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Abstract 1 

Structural and microstructural variations of human brain are heritable and highly 2 

polygenic traits, with hundreds of associated genes founded in recent genome-wide 3 

association studies (GWAS). Using gene expression data, transcriptome-wide association 4 

studies (TWAS) can prioritize these GWAS findings and also identify novel gene-trait 5 

associations. Here we performed TWAS analysis of 211 structural neuroimaging 6 

phenotypes in a discovery-validation analysis of six datasets. Using a cross-tissue 7 

approach, TWAS discovered 204 associated genes (86 new) exceeding Bonferroni 8 

significance threshold of 1.37*10-8 (adjusted for testing multiple phenotypes) in the UK 9 

Biobank (UKB) cohort, and validated 18 TWAS or previous GWAS-detected genes. The 10 

TWAS-significant genes of brain structures had been linked to a wide range of complex 11 

traits in different domains. Additional TWAS analysis of 11 cognitive and mental health 12 

traits detected 69 overlapping significant genes with brain structures, further 13 

characterizing the genetic overlaps among these brain-related traits. Through TWAS 14 

gene-based polygenic risk scores (PRS) prediction, we found that TWAS PRS gained 15 

substantial power in association analysis compared to conventional variant-based PRS, 16 

and up to 6.97% of phenotypic variance (p-value=7.56*10-31) in testing datasets can be 17 

explained by UKB TWAS-derived PRS. In conclusion, our study illustrates that TWAS can 18 

be a powerful supplement to traditional GWAS in imaging genetics studies for gene 19 

discovery-validation, genetic co-architecture analysis, and polygenic risk prediction.  20 
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Brain structural and microstructural differences are phenotypically associated with 1 

many other complex traits across different categories, such as cognitive measures1-5, 2 

neurodegenerative/neuropsychiatric traits6-9, alcohol and tobacco consumption10, and 3 

physical bone density11. Structural variations of human brain can be quantified by 4 

multimodal magnetic resonance imaging (MRI). Specifically, the T1-weighted MRI 5 

(T1-MRI) can provide basic morphometric information of brain tissues, such as volume, 6 

surface area, sulcal depth, and cortical thickness. In region of interest (ROI)-based 7 

T1-MRI analysis, images are annotated onto ROIs of pre-defined brain atlas, and then 8 

both global (e.g., whole brain, gray matter, white matter) and local (e.g., basal ganglia 9 

structures, limbic and diencephalic regions) markers can be generated to measure the 10 

brain anatomy. On the other hand, diffusion MRI (dMRI) can capture local tissue 11 

microstructure through the random movement of water. Using diffusion tensor imaging 12 

(DTI) models, brain structural connectivity can be quantified by using white matter 13 

tracts extracted from dMRI, which build psychical connections among brain ROIs and are 14 

involved in connected networks for various brain functions12,13. See Miller, et al. 11 and 15 

Elliott, et al. 14 for a global overview and more information about neuroimaging 16 

modalities used in the present study. 17 

 18 

Structural neuroimaging traits have shown moderate to high degree of heritability in 19 

both twin and population-based studies14-24. In the past ten years, genome-wide 20 

association studies (GWAS)3,14,24-33 have been conducted to identify the associated 21 

genetic variants (typically single-nucleotide polymorphisms [SNPs]) for brain structures. 22 

A highly polygenic34,35 genetic architecture has been observed, indicating that a large 23 

number of genetic variants contribute to the brain structure variations measured by 24 

neuroimaging biomarkers21,36. Particularly, using data from the UK Biobank (UKB39) 25 

cohort, two recent large-scale GWAS have identified 578 associated genes for 101 26 

regional brain volumes derived from T1-MRI37 (referred as ROI volumes, n=19,629) and 27 

110 DTI parameters of dMRI38 (referred as DTI parameters, n=17,706). Some of these 28 

discovered genes had been implicated with the same or other traits such as cognition 29 

and mental health diseases/disorders in previous GWAS. However, most of them have 30 

not been verified and need further investigations. As a supplement to traditional GWAS, 31 

recent advances of gene expression imputation methods40-46 and developments of 32 
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reference databases (e.g., the Genotype-Tissue Expression (GTEx) project47) have put 1 

the transcriptome-wide association studies (TWAS) forward for gene-trait association 2 

analysis. Despite some challenges48 such as interpreting causality, TWAS has successfully 3 

discovered novel gene-trait associations and provided new insights into biological 4 

mechanisms for many complex traits49. Through imputed transcriptomes, TWAS can 5 

reduce the multiple testing burden and leverage gene expression data to increase 6 

testing power for gene-trait association detection. This is a particularly desirable feature 7 

for imaging genetics studies, for which most of neuroimaging GWAS datasets continue 8 

to have small sample sizes and heavy multiple testing burden50.   9 

 10 

Here we applied TWAS methods to 211 structural neuroimaging traits including 101 ROI 11 

