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Abstract 

Interpreting the function of noncoding mutations in cancer genomes remains a 
major challenge. Here we developed a computational framework to identify risk 
noncoding mutations of all classes by joint analysis of mutation and gene 
expression data. We identified thousands of SNVs/small indels and structural 
variants as candidate risk mutations in five major pediatric cancers. We 
experimentally validated the oncogenic role of CHD4 overexpression via 
enhancer hijacking in B-ALL. We observed a general exclusivity of coding and 
noncoding mutations affecting the same genes and pathways. We showed that 
integrated mutation signatures can help define novel patient subtypes with 
different clinical outcomes. Our study introduces a general strategy to 
systematically identify and characterize the full spectrum of noncoding mutations 
in cancers. 
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Introduction 

Extensive research efforts have identified recurrent mutated genes in multiple 
types of childhood cancer including several recent pan-cancer studies which 
have defined landscapes of coding mutations in common pediatric cancers (1-4). 
However, current cancer mutation landscapes are far from complete without 
systematic analysis of the noncoding portion of the genome. For instance, 
recurrent leukemia-associated genetic alterations cannot be identified in 
10%~20% of children with acute leukemias (1,3-5), thereby making it challenging 
to design targeted therapies for such patients.  

The vast majority of somatic mutations in cancer genomes occur in 
noncoding regions because 98% of the human genome is made up of noncoding 
sequences, and the somatic mutation rate of noncoding regions is similar to that 
of coding regions (1). The Therapeutically Applicable Research To Generate 
Effective Treatments (TARGET) project has sequenced over 1000 genomes from 
five common pediatric cancers. Similarly, The Cancer Genome Atlas (TCGA) 
project has molecularly characterized over 20,000 primary cancer genomes 
spanning 33 types of adult cancers. Despite this rapid accumulation of whole 
genome sequences (WGS) for both pediatric and adult cancers, identification 
and interpretation of the functional impact of noncoding mutations remains 
challenging. 

Noncoding regulatory sequences, particularly enhancers and promoters, 
are key determinants of tissue-specific gene expression. Multiple mutation types 
have been reported to disrupt enhancers and promoters and expression of their 
target genes, including single nucleotide variants (SNVs), small insertion and 
deletions (indels), and large structural variants (SVs), including deletions, 
insertions, duplications, inversions, and translocations. Most prior studies of 
noncoding mutations have focused on SNVs and small indels and revealed a 
number of noncoding causal mutations. One example is the SNP rs2168101 G>T 
located in the enhancer of LMO1, which disrupts GATA3 binding and LMO1 
expression in neuroblastoma patients (6). Another example is the heterozygous 
indels (2-18 bp) located at -7.5 kb from TAL1 transcription start site in T-acute 
lymphoblastic leukemia (T-ALL), which introduces new binding sites for MYB to 
create a super-enhancer upstream of TAL1 (7). 

Only about 30% of SVs result in in-frame gene fusions that join the protein 
coding regions of two genes (8). The majority of SV break points are located in 
noncoding regions and do not change gene structure. Although less well studied 
compared to SNVs and small indels, several seminal studies have revealed 
oncogenic roles of noncoding SVs by redirecting enhancers/promoters to 
oncogenes or from tumor suppressor genes (9,10). Such enhancer 
rearrangement events have been identified in diverse cancer types, suggesting 
that this could be a common mechanism of oncogenesis. For instance, interstitial 
deletion in the pseudoautosomal region 1 (PAR1) of the X/Y chromosomes 
places the transcription of CRLF2 (cytokine receptor-like factor 2) under the 
control of the P2RY8 (purinergic 2 receptor Y 8) enhancer in Philadelphia 
chromosome-like and Down Syndrome-associated B-ALL (11). Other examples 
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include complex structural variants in childhood medulloblastoma, which 
rearranges the DDX31 (DEAD-Box Helicase 31) enhancer to GFI1B (growth 
factor independent 1B) (9), and t(3;8) in B-cell lymphoma that rearranges the 
BCL6 enhancer to MYC (10).  

Given the prevalence of noncoding mutations and the drastic increase of 
whole genome sequencing data, novel computational methods are critically 
needed to systematically identify risk noncoding mutations. Here, we introduce 
the PANGEA method (Predictive Analysis of Noncoding Genomic 
Enhancer/promoter Alterations), a general computational framework for 
systematic analysis of noncoding mutations and their impact on gene expression. 
This method simultaneously identifies all classes of somatic mutations that are 
associated with gene expression changes, including SNVs, small indels, copy 
number variations, and structural variants. Using PANGEA, we have conducted a 
pan-cancer analysis of noncoding mutations in 501 pediatric cancer patients of 
five histotypes with matched WGS and RNA-Sequencing (RNA-Seq) data 
generated by the TARGET project. We identified a comprehensive list of 
recurrent noncoding mutations as candidate risk mutations in these cancers.  An 
integrated analysis of both coding and noncoding mutations revealed distinct 
pathways affected by either coding and noncoding mutations.  We also show that 
integrated mutation signatures can help define novel patient subtypes with 
different clinical outcomes.  
 

Results 

A comprehensive catalog of recurrent noncoding mutations 

The TARGET data portal (https://ocg.cancer.gov/programs/target/data-matrix) 
contains matched WGS and RNA-Seq data for 501 patients, including 163 
patients with B-cell acute lymphoblastic leukemia (B-ALL), 153 patients with 
acute myeloid leukemia (AML), 100 with neuroblastoma (NBL), 53 with Wilms 
tumor (WT), and 32 with osteosarcoma (OS). All patients have WGS data for 
both tumor and germline or remission samples, which defined alterations as 
germline or somatic. 

We identified somatic SNVs and small indels (< 60bp) for the five cancer 
types using tumor and remission samples (Figure S1A). We evaluated the 
accuracy of our mutation calling pipeline using two approaches. First, we used a 
benchmark set generated by Zook et al. (12). It consists of a set of high-
confidence SNVs and indels in subjects NA12878 and NA24631 from the 1000 
Genome Project, identified by integrating 14 data sets using five sequencing 
technologies, seven read mappers and three variant callers. Using this 
benchmark set, we estimated the precision of our pipeline to be ~95% (Table 
S1). Second, the TARGET project provides a list of high-confidence SNV calls in 
B-ALL, AML, NBL, and WT that were validated using multiple experimental 
protocols including whole exome sequencing (WES), RNA-Seq and targeted 
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sequencing. Of the 735 high-confidence calls, our analysis pipeline identified 681 
(92%) of them, suggesting high sensitivity of our pipeline (Figure S1B).  

