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Abstract 

Stentor is a genus of large trumpet-shaped unicellular organisms in the ciliate phylum. 

Classically they have been used as models of cellular morphogenesis due to their large size 

and ability to regenerate, but some Stentor species have features that make them useful models 

for other types of studies as well. Stentor polymorphus is a widely distributed species that 

harbors green algal endosymbionts from the Chlorella genus. While interesting phenomenology 

in this species has been described, molecular tools have never been developed in this system. 

As technology has advanced, the use of emerging models like S. polymorphus has become 

more prevalent, and recently a set of transcriptomes for S. polymorphus was published. 

However, there are still technical hurdles to using S. polymorphus as an effective experimental 

system in the lab. Here I describe the identification and culture of a S. polymorphus population 

from North Carolina as well as the identification and cloning of homologs of a-tubulin and the 

morphogenesis gene mob-1. Additionally, I demonstrate that RNA interference (RNAi) by 
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feeding is effective against both of these homologs in S. polymorphus. The phenotypes 

observed in S. polymorphus were similar to phenotypes previously validated in S. coeruleus, a 

related Stentor species. A direct comparison of feeding RNAi between the two species revealed 

that RNAi appeared to be less effective in S. polymorphus. The ability to perform RNAi in S. 

polymorphus strengthens its use as an emerging model for exploring mechanisms of unicellular 

morphogenesis and regeneration or host-symbiont interactions and suggests that RNAi by 

bacterial feeding might be more broadly effective across the Stentor genus. 

 

Introduction 

The use of “non-model model organisms” or “emerging models” is becoming increasingly 

common in diverse fields of biological research facilitated by the rapid improvements in 

sequencing technologies and genetic techniques such as CRISPR and RNA interference (RNAi) 

which can be used to interrogate gene function [1, 2]. Some of these “new” systems are a return 

to organisms that were studied over a hundred years ago, but were never developed as 

experimental model systems. Many of these organisms exhibit fascinating biological 

phenomena and processes not apparent in the canonical set of model organisms, and thus can 

provide unique insights into biological mechanisms [1, 2]. For example, Naegleria gruberii is an 

ameboflagellate that moves by both amoeboid crawling and flagella-based swimming [3], and 

has led to insights about the evolution of cell motility mechanisms used across the tree of life [4, 

5]. Because of their positions on the tree of life, volvox and choanoflagellates are two examples 

of models for the evolution of multicellularity, and both have yielded insights into how cells 

differentiate, stick together after division, and form organized multicellular structures [6-9]. This 

is by no means an exhaustive list, but represents some of the exciting work that is made 

possible by exploring these unique systems. 

Stentor polymorphus is a large unicellular ciliate that is suited for development as an 

emerging model for the study of host-symbiont interactions as well as morphogenesis and 
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regeneration. Stentor is a genus in the ciliate phylum that is renowned for its morphology and 

ability to regenerate. The most well-studied species in this genus, Stentor coeruleus, has 

recently been established as a model with tools such as a sequenced genome and ability to 

perform RNA interference (RNAi) by feeding [10, 11], but other Stentor species lack similar 

tools. S. polymorphus was first reported as a distinct species in 1773, although at the time it was 

called Vorticella polymorpha [12]. S. polymorphus cells are ~250-500 um long and have a 

distinct green color [13] (Fig 1A) due to the presence of algal endosymbionts from the Chlorella 

genus (Fig 1B) [14]. Unlike many other Stentor species that possess colorful pigment granules, 

S. polymorphus lacks pigment except for the green color from the algal symbionts [13].  Similar 

to other Stentor, S. polymorphus are covered in cilia which are used for swimming and exhibit 

positive phototaxis [15]. They also have specialized cilia around their oral apparatus that are 

used for creating flow fields in the surrounding environment for capturing prey [16]. S. 

polymorphus forms clusters, containing dozens of individuals, that are anchored together onto 

plants, rocks, or pond debris (Fig 1C). Finally, S. polymorphus also possess the ability to rapidly 

and accurately regenerate after injury, which is the feature that made Stentor a focus of 

classical studies. 