volumes and 110 DTI parameters. As these brain-related traits tend to be highly 12 

polygenic21,36 and are related with many traits across different categories11, we used a 13 

cross-tissue (panel) TWAS approach (UTMOST42) in our main analysis. UTMOST first 14 

performs single-tissue gene-trait association analysis in each reference panel with both 15 

within-tissue and cross-tissue statistical penalties, and then combines these single-tissue 16 

results using the Generalized Berk-Jones (GBJ) test51, which is aware of 17 

tissue-dependence and can account for the potential sharing of local expression 18 

regulation across tissues. The UKB dataset was used in the discovery phase (n=19,629 19 

for ROI volumes and 17,706 for DTI parameters, respectively). For the same UKB cohort, 20 

we compared TWAS-significant genes to previous GWAS findings in gene-based 21 

association analysis via MAGMA52 and gene-level functional mapping and annotation 22 

results by FUMA53. The UKB TWAS results were validated in five independent data 23 

sources, including Philadelphia Neurodevelopmental Cohort (PNC54,n=537), Alzheimer’s 24 

Disease Neuroimaging Initiative (ADNI55, n=860), Pediatric Imaging, Neurocognition, and 25 

Genetics (PING56, n=461), the Human Connectome Project (HCP57, n=334), and the 26 

ENIGMA224 and ENIGMA-CHARGE collaboration33 (n=13,193, for 8 ROI volume traits, 27 

referred as ENIGMA in this paper). Additional TWAS analysis was performed on 11 28 

cognitive and mental traits to explore their genetics overlaps with brain structures. 29 

Chromatin interaction enrichment analysis and drug-target lookups were conducted for 30 

TWAS-significant genes. Finally, we developed TWAS gene-based polygenic risk scores58 31 
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(PRS) using FUSION40 to fully assess polygenic architecture and examine the predictive 1 

ability of the UKB TWAS results. 2 

  3 

RESULTS 4 

Overview of TWAS discovery-validation in the six datasets   5 

We conducted a two-phase discovery-validation TWAS analysis for 211 neuroimaging 6 

traits by using the UKB cohort for discovery and the other datasets (ADNI, HCP, PING, 7 

PNC, and ENIGMA) for validation. We applied the UTMOST gene expression imputation 8 

models trained on 44 GETx (v6) reference panels, and used GWAS summary statistics 9 

generated from previous GWAS as inputs. In the rest of this paper, we refer 1.37*10-8 10 

(that is, 5*10-2/17,290/211, adjusted for all candidate genes and traits performed) as 11 

the significance threshold for gene-trait associations unless otherwise stated. 12 

 13 

The UKB discovery phase identified 614 significant gene-trait associations 14 

(Supplementary Table 1) between 204 genes and 135 neuroimaging traits (53 ROI 15 

volumes, 82 DTI parameters). Of the 204 TWAS-significant genes, 61 (29.9%) had 16 

significant associations with more than two neuroimaging traits, 25 (12.3%) had more 17 

than five significant associations, and 12 (5.9%) had at least ten, including OSER1, XRCC4, 18 

PLEKHM1, ZKSCAN4, EIF4EBP3, MAPT, LRRC37A, CRHR1, FOXF1, TREH, ARHGAP27, and 19 

C6orf100. These 12 genes together contributed 195 (31.8%) of the 614 gene-trait 20 

associations, indicating their widespread influences on brain structures. Specifically, we 21 

identified 123 genes whose imputed gene expression levels were significantly associated 22 

with one of more of the 53 ROI volumes (215 associations in total, 115 new, 23 

Supplementary Fig. 1), and 103 significantly associated genes (22 overlapping) for one 24 

or more of the 82 DTI parameters (399 associations in total, 219 new, Supplementary 25 

Fig. 2). Figure 1 illustrates that TWAS prioritized previous GWAS findings of MAGMA and 26 

FUMA and also discovered many new associations and genes. Moreover, some genes 27 

were associated with both ROI volumes and DTI parameters, while others were more 28 

specifically related to certain structures (Supplementary Fig. 3). For example, XRCC4, 29 

ZKSCAN4, EIF4EBP3, and CD14 were associated with DTI parameters but not ROI 30 

volumes, DEFB124, COX4I2, HCK, HM13, and REM1 showed associations with putamen 31 

and pallidum volumes, and the associations of PLEKHM1, LRRC37A, MAPT, CNNM2, 32 
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NT5C2, ARHGAP27, and CRHR1 were spread widely across DTI parameters and total 1 

brain volume.  2 

 3 

We validated the UKB results in the other five independent cohorts. For each dataset, 4 

we applied the Bonferroni-corrected significance threshold accounting for all candidate 5 

genes and traits analyzed (that is, 5*10-2/17,290/number of traits, Supplementary 6 

Tables 2-6). We found that 13 UKB TWAS-significant genes and 5 more previous 7 

GWAS-significant genes can be validated in one or more of the five validation datasets 8 