Across the five cancer types, the average mutation rate ranges from 0.16 
SNV/indel per million bases (Mb) in AML to 0.55 per Mb in OS (Figure S1C). The 
higher somatic mutation rate in OS is consistent with a previous WGS study, in 
which regional clusters of hypermutation, termed kataegis, were identified in 85% 
of pediatric OS patients (13). As expected, over 98% of the identified mutations 
are located in noncoding regions, while less than 1% of the mutations are located 
in coding regions (Figure S1D).  

Next, we used Delly2 (14) and Lumpy to identify structural variants (SVs), 
including large deletions (DELs), tandem duplications (DUPs), inversions (INVs), 
and translocations (TRANs). We only kept SVs that were called by both methods 
and passed additional filtering criteria (Figure S2A) as the final set of identified 
SVs. In total, we identified 26,757 SVs across 501 patients. The average number 
of identified SVs per patient ranges from 18 in WT to 71 in OS (Figure S2B). 
These numbers are comparable with published data by the International Cancer 
Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) consortium. 
Previously, Roberts et al. identified and experimentally validated 21 SVs that 
joined exons of two genes in frame in B-ALL patients (15). We identified 20 of 
those SVs, suggesting high sensitivity of our pipeline. Among the identified SVs, 
9,831 are in-frame changes and potentially generate fusion genes. We evaluated 
the fusion gene predictions by comparing to matched RNA-Seq data from the 
patients. Of the 9,831 fusion genes predicted by our pipeline, 2,323 of them were 
supported by RNA-Seq data from the same patients. The TARGET consortium 
experimentally tested 12 known translocations in 212 leukemia patients. Based 
on this set of validated SVs, our SV calling pipeline has an accuracy of 98% 
(Figure S2C, Table S2). Taken together, using multiple benchmarking data sets, 
we show that our SV calling pipeline is highly accurate.  
 

Noncoding mutations disrupting enhancer/promoter sequences or 

enhancer-promoter interactions  

The functional consequence of noncoding mutations is difficult to interpret 
without comprehensive annotation of noncoding regulatory DNA sequences in 
cancer genomes. To this end, we used publicly available epigenomic data of 
disease-relevant cell types to construct an enhancer catalog for the five cancer 
types in this study (see Methods). Specifically, we used ChIP-Seq data of histone 
modification marks (H3K4Me1, H3K4Me3, H3K27Ac) to predict transcription 
enhancers using the chromatin signature identification by artificial neural network 
(CSI-ANN) algorithm (Table S3) (16). In total, we identified 282,021 enhancers 
for the five cancer types at the False Discovery Rate (FDR) of 0.05 (Figure S3A). 
Overall, 91% of predicted enhancers are supported either by ATAC-Seq data in 
cancer-relevant cell types or by sequence conservation across 20 mammalian 
genomes (Figure S3A) or both, suggesting high quality of the predicted 
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enhancers. Next, we predicted target gene(s) of each enhancer using the 
Integrated Method for Predicting Enhancer Targets (IM-PET) algorithm (17), 
using public histone modification ChIP-Seq and RNA-Seq data in disease-
relevant cell types.  In total, we predicted 635,096 enhancer-promoter (EP) pairs 
across the five cancer types (Figure S3A). We compared the predicted EP pairs 
with published high-resolution Hi-C/ChIA-PET data in human B cells, myeloid 
cells and kidney cells (Table S3, Methods). Seventy-four percent (317,698) of our 
EP predictions are supported by either Hi-C or ChIA-PET data (Figure S3B), 
suggesting high quality of our predictions. 

To identify recurrent mutations that disrupt either enhancer/promoter 
sequences or enhancer-promoter interactions, we intersected the catalog of 
somatic mutations with the catalogs of enhancers/promoters and EP interactions. 
Across the five cancer types, 16% SNVs or indels overlap with 
enhancers/promoters in cell types relevant to a given pediatric cancer. In 
comparison, only 8% of all SNVs across 34 TCGA cancer types (as a control set) 
overlap with enhancers/promoters in the relevant cell types (average p-value = 
5e-13) (Figure S4A). The identified CNVs also have significantly higher overlap 
with the enhancers in relevant cell types compared to all CNVs reported by the 
TCGA consortium (15% vs 7%, average p-value = 2e-11) (Figure S4B). The 
break points of inversions and translocations are significantly enriched between 
predicted EP pairs compared to all break points reported by the TCGA 
consortium (45% vs 36%, average p-value = 1e-18) (Figure S4C). Taken 
together, these results suggest that various types of somatic mutations can 
disrupt the cis-regulatory landscapes of pediatric cancers, especially cis-
regulatory elements involved in regulating tissue-specific gene regulation of the 
specific tumor histotype.  
 

Systematic identification of candidate risk noncoding mutations  

To help prioritize noncoding mutations, we developed the PANGEA method to 
systematically identify recurrent noncoding mutations that disrupt the 
transcriptional regulation of a gene. Unlike previous methods, PANGEA uniquely 
considers all types of noncoding mutations, including SNVs, small indels, CNVs, 
and SVs. These mutation types can either disrupt enhancer/promoter sequences 
or disrupt the interactions between enhancers and promoters which is critical for 
transcription activation. After tabulating all such mutations, we use weighted 
elastic net to perform a regression analysis of gene expression on the sets of 
noncoding mutations across the patient cohort (Figure 1A). Because the EP 
interactions are predicted computationally, we use EP prediction scores as the 
weights for each predictor (mutation) in order to include a confidence measure of 
EP interactions in our regression model. Candidate risk mutations are predicted 
based on the statistical significance of the corresponding regression coefficients 
(see Methods for details). The PANGEA software package is available at 
https://github.com/tanlabcode/PANGEA. 
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 Using multiple-testing adjusted p-value < 0.05 as the cutoff, we identified 
1,405 genes whose expression changes can be predicted by SNVs/small indels 
in their enhancers/promoters, 55 genes whose expression changes can be 
predicted by CNVs in their enhancers, 1,082 genes whose expression changes 
can be predicted by SVs that disrupt their EP interactions (Table S4). In total, 
disruption of enhancer function by recurrent noncoding mutations were found in 
477 out of 501 pediatric cancer patients (95%) (Figure 1B). The quantile–quantile 
plot shows large deviation of the observed P values for the predicted risk 
noncoding mutations compared to those of random expectations using an 
independent ICGC cohort (n=2715 donors), suggesting low false prediction rate 
(Figure S5, Supplementary Methods). Over half of the predicted risk noncoding 
mutations are SNVs and small indels (66%), followed by translocations (27%) 
and other types of SVs (Figure 1C). However, when adjusted by the overall 
frequency of each type of mutation, SVs become the most frequent type of risk 
noncoding mutations (Figure S6). 

