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Abstract 16 

Background 17 

Symptom expression in a range of psychiatric conditions is linked to altered threat perception, 18 

manifesting particularly in uncertain environments. How precise computational mechanisms 19 

that support aversive learning, and uncertainty estimation, relate to the presence of specific 20 

psychiatric symptoms remains undetermined. 400 subjects completed an online game-based 21 

aversive learning task, requiring avoidance of negative outcomes, in conjunction with 22 

completing measures of common psychiatric symptoms. We used a probabilistic 23 

computational model to measure distinct processes involved in learning, in addition to inferred 24 

estimates of safety likelihood and uncertainty, and tested for associations between these 25 

variables and traditional psychiatric constructs alongside transdiagnostic dimensions. We used 26 

partial least squares regression to identify components of psychopathology grounded in both 27 

aversive learning behaviour and symptom self-report. We show that state anxiety and a 28 

transdiagnostic compulsivity-related factor are associated with enhanced learning from safety, 29 

and data-driven analysis indicated the presence of two separable components across our 30 

behavioural and questionnaire data: one linked enhanced safety learning and lower estimated 31 

uncertainty to physiological anxiety, compulsivity, and impulsivity; the other linked enhanced 32 

threat learning, and heightened uncertainty estimation, to symptoms of depression and social 33 

anxiety. Our findings implicate distinct aversive learning processes in the expression of 34 

psychiatric symptoms that transcend traditional diagnostic boundaries.   35 
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Introduction 36 

Many core symptoms of mental illness are linked to learning about unpleasant events in our 37 

environment. In particular, symptoms of mood and anxiety disorders, such as apprehension, 38 

worry, and low mood can intuitively be related to altered perception of the likelihood of aversive 39 

outcomes. Indeed, the importance of altered threat perception is a feature of many diagnoses 40 

that extend beyond disorders of mood to encompass conditions such as psychosis1 and eating 41 

disorders2.  As a result, research into how individuals learn about aversive events holds great 42 

promise for enhancing our understanding across a diverse range of mental health problems. 43 

Computational approaches are a powerful means to characterise the precise mechanisms 44 

underpinning learning, as well as uncovering how these relate to psychiatric symptom 45 

expression3,4. Recent studies have leveraged computational modelling to capture associations 46 

between learning processes and psychiatrically-relevant dimensions in non-clinical samples5–47 

8, as well as in clinical conditions ranging from anxiety and depression to psychosis9–12. A 48 

common finding across studies is that of altered learning rates, where psychopathology is 49 

linked to inappropriate weighting of evidence when updating value estimates7,13,14. Notably, 50 

there is evidence suggesting that people with clinically significant symptoms of anxiety and 51 

depression show biased learning as a function of the valence of information, updating faster in 52 

response to negative than positive outcomes presented as monetary losses and gains12, a bias 53 

that might engender a negative view of the environment. However, we previously found an 54 

opposite pattern in a non-clinical study using mild electric shocks as aversive stimuli, whereby 55 

more anxious individuals learned faster from safety than from punishment, and underestimated 56 

the likelihood of aversive outcomes15.  This latter finding highlights a need for a more extensive 57 

investigation using larger samples. 58 

In addition to aberrant learning another process implicated in the genesis of psychiatric disorder 59 

relates to the estimation of uncertainty16. While there are multiple types of uncertainty, here we 60 

use the term to refer to estimation uncertainty, describing the precision of a learned association.  61 

Estimation uncertainty is highest when there is a lack of experience, or the association to be 62 

learned is unstable. For example, having seen two coin flips and observing one head and one 63 

tail, one might believe the likelihood of observing a head is 50%, though you are highly 64 

uncertain about this estimate due to a lack of evidence. This kind of uncertainty plays a 65 

fundamental role in learning, and computational formulations optimise learning in the face of 66 

non-stationary probabilistic outcomes based on uncertainty11,17–20. While psychiatric 67 

symptoms, including anxiety,  have been  linked to an inability to adapt learning in response to 68 

environmental statistics such as volatility5,9, little research has investigated how individuals 69 

estimate, or respond to, uncertainty in aversive environments and its potential association with 70 

psychiatric symptoms. This is a crucial question given that core features of anxiety revolve 71 

around a concept of uncertainty. For example, individuals with anxiety disorders report feeling 72 

more uncertain about threat and being less comfortable in situations involving uncertainty21–24. 73 

Surprisingly, in  an earlier lab-based study we observed a surprising relationship, finding that 74 

more anxious individuals were  more certain about stimulus-outcome relationships15. However, 75 

this was in a relatively small sample and therefore warrants further investigation. 76 
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Existing work on aversive learning has had a particular focus on symptoms of anxiety and 77 

depression7,12. However, these approaches have not been designed optimally for identifying 78 

mechanisms that span traditional diagnostic boundaries. This assumes importance in light of 79 

recent studies, using large samples,  showing several aspects of learning and decision making 80 

relate more strongly to transdiagnostic factors (symptom dimensions that are not unique to any 81 

one disorder) than to any specific categorical conception of psychiatric disorder6,8,25–27. Applying 82 

such an approach to aversive learning may yield better insights into the role of learning in 83 

psychiatric disorders. Additionally, computationally-defined measures of learning and decision 84 

making can  facilitate identification of novel transdiagnostic factors, going beyond those 85 