S. polymorphus is an attractive candidate addition to existing host-symbiont interaction 

models like Paramecium bursaria and Hydra viridissima, as each of these organisms harbors 

related Chlorella symbionts [14, 17, 18]. Interestingly, an isolate of S. polymorphus has been 

identified which harbors a different, non-Chlorella, algal symbiont lacking a pyrenoid, an 

organelle used in carbon fixation [19]. How the reduced photosynthetic output of a symbiont 

effects the relationship to the host organism is an open question. Furthermore, a different isolate 

was recently identified that completely lacks algal endosymbionts [20]. How the reduced 

photosynthetic output of a symbiont effects the relationship with the host, and how a single 

species of Stentor can exhibit these different symbiont requirements is an open question. In 

addition to its potential as a model for host-symbiont interaction, like other Stentor, S. 
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polymorphus would also be a useful model for morphogenesis and regeneration, and a recent 

study has published a set of transcriptomes of the regeneration process in S. polymorphus [21]. 

Not only did this study produce a set of de novo transcriptomes, but it also generated a large list 

of genes that are potentially involved with regeneration in Stentor. However, currently there are 

no published methods to interrogate gene function in S. polymorphus. Studying morphogenesis 

and regeneration in multiple unicellular systems could yield insights in conserved or diverse 

mechanisms that have developed throughout evolution.  

Here I demonstrate that a method for RNAi by feeding is effective in an isolate of S. 

polymorphus. Targeting an a-tubulin homolog resulted in small rounded cells with diminished 

tails. Whereas targeting a mob-1 homolog resulted in cells that lacked normal proportions and 

polarity. Additionally, the effectiveness of RNAi between S. polymorphus and S. coeruleus was 

directly compared. This study expands our toolkit of tractable methods to study gene function in 

an organism with the potential to reveal key insights into the biology of cell regeneration, 

symbioses, and other unique biology. 

 

Materials and Methods 

Cell isolation and culture 

Stentor polymorphus cells were initially isolated from a pond at UNC-CH (35°54'25.4"N, 

79°02'09.4"W) and subsequently cultured in the lab. Stentor coeruleus was obtained 

commercially (Carolina Biological Supply, Item # 131598) and subsequently cultured in the lab. 

S. polymorphus cells were obtained on a sunny afternoon by collecting pond water along with 

duckweed or other plant matter floating near the surface. These samples were agitated by 

vigorous shaking or stirring to dislodge anchored Stentor and water was then poured into petri 

dishes for visual observation. Even after vigorous agitation, cells were still often found in 

clusters anchored to duckweed or other debris. Cultures were maintained in dishes containing 

50mL of sterile filtered water from the pond where the cells were isolated. Cells were fed twice a 
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week with Chlamydomonas reinhardtii (strain cc125, kind gift from the Marshall lab) as has been 

done previously for Stentor coeruleus [10, 22] and kept at 22ºC in ambient room light with 

indirect sunlight from windows in lab. In this way the cells were under loosely controlled 

light/dark cycles, as it was previously reported that cells divide at night [13]. Additionally, 

cultures were supplied with three, one centimeter long, coconut fibers as a fibrous substrate for 

the cells to anchor (SunGrow Coconut Fiber, Amazon.com, ASIN:B079KDS24T). 

 

Gene cloning and plasmid construction 

Genes from S. coeruleus were used as a reference to identify homologs in the S. polymorphus 

transcriptome. Primers were designed to amplify full length gene sequences from S. 

polymorphus cDNA (S1 Table). Genes were cloned into a modified pPR-T4P vector (S1 Fig) 

[23], containing a ccdB site flanked by a multi-cloning site, SapI sites, and two opposing T7 sites 

for dsRNA production. This vector, pSRV, is designed for easy cloning of a gene of interest that 

has been amplified with SapI sites and the corresponding 3 nucleotide overhangs as part of the 

primer sequence, based on the SapTrap method with ccdB negative selection [24]. The 

sequence for the gene of interest then replaces the ccdB cassette, which serves as a negative 

selection against uncut or resealed vector. The pSRV plasmid will be made available on 

Addgene. 