The enhancers that are affected by risk noncoding mutations are more 
cell-type-specific compared to all enhancers in our enhancer catalog (Figure 1D). 
In addition, these enhancers have more overlap with published super enhancers 
in cell types that are relevant to the given cancer type (18) (Figure 1E). Finally, 
these enhancers have high levels of sequence conservation across 20 
mammalian species (Figure 1F). Taken together, these results provide additional 
support to the predicted risk noncoding mutations. 
 

Risk enhancer rearrangements  

Several seminal studies have reported ‘enhancer hijacking’, also known as 
oncogenic rearrangement of enhancers due to translocation/inversion (9,10,19-
22). In this study, we performed a systematic analysis of enhancer hijacking 
events across the five cancer types. Amongst 501 total patients, 405 patients 
(81%) have at least one predicted enhancer hijacking event in their genomes. 
We identified several known enhancer hijacking events. For example, we found 
the t(14;X)(q32;p22) translocation in 12 B-ALL patients, which hijacks multiple 
enhancers of IGHV to the vicinity of CRLF2 resulting in significant 
overexpression of CRLF2 in these patients (Figure S7A). We also discovered 
enhancer hijacking from three different genomic loci to the common TERT gene 
locus (t(10;5)(p22;p15), t(5;5)(q34;p15), and t(5;5)(q12;p15) (Figure S7B). These 
TERT-related enhancer hijacking events were observed in 15 neuroblastoma 
patients and the resultant translocations led to significant overexpression of 
TERT in these patients (Figure S7B). 

However, the majority of our predicted enhancer hijacking events have not 
been previously reported. One such event involves hijacking of enhancers to 
upregulate CHD4, which has three translocation partners (t(12;22)(p13;q13), 
t(12;19)(p13;p13), t(9;12)(p24;p13)). In total, 12 B-ALL patients had this 
translocation. Most translocations in this region result in fusion genes involving a 
nearby gene ZNF384. A previous study has focused on the function of ZNF384 
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fusion genes (23). However, in the TARGET cohort, we observed 2 patients in 
which the translocation break point is actually located downstream of ZNF384 
and did not generate an ZNF384 fusion (Figure 2A). Furthermore, ZNF384 fusion 
is not correlated with patient prognosis. Together, these data suggests a driver of 
oncogenesis that is independent of ZNF384. In all patients with the translocation, 
we found that enhancers such as that of EP300, TCF3, and SMARCA2 are 
hijacked to chr12.p13.  The expression level of CHD4, a gene adjacent to 
ZNF384, is significantly increased in these patients (Figure 2B).  Similarly, in a 
recent published mixed phenotype acute leukemia (MPAL) cohort, we also 
observed CHD4 expression increase in the patients with ZNF384-involved 
rearrangement (3) (Figure S8). Moreover, B-ALL patients with the enhancer 
hijacking event have significantly shorter time to relapse (Figure 2C). We thus 
hypothesize that enhancer hijacking translocation events that bring potent 
enhancers to the promoter of CHD4 may be an independent oncogenic driver in 
B-ALL.  

CHD4 (chromodomain-helicase-DNA-binding protein 4) is a component of 
the nucleosome remodeling and deacetylase (NuRD) complex, which plays an 
important role in B-cell development by regulating B-cell-specific transcription 
(24). In addition, CHD4 is known to function as a repressor of several tumor 
suppressor genes, and inhibition of CHD4 reduces the growth of AML and colon 
cancer cells (25,26). These data suggest a role of CHD4 in the oncogenesis of B-
ALL. To investigate the potential role of CHD4, we first identified differential 
expressed genes in the patients with CHD4 overexpression. In total, there are 
666 up-regulated and 922 down-regulated genes in patients with CHD4 
rearrangements (Table S5). Using published TF ChIP-Seq data in human 
GM12878 cells (27), we found CHD4 binding sites are significantly enriched at 
enhancers or promoters of the down-regulated genes (Figure S9A). Among the 
157 down-regulated genes with CHD4 binding sites, several of them encode 
well-known regulators of B cell development including PAX5, IRF4, TCF3 and 
EBF1 (Figure S9B, C). These results suggest a role of CHD4 in B-ALL through 
regulating the expression of key TFs in B-cell development.  

To test the potential oncogenic role of CHD4 in B-ALL, we knocked out 
CHD4 in the NALM-6 and REH B-ALL cell lines. We performed growth 
competition assays to compare the growth phenotypes of CHD4 knockout with 
non-knockout leukemic cells. Both NALM-6 and REH cells showed impaired 
growth with CHD4 knockout (Figure 2D). Next, we introduced the translocation 
t(6;15)(qF2;qE1) in murine Ba/f3 cells using CRISPR-Cas9. The translocation 
break points were designed to be located in the intergenic regions near CHD4 
and EP300, placing the EP300 enhancer (Figure 2E) upstream of the CHD4 
promoter without creating a fusion gene (Figure S10A). In Ba/f3 cells with the 
translocation, we observed increased expression of CHD4 at both mRNA and 
protein levels (Figure 2G, H). In contrast, expression of nearby genes was not 
increased in cells with the translocation (Figure 2G). More importantly, the 
introduced translocation enables Ba/f3 cells to proliferate in the absence of IL-3 
(Figure 2H), suggesting oncogenic transformation. Additionally, the expression 
levels of TCF3, PAX5, and EBF1 were significantly decreased in the cells with 
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CHD4 rearrangement, suggesting the role of CHD4 in regulating those key 
regulators (Figure S10B). In summary, these results strongly support an 
oncogenic role of CHD4 in B-ALL due to enhancer hijacking.    
 