(Supplementary Fig. 4) including ANKRD42, DCC, DCTPP1, DLGAP5, HCK, LGALS3, UBE2C, 9 

KLRD1, LRRC37A, OSER1, PRPF3, TREH, TGM7, NUP210L, DOK5, KRTAP5-1, C20orf166, 10 

and DPP4. The TWAS novel findings and validated genes were discussed further in 11 

details below.  12 

 13 

Novel TWAS discoveries and validated genes  14 

Of the 204 UKB TWAS-significant genes, 90 were not discovered in previous GWAS of 15 

the same UKB dataset (Supplementary Table 7). TWAS resulted in 60 new associated 16 

genes for 53 ROI volumes (106 associations, Supplementary Fig. 5), and 52 new genes 17 

for 82 DTI parameters (139 associations, Supplementary Fig. 6). According to NHGRI-EBI 18 

GWAS catalog59, the 90 TWAS-significant genes replicated four previous findings on 19 

brain structures, including JPH360 for hippocampal volume in mild cognitive impairment, 20 

CNNM261 for white matter lesion progression, FOXF162 for hippocampal volume in 21 

Alzheimer’s disease progression, and C1QL163 for white matter hyperintensity burden. 22 

The other 86 genes had not been linked to brain structure previously and thus can be 23 

regarded as novel genes for these 211 neuroimaging traits. To explore the genetic 24 

overlaps with other traits in different domains, we performed association lookups for 25 

the 90 TWAS-significant genes on the NHGRI-EBI GWAS catalog (Supplementary Table 26 

8). Figure 2 shows that these genes were widely associated with physical measures (e.g., 27 

height, waist-to-hip ratio, heel bone mineral density, body mass index), cognitive traits 28 

(e.g., cognitive function, intelligence, math ability), neuropsychiatric and 29 

neurodegenerative diseases/disorders (e.g., schizophrenia, bipolar disorder, Alzheimer's 30 

disease), coronary artery disease, mean corpuscular hemoglobin, neuroticism, 31 
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education, reaction time, chronotype, smoking behavior and alcohol use, such as 1 

CDK2AP164-67, ELL68-70, CTTNBP271-73, and SH2B172,74-76.  2 

 3 

For the 18 TWAS-validated genes shown in Supplementary Fig. 4, 8 (ANKRD42, DCC, 4 

LRRC37A, NUP210L, DOK5, KRTAP5-1, C20orf166, and DPP4) of them had been 5 

discovered in the previous UKB GWAS and were implicated in brain-related complex 6 

traits, such as neuroticism64, major depression77, schizophrenia78-80, Intelligence81, math 7 

ability73, reaction time75, and insomnia82. The left ten genes, which were novel findings 8 

of TWAS, also had known associations with many cognitive and mental health traits. For 9 

example, previous GWAS reported that HCK was associated with chronotype82, LGALS3 10 

with schizophrenia83, UBE2C with reaction time75, KLRD1 with adolescent idiopathic 11 

scoliosis84, OSER1 with cognitive performance77 and Alzheimer's disease76, and PRPF3 12 

with chronotype76,85 and neuropsychiatric disorders86. In summary, TWAS novel and 13 

validated genes expand the overview of gene-level pleiotropy across these traits, 14 

suggesting that neuroimaging-derived biomarkers could be useful in studying a wide 15 

range of complex traits.  16 

 17 

Compared to brain tissue-specific TWAS analysis  18 

As a comparison, we performed a brain tissue-specific version of TWAS that only 19 

combines brain tissues in UTMOST (Method). This brain tissue-specific TWAS detected 20 

308 significant gene-trait associations (Supplementary Table 9) between 107 unique 21 

genes and 96 neuroimaging traits, including 64 associated genes for one or more of 37 22 

ROI volumes (104 associations, Supplementary Fig. 7), and 53 genes (10 overlapping) for 23 

one or more of 59 DTI parameters (204 associations, Supplementary Fig. 8).  24 

 25 

Most (101/107) of the tissue-specific genes have been identified by either the 26 

cross-tissue TWAS (95/107) or previous GWAS (70/107). The 6 genes that were uniquely 27 

identified by tissue-specific analysis included KNCN, LHFPL3, MBD2, TBK1, C3orf62, and 28 

TMEM173. LHFPL3 showed associations with education87, social behavior88,89, cognitive 29 

ability75, schizophrenia90, and bipolar disorder91. MBD2 was associated with reaction 30 

time75, TBK1 with amyotrophic lateral sclerosis92,93, and C3orf62 with intelligence82. 31 

Compared to tissue-specific TWAS, cross-tissue analysis clearly identified more signals. 32 
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For example, of the 215 gene-trait associations identified by cross-tissue analysis of ROI 1 

volumes, 100 had been identified in GWAS, 28 can be additionally identified by 2 

tissue-specific TWAS, and 87 can only be detected by cross-tissue analysis 3 

(Supplementary Fig. 9). Similarly, 180 of the 399 cross-tissue TWAS associations for DTI 4 

can be identified in GWAS, 69 can be additionally identified by tissue-specific TWAS, and 5 