identified based solely on correlated symptom clusters in self-report and clinical interview 86 

measures6,28–30.  87 

Here, we aimed to clarify the nature of the relationship between aversive learning processes 88 

and traditional measures of anxiety,  as well as  transdiagnostic psychiatric factors identified in 89 

prior work6 in a large, preregistered study conducted online. This allowed us to measure effects 90 

with high precision, potentially helping to resolve mixed findings from previous studies12,15, in 91 

addition to  identifying small but meaningful effects that cross traditional diagnostic 92 

boundaries6. Thus, we used a computational approach to test whether anxiety and 93 

transdiagnostic symptoms are associated with biased learning from safety and threat, whether 94 

these factors relate to altered estimates of threat likelihood, and whether they are associated 95 

with different levels of uncertainty during threat learning. We then used partial least squares 96 

(PLS) regression, a data-driven multivariate method, to derive transdiagnostic latent 97 

components of psychopathology grounded in both self-report and computational measures. 98 

Given difficulties in using traditional aversive stimuli in an online setting, we developed a game-99 

based avoidance task designed to engage threat and avoidance processes without the need 100 

for administration of painful or noxious stimuli. Both the task and modelling are, in principle, 101 

similar to our previous lab-based task15, but their implementation here allows straightforward 102 

administration in large samples recruited online. 103 

 104 

Results 105 

Task performance 106 

Four hundred subjects recruited online through Prolific31 performed a game-based aversive 107 

learning task, where the aim was to fly a spaceship through asteroid belts without being hit 108 

(Figure 1). Getting hit by the asteroids reduced the integrity of the spaceship, and after 109 

sufficient hits the game terminated.  Crucially, there were two zones at the top and bottom of 110 

the screen where subjects could encounter a hole in the asteroid belt, each associated with a 111 

changing probability of being safe. In order to perform well at the task subjects needed to learn 112 

which zone was safest and behave accordingly.  113 

Subjects were engaged and performed well at the task, with a median number of spaceship 114 

destructions of 1 (Interquartile range = 2) over the course of the task. They also reported high 115 
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motivation to perform the task, providing a mean rating of 85.70 (SD = 18.44) when asked to 116 

rate how motivated they were to avoid asteroids on a scale from 0-100.  117 

 118 

Figure 1. A) Task design. Subjects were tasked with playing a game that had a cover story involving flying a 119 

spaceship through asteroid belts. Each asteroid belt featured two locations that could potentially contain escape 120 

holes (safety zones), and subjects were instructed to aim to fly their spaceship through these to gain the highest 121 

number of points. Subjects were only able to move the spaceship in the Y-dimension, while asteroid belts moved 122 

towards the spaceship. The probability of each zone being safe varied over the course of the task but this could be 123 

learned, and learning this probability facilitated performance. B) Screenshot of the task, showing the spaceship, an 124 

asteroid belt with a hole in the lower safety zone (safety zone B), a representation of the spaceship’s integrity (shown 125 

by the coloured bar in the top left corner) and the current score. 126 

Computational modelling of behaviour 127 

To quantitatively describe behaviour, we fit a series of computational models to subjects’ 128 

position data during the task (see Methods and Supplementary Material for a full description of 129 

tested models). The winning model was a probabilistic model incorporating different updates 130 

parameters for safety and danger, as well as a “stickiness” parameter representing a tendency 131 

for subjects to stick with their previous position. This model represents an extension of one we 132 

have previously used successfully as a lab-based aversive learning task15, and is described fully 133 

in the Methods section. Briefly, this winning model assumes that subjects in the task represent 134 

the safety probability of each zone using a beta distribution, which is updated on each trial 135 

based on encounters with danger or safety. Simulating responses using the model, using each 136 

subject’s estimated parameter values, produced behavioural profiles that demonstrated a high 137 

concordance with the true data, reproducing broad behavioural patterns seen in the true data 138 

(Figure S1). 139 
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 140 

Figure 2. A) Distribution of task-induced anxiety ratings recorded after the task. B) Distribution of task motivation 141 

ratings. C and D) Relationships between task-induced anxiety ratings and state and trait anxiety scores. E) Degree 142 

of location switching after encountering danger and safety across subjects. The switch magnitude is the average 143 

absolute change in position between trial n and trial n+1. As expected, subjects showed more switching behaviour 144 

after encountering danger and were more likely to stay in the same position following a safe outcome. F) Distribution 145 

of crash number (representing the number of subjects hit enough asteroids to end the game) across subjects.        146 

Task and model validation 147 

In the light of the task’s novelty, it was important to ensure the task has content validity, and 148 

that it produces behaviour reminiscent of more traditional tasks. Likewise, the computational 149 

models used should provide measures and parameter estimates that reflect the behaviour they 150 

aim to describe. We therefore conducted extensive validation exercises. These are reported 151 

fully in supplementary material, but we summarise these here.  152 
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First, we ensured the task did induce states of subjective anxiety in the majority of subjects 153 

(Figure 2A), and this level of anxiety was correlated with self-report state and trait anxiety 154 