Risk enhancer copy number alterations  

We found that 309 patients in the TARGET cohort (62%) had enhancer 
amplification/deletion and associated target gene expression change. MYCN is 
frequently amplified in neuroblastoma patients (28). In the NBL cohort, we 
observed that the body of the MYCN gene is amplified in 34 patients. However, 
we also observed 11 patients with amplification of the MYCN enhancer rather 
than the gene body (Figure 3A). MYCN expression level is significantly higher in 
those patients compared to the patients without MYCN amplification (Figure 3B). 
Moreover, patients with only MYCN enhancer amplification have shorter time to 
relapse compared with other patients (Figure 3C), including patients with MYCN 
gene body amplification. This result suggests that enhancer amplification alone is 
sufficient to up-regulate MYCN and drive aggressive neuroblastoma. Another 
example involves deletion of the ATG3 enhancer in 15 B-ALL patients (Figure 
S11A), resulting in decreased ATG3 expression in those patients (Figure S11A). 
Autophagy related 3 (ATG3) is a ubiquitin-like-conjugating enzyme and plays a 
role in the regulation of autophagy; downregulation of ATG3 has been reported in 
myelodysplastic syndrome (MDS) patients progressing to leukemia (29).  
 

Risk enhancer/promoter SNVs and small indels 

We found that 346 patients in the TARGET cohort (69%) had SNVs/small indels 
located in enhancer/promoter regions that caused target expression change. For 
instance, we found 6 AML patients who have SNVs in the GFI1B +11k enhancer 
(30). The GATA2 binding sites in the enhancer were disrupted and GFI1B 
expression decreased correspondingly (Figure 3D, E). Growth factor 
independence 1b (GFI1B) encodes a key transcription factor regulating 
dormancy and proliferation of hematopoietic stem cells (HSCs) and the 
development of erythroid and megakaryocytic cells (31,32). Recent studies had 
revealed its critical role as a tumor suppressor in AML, as low GFI1B expression 
is associated with poor patient survival (33). Consistent with previous studies, the 
6 patients with GFI1B enhancer mutation have significantly shorter time to 
relapse (Figure 3F). Another example involves 9 AML patients who have 
mutations in the IDH2 +56k enhancer (Figure S11B). This enhancer is part of a 
known super enhancer of IDH2(34), and it is constitutively active in myeloid cell 
types. Previously, nonsynonymous mutations of IDH2 have been reported in 9%-
19% of adult AML patients, but relatively rare in childhood AML (<4%) (35,36). 
Mutations in IDH2, as well as in several other genes involved in regulation of 
DNA methylation (such as DNMT3, TET2, IDH1), were detected to have higher 
variant allele frequency (VAF) in adult AML patients, suggesting they were early 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2019. ; https://doi.org/10.1101/843102doi: bioRxiv preprint 

https://doi.org/10.1101/843102
http://creativecommons.org/licenses/by-nc-nd/4.0/


mutational events in AML (37). We did not identify nonsynonymous IDH2 
mutations, but did find recurrent mutations in the IDH2 enhancer. The mutations 
are predicted to disrupt ERG/FLI1 and E2F4 binding sites in the enhancer. The 
expression level of IDH2 is significantly lower in patients with these mutations. 
Taken together, these results suggest a different mechanism of IDH2 disruption 
in pediatric AML that was previously unappreciated. We also found 4 patients 
who have SNVs in the GATA2 +126k enhancer and 2 patients who have SNVs in 
the GATA2 promoter (Figure S11C). The enhancer was previously reported to be 
rearranged to vicinity of EVI1 in adult AML patients (38). The mutations were 
predicted to disrupt FUBP1 binding site, and the expression of GATA2 was 
significantly lower in the patients with mutations in enhancer/promoter regions.  
 

Coding and noncoding mutations affect distinct sets of genes and 

pathways 

In total, our analysis of five pediatric cancer types have identified 1,175 genes 
recurrently altered in their coding regions, and 2,162 genes recurrently altered in 
their noncoding regions. Surprisingly, the overlap between the two groups of 
genes is very small (62 genes, 2%), suggesting general exclusivity of coding and 
noncoding mutations affecting a given gene (Figure 4A).  

We investigated the genomic features of the genes affected by coding 
versus noncoding mutations. We found that genes affected by coding mutations 
are longer and have higher level of sequence conservation (Figure 4B, C). On 
the other hand, genes affected by noncoding mutations are linked to more 
regulating enhancers (Figure 4D), and their expression is more tissue-specific 
(Figure 4E). In addition, the regulating enhancers of those genes are more 
conserved (Figure 4F). Previous studies have suggested SNVs and small indels 
occur more frequently in genomic regions with late replication timing, while 
translocations and inversions occur more frequently in the genomic regions with 
early replication timing (39). Consistent with this trend, we found that genes 
affected by SNVs and small indels in coding regions are located in the relatively 
late replicating regions, while the genes in other groups have relatively earlier 
replication timing (Figure 4G). Pathway analysis reveals signaling pathways, 
including JAK/STAT, MAPK and Wnt signaling pathways, are mostly affected by 
coding mutations (Figure S12). In stark contrast, genes in metabolic pathways 
are mostly affected by noncoding mutations (Figure S12). Correspondingly, we 
found metabolic genes tend to be located in the early replicating region (Figure 
S13). Taken together, these data suggest the exclusivity of genes affected by 
coding versus noncoding mutations is likely due to the different genomic location 
and features of those genes (Figure 4H).  
 

Level of TF regulon disruption correlates with patient prognosis 
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Genes encoding lineage-specific transcription factors (TFs) are frequently 
mutated in pediatric cancers. For example, TFs that regulate B-cell development 
including IKZF1, EBF1, PAX5, TCF3 are frequently altered in B-ALL patients (40-
43). In addition, MYCN and ZNF281 are known prognostic markers for 
neuroblastomas (44,45), while RUNX1 and CBFB are also frequently altered in 
pediatric AML and are linked to unfavorable clinical outcomes (46).  

In contrast to coding mutations of TFs, regulatory output of TFs can also 
be disrupted by mutations affecting individual enhancers/promoters/EP 
interactions regulating the target genes. Therefore, we compared the effects of 
coding and noncoding mutations on TF regulons (defined as the set of genes 
regulated by a TF) and patient outcome. For each cancer type, we report the top 
10 most frequently affected regulons by combined coding and noncoding 
mutations. Most of the identified TFs have a known role in the specific cancer 
type (Figure 5A and Table S6). Furthermore, We found that regulon disruption by 
noncoding mutations occur more frequently than regulon disruption by coding 
mutations of the TF genes (Figure 5B). This is probably because mutations of a 
TF gene lead to a bigger disruption of the TF regulon, compared to mutations 
disrupting regulation of individual TF targets.  

