selected with 50 µg/ml hygromycin and 100 µg/ml 

zeocin (Invivogen) for 2 weeks and pooled together. For siRNA transfections, U2OS 

cells were seeded on 24 or 96 well plates and next day transfected with the siRNAs 

(sequences are given in Supplemental Table 1) using Lipofectamine RNAiMAX reagent. 

Cells were kept in the siRNA transfection mix minimum 24 hours before further 

applications. For luciferase reporter assays, HEK293 cells were transfected with the 

indicated plasmids using Lipofectamine2000. Next day, luciferase expression was 
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measured using Dual-luciferase Reporter Assay (Promega) and an EnSpire Reader 

(Perkin Elmer).  

Plasmid constructs 

6xEbox-luc, p15-luc, and p21-luc reporters were used previously (Shostak et al., 2016). 

Vectors containing the ORFs of MNT and MXD1 were kindly provided by Prof. Bernhard 

Lüscher. The MXD2 ORF was amplified from U2OS cDNA. To produce inducible 

constructs V5-tagged ORFs of MXDs were cloned in pcDNA4/TO vector. Subsequent L-

D, RRDD, and ∆SID mutagenesis, respectively, was performed using DF-Pfu 

polymerase (Bioron). Cloning and mutagenesis primers are available upon request.   

Bioluminescence measurements 

For bioluminescence measurements, transgenic U2OStx cells, untreated or pretreated 

with siRNA, were transiently transfected with luciferase reporters using Xfect (Clontech).  

After 24 hours the growth medium was replaced with prewarmed luminescence medium 

(DMEM w/o Phenolred (Cat. no. 21063-029) supplemented with 10% FBS, 1x Normocin 

(Invivogen), and 0.125 µM luciferin (BioSynth), 10 ng/ml doxycycline or PBS) and plates 

were measured with an EnSpire Reader (Perkin Elmer).  

Gene expression analysis 

Total RNA from U2OStx cells was extracted with TriFaster (GeneON) and cDNA 

synthesis was performed with Maxima First Strand cDNA Synthesis Kit (Thermo). qPCR 

was performed on LightCycler 480 (Roche) using Maxima SYBR Green/ROX qPCR 
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Master Mix (Thermo) and gene expression was quantified using a ∆∆Ct method relative 

to GAPDH. Primer sequences are listed in Supplemental Table 1. 

ChIP  

U2OStx cells overexpressing different transgenes were incubated with doxycycline for 

24 h and then cross-linked in 1% formaldehyde for 10 min. Chromatin was prepared as 

described previously (Shostak et al., 2016). Sheared chromatin was incubated overnight 

at 4°C with 40 µl of salmon sperm DNA-blocked anti-FLAG (A2220, Sigma-Aldrich) and 

anti-V5 (A7345, Sigma-Aldrich) beads. Subsequently, precipitated chromatin was 

washed and recovered as previously described (Shostak et al., 2016). Samples were 

then analyzed by qPCR, and values were normalized to percentage of input. Primer 

sequences are listed in Supplemental Table 1.  

Cell confluence and fluorescent microscopy 

For proliferation assays, siRNA-transfected or untreated transgenic U2OStx cells were 

seeded on transparent 96 well plates (~3000 cells per well) and next day induced with 

standard growth medium containing 10 ng/ml doxycycline or PBS for control. To 

quantify apoptosis, growth medium was supplemented with Caspase-3/7 Green 

Reagent (4440, Essen Bioscience). Cell confluency and apoptosis were measured with 

an IncuCyte ZOOM reader (Essen Bioscience) using in-built software. 
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Co-immunoprecipitation and Western blotting 

Protein lysates of U2OS cells were prepared by incubation with ice cold lysis buffer 

(Shostak et al., 2016) and subsequent sonication in the ultrasonic bath (Merck) for 10 

min. Pre-cleared lysates (centrifugation at 16000xg for 10 min at 4°C) were boiled with 

4x Laemmli buffer, separated using 12% SDS-PAGE and transferred on nitrocellulose 

membranes. Membranes were decorated with anti-FLAG (1:5000, M2, Sigma-Aldrich), 

anti-V5 (1:5000, 46-0705, Life Technologies), and anti-Tubulin (1:1000, WA3) antibodies 

in TBS 5% milk at 4°C overnight. Next day, membranes were incubated with respective 

HRP-conjugated secondary antibodies and exposed to X-ray films. For co-IP 

experiments, transfected HEK293 cells were collected and prepared as described 

above. Then cell lysates (500 µg total protein) were incubated with 40 µl of PBS-

washed anti-FLAG M2 beads (Sigma-Aldrich) at 4°C overnight. Next day beads were 

washed 3 times with PBS supplemented with 500 mM NaCl and 1% Triton X100 and 

precipitated proteins were eluted by boiling in 4x Laemmli buffer and loaded on 12% 

SDS-PAGE gels.  
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Figure legends 

Fig. 1. MXDs bind MIZ1/MYC sites and modulate MIZ1-dependent transcription 

(A) SNHG15, VAMP4, and p21 (CDKN1A) loci with ChIP-seq signals of native MYC 

(GSM822286, GSM822301), MXD2 (GSM935498), and MNT (GSE91968) in HELA and 

MCF7 cells (based on data from ENCODE). (B) Relative expression (combined 

datasets GSM1632189, GSM1632191, GSM2341646, and GSM2341647 normalized to 

MYC) of MXDs, MIZ1, MAX, and MYC in U2OS cells quantified by RNA-seq (Elkon et 

al., 2015; Ibarra et al., 2016). It should be noted that MAX protein is about an order of 

magnitude more stable than MYC, and hence believed to be present in excess over its 

binding partners MYC and MXDs (Blackwood et al., 1992). (C) The ratio of MXDs 

versus MYC rather than their levels determine p21-luc expression. Quantification of 

bioluminescence (24 hours) from p21-luc reporter transfected in U2OStx cells pre-

treated with siRNAs against MXDs (MNT, MXD1, and MXD2), MYC or MIZ1, as 

indicated. (C) MXDs support expression of p21-luc. Relative bioluminescence of p21-luc 

with and without induction of FLAG:MIZ1 (24 h) in U2OStx cells transfected with siRNAs 

against MXDs (MNT, MXD1, and MXD2) or negative siRNA (n=3). Data are presented 

as mean ± SEM. * P < 0.05; one-way ANOVA with Bonferroni post-test. 