150 were cross-tissue TWAS only (Supplementary Fig. 10). These results illustrate the 6 

advantage of cross-tissue analysis over brain tissue-specific TWAS for discovering 7 

association signals that are difficult to be identified in traditional GWAS. We further 8 

compared their results in a few follow-up analyses below.  9 

 10 

Comparison with GWAS variant-level signals and conditional analysis 11 

For each of the 614 gene-trait associations detected in cross-trait TWAS, we used 12 

previous GWAS summary statistics to check the most significant variant within the gene 13 

region (with a 1MB window on each side) that was pinpointed in the same UKB dataset 14 

(Method). The GWAS p-value of the most significant variant was greater than 1*10-6 for 15 

any associations of 13 genes (Supplementary Table 10). None of them had been 16 

identified by MAGMA or FUMA, indicating that it can be difficult to detect these genes 17 

by GWAS or post-GWAS screening for any of these neuroimaging traits. Of the 13 genes, 18 

7 (OSER1, TREH, PRPF3, KLRD1, TGM7, DCTPP1, UBE2C) were validated in one or more 19 

of the five validation datasets and were discussed in previous section. For the other 6 20 

genes (CELSR3, MYO9A, DNAJC24, GYPE, TMEM136, MOB4) genes, MOB4 was reported 21 

for major depression94 and autism spectrum disorder/schizophrenia95, DNAJC24 was 22 

linked to adolescent idiopathic scoliosis84, and CELSR3 was associated with education65 23 

and cognitive ability64,81. The same checking was then performed for the 308 significant 24 

gene-trait associations of brain tissue-specific TWAS. We found that only one gene 25 

DCTPP1 had minimum GWAS p-value greater than 1*10-6 (Supplementary Table 11). 26 

 27 

We next performed a conditional analysis to see whether the TWAS signals remained 28 

significant after adjustment for the most significant genetic variant used in UTMOST 29 

gene expression imputation models (Method). Although our cross-tissue analysis 30 

combined information from many genetic variants across various human tissues, we 31 

found that 418 of the 614 associations may indeed be dominated by the strongest 32 
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GWAS signal of the imputation model, as their conditional p-values were larger than 1 

0.05 (Supplementary Table 12). However, the conditional p-values of four genes (XRCC4, 2 

OBFC1, C15orf56, NMT1) were smaller than 1*10-6 for 18 gene-trait associations, 3 

suggesting that these associations were unlikely to be driven by a signal genetic variant. 4 

When the p-value threshold was relaxed to 1*10-3, 66 associations of 20 genes persisted 5 

after conditional analysis. The conditional analysis was also performed on significant 6 

associations of brain tissue-specific TWAS. Their conditional p-values were smaller than 7 

1*10-6 for three genes (XRCC4, C15orf56, NMT1) with 15 associations, and were smaller 8 

than 1*10-3 for 10 genes with 42 associations (Supplementary Table 13).  9 

 10 

Additional TWAS analysis for cognitive and mental health traits  11 

To further explore the gene-level genetic overlaps among brain structure and other 12 

brain-related traits, we performed cross-tissue TWAS analysis for 11 cognitive and 13 

mental health traits (Supplementary Table 14). We found that 69 of the 204 14 

TWAS-significant genes of neuroimaging traits were also significantly associated with 15 

one or more of the 11 cognitive and mental health traits (Figure 3). These results 16 

suggest the genes involved in brain structure changes are often also active in brain 17 

functions and mental disorder/diseases. For example, we found 33 overlapping genes 18 

with cognitive function, 32 with education, 26 with numerical reasoning, 25 with 19 

intelligence, 23 with neuroticism, 19 with drinking behavior, and 13 with schizophrenia. 20 

A large proportion (48/69) of these genes were associated with more than one cognitive 21 

or mental health traits, and 11 genes were linked to at least five traits, including SCML4, 22 

C16orf54, DCC, NFATC2IP, NPIPB7, NPIPB9, SH2B1, CRHR1, LRRC37A, HIST1H2BO, and 23 

NKAPL, indicating the high degree of statistical pleiotropy96 of these genes.  24 

 25 

Chromatin interaction enrichment analysis and drug-target lookups 26 

To explore the biological interpretations of TWAS and GWAS-significant genes, we 27 

performed enrichment analysis in promoter-related chromatin interactions of four types 28 

of brain neurons97 (iPSC-induced excitatory neurons, iPSC-derived hippocampal DG-like 29 

neurons, iPSC-induced lower motor neurons, and primary astrocytes), and also in high 30 

confident interactions of adult and fetal cortex98 (Method). The raw p-values of 31 