We hypothesized that the level of regulon disruption is correlated with 
patient disease outcome. To test this hypothesis, we plotted time to relapse 
stratified by the degree of regulon disruption (i.e., TF coding mutation versus 
disruption of individual TF targets by noncoding mutations). Indeed, we found a 
strong correlation between time to relapse and the degree of regulon disruption. 
For instance, in B-ALL, patients with PAX5 deletion have the shortest time to 
relapse, followed by patients with disruption of PAX5 EP interactions. Finally, 
patients without any PAX5 regulon mutation have the longest time to relapse 
(Figure 5C). We found the same correlations for RUNX1 regulon in AML (Figure 
5D), and WT1 regulon in WT (Figure 5E). For PAX5, RUNX1, and WT1, the 
mutations are all loss-of-function of the TFs. We also found correlations involving 
gain-of-function mutations of the TFs, including TCF3 in B-ALL and MYCN in 
NBL. For TCF3, because the fusion event leads to gain-of-function of TCF3, 
patients with disruption of TCF3 EP interactions have longer time to relapse 
compared to the patients without any TCF3 regulon mutation (Figure 5F). 
Presumably, the gain-of-function of TCF3 partially mitigate the effect of disruption 
of TCF target genes due to noncoding mutations. Similarly, NBL patients with 
disruption of MYCN EP interactions have longer time to relapse compared to the 
patients without any MYCN regulon mutation (Figure 5G). In summary, our data 
suggest that there is typically a wide spectrum of regulon disruption for key TFs 
in pediatric cancers. And the level of TF regulon disruption is associated with 
patient prognosis.  
 

Integrated mutation profiles suggest novel disease subtypes  

Mutational profiles of coding regions have been widely used for patient 
stratification and prognosis purposes. This is not the case for noncoding 
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mutational profiles. We therefore constructed mutational profiles of the five 
pediatric cancers using both coding and noncoding mutations. Clustering 
analysis of these combined mutational profiles enabled us to discover novel 
patient subtypes.  

For B-ALL, 7 patient clusters are identified (Figure 6A). Of the 7 clusters, 
four are characterized by known translocation events in B-ALL including ZNF384 
rearrangement, ETV6-RUNX1, TCF3-PBX1, and IGHV translocation. All these 
are previously reported to be recurrent SVs in B-ALL (47,48). However, the 
mechanism by which these fusion proteins contribute to leukemogenesis has not 
been fully elucidated. Here, we found that in addition to creating fusion genes, 
the translocations can alter the expression of nearby genes by re-arranging 
locations of distal enhancers (Figure 6A, affected genes listed below heatmap).  

Two other clusters (C5 and C6) are characterized by novel inversion or 
translocation. Patients in C5 have Inv(2) (n=14). The inversion is predicted to 
hijack an enhancer to near SUPT7L and ATRAID and up-regulate the expression 
of these two genes (Figure S14A, B). SUPT7L is a subunit of the SPT3-TAFII31-
GCN5L acetylase (STAGA) complex, which is known to regulate the stability of 
the TCF3-PBX1 oncoprotein in ALL(49). Interestingly, we found Inv(2) 
significantly co-occurs with TCF3-PBX1 in 6 patients (Figure S14C). Both TCF3-
PBX1 and Inv(2) are associated with aggressive clinical outcome in B-ALL. 
Patients who have both mutations show even shorter time to relapse compared 
to patients with either type of mutation (Figure S14D), suggesting synergy of 
these two pathways contributing to disease outcome. 

Patient cluster C6 is characterized by the inter-chromosomal 
translocations at chr2 (t(2;7)(q21;q11), t(2;11)(q21;q11)). The translocations 
occur in 15 patients, and are predicted to disrupt the EP interaction involving the 
ANKDR30BL gene (Figure S15A), resulting in significant decrease of 
ANKDR30BL expression in patients with this translocation. Interestingly, 
MIR663B, a microRNA located in the intron of ANKDR30BL, is also down-
regulated in those patients (Figure S15B). MIR663B is known to regulate the 
expression of CCL17, CD40, and PIK3CD in chronic lymphocytic leukemia (CLL) 
(50). Consistent with the previous finding, we observed significant expression 
increase of those genes in patients with MIR663B down-regulation (Figure 
S15B). 

We also identified two potential novel cancer subtypes in NBL (C6 and C7, 
Figure 6C). Cluster 7 consists of 9 NBL patients with translocation on chr17 that 
results in enhancer rearrangement and down-regulation of ERBB2 
(t(1;17)(p33;q12), t(9;17)(p21;q12), t(11;17)(q13;q12)) (Figure S16A, B). ERBB2 
is essential for normal embryonic development and has a critical function in 
oncogenesis and progression of several cancer types including breast cancer, 
lung cancer, and leukemias (51-53). In addition, low ERBB2 expression is 
associated with poor patient survival in NBL (54). Consistently, patients in cluster 
7 have shorter time to relapse (Figure S16C). The other novel NBL subtype (C6) 
is characterized by amplification of the TGM6 enhancer in 11 NBL patients and 
consequently increased TGM6 expression in these patients (Figure S16D, E). 
Transglutaminase 6 (TGM6) is a protein associated with nervous system 
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development (55). Transglutaminases, particularly TGM2, is known to play 
important roles in neurite outgrowth and modulation of neuronal cell survival (56). 
Our result suggests a potential oncogenic role of TGM6 in NBL. 

A novel AML subtype (cluster C5) is characterized by enhancer deletion of 
ZNF37A in 16 patients (Figure S17A). ZNF37A is involved in fusion events in 
breast cancer (57) and adult AML (58). Notably, AML patients with ZNF37A 
enhancer deletion have lower ZNF37A expression and shorter time to relapse 
(Figure S17B, C), suggesting the prognosis significance of this noncoding 
mutation.  

A novel WT subtype (cluster C4) is characterized by enhancer 
rearrangement of GAS6 in 6 patients (Figure S17D). Growth arrest specific 6 
(GAS6) is a ligand for receptor tyrosine kinases AXL, TYRO3 and MER whose 
signaling is implicated in cell growth and survival (59,60). Patients with the 
translocation have lower GAS6 expression and shorter time to relapse (Fig 
S17E, F).  
 