(Figure 2C and 2D). Importantly, the task produced behaviour reminiscent of more traditional 155 

lab-based tasks, with subjects adjusting their position to a greater extent following danger than 156 

following safety (Figure 2E), as demonstrated in prior studies12,15,32. With respect to our 157 

computational model, we verified the model’s update parameters were robustly correlated with 158 

subjects’ tendency to move, or stay, following danger and safety respectively (Figure 3D). We 159 

also ensured that the safety value and uncertainty values produced by simulating data from 160 

our model with best fitting parameters correlated with subjects’ model-free behaviour, finding 161 

that subjects changed their position more when model-derived uncertainty was high, and 162 

when the difference between the safety value of the two zones was small, as expected (Figure 163 

3C). Finally, we verified that our model’s update parameters showed greater updating from 164 

danger relative to safety, as we found in a previous lab-based study15, finding this was indeed 165 

the case (Figure 3E). 166 
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 167 

Figure 3. A) Data generated from the model. The top panel shows responses and model fit for an example subject. 168 

In the top panel, the grey line represents the subject’s position throughout the task, with the grey and red dots 169 

representing safe locations on each trial. The blue line represents simulated data from the model for this subject. 170 

The lower two panels show estimated uncertainty and safety probability for each stimulus (represented by the grey 171 

and red lines) across the duration of the task, generated by simulating data from the model. B) Model comparison 172 

results, showing the WAIC score for each model with the winning model highlighted. ALB = asymmetric leaky beta, 173 

RW = Rescorla-Wagner. C) Results of our analysis validating the safety value and uncertainty measures, showing 174 

the extent to which each measure predicted subjects’ tendency to switch position (described in supplementary 175 

materials). D) Correlations between estimated update parameters for danger (left) and safety (right) and our 176 

behavioural measure of position switching after these outcomes across subjects, demonstrating that parameters 177 

from our model reflect purely behavioural characteristics. E) Distributions of estimated parameter values for τ+ and 178 
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τ-, representing update rates following danger and safety outcomes respectively, showing a bias in updating 179 

whereby subjects update to a greater extent in response to danger than safety. 180 

 181 

Relationships with psychiatric measures 182 

First, we asked whether our four behavioural variables of interest (threat update parameter, 183 

danger update parameter, mean estimated safety probability, and mean estimated uncertainty) 184 

were associated with anxiety (both state and trait) and intolerance of uncertainty. The strongest 185 

relationships, with HPD intervals that did not include zero, were positive effects of state anxiety 186 

on safety update rates and mean estimated safety probability (Figure 4, Table 1), although 187 

effects for trait anxiety were in the same direction and of a similar magnitude for some 188 

measures, indicating more anxious individuals learned faster about safety and perceived safety 189 

as more likely overall. 190 

Target variable Predictor  Estimate (+/- 95% HPDI) 

Threat update (τ−) IUS  0.07 (-0.03, 0.16) 
 STICSA S  -0.09 (-0.19, 0.01) 
 STICSA T  -0.03 (-0.12, 0.07) 
Safety update (τ+) IUS  0.0 (-0.1, 0.09) 
 STICSA S  0.12 (0.02, 0.21) 
 STICSA T  0.09 (-0.01, 0.18) 
Mean safety uncertainty IUS  -0.05 (-0.14, 0.05) 
 STICSA S  -0.09 (-0.19, 0.01) 
 STICSA T  -0.08 (-0.18, 0.01) 
Mean safety probability IUS  -0.02 (-0.12, 0.07) 
 STICSA S  0.12 (0.02, 0.21) 
 STICSA T  0.06 (-0.03, 0.15) 

Table 1. Estimates from regression model predicting learning-related variables derived from our computational 191 

model from measures of intolerance of uncertainty, state anxiety, and trait anxiety. Effects with HPDIs excluding 192 

zero are shown in bold. IUS: Intolerance of uncertainty scale; STICSA S: State-trait inventory of cognitive and 193 

somatic anxiety, state measure; STICSA T: State-trait inventory of cognitive and somatic anxiety, trait measure; 194 

HPDI: Highest posterior density estimate 195 

We then examined the extent to which task behaviour was associated with three 196 

transdiagnostic factors of psychopathology identified through self-report assessments in 197 

previous research6. Here, we observed effects of a factor labelled compulsivity and intrusive 198 

thought (Figure 4, Table 2), reflecting the fact that subjects scoring higher on this factor learned 199 

faster about safety and had higher safety probability estimates. There was also a weak effect 200 

of this factor on uncertainty, although the HPDI for this included zero. Other effects were weak, 201 

and including reported task motivation as a covariate had a negligible effect on the results (see 202 

supplementary results). Importantly, all of these analyses were determined a priori and are 203 

included in our preregistration.  204 

 205 
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Target variable Predictor Estimate (+/- 95% HPDI) 

Threat update (τ−) AD 0.04 (-0.06, 0.15) 
 CBIT -0.06 (-0.17, 0.04) 
 SW 0.08 (-0.02, 0.19) 
Safety update (τ+) AD -0.04 (-0.15, 0.07) 
 CBIT 0.14 (0.03, 0.25) 
 SW -0.05 (-0.15, 0.06) 
Mean safety uncertainty AD 0.05 (-0.06, 0.16) 
 CBIT -0.1 (-0.21, 0.0) 
 SW 0.02 (-0.08, 0.13) 
Mean safety probability AD -0.06 (-0.17, 0.04) 
 CBIT 0.11 (0.01, 0.22) 
 SW -0.05 (-0.15, 0.05) 