 

Alignment and Phylogenetic Analysis 

28S rDNA sequences from other species were obtained from NCBI (S2 Table) and aligned 

using CLC Genomics Workbench (Qiagen) with the following parameters: Gap open cost = 

10.0, Gap extension cost = 1.0, End gap cost = As any other, Alignment mode = Very accurate 

(slow). Aligned sequences were then trimmed using Gblocks [25]. Neighbor-joining trees were 

constructed using CLC Genomics Workbench (Qiagen) using the Juke-Cantor distance 

measurement and 10,000 bootstrap replicates.  
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RNAi method 

S. polymorphus or S. coeruleus cells were washed and starved for ³12 hours before the 

experiment began, with 25 cells per well containing 500 µL of filtered pond water. Experiments 

were successfully performed in both plastic 24-well flat bottom dishes (Olympus Plastics, 

Genesee Scientific, Cat. # 25-107) and 9-well spot plates (Corning Glass, VWR, Cat. # 89090-

482). The HT115 strain of E. coli was used for the feeding vector [26], transformed with a 

plasmid containing the target gene flanked by two opposing T7 sites for double-stranded RNA 

production. HT115 cells were grown overnight in a 37ºC shaking incubator under the selection 

of both Kanamycin and Tetracycline. Cultures were then diluted to OD600 = 0.1 and grown back 

to OD600 = 0.5 under the selection of only Kanamycin. Cultures were then induced to produce 

dsRNA by the addition of 1mM IPTG (Millipore Sigma, SKU. # I5502) and further incubated for 4 

hours. Bacterial cells were then harvested by centrifugation and washed in filtered pond water. 

Bacterial cells were then aliquoted, centrifuged to remove media, and dry pellets were flash 

frozen in liquid nitrogen and stored at -80ºC for up to one week. Aliquots contained 200 µL of 

the initial bacterial culture and were resuspended in filtered pond water daily and added to each 

well containing Stentor cells. To avoid buildup of detritus the Stentor were washed into a new 

well containing filtered pond water every other day. Cells were quantified, scored, and imaged 

during this wash step. 

 

Immunostaining 

Cells were fixed and stained using previously published methods for S. coeruleus [10]. Briefly, 

cells were first washed with sterile pond water and then isolated in a minimal volume. Cells were 

then fixed with ice cold methanol and incubated for at least 20 minutes at -20ºC, rehydrated 

using a 1:1 methanol:phosphate buffered saline (PBS) solution and incubated for 5 minutes at 
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room temperature, then finally washed with 1x PBS for 10 minutes at room temperature. Cells 

were blocked in 1x PBS with 0.1% Triton-X-100 and 2% BSA (blocking buffer) and incubated for 

1 hour at room temp. Cells were stained in suspension and allowed to settle to the bottom of the 

tube. Antibodies were diluted in blocking buffer, and mouse monoclonal anti-tubulin (clone 

DM1A, MilliPore Sigma, Cat. #T6199) was used at a 1:500 dilution for a primary antibody 

incubation of 1 hour at room temperature. After washing 3x in PBS, Alexa-488 goat-anti-mouse 

secondary antibody (ThermoFisher, #A-11017) was used at a 1:1000 dilution and incubated for 

1 hour at room temperature. A final wash, 3x in PBS, was performed before mounting cells on a 

slide for imaging. 

 

Imaging 

Stentor were imaged on a Zeiss Axiozoom V.16 equipped with PlanNeoFluar Z 1x/0.25 FWD 

56mm and 2.3x/0.57 FWD 10.6mm lenses (Zeiss). Images were collected using a Canon EOS 

Rebel T6 camera (Canon) mounted to the Axiozoom using a T2-T2 1.6x SLR mount (Zeiss). 