Wilcoxon rank test for enrichment were summarized in Supplementary Table 15. We 32 
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found that cross-tissue TWAS-significant genes of the 11 cognitive and mental health 1 

were significantly enriched in chromatin interactions from all of the five validation 2 

datasets (p-value range=[4.91*10-11, 3.03*10-5]), suggesting that TWAS-significant genes 3 

actively interacted with other chromatin regions and played a more important role in 4 

regulating gene expressions as compared with other genes. The cross-tissue 5 

TWAS-significant genes of neuroimaging traits also showed significant enrichments 6 

(p-value range= [1.38*10-3,2.44*10-2]). Merging the two sets of genes resulted in smaller 7 

p-value in each dataset (p-value range=[2.93*10-11, 2.77*10-5]). The most significant 8 

enrichment was observed in iPSC-induced lower motor neurons. These results remained 9 

significant after adjusting for multiple testing by using Benjamini-Hochberg (B-H) 10 

procedure at 0.05 level (Supplementary Table 16). In contrast, GWAS-significant genes 11 

were only significantly enriched in primary astrocytes and high confident interactions 12 

(p-value range=[5.11*10-3, 1.48*10-2]), and brain tissue-specific TWAS-significant genes 13 

did not show any significant enrichments after B-H adjustment.  14 

 15 

We carried out drug-target lookups using a recently published drug-target database99 to 16 

see whether any of the TWAS and GWAS-significant genes were known targets of 17 

existing drugs. We focused on nervous system drugs with Anatomical Therapeutic 18 

Chemical (ATC) code started with “N”, yielding 2,285 drug-gene pairs between 273 19 

drugs and 241 targeted genes. We found that 12 TWAS-significant genes of the 11 20 

cognitive and mental health traits were known targets for 64 drugs, including CACNA1I, 21 

ESR1, ALDH2, CACNA1C, GRM2, KCNJ3, SCN3A, CACNA1D, KCNK3, CHRNA3, CHRNA6, 22 

and SLC6A4. Of the 64 drugs, 27 were anti-depressants (ATC: N06A) to treat major 23 

depressive disorder and other conditions, and 10 were anti-psychotics (ATC: N05A) to 24 

manage psychosis such as schizophrenia and bipolar disorder (Supplementary Table 17). 25 

In addition, 3 more drug-target genes (GABBR1, HTR2B, CREB1) were detected by GWAS 26 

or TWAS of neuroimaging traits (Supplementary Table 18).  These 3 genes were 27 

targets for 19 more drugs, 6 of which were anti-Parkinson drugs (ATC: N04) for 28 

treatment of Parkinson’s disease and related conditions, and 5 were anti-migraine 29 

preparations (ATC: N02C) used in prophylaxis and treatment of migraine. These results 30 

may suggest that TWAS-significant genes could be considered as new targets in future 31 

drug development. 32 
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 1 

TWAS gene-based polygenic risk scores analysis 2 

To fully assess the polygenic genetic architecture of neuroimaging traits and examine 3 

the predictive ability of UKB TWAS results, we constructed TWAS gene-based PRS on 4 

subjects in PNC, HCP, PING, and ADNI cohorts for all of the 211 neuroimaging traits 5 

(Method). The prediction analysis was conducted separately on 52 reference panels (13 6 

GETx v7 brain tissues, 35 GTEx v7 other tissues, 1 non-GETx brain tissue, and 3 non-GETx 7 

other tissues) using the FUSION40 software and database. We found that genetically 8 

predicted profiles for 28 ROI volumes (Figure 5) and 23 DTI parameters (Supplementary 9 

Fig. 11) were significantly associated with the corresponding observed traits in all 10 

testing datasets after Bonferroni correction (that is, 101*4+3*110=734 tests). Compared 11 

to previous SNP-based PRS analysis that yielded significant PRS profiles for 11 ROI 12 

volumes37, gene-based PRS profiles were significant for more ROI volumes, such as 13 

left/right insula, left/right pallidum, left/right ventral DC, left/right fusiform, and 14 

left/right transverse temporal, suggesting the substantial power gain in association 15 

analysis of PRS. The significant TWAS PRS can account for 0.97%-6.97% phenotypic 16 

variance (p-value range=[8.0*10-29, 6.81*10-5]) (Supplementary Tables 19-20), which 17 

was within the similar range to SNP-based PRS analysis. For example, the (incremental) 18 

R-squared of TWAS PRS of Cerebellar vermal lobules VIII–X was 6.97% in PNC and 6.48% 19 

in HCP, and the R-squared of SFO MD-derived TWAS PRS was 3.8% in PING and 2.41% in 20 

PNC. We also examined the performance of each reference panel on these significant 21 

traits. There was a significant linear relationship between the panel sample size and 22 

average prediction R-squared (48 GTEx reference panels, simple correlation=0.53, 23 

p-value=1.21*10-4, Supplementary Fig. 12), which means that currently panel sample 24 

size may dominate the performance of TWAS PRS analysis regardless of the tissue 25 

specificity58. Among the brain tissue panels, we found that cerebellum tissue had the 26 

largest sample size and also showed the highest average R-squared (Supplementary 27 