Table 2. Estimates from regression model predicting learning-related variables derived from our computational 206 

model from the three transdiagnostic factors identified by Gillan et al. (2016). Effects with HPDIs excluding zero 207 

are highlighted. AD: Anxious-depression; CBIT: Compulsive behaviour and intrusive thought; SW: Social 208 

withdrawal; HPDI: Highest posterior density estimate  209 

 210 
Figure 4. Top panel: Results of state/trait anxiety and intolerance of uncertainty models, showing relationships 211 

between these psychiatric variables and behavioural variables. Points indicate the mean of the posterior distribution 212 

for the regression coefficient parameter, while error bars represent the 95% highest posterior density interval. The 213 

β estimate here refers to the regression coefficient for each predictor. Bottom panel: Results of three factor model, 214 

showing relationships between behaviour and factors labelled anxiety and depression, compulsivity and intrusive 215 

thought, and social withdrawal. 216 
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Psychiatric constructs derived from behaviour and self-report 217 

Numerous studies have used dimensionality reduction procedures such as factor analysis on 218 

questionnaire-based data to identify factors of psychopathology that cut across diagnostic 219 

boundaries6,28–30. This,  in turn, has revealed that many behaviourally-defined phenotypes are 220 

more strongly associated with transdiagnostic factors than any single disorder6,8,26. We built 221 

upon this work by incorporating computationally-derived indexes of behaviour into this 222 

dimensionality reduction procedure, where the aim was to identify latent constructs grounded 223 

in both self-report and behaviour. We used partial least squares (PLS) regression, a method 224 

that identifies latent components linking multivariate data from multiple domains based on their 225 

shared covariance.  This method has  been employed successfully to provide insight into how 226 

panels of cognitive and behavioural measures relate to multivariate neuroimaging-derived 227 

phenotypes33–35. We first identified the number of components that best describe our data by 228 

evaluating the performance of a predictive PLS model using cross-validation. We found two 229 

latent components gave the best predictive performance (Figure 5A). We then evaluated the 230 

performance of this model on held out data using permutation testing, showing our model 231 

achieved a statistically significant level of predictive accuracy (permutation p = 0.025, Figure 232 

5B). This indicates that our combined self-report and behavioural data is best explained by a 233 

two-component structure linking these two domains, Importantly, the fact that this level of 234 

accuracy was found on unseen data ensures that our results do not result from overfitting the 235 

training data36. 236 

To aid interpretation of these two components we examined how behavioural variables loaded 237 

on each. The first component had positive weights on update rates in response to safety and 238 

estimated safety likelihood, and negative weights on update rates in response to threat, decay, 239 

stickiness, and mean uncertainty estimates (Figure 5C), while the reverse was true of the 240 

second component. Loadings on questionnaire items were varied, and labelling such 241 

components is invariably subjective. Nevertheless, the first component tended to load most 242 

strongly on items describing physical symptoms of anxiety, compulsive behaviour, and 243 

impulsivity. In contrast, the second latent component loaded primary on items describing social 244 

anxiety and depressed mood. For illustrative purposes, items with the top 10% percent of 245 

differences in loadings between components are shown in Figure 5D, with full details available 246 

in supplementary material.  247 
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 248 

Figure 5. Results of PLS regression analysis. A) The optimal number of components was determined based on cross-249 

validated predictive accuracy within 75% of the data used for training the model. This figure represents the negative 250 

mean squared error of these predictions across models with between one and five factors, showing best 251 

performance with 2 components. B) Null distribution of predictive accuracy scores generated by retraining our PLS 252 

regression model on 1000 permuted datasets and testing on the held out 25% of the data set, with the mean 253 

squared error (MSE) achieved by the model trained on the true data shown by the red line. C) Loadings for the two 254 

components on behavioural variables, including all parameters in the model and mean safety probably and 255 

uncertainty estimates, across all subjects. D) Loadings on questionnaire items showing the largest dissociations in 256 
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loadings between the two components, identified by taking the lowest and highest 10% of differences between 257 

loadings. Items marked (R) are reverse coded. The labels on the right indicate the measure the item is taken from 258 

and an indicator of how the question is framed. SDS: Zhung Self-Rating Depression Scale, STICSA: State Trait 259 

Inventory of Cognitive and Somatic Anxiety, OCIR: Obsessive Compulsive Inventory, LSAS: Liebowitz Social Anxiety 260 

Scale (A and B represent subscales), IUS12: Intolerance of Uncertainty Scale, EAT: Eating Attitudes Test, AES: 261 

Apathy Evaluation Scale, STAI: State Trait Anxiety Inventory. 262 

Discussion 263 

Perceptions of danger and safety have been linked to key symptoms of psychiatric disorders. 264 