 

Fig. 2. MNT, MXD1, and MXD2 repress E-box and activate MIZ1-target genes 

(A) Binding (ChIP-PCR) of MNT, MXD1, MXD2, MYC, and MIZ1 to NCL and p21. 

Expression of the transcription factors in U2OStx cells was induced for 24 h with 
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doxycycline (DOX) (n=3). Bioluminescence of 6xEbox-luc (B) and p15-luc (C) reporters 

from U2OStx tetO-MNT, MXD1, and MXD2 cells after induction with doxycycline (n=3). 

Cells were transiently transfected with luciferase plasmids and bioluminescence from 

the living culture was measured 24 h after DOX induction. (D) Activation of p21-luc in 

U2OS cells overexpressing MNT, MXD1, and MXD2 after induction with DOX (24 h). 

Cells pre-treated with siRNA were transfected with reporter plasmid one day before 

DOX induction (n=3). Data are presented as mean ± SEM. * P < 0.05; Student’s t-test. 

 

Fig. 3. MNT, MXD1, and MXD2 bind MIZ1 via a conserved interface 

(A) Left: Alignment of bHLH domains of MYC (MYC, MYCN, MYCL) and MXD (MXD1, 

MXD2, MXD3, MXD4, and MNT). The position corresponding to V393 of MYC is 

indicated by an arrow. The open arrowhead indicates position of two conserved arginyl 

residues (RR). Right: Structure of MYC/MAX and MXD1/MAX dimers with indicated 

positions of V393 and L95, respectively (Nair and Burley, 2003). (B) Co-

immunoprecipitation of V5-tagged MNT with FLAG-tagged MIZ1 from HEK293 lysates. 

(C) FLAG:MIZ1 pulldown and co-immunoprecipitation of WT and L258D versions of 

MNT expressed in HEK293 cells. MIZ1 and MNT were tagged with FLAG and V5 

epitopes, respectively. (D) The efficiency of co-immunoprecipitation of WT and L-D 

versions of MXDs was quantified by densitometry (n=2). Expression of 6xEbox-luc (E) 

and p21-luc (F) reporters in U2OStx cells after DOX induction (24 h) of WT or L-D 

versions of MXDs (n=3). Ctrl: non-induced control. Data are presented as mean ± SEM. 

* P < 0.05; one-way ANOVA with Bonferroni post-test. 
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Fig. 4. MYC and MXDs require DNA binding to regulate MIZ1 targets 

(A) Binding of MYC and MXDs to DNA requires an intact bHLH domain. ChIP-PCR of 

MYC, MNT, MXD1, and MXD2 (WT and RRDD versions) at promoters of NCL and p21 

in U2OStx cells 24 h after DOX induction (n=3). * P < 0.05; Student’s t-test. (B) 

Transcription regulation by MYC and MXDs requires an intact bHLH domain. 

Bioluminescence of p21-luc and 6xEbox-luc reporters measured from U2OStx cells 24 

hours after DOX induction of WT and RRDD versions of MYC and MXDs (n=3). Ctrl: 

non-induced control. * P < 0.05; one-way ANOVA with Bonferroni post-test. Data are 

presented as mean ± SEM.  

 

Fig. 5. MXDs require SID domains to activate and repress genes 

(A) DNA binding of MXDs does not require SID domains. ChIP-qPCR analysis of 

showing that DOX-induced (24 hours) WT and ∆SID versions of MNT, MXD1, and 

MXD2 bind to NCL and p21 genes in U2OStx cells (n=3). (B,C) The SID domains of 

MXDs are required for repression of 6xEbox-luc and activation of p21-luc. (B) 

Luciferase reporter assay of 6xEbox-luc in HEK293 cells transfected with wild type or 

∆SID MNT, MXD1, and MXD2 (n=3). (C) p21-luc expression in HEK293 cells 

transfected with MIZ1 and co-transfected with wild type or ∆SID versions of MXDs 

(n=3). * P < 0.05; one-way ANOVA with Bonferroni post-test. Data are presented as 

mean ± SEM. 

Fig. 6. MXDs attenuate cell growth in MIZ1-dependent manner 

(A) L-D versions of MXDs do not inhibit proliferation. Proliferation of U2OStx cells 

expressing DOX-induced WT and L-D versions MXDs. Confluence of cells, treated with 
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DOX (red curves) or PBS (Ctrl, black curves), was recorded with an Incucyte ZOOM 

system (n=3). (B) Wild type but not L-D mutants of MXDs attenuate cell proliferation. 

Cells were treated with DOX or PBS for 48 h and then were stained with propidium 

iodide and cell cycle stage was analyzed by FACS. Changes of the fractions of cells in 

G0-G1, S, and G2 triggered by expression of WT or L-D alleles of MXDs are shown 

(n=3). * P < 0.05; two-way ANOVA with Bonferroni post-test. Data are presented as 

mean ± SEM.  
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