Discussion 

The landscape of noncoding mutations in pediatric cancers has not been 
comprehensively characterized. Here, we developed PANGEA, a general 
regression-based method to identify all classes of candidate risk noncoding 
mutations by joint analysis of patients’ mutations and gene expression profiles. 
Application of PANGEA led to a comprehensive and prioritized list of candidate 
risk noncoding mutations in five major pediatric cancers.  

Previous studies on noncoding mutations have been focused on SNVs 
and small indels. In contrast, systemic analysis of SVs has been lacking. Due to 
their much larger sizes, SVs may have a bigger impact on shaping the cis-
regulatory landscape than SNVs (61,62). In support of this notion, we indeed 
found that SVs are the most frequent class of risk noncoding mutations when 
adjusted for background occurrence frequency (Supplementary Fig S5).  In total, 
our analysis has revealed 1,137 risk SVs affecting the expression of over 2,000 
genes across five pediatric cancer types.  

Previous studies have also been focused on fusion genes generated by 
SVs since they are intuitive candidates of driver events. However, only ~30% of 
SVs generate fusion genes according to the current deposited SVs at ICGC. 
Moreover, ~35% of the gene fusions in the TARGET cohort are generated via 
microhomology-mediated end jointing (MMEJ). Since microhomology tends to be 
located at the break points of nonpathogenic SVs (63,64), these data suggest the 
fusion genes may not be oncogenic drivers in cases of MMEJ. Instead, in our 
analysis, we found that 55% SVs altered regulatory landscape and expression of 
nearby genes of the break points. These genes warrant careful investigation for a 
role in oncogenesis in future studies.  

We found that coding and noncoding mutations affect distinct sets of 
genes and pathways. This mutual exclusivity is likely due to the different genomic 
locations of these two classes of genes. We found that genes affected by 
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noncoding mutations tend to be located in the region with early replication timing. 
This trend is consistent with previous reports that the occurrence of genomic 
rearrangements tends to occur in regions of early replication (65,66). Whether 
this correlation indicates a novel oncogenic mechanism needs to be further 
investigated. For instance, we found metabolic genes tend to be located in the 
early replicating region, and are more frequently affected by noncoding 
mutations. Rewiring of metabolism is a hallmark of cancer (67,68). Recent 
systematic analysis of TCGA data for 8 cancer types have reported that over 
75% of metabolic genes are differentially expressed in each cancer type (69). 
However, it is unclear that to what degree the metabolism rewiring is mediated by 
noncoding mutations in those cancer types. Here our analysis suggests 
metabolic genes may be preferentially affected by noncoding mutation. In 
summary, our results highlight the need for comparative analysis of both coding 
and noncoding since novel cancer-related genes and pathways may be unveiled 
with comprehensive noncoding mutation analysis. 

Many lineage-specific TFs are frequently perturbed in various cancers. 
However, the underlying oncogenic mechanism is challenging to understand. 
With comprehensive noncoding analysis, our approach provides a means to 
understand the detailed molecular mechanism underlying TF perturbation in 
cancers. For instance, recurrently de-regulated target genes of a TF suggest they 
can be important mediators of the disrupted TFs. Clinically, we found that the 
level of disruption of a transcription factor regulon can be used to stratify patient 
survival. More sophisticated computational models can be developed to prioritize 
target genes of perturbed TFs that contribute to oncogenesis. 
 

Methods 

Identification of single nucleotide variants (SNVs) and small indels 

We used GATK (v3.8) and Freebayes (v1.0.2) (Table S9) to call SNVs and small 
indels. We first generated a set of initial SNV and indel calls with the default 
parameters of each software. Several filters were applied during the post-
processing of the initial calls as suggested by the previous paper (70). First, we 
filtered mutations that overlap with low complexity regions. Second, we excluded 
regions with excessive read depth, as those regions are probably associated with 
spurious mappings. Third, we required the mutations to have multiple 
observations of the alternate (non-reference) allele in reads from both DNA 
strands. Last, we used the p-value cutoff of 0.01. SNVs passing these filters were 
intersected with annotations in dbSNP build 149. Calls matching both the position 
and allele of known dbSNP entries were removed (Figure S1A). 
 

Identification of structural variants (SVs) 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2019. ; https://doi.org/10.1101/843102doi: bioRxiv preprint 

https://doi.org/10.1101/843102
http://creativecommons.org/licenses/by-nc-nd/4.0/


Delly (v0.7.2) and Lumpy (v0.2.13) (Table S9) were used to call structural 
variants. We used the default parameter settings of both software with the 
exception of setting minimum mapping quality threshold to zero as advised by 
the Complete Genomics data analysis pipeline  
(https://target-data.nci.nih.gov/Public/Resources/WGS/CGI/READMEs/). The 
initial SVs called by both software were retained for further filtering. First, we 
removed SVs in which break points were located in repetitive regions. Second, 
we removed SVs that are also identified in the baseline genomes which consist 
of 261 WGS samples from the 1000 Genome Project 
(www.internationalgenome.org/data). Finally, we selected SVs with at least 7 
supporting reads as the final set of SVs (Figure S2A). 

 

RNA-Seq data analysis 

Raw reads from RNA-Seq were mapped to the reference human genome 
(release GRCh37) using STAR with default parameter setting. Transcripts were 
assembled using Cufflinks using mapped fragments outputted by STAR. Refseq 
(GRCh37) was used for the annotation of known transcripts. Normalized 
transcript abundance was computed using Cufflinks and expressed as FPKM 
(Fragments Per Kilobase of transcripts per Million mapped reads). 
 