Here, in a large-scale study examining aversive learning we show that when subjects learn to 265 

avoiding threat, transdiagnostic components of psychopathology relate to how they learn 266 

about both safety likelihood, and uncertainty.  267 

We found a counter-intuitive relationship between biases in learning and the presence of 268 

features of anxiety. Subjects scoring higher on state anxiety tended to update their predictions 269 

to a greater extent in response to safety, as well as perceiving safety to be more likely overall, 270 

than those scoring low on this measure. These results diverge from previous findings that 271 

report individuals diagnosed with clinical anxiety and depression learn faster from 272 

punishment12, but are in concordance with our previous work in a non-clinical sample using a 273 

more traditional lab-based aversive learning task15. The large sample size employed here 274 

allowed us to estimate these effects precisely, making it unlikely that they are simply a product 275 

of statistical noise. One explanation for the discrepancy between our results and those found 276 

by Aylward et al.12 is that this previous study included subjects with a mix of anxiety and 277 

depressive disorders, and a negative bias in learning may be more characteristic of depressive 278 

symptoms. Our PLS analysis provides some support for this speculation as we found that 279 

symptoms of depression were associated with elevated learning from threat, suggesting that 280 

such a bias in learning is associated more with depressive symptoms. It is also possible that 281 

the nature of our game-based online task engaged processes distinct from that of standard 282 

lab-based tasks. However, we believe this is unlikely since we replicate behavioural patterns 283 

shown in more traditional tasks, and also observed similar associations with anxiety in a 284 

previous lab-based study15. As such, we are confident that this is not simply due to the task 285 

used. 286 

We found a similar pattern of enhanced learning from safety when examining a transdiagnostic 287 

factor representing compulsivity and intrusive thought. Although this factor has been shown 288 

to be associated with less model-based behaviour6,25, altered confidence judgements26, and 289 

action-confidence coupling8 in large-scale samples, to date it has not been investigated with 290 

regard to threat learning. Notably, we also found a weak relationship between this factor and 291 

uncertainty, whereby more compulsive individuals had higher certainty in their safety 292 

estimates, echoing previous work in perceptual decision making that showed this factor is 293 

associated with higher confidence estimates8,26. We only found weak relationships (where the 294 

posterior density estimate crossed zero) with the other two factors, representing anxious-295 

depression and social withdrawal, in a direction indicative of lower safety probability estimates 296 

and higher uncertainty.  297 
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Perhaps our most striking results come from a  data-driven approach where we derived 298 

components of psychopathology grounded in computational analyses of aversive learning 299 

behaviour. This method provides conceptually similar results to the factor analytic methods 300 

used in previous large-scale online studies6, but builds upon this work by incorporating 301 

behaviour into the process. Using PLS regression, we identified two latent components, one 302 

broadly associating greater learning from safety with physiological symptoms of anxiety and 303 

compulsivity, while the other associated greater learning from threat with depressive 304 

symptoms and social anxiety. Notably, this data-driven analysis also revealed relationships 305 

between aversive learning and impulsive behaviour, encompassing a symptom dimension that 306 

is typically studied in the context of reward processing37. Individuals scoring higher on these 307 

symptoms exhibited higher safety learning, which may explain previously observed 308 

relationships between impulsivity and risk tolerance38. Importantly, while this analysis was 309 

exploratory, we demonstrate its robustness through testing on held-out data, ensuring our 310 

results are not affected by overfitting36. 311 

Overall, the present results add to the growing literature showing associations between 312 

psychopathology and learning under uncertainty. Previous studies using computational 313 

approaches have largely focused on learning about rewards and losses10–12,27,39, or perceptual 314 

learning9, and those that have used more aversive paradigms (using outcomes intended to 315 

evoke subjective anxiety), such as learning to predict electric shocks, have been limited by small 316 

samples5,15,18,40. As a result, the precise role played by aversive learning processes in psychiatric 317 

symptoms has been unclear. Our work adds to this literature by providing an account of how 318 

these processes relate to symptoms across a range of traditional diagnostic categories.  319 

The results we report raise questions of importance for future work. In particular, the finding 320 

that more anxious individuals tend to overestimate safety likelihood runs counter to intuition, 321 

and further work is required to understand how this may relate to symptom expression. One 322 

speculative possibility is that a persistent underestimation of threat likelihood would lead to an 323 

abundance of aversive prediction errors, causing a state of subjective anxiety. An alternative 324 

explanation is the  result reflects a tendency for highly anxious individuals to seek safety, and 325 

be resistant to leaving places associated with safety41,42. However, these hypotheses await 326 

direct testing, and it will be especially important to examine them in large-scale clinical samples, 327 

taking into account a broader range of psychiatric phenotypes. 328 

A further important feature of this study is our development of a new online task for measuring 329 

aversive learning. A number of studies examining other aspects of learning and decision 330 

making in the context of psychiatric disorders have also availed of large samples recruited 331 

through online services6,8,25,26. However, it has been difficult to examine aversive learning in 332 

online environments, as aversive lab stimuli such as shock cannot be easily administered online. 333 

Only one study thus far has investigated threat-related decision making (although not learning) 334 

online, using monetary loss as an aversive stimulus27. A game-based design allowed us to 335 

design a task that required avoidance behaviour as well as evoke feelings of anxiety, taking 336 

advantage of the well-known ability of games to produce strong emotional reactions43–47, 337 

resulting in a paradigm which we believe provides a more valid assessment of aversive learning 338 
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than more commonly used monetary-loss based tasks. Although qualitatively different from 339 

standard lab-based tasks, we observed similar patterns of biased learning to that seen in lab-340 

based work15. An added benefit of our task is that it is highly engaging, and subjects reported 341 

feeling motivated to perform well. These features are not only important for the kind of large-342 

scale online testing performed here. This task renders it feasible to measure aversive learning 343 

at regular intervals without subjects needing to physically visit the lab, a feature that could be 344 

of considerable utility in clinical trials. 345 

One potential limitation of this study is a focus on a general population sample which, being 346 