Images were collected using the Canon EOS 3 Software (Canon). Images were adjusted and 

analyzed using ImageJ/Fiji [27]. Fluorescence images of immunostained Stentor were collected 

on a Nikon Eclipse Ti Spinning-disk confocal microscope (CSU-X1 spinning-disk head; 

Yokogawa, Tokyo Japan) using a Hamamatsu ImagEM X2 EM-CCD camera (C9100-13) and a 

10x/0.30 numerical aperture (NA) Plan Fluor objective (Nikon, Tokyo, Japan). 

 

Data Analysis and Statistics 

Data from RNAi experiments represents the mean values from three biological replicates. 

Phenotypes were qualitatively scored and data was recorded and analyzed using Microsoft 

Excel (Microsoft, Redmond, Washington), and error bars represent 95% confidence intervals.  

 

Results 
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Isolation, Identification, and Culture of Stentor polymorphus 

Stentor polymorphus was obtained from a pond on the campus of the University of North 

Carolina at Chapel Hill. Cells were first isolated by hand from pond water samples under a 

dissecting microscope, and putatively identified based on physical characteristics [13, 28]: 250-

500 µm in length, trumpet shaped, presence of symbiotic green algae, and a moniliform shaped 

macronucleus (Fig 2A, 2B). The identity of S. polymorphus was next verified by 28S rDNA 

sequencing using universal primers to amplify gene sequences from isolated genomic DNA and 

compared against known sequences, as has been done previously to identify Stentor [20] (Fig 

2C). 

To maintain these organisms long-term in the lab, I established stable cultures of 

isolated S. polymorphus using the same laboratory culturing methods already used for S. 

coeruleus [22]. Briefly, S. polymorphus cells were washed in sterile filtered pond water 

(hereafter referred to as pond water) and ~300 cells were placed in a small glass jar containing 

50 mL of pond water. Chlamydomonas reinhardtii was cultured separately to be used as food, 

and added to the Stentor culture twice per week. Cultures were stored at room temperature on a 

lab bench and received natural light/dark cycles from a nearby window. Previous reports 

suggest that S. polymorphus divides at night [13], however dividing cells were observed during 

the day. One issue I found in culturing S. polymorphus was that cells would form large clusters 

in hard to reach areas of the culture dish, either in the bottom corners or at the top edge of the 

dish near the air-water interface. Having cells in these regions made it difficult to assess culture 

health and also led to accidental loss of cells at the air-water interface if the dish was disturbed. 

Therefore, I modified the previously published culture method and provided cells with a 

commercially available plant-based substrate, coconut fibers, on which to anchor. Cells readily 

anchored to these fibers and formed large clusters on small clippings that settled at the bottom 

of the dish (Fig 2D). This isolate has been kept in culture for over 12 months using the methods 

described. 
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Gene Identification and RNA interference methods 

Next, I sought to determine whether methods for RNA interference (RNAi) by bacterial 

feeding (referred to as RNAi feeding) were effective in S. polymorphus. I chose to test RNAi 

feeding in S. polymorphus using two genes, a-tubulin (tba-1) and mob-1, that had been 

previously shown to result in characteristic morphological phenotypes in S. coeruleus [10], I 

decided to try these same methods in S. polymorphus. In Stentor, tubulin is a critical component 

of the cytoskeleton that gives cells their shape, and mob-1 is a component of a signaling 

pathway that is required for proper growth and patterning in ciliates [10, 29-31]. Therefore, I had 

the reasonable expectation that knockdown of these genes in S. polymorphus would result in 

similar quantifiable phenotypes, and I pursued both of these genes as standards for determining 

the effectiveness of RNAi in S. polymorphus. 