Weighted elastic net model as a general framework for predicting risk 

mutations disrupting enhancer function 

For a given gene promoter, we consider all types of mutations that could 
potentially disrupt its regulation, including SNVs and small indels, copy number 
variations, inversions, and translocations. These mutations could either disrupt 
the function of the cis-regulatory sequences per se or disrupt the interactions 
between the enhancer and the promoter. For the latter category of mutations, 
SVs could hijack enhancers for a given promoter. We define potential enhancer 
hijacking as existing enhancer relocated to new region with a nearby promoter 
(<200k bp). For each promoter, its potential enhancers are detected based on 
patient SV data. We developed a regression-based approach to identify specific 
mutations that are associated with gene expression change. We used elastic net 
to implement the regression analysis. Elastic net combines the strength of ridge 
regression and least absolute shrinkage and selection operator (LASSO). It can 
enforce sparsity, has no limitation on the number of selected variables, and 
encourages grouping effect in the presence of highly correlated predictors.  
 For each gene, let us consider a regression model with 𝑛 observations 
(i.e. 𝑛 patients). Suppose that 𝑥# = %𝑥#&,⋯ 𝑥)&*

+, 𝑗 = 1,⋯ , 𝑝 are the predictors 
(mutations disrupting promoter regulation) and 𝑦 = (𝑦1,⋯𝑦))+ is the gene 
expression of the target promoters. 𝑋 = 4𝑥1,⋯ , 𝑥56 denotes the predictor matrix. 
The total number of predictors are the number of disrupting mutations summed 
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over all promoters/enhancers regulating a given gene. The regression model can 
be expressed as 𝑦 = 𝑋𝛽 + 𝜖 where 𝛽 = %𝛽1,⋯ , 𝛽5*

+and the noise term ε ∼
N(0, 𝜎?𝐼)). A model fitting procedure produces the estimate of 𝛽, 𝛽B . The elastic 
net model is defined as: 

𝑎𝑟𝑔𝑚𝑖𝑛H
1
2 J𝑦 − Σ&M1

5 𝑥&𝛽&J?
? + 𝜆1Σ&M1

5 O𝛽&O + 𝜆?Σ&M1
5 O𝛽&O

? 
where 𝜆1and 𝜆? are tuning parameters that balance the goodness-of-fit and 
complexity of the model.  
  Because of the enhancer-promoter links are computationally predicted by 
the IM-PET algorithm, we address the uncertainty of the prediction by proposing 
a weighted elastic net approach. Specifically, we associate the probability score 
of an enhancer-promoter prediction (computed by IM-PET) to the coefficient of 
the predictor in the model, to enforce penalty on predictors caused by uncertainty 
in EP predictions. The weighted elastic net model is as following: 

𝑎𝑟𝑔𝑚𝑖𝑛H
1
2J𝑦 − Σ&M1

5 𝑥&𝛽&J?
? + 𝜆1Σ&M1

5 𝑤&O𝛽&O + 𝜆?Σ&M1
5 O𝑤&𝛽&O

? 
where 𝑤# > 0, 𝑗 = 1,⋯ , 𝑝 are weight based on the EP prediction score computed 
by IM-PET. 
 

CRISPR/Cas9-mediated translocation  

sgRNAs targeting the break points were designed using CRISPOR 
(http://crispor.tefor.net) and cloned into the CRISPR vector pX459 (Addgene 
plasmid # 448139). CRISPR/Cas9-mediated translocation in Ba/F3 cells was 
performed as described in the previous study (71) with some modifications. 
Plasmids were co-transfected to Ba/F3 cells by electroporation. Dead cells were 
removed by centrifugation at 300x g and RT for 5 min 72 h post electroporation. 
Cell concentration and viability were measured using Countess II (Life 
Technologies). Live cells were re-suspended with Ba/F3 conditional medium to a 
concentration of 5 cells/mL. 100 μL of cell suspension was transferred to a 96-
well plate and cultured for 2-3 weeks for selection of single cell clones. Genomic 
DNA was isolated using Quick-DNA 96 kit (ZYMO) and used for screening for 
clones with translocation by PCR (Table S7). Clones with translocation were 
further confirmed by Sanger sequencing.  
 

Generation of cell lines with stably expressed Cas9 endonuclease 

The B-cell acute lymphoblastic leukemia cell lines NALM-6 and REH were 
lentivirally transduced with plasmid expressing Cas9 nuclease (LentiCRISPR V2; 
Addgene Plasmid #52961) as described below at a MOI of 0.5. Cells then 
underwent 14 days of antibiotic selection with media containing puromycin 0.25 
ug/mL to generate cell lines that stably express Cas9. Both cell lines were 
cultured in RPMI media supplemented with 10% FBS and 100 unit/mL 
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penicillin/streptomycin. All cell lines were validated by ATCC STR profiling and 
confirmed to be Mycoplasma free.      
 
sgRNA design 

The sgRNAs targeting CHD4 were designed by Feng Zhang’s laboratory(72) 
(Table S8).  The sequences for non-targeting control sgRNAs were chosen from 
previously described literature (73).  
 
Lentivirus production and transduction 

Lentivirus was produced by transfecting HEK293FT cells with packaging 
plasmids pMD2.G and psPAX2, and the individual CRISPR components (Cas9 
expressing plasmid or sgRNA expressing plasmid: MCB306, Addgene Plasmid 
#89360 or MCB320, Addgene Plasmid #89359). Lentivirus-laden supernatant 
was harvested at 48 and 72 hrs after transfection, and viral supernatant was 
filtered through 0.45 μm polyvinylidene difluoride filter (Millipore) and 
concentrated using ultracentrifugation at 25,000 rpm for 2 hrs at 4 oC. Virus was 
then tittered via transduction of target cell line (REH or NALM-6).  

Cells were lentivirally transduced by spinfection with centrifugation of cells 
with virus in the presence of 8μg/ml polybrene (Millipore) at 1,000xg for two hrs. 
Wildtype cells were transduced with virus containing plasmid expressing Cas9 at 
a MOI of 0.5. Cells stably expressing Cas9 were then transduced with plasmid 
containing sgRNA targeting CHD4 or non-targeting control at a MOI of 0.4. Three 
days after virus transduction, GFP-positive (transduced) cells were sorted by 
FACS, then seeded into 6-well plates for recovery before the following analyses.   
 

Data and Software availability 

Data and software used in this study are noted in the Method Details section 
above and Table S9. In this study, we developed a new software, PANGEA 
which is deposited at https://github.com/tanlabcode/PANGEA. 
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Figure 1. The PANGEA algorithm for simultaneous identification of 
candidate risk noncoding mutations of all classes.  
 