recruited online, was not subject to the kind of detailed assessment possible offline. While this 347 

might limit applicability to clinical anxiety, other research indicates that findings from clinical 348 

samples replicate in samples recruited online6,8. Furthermore, it is increasingly recognised that 349 

clinical disorders lie on a continuum from health to disorder48. Although we did not deliberately 350 

set out to recruit individuals with clinically significant anxiety, 36% of our sample scored at or 351 

above a threshold designed for the detection of anxiety disorders on our measure of trait 352 

anxiety (see supplementary material). In light of this, and given limitations with research in 353 

clinical samples that includes medication load49 and recruitment challenges50, online samples 354 

provide an effective method for studying clinically-relevant phenomena. Additionally, it is 355 

important to note that the effects we observed were small, as in previous studies using large-356 

scale online testing6,25,25. However, large samples provide accurate effect size estimates in 357 

contrast to the exaggerated effects that are common in studies using small samples51. Such 358 

small effects are unsurprising given the multifactorial nature of psychiatric disorders52. While 359 

we have shown aversive learning to be important, we acknowledge this is likely to be one of a 360 

multitude of processes involved in the development of these conditions. 361 

In conclusion, our results demonstrate links between transdiagnostic symptoms of psychiatric 362 

disorders and mechanisms of threat learning and uncertainty estimation in aversive 363 

environments. The findings emphasise the importance of these processes not only in anxiety 364 

but indicate a likely relevance across a spectrum of psychopathology.  365 

Methods 366 

Ethics 367 

This research was approved by the University College London research ethics committee 368 

(reference 9929/003). All participants provided informed consent and were compensated 369 

financially for their time at a rate of at least £6 per hour. 370 

Participants 371 

We recruited 400 participants through Prolific31. Subjects were selected based on being aged 372 

18-65 and having at least a 90% approval rate across studies they had previously participated 373 

in. As described in our preregistration, we used a precision-based stopping rule to determine 374 

our sample size, stopping at the point at which either the 95% highest posterior density interval 375 

(HPDI) for all effects in our regression model reached 0.15 (checking with each 50 subjects 376 

recruited) or we had recruited 400 subjects. The precision target was not reached, and so we 377 

stopped at 400 subjects. 378 
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Avoidance learning task 379 

Traditional lab-based threat learning tasks typically use aversive stimuli such as electric shocks 380 

as outcomes to be avoided. As it is not possible to use these stimuli online, we developed a 381 

game-based task in which subjects’ goal was to avoid negative outcomes. While no primary 382 

aversive stimuli were used, and subjects received no actual monetary reward, there is an 383 

extensive literature showing that video games without such outcomes evoke strong positive 384 

and negative emotional experiences 43–47, making this a promising method for designing an 385 

aversive learning task. In this game, participants were tasked with flying a spaceship through 386 

asteroid belts. Subjects were able to move the spaceship in the Y-axis alone, and this resulted 387 

in a one dimensional behavioural output. Crashing into asteroids diminished the spaceship’s 388 

integrity by 10%. The spaceship’s integrity slowly increased over the course of the task, 389 

however if enough asteroids were hit the integrity reduced to zero and the game finished. In 390 

this eventuality subjects were able to restart and continue where they left off. The overarching 391 

goal was to maximise the number of points scored, where the latter accumulated continuously 392 

for as long as the game was ongoing, and reset if the spaceship was destroyed. Subjects were 393 

shown the current integrity of the spaceship by a bar displayed in the corner of the screen, 394 

along with by a display of their current score.  395 

Crucially, the location of safe spaces in the asteroid belts could be learned, and learning 396 

facilitated performance as it allowed correct positioning of the spaceship prior to observing the 397 

safe location. The task was designed such that without such pre-emptive positioning it was 398 

near impossible to successfully avoid the asteroids, thus encouraging subjects to learn the 399 

safest positions. Holes in the asteroids could appear either at the top or bottom of the screen 400 

(Figure 1A), and the probability of safety associated with either location varied independently 401 

over the course of the task. Thus, it was possible to learn the safety probability associated with 402 

each safety zone and adapt one’s behaviour accordingly. The probability of each zone being 403 

safe was largely independent from the other (so that observing safety in one zone did not 404 

necessarily indicate the other was dangerous), although at least one zone was always safe on 405 

each trial. Participants also completed a control task that required avoidance that was not 406 

dependent on learning, enabling us to control for general motor-related avoidance ability in 407 

further analyses (described in supplementary material). We elected a priori to exclude subjects 408 

with limited response variability (indicated by a standard deviation of their positions below 409 