Table 21), further supporting the importance of reference panel sample size.                            28 

 29 

DISCUSSION 30 

In this study, we applied TWAS methods on 211 neuroimaging traits to identify genes, 31 

whose imputed expression levels were associated with brain structure variations. Using 32 
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a cross-tissue approach, our main discovery analysis identified 86 novel genes and 1 

validated 18 significant genes at stringent Bonferroni-correction p-value thresholds. 2 

Conditional analysis and comparison with GWAS variant-level results suggested that the 3 

identification and validation of new genes reflect the ability of TWAS to reduce the 4 

testing burden and to combine the small genetic variant effects. We also performed 5 

brain tissue-specific TWAS and illustrated the unique strengths of cross-tissue TWAS in 6 

conditional and enrichment analyses. Lots of brain structure-related genes were known 7 

genetic factors for a wide range of complex traits, ranging from physical traits, cognition, 8 

mental disease/disorders, blood assays, to lifestyle, which extend the potential 9 

applications of neuroimaging traits. Some of these genetic overlaps were additionally 10 

highlighted by a TWAS analysis of 11 cognitive and mental health traits.  11 

 12 

The present study faces some limitations. First, since these results are purely based on 13 

statistical associations, it is hard to draw conclusions about the underlying causality and 14 

prioritize causal genes42,100. This is also one of the main challenges for most of the 15 

current TWAS approaches48. Follow-up experimental validation is a clear need to 16 

confirm TWAS results and pinpoint the causal genes of brain structure changes. Second, 17 

the brain tissue-specific TWAS did not yield much new results compared to the previous 18 

GWAS and brain tissue panels did not show better prediction accuracy than non-brain 19 

tissues in gene-based PRS analysis. Both of the two observations support the use of 20 

multiple tissues in our analysis to increase testing power for association analysis, but 21 

making the causality interpretation of TWAS results even more complicated. In addition, 22 

though gene-based PRS had much better power in association tests than SNP-based 23 

polygenic scores, their prediction accuracies were similar. These limitations may be due 24 

to the fact that currently brain tissue reference panels do not have large sample size 25 

and/or the associated gene expression imputations may have low quality. Despite these 26 

limitations, it is clear that TWAS have the potential to become a powerful supplement to 27 

traditional GWAS in imaging genetics studies. In our study, many new gene-trait 28 

associations were discovered and the underlying genetic overlaps among complex traits 29 

were largely expanded. With better brain tissue gene expression reference panels and 30 

more neuroimaging GWAS datasets available, future TWAS analyses of neuroimaging 31 
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traits are expected to show the value of tissue specificity and improve our 1 

understanding for the genetic basis of human brain.  2 

 3 
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 3 

METHODS 4 

GWAS summary statistics datasets 5 

We made use of GWAS summary statistics to test for gene-trait associations in our 6 

TWAS study. The GWAS summary-level were from six studies, including the UK Biobank 7 

(UKB, http://www.ukbiobank.ac.uk/resources/) study,  8 

the Human Connectome Project (HCP, https://www.humanconnectome.org/) study,  9 

the Pediatric Imaging, Neurocognition, and Genetics (PING, 10 

http://www.chd.ucsd.edu/research/ping-study.html) study, the Philadelphia 11 

Neurodevelopmental Cohort (PNC, 12 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v1.p13 

1) study, the Alzheimer's Disease Neuroimaging Initiative (ADNI, 14 

http://adni.loni.usc.edu/data-samples/) study, and ENIGMA2 (GWAS of subcortical 15 

volumes) and the ENIGMA-CHARGE collaboration (http://enigma.ini.usc.edu/research/). 16 

For discovery, we used the GWAS summary statistics of the UKB study. Then the GWAS 17 

results of the other studies were used for validation, see Supplementary Table 22 for a 18 

summary of sample size and the analyzed neuroimaging traits of each GWAS. More 19 

information about study cohorts and neuroimaging traits can be found in the original 20 

GWAS24,33,37,38. We also performed TWAS analysis for 11 cognitive and mental health 21 

traits, see Supplementary Table 23 for these data resources.  22 

 23 

Cross-tissue TWAS analysis by UTMOST  24 

Cross-tissue TWAS analysis was performed for each trait using the UTMOST software 25 

(https://github.com/Joker-Jerome/UTMOST). We first run single-tissue association test 26 

for each of the 44 GTEx (v6) reference panels using the above GWAS summary statistics 27 

as input. There were 17,290 candidate genes considered in UTMOST. Second, the 28 

gene-trait associations in 44 panels (tissues) were combined by the GBJ test 29 

(https://cran.r-project.org/web/packages/GBJ/). We used the pre-trained cross-tissue 30 

imputation models and pre-calculated covariance matrices provided by UTMOST. For 31 