A) Overview of the PANGEA algorithm. Given a catalog of enhancer-promoter 
(EP) interactions, a catalog of somatic mutations, and transcriptome data, the 
algorithm first constructs a count matrix of various classes of mutations disrupting 
the function of enhancer(s)/promoter(s) of each gene, including small mutations 
and structural variants. Weighted elastic net regression is then used to identify 
mutations that are significantly correlated with changes in target gene 
expression. B) Fraction of patients stratified by different classes of noncoding 
mutations affecting enhancers/promoters. C) Proportion of genes whose 
expression is disrupted by different classes of predicted risk noncoding 
mutations. SNV, single nucleotide variant; DEL, deletion; DUP, duplication; 
TRAN, translocation. D) Mutations predicted by PANGEA affect enhancers that 
have higher tissue specificity. Enhancer specificity is measured by the number of 
cell types in which the enhancer is observed to be active. P-value of one-sided t-
test is shown (n=282,021); E) Mutations predicted by PANGEA affect higher 
percentage of super enhancers. p-value of hypergeometric test is shown 
(n=282,021); F) Mutations predicted by PANGEA affect enhancers with higher 
sequence conservation across 20 mammalian species. Enhancer conservation is 
measured by the average PhastCons score of the enhancer sequence. P-value 
of one-sided t-test is shown (n=282,021).  
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Figure 2. Enhancer hijacking to CHD4 by translocation in B-ALL patients.  
 
A) Translocations result in enhancer hijacking to CHD4 in B-ALL. Three different 
translocation partners are identified in the B-ALL patient cohort. Shown tracks 
are histone modification ChIP-Seq data of human CD19+ B cells (identifying 
enhancers), SNVs and SV break points (BPs). For break point track, each 
vertical line represents a patient. The hijacked enhancers predicted to regulate 
CHD4 are highlighted in brown. B) Expression levels of CHD4 in patients with 
and without translocations. P-value of one-sided t-test is shown (n=163).  C) B-
ALL patients with CHD4 translocation have shorter time to relapse. P-value of 
log-rank test is shown (n=163). D) CHD4 knockout impairs the growth of B-ALL 
cell lines, NAML-6 and REH. CHD4 knockout was done using CRISPR-Cas9. E) 
Luciferase reporter assay of hijacked enhancer. BG, no DNA vector control; EV, 
vector containing no enhancer; NC, negative control, genomic region without 
enhancer histone mark H3K4me1 and H3K27ac; Enh, test EP300 enhancer. F) 
Western blots of CHD4 protein level in Ba/F3 cells with and without introduced 
translocation. P-value of one-sided t-test is shown (n=2). G) Relative mRNA 
levels of CHD4, NOP2, ZNF384, and EP300 in Ba/F3 cells with and without 
introduced translocations. P-values were calculated using one-sided t-test (n=2 
for all tests). H) Murine Ba/F3 cells with induced translocation undergoes 
oncogenic transformation. Enhancer hijacking translocation was induced by 
CRISPR-Cas9.	Error bars represent one standard deviation.  
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Figure 3.  Examples of disruption of enhancer function by copy number 
alteration and point mutation.  
 
A) Segmental duplications result in amplification of MYC enhancer in 
neuroblastoma. Shown tracks are histone modification ChIP-Seq data in human 
neurocrest cells and identified CNVs. Color bars in CNV track indicate MYCN 
amplification types. Orange, amplification of MYCN enhancers; Green, 
amplification of both MYCN enhancers and gene body; Blue, amplification of 
MYCN gene body only. B) Expression level of MYC in patients with and without 
copy number change. C) Kaplan-Meier plots of time to relapse for NBL patients 
with MYC gene amplification, MYC enhancer amplification, and without any copy 
number change in either gene or enhancer. P-value of one-sided log-rank test is 
shown (n=100). D) Point mutations result in disruption of GATA2 binding sites 
which regulates GFI1B expression in AML. Shown tracks are histone 
modification ChIP-Seq data in human neurocrest cells and identified SNVs. E) 
Expression level of GFI1B in patients with and without enhancer mutations. P-
value of one-sided t-test is shown (n=153). F) Kaplan-Meier plots of time to 
relapse for AML patients with and without GFI1B enhancer point mutations P-
value of one-sided log-rank test is shown (n=153).  
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Figure 4. Coding and noncoding mutations affect distinct sets of genes. 
 
A) Venn diagrams of genes affected by recurrent coding and noncoding 
mutations in five cancer types. B-G) Features of genes affected by coding and 
noncoding mutations and genes without any mutation: gene exon length (B), 
exon conservation level measured by Phastcons score (C), enhancer degree 
(number of regulating enhancers) (D), gene expression specificity measured by 
fold change of average expression in a given cancer type compared to that of all 
five pediatric cancer types (E), enhancer conservation level measured by 
Phastcons score (F) and replication timing (G). H) Summary of different genomic 
features for the genes affected by coding and noncoding mutations. P-values of 
one-sided t-test are shown (n=21,841). 
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Figure 5. Degree of regulon disruption of key TFs is correlated with clinical 
outcome. 
 
A) Top 10 most frequently disrupted regulons in each cancer type. Bar plots 
show the percentage of patients with regulon disruption of the listed TFs; TFs 
with known role in the given cancer are highlighted in red. B) Number of patients 
affected by regulon disruption (either TF coding mutations or target gene 
noncoding mutations). Asterisks indicate TFs whose regulon disruptions are 
correlated with patient time to relapse (log-rank test p < 0.05, n=501). C) Kaplan-
Meier plots of time to relapse for B-ALL patients with PAX5 deletion, EP 
disruption involving PAX5, and without any mutation of the PAX5 regulon; D) 
Kaplan-Meier plots of time to relapse for AML patients with RUNX1 fusion, EP 
disruption involving RUNX1, and without any mutation of the RUNX1 regulon. E) 
Kaplan-Meier plots of time to relapse for WT patients with WT1 mutation, EP 
disruption involving WT1, and without any mutation of the WT1 regulon. F) 
Kaplan-Meier plots of time to relapse for B-ALL patients with TCF3 fusion, EP 
disruption involving TCF3, and without any mutation of the TCF3 regulon; G) 
Kaplan-Meier plots of time to relapse for NBL patients with MYC amplification, 
EP disruption involving MYC, and without any mutation of the MYC regulon. P-
values of one-sided log-rank test are shown. The numbers of samples are 
indicated in brackets.   
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Figure 6. Integrative mutation signatures of pediatric cancers.  
 
A)- E) Mutation signatures of B-ALL, AML, NBL, WT, and OS patients. Heatmaps 
were generated using recurrently mutated genes (due to either coding or 
noncoding mutations) in at least 5 patients. Patients are clustered according to 
the combined coding and noncoding mutation profiles. The color of each cell 
indicates the class of mutations. Rows, genes. Columns, patients. For 
presentation purpose, the heatmaps are divided into submaps based on 
noncoding (top) or coding mutations (bottom). The tables below the heatmaps list 
up- or down-regulated genes due to noncoding mutations in all patients in a 
given cluster.  
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