0.05) so as to remove subjects who did not move the spaceship. However, no subject met this 410 

exclusion criterion.  411 

After completing the task, subjects were asked to provide ratings indicating how anxious the 412 

task made them feel and how motivated they were to avoid the asteroids, using visual analogue 413 

scales ranging from 0 to 100.  414 

Behavioural data extraction 415 

For analysis, we treated each pass through an asteroid belt as a trial. Overall there were 269 416 

trials in total. As a measure of behaviour, we extracted the mean Y position across the 1 second 417 

prior to observing the asteroid belt, representing where subjects were positioning themselves 418 

in preparation for the upcoming asteroid belt. This Y position was used for subsequent model 419 
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fitting. On each trial, the outcome for each zone was regarded as “danger” if asteroids were 420 

observed (regardless of whether they were hit by the subject) or safety if a hole in the asteroid 421 

belt was observed. 422 

Computational modelling of behaviour 423 

Our modelling approach focused on models that allowed the quantification of subjective 424 

uncertainty. To this end, we modelled behaviour using approximate Bayesian models that 425 

assume subjects estimate safety probability using a beta distribution. This approach is naturally 426 

suited to probability estimation tasks, as the beta distribution is bounded between zero and 427 

one, and provides a measure of uncertainty through the variance of the distribution. While 428 

certain reinforcement learning formulations can achieve similar uncertainty-dependent learning 429 

and quantification of uncertainty, we chose beta models as they have an advantage of being 430 

computationally simple. Empirically, these models have been used successfully in previous 431 

studies to capture value-based learning53, where they explain behaviour in aversive learning 432 

tasks better than commonly used reinforcement learning models15,54, a pertinent characteristic 433 

in the current task.  434 

The basic premise underlying these models is that evidence for a given outcome is dependent 435 

on the number of times this outcome has occurred previously. For example, evidence for safety 436 

in a given location should then be highest when safety has been encountered many times in 437 

this location. This count can be represented by a parameter A, which is then incremented by a 438 

given amount every time safety is encountered. Danger is represented by a complementary 439 

parameter B. The balance between these parameters provides an indication of which outcome 440 

is most likely. Meanwhile, the overall number of outcomes counted influences the variance of 441 

the distribution and hence the uncertainty about this estimate. Thus, uncertainty is highest 442 

when few outcomes have been observed. The exact amount by which A and B are updated 443 

after every observed outcome can be estimated as a free parameter (here termed τ), and we 444 

can build asymmetry in learning into the model, so that learning about safety and danger have 445 

different rates, allowing updates for A and B to take on different values (here termed τ+ and τ-446 

). 447 

Such a model is appropriate in stationary environments, when the probability of a given 448 

outcome is assumed to be constant throughout the experiment. However, in our task the 449 

probability of safety varied, and so it was necessary to build a forgetting process into the model. 450 

This is achieved by incorporating a decay (represented by parameter λ) which diminishes the 451 

current values of A and B on every trial. The result of this process is akin to reducing the number 452 

of times they have been observed, and maintains the model’s ability to update in response to 453 

incoming evidence. It would also be possible to build asymmetry into the model here, where 454 

subjects could forget about positive and negative outcomes at different rate. However, testing 455 

this model in pilot data revealed that separate decay rates for each valence were not 456 

recoverable. Estimates for A and B are therefore updated on each trial (t) according to the 457 

following equation for both safety zones independently (termed X and Y here). Both zones are 458 

updated on every trial, as subjects saw the outcome associated with both simultaneously. This 459 

formed the basis of all the probabilistic models tested: 460 
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𝐴𝑡+1
𝑋 = (1 − 𝜆) ⋅ 𝐴𝑡

𝑋 + 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑡
𝑋 ⋅ 𝜏+ ⋅ 𝑊 (1) 461 

𝐵𝑡+1
𝑋 = (1 − 𝜆) ⋅ 𝐵𝑡

𝑋 + (1 −  𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑡
𝑋

) ⋅ 𝜏−  ⋅  𝑊 (2) 462 

We also observed in pilot data that subjects tended to be influenced more by outcomes 463 

occurring in the zone they had previously chosen, an effect likely due to attention. On this basis, 464 

we incorporated a weighting parameter that allowed the outcome of the unchosen option to 465 

be down-weighted by an amount shown in the above equation (W) determined by an 466 

additional free parameter, ω.  467 

𝑊𝑡+1
𝑋 =

1  𝑖𝑓 𝑐ℎ𝑜𝑠𝑒𝑛
ω  𝑖𝑓  𝑢𝑛𝑐ℎ𝑜𝑠𝑒𝑛

(3) 468 

We can calculate the estimated safety probability for each zone (P) by taking the mean of this 469 

distribution: 470 

𝑃𝑡+1
𝑋 =  

𝐴𝑡+1
𝑋

(𝐴𝑡+1
𝑋 + 𝐵𝑡+1

𝑋
)

(4) 471 

Similarly, we can derive a measure of uncertainty on each trial by taking the variance of this 472 

distribution. 473 

𝜎𝑡+1
𝑋 =

𝐴𝑡+1
𝑋 ⋅ 𝐵𝑡+1

𝑋

(𝐴𝑡+1
𝑋 + 𝐵𝑡+1

𝑋
)

2
⋅ (𝐴𝑡+1

𝑋 + 𝐵𝑡+1
𝑋 + 1)

(5) 474 

 475 

In order to fit our model to the observed behaviour, we require an output that represents the 476 

position of the spaceship on the screen. This position (pos) was calculated based on the safety 477 

probability of the two safety zones, such that the position was biased towards the safest 478 

location and was nearer the centre of the screen when it was unclear which position was safest.  479 

𝑝𝑜𝑠𝑡+1 =
(𝑃𝑡+1

𝑋 − 𝑃𝑡+1
𝑌

) + 1

2
(6) 480 

Further models elaborated on this basic premise, and full details are provided in supplementary 481 

material. For completeness, we also tested two reinforcement learning models, a Rescorla-482 