 24 

the 211 neuroimaging traits in the UKB cohort, we also performed a brain-tissue specific 1 

version of UTMOST analysis that only combined brain tissues.  2 

 3 

Comparison with previous GWAS findings 4 

We compared TWAS-significant genes with those identified in the same UKB cohort by 5 

MAGMA gene-based association analysis and FUMA functional gene mapping analysis, 6 

which can be found in previous GWAS (Supplementary Tables 12 and 15 of Zhao, et al. 37 7 

for ROI volumes and Supplementary Tables 14 and 16 of Zhao, et al. 38 for DTI 8 

parameters, respectively). For each significant gene-trait association, we also explored 9 

whether any genetic variant of this gene region (with 1MB window on both sides) had 10 

been linked to this neuroimaging trait by checking the smallest p-value in corresponding 11 

GWAS. For TWAS-significant genes that were not identified in GWAS, we used 12 

NHGRI-EBI GWAS catalog (version 2019-10-14, https://www.ebi.ac.uk/gwas/) to look for 13 

their reported associations with brain structure traits and any other traits. We 14 

summarized the traits that frequently reported for these genes, such as physical 15 

measures (e.g., height, waist-to-hip ratio, heel bone mineral density, body mass index), 16 

cognitive functions (such as general cognitive ability, cognitive performance), 17 

intelligence, educational attainment, math ability (such as highest math class taken and 18 

self-reported math ability), reaction time, neuroticism, neurodegenerative diseases 19 

(such as Alzheimer's disease and Parkinson's disease), neuropsychiatric disorders (such 20 

as major depressive disorder, schizophrenia, and bipolar disorder), coronary artery 21 

disease, and mean corpuscular hemoglobin.  22 

 23 

Cross-tissue analysis conditional on the most significant GWAS signal  24 

The TWAS gene expression imputation model can be viewed as a weighted sum of 25 

multiple genetic variants. If certain variant has a relatively large weight, the imputed 26 

gene expression could be driven by a single GWAS signal. In order to look at how many 27 

significant TWAS signals could be dominated by a single genetic variant, we rerun TWAS 28 

analysis in UKB cohort conditional on the most significant variant used in the UTMOST 29 

imputation model. First, for each reference panel, we considered a simple linear model  30 

Phenotype ~ imputed gene expression + variant, 31 



 25 

where the variant conditioned on was the most significant variant in previous GWAS of 1 

this phenotype in the same UKB cohort. Then, single-tissue conditional p-values of the 2 

imputed gene expression were combined by the GBJ test across the 44 GTEx reference 3 

panels.  4 

 5 

Enrichment analyses and drug-target lookups 6 

The chromatin interaction enrichments between significant and non-significant genes 7 

were tested using the Wilcoxon rank sum test. For the adult neural Promoter Capture 8 

Hi-C (PCHi-C), the enrichment of each gene was measured as the number of interactions 9 

overlapping gene with CHiCAGO Enrichment Score greater than 597. The enrichment was 10 

tested separately in four cell types, including induced pluripotent stem cells 11 

(iPSC)-induced excitatory neurons, iPSC-derived hippocampal DG-like neurons, 12 

iPSC-induced lower motor neurons, and primary astrocytes. For the high confident 13 

interactions of adult and fetal cortex, the enrichment of each gene was measured as the 14 

sum of –log10(P-value) of all significant interactions overlapping the gene98. The 15 

drug-target lookups were conducted using the drug-gene associations reported in Wang, 16 

et al. 99. We focused on nervous system drugs whose Anatomical Therapeutic Chemical 17 

code starts with “N” according to the DrugBank database (version 2019-07-02, 18 

https://www.drugbank.ca/atc).   19 

 20 

Gene-based TWAS polygenic risk prediction  21 

Gene-based polygenic profiles were created to assess the out-of-sample prediction 22 

power of the UKB TWAS results. In this analysis, we used the individual-level phenotype 23 

and genetic data, whose processing steps were detailed in previous GWAS37,38. The 24 

FUSION software and database (http://gusevlab.org/projects/fusion/) were used to 25 

impute gene expression levels in UKB, ADNI, HCP, PNC, and PING datasets using 26 

individual-level genetic data. We performed imputation for 52 different reference 27 

panels (Supplementary Table 21). In training data (UKB), we estimated the effect size of 28 

each imputed gene expression in a linear regression model, while adjusting for the age 29 

(at imaging), age-squared, sex, age-sex interaction, age-squared-sex interaction, as well 30 

as the top 40 genetic principle components (PCs) provided by UKB101 (Data-Field 22009). 31 

For ROI volumes, we also included total brain volume (for ROIs other than total brain 32 



 26 

volume itself) as a covariate. The gene-based PRS were generated in testing data by 1 

summarizing across imputed gene expressions, weighed by their effect sizes estimated 2 

from the training data. We tried a series of p-value thresholds for predictor selection: 1, 3 

0.8, 0.5, 0.4, 0.3, 0.2, 0.1, 0.08, 0.05, 0.02, 0.01, 0.001, 1*10-4, 1*10-5, 1*10-6, 1*10-7, and 4 

5*10-8. Thus, seventeen polygenic profiles were generated for each neuroimaging traits 5 

and we reported the best prediction power that can be achieved by a single profile of 6 

them in the single reference panel. The association between polygenic profile and trait 7 

was estimated and tested in linear regression model, adjusting for the effects of age and 8 

sex. The additional phenotypic variation that can be explained by polygenic profile (i.e., 9 

the incremental R-squared) was used to measure the prediction power.  10 

 11 

Data availability  12 

The individual-level data used in this work was obtained from five publicly available 13 

datasets: the UK Biobank (UKB) study, the Human Connectome Project (HCP) study, the 14 

Pediatric Imaging, Neurocognition, and Genetics (PING) study, the Philadelphia 15 

Neurodevelopmental Cohort (PNC) study, and the Alzheimer's Disease Neuroimaging 16 

Initiative (ADNI) study. The GWAS summary statistics of UKB study have been shared at 17 

https://github.com/BIG-S2/GWAS, and the summary statistics of other validation 18 

datasets will also be shared at https://github.com/BIG-S2/GWAS upon acceptance of 19 

this paper. We also used the summary-level data of ENIGMA2 and ENIGMA-CHARGE 20 

collaboration, which can be obtained at http://enigma.ini.usc.edu/research/. In addition, 21 

we used other 11 sets of publicly available GWAS summary statistics shared by several 22 

GWAS databases. These data resources were summarized in Supplementary Table 23.  23 

 24 

Code availability  25 

We made use of publicly available software and tools, especially the UTMOST 26 

(https://github.com/Joker-Jerome/UTMOST) and the FUSION 27 

(http://gusevlab.org/projects/fusion/). All codes used to generate results that are 28 

reported in this paper are available upon request.   29 

 30 

Figure legends  31 



 27 

Figure 1. Selected significant gene-trait associations discovered in UKB (UK Biobank) 1 

cross-tissue TWAS analysis of 211 neuroimaging traits (n=19,629 subjects for ROI 2 

volumes and 17,706 for DTI parameters).  3 

The gene-level associations were estimated and tested by the cross-tissue UTMOST 4 

approach (https://github.com/Joker-Jerome/UTMOST). We used the p-value threshold 5 

of 1.37*10-8, corresponding to adjusting for testing 211 imaging phenotypes with the 6 

Bonferroni correction. The x axis provides the IDs of the neuroimaging traits, and the y 7 

axis lists the detected genes in TWAS. The new (UTMOST new) and previously reported 8 

GWAS-significant associations (MAGMA, FUMA, and FUMA&MAGMA) were labeled with 9 

different colors (orange, purple, green, and red, respectively). 10 

  11 

Figure 2. TWAS-significant genes of neuroimaging traits (n=19,629 subjects for ROI 12 

volumes and 17,706 for DTI parameters) that have been linked to other complex traits 13 

in previous GWAS.  14 

For each of the TWAS-significant genes listed in the x axis, we manually checked the 15 

previously reported associations on the NHGRI-EBI GWAS catalog 16 

(https://www.ebi.ac.uk/gwas/). The genes associated with DTI parameters (DTI), ROI 17 

volumes (Volume), and both of them (Both) were labeled with three different colors 18 

(blue, orange, and green, respectively).  19 

 20 

Figure 3. Overlapping TWAS-significant genes between neuroimaging traits (n=19,629 21 

subjects for ROI volumes and 17,706 for DTI parameters) and 11 cognitive and mental 22 

health traits. 23 

The gene-level associations were estimated and tested by the cross-tissue UTMOST 24 

approach (https://github.com/Joker-Jerome/UTMOST). We adjusted for testing 211 25 

neuroimaging traits (p-value threshold 1.37*10-8) and 11 cognitive traits (p-value 26 

threshold 2.63*10-7) with the Bonferroni correction, respectively. The x axis provides the 27 

IDs of the neuroimaging traits. The y axis lists the 11 cognitive and mental health traits, 28 

and Supplementary Table 23 details the resources of their GWAS summary statistics 29 

and the sample sizes of corresponding studies.  30 

 31 



 28 

Figure 4. Prediction accuracy (incremental R-squared) of gene-based polygenic risk 1 

scores constructed by UKB TWAS results (n=19,629 subjects) on the four independent 2 

datasets.  3 

The x axis lists the four independent cohorts (ADNI, HCP, PING and PNC) and the y axis 4 

lists the ROI volumes. The displayed numbers are the proportions of phenotypic 5 

variation that can be additionally explained by UKB TWAS-derived gene-based PRS.  6 
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