Wagner model and a variant of this model with different learning rates for better and worse 483 

than expected outcomes32, both of which are described in supplementary material. However, 484 

we focus on the probabilistic models  due to their ability to represent uncertainty naturally; our 485 

primary aim was not to differentiate between probabilistic and reinforcement learning models, 486 

but to use previously validated models to provide insights into the relationship between 487 

aversive learning, uncertainty, and psychopathology. 488 

Models were fit with a hierarchical Bayesian approach using variational inference implemented 489 

in PyMC3, through maximising the likelihood of the data given a reparametrised beta 490 

distribution with a mean provided by the model and a single free variance parameter. Model fit 491 

was assessed using the Watanabe-Akaike Information Criterion (WAIC)55, an index of model 492 
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fit designed for Bayesian models that accounts for model complexity. Parameter distributions 493 

were visualised using raincloud plots56. 494 

Measures of psychiatric symptoms 495 

Our first set of hypotheses focused on state/trait anxiety and intolerance of uncertainty. These 496 

were measured using the State Trait Inventory of Cognitive and Somatic Anxiety (STICSA)57 497 

and the Intolerance of Uncertainty Scale (IUS)58 respectively. We also wished to examine how 498 

behaviour in our task related to the three transdiagnostic factors identified by Gillan et al. 499 

(2016), based on factor analysis of a range of psychiatric measures. To measure these factors 500 

more efficiently, we developed a reduced set of questions that provided an accurate 501 

approximation of the true factor scores, details of which are provided in supplementary 502 

material. 503 

Regression models 504 

Bayesian regression models were used to investigate relationships between behaviour and 505 

psychiatric measures, predicting each behavioural measure of interest from the psychiatric 506 

measures. Our dependent variables were parameters and quantities derived from our model, 507 

which represented the way in which an individual learns about safety probability and how they 508 

estimate uncertainty. Specifically, we used the two update parameters from our model (τ+ and 509 

τ-, referring to the extent to which subjects update in response to safety and danger 510 

respectively) and the mean safety probability and uncertainty estimates across the task 511 

(generated by simulating data from the model with each subject’s estimated parameter values). 512 

Crucially, the fact that task outcomes were identical for every subject ensured these values 513 

were dependent only on the manner by which subjects learned about safety, not the task itself.  514 

These models were constructed using Bambi59 and fit using Markov chain Monte Carlo (MCMC) 515 

sampling, each with 8000 samples, 2000 of which were used for burn-in. All models included 516 

age and sex as covariates, along with performance on our control task to account for non-517 

learning related avoidance ability. For analyses predicting state and trait anxiety and 518 

intolerance of uncertainty, we constructed a separate model for each variable due to the high 519 

collinearity between these measures. For analyses including the three transdiagnostic factors, 520 

these were entered into a single model. When reporting regression coefficients, we report the 521 

mean of the posterior distribution along with the 95% highest posterior density interval (HPDI), 522 

representing the points between which 95% of the posterior distribution’s density lies. All 523 

analyses were specified in our preregistration. We did not correct for multiple comparisons in 524 

these analyses as our approach uses Bayesian parameter estimation, rather than frequentist 525 

null hypothesis significance testing, and as such multiple comparison correction is unnecessary 526 

and incompatible with this method60. 527 

 528 

Partial least squares regression 529 

To provide a data-driven characterisation of the relationship between task behaviour and 530 

psychiatric symptoms, and identify transdiagnostic components that are grounded in both self-531 

report and behaviour, we used partial least squares (PLS) regression to identify dimensions of 532 
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covariance between individual questions and the measures derived from our modelling. We 533 

excluded the STICSA state subscale from this analysis, so that only trait measures were 534 

included. To ensure robustness of these results, we split our data into training and testing sets, 535 

made up of 75% and 25% of the data respectively. To identify the appropriate number of 536 

components within the training set, we used a 10-fold cross-validation procedure, fitting the 537 

model on 90% of the training data and evaluating its performance on the left-out 10%. The 538 

mean squared error of the model’s predictions was then averaged across test folds to provide 539 

an index of the model’s predictive accuracy with different numbers of components, using cross-540 

validation to reduce the risk of overfitting 541 

Once the number of components was determined, we validated the model’s predictions by 542 

testing its predictive accuracy on the held-out 25% of the data. To provide a measure of 543 

statistical significance we used permutation testing, fitting the model on the training data 1000 544 

times with shuffled outcome variables and then testing each fitted model on the held-out data, 545 

to assess its predictive accuracy when fitted on data where no relationship exists between the 546 

predictors and outcomes. This procedure provides a null distribution, from which we can then 547 

determine the likelihood of observing predictive accuracy at least as high as that found in the 548 

true data under the null hypothesis. 549 

Recent work has highlighted the risks inherent in PLS-like methods when used in high 550 

dimensional datasets36, namely that they can easily be overfit resulting in solutions that do not 551 

generalise beyond the data used to fit the model. Our approach avoids these problems by 552 

evaluating the performance on our model 25% of the data that has been held out from the 553 

model fitting stage. 554 

Preregistration and data availability 555 

The main hypotheses and methods of this study were preregistered on the Open Science 556 

Framework (https://osf.io/jp5qn). The data-driven PLS regression analysis was exploratory. 557 

Data is available at https://osf.io/b95w2/ and code is available at 558 

https://github.com/tobywise/online-aversive-learning.  559 
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