The S. polymorphus homologs for the tba-1 and mob-1 genes were identified by 

reciprocal best hit BLAST from the published S. polymorphus transcriptome using the S. 

coeruleus protein sequences as a reference and cloned into an RNAi feeding vector (S1 Fig, S1 

Table). The tba-1 and mob-1 transcripts chosen were 87.95/100 and 81.75/99 percent identical 

to their corresponding S. coeruleus nucleotide/protein sequences, respectively (S2A Fig). After 

cloning and sequencing the genes from the UNC isolate of S. polymorphus, I found that 

nucleotide sequences of tba-1 and mob-1 from S. polymorphus isolated at UNC were 94.46 and 

97.84 percent identical, respectively, to the nucleotide sequences reported in the transcriptome 

generated from S. polymorphus cells isolated in Sweden (S2A Fig). All of the differences 

between each pair of sequences resulted in synonymous substitutions, and each pair of 

predicted protein sequences was 100% identical (S2B Fig). Therefore, despite the large 

geographical distance between these isolates, the differences between these two gene 

sequences were quite small. 
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Vectors for expressing dsRNA products were previously used for bacterial feeding in S. 

coeruleus [10]. I made modifications to the previously used vector that make cloning easier. 

These modifications were inspired by Golden Gate Assembly and SapTrap cloning methods 

[24, 32], and takes advantage of the Type IIS restriction endonuclease SapI (S1A Fig). As a 

Type IIS restriction enzyme, SapI cleaves outside of its recognition site allowing for the 

production of different 5’ overhangs with a single enzyme. Additionally, I inserted a ccdB 

cassette between the T7 promoters for negative selection against uncut and resealed vector 

backbone. With this design, SapI sites are added via PCR during amplification of the target 

gene, and SapI sites on either side of the ccdB cassette are used to produce corresponding 5’ 

overhangs in both the vector backbone and the gene insert (S1B Fig). Because the insertion of 

the target gene sequence results in a product lacking SapI recognition sites, digestion and 

ligation can be performed in the same tube at the same time.  

Feeding of both tba-1 and mob-1 dsRNA-producing bacterial vectors resulted in specific 

morphological phenotypes similar to those previously observed in S. coeruleus [10]. Compared 

to control, cells fed bacteria expressing dsRNA targeting tba-1 became small and round with 

shorter and thinner tails (Fig 3A, 3B). Cells fed bacteria expressing dsRNA targeting mob-1 first 

became disproportioned (lost their stereotypical “trumpet” shape and became wider along their 

length, Disproportioned) (Fig 3C, left). Later, mob-1 knockdown cells began to develop multiple 

points that resembled posterior protrusions (Medusoid) (Fig 3C, right). While disproportioned S. 

polymorphus cells looked nearly identical to phenotypes previously observed in S. coeruleus 

[10], I observed that the posterior-like protrusions on medusoid S. polymorphus cells were not 

as extended, and the oral apparatus had a normal appearance. This might represent a 

difference in mob-1 function between the two species, but might also represent a difference in 

RNAi efficiency. 

In contrast to a-/b-tubulin knockdown phenotypes in S. coeruleus, mob-1 knockdown is 

generally 100% penetrant, and phenotypes manifest relatively rapidly, reproducibly, and in a 
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specific temporal pattern with the disproportioned cells appearing first in the population before 

transitioning into medusoid cells over the course of 4-6 days [10]. Although experiments 

performed in S. polymorphus resulted in phenotypes that were similar to those previously 

observed in S. coeruleus, I noticed that the appearance of these phenotypes took several days 

to manifest, longer than what was previously reported for mob-1 knockdown phenotypes in S. 

coeruleus. In order to characterize the differences between RNAi in these two Stentor species, I 

directly compared the timing of the appearance of phenotypes between S. polymorphus and S. 

coeruleus treated in parallel (Fig 4A, 4B), which confirmed that the phenotypes took longer to 

manifest in S. polymorphus as compared to S. coeruleus. Also, as compared to S. coeruleus, S. 

polymorphus medusoid cells had a relatively normal looking anterior, and the posterior 

protrusions were less pronounced. Despite this difference between the two species, these data 

show that methods for RNAi by feeding are effective in S. polymorphus. 

 

Discussion 

Here I report that both culture and RNAi methods that are used for Stentor coeruleus are 

applicable to the closely related Stentor polymorphus. These results are of value because both 

of these organisms have been used previously for the study of single-cell regeneration, and 

both organisms have published transcriptomes of gene expression during the regeneration 

process. However, before this report there were only published methods for studying gene 

function in S. coeruleus. Here I have shown that RNAi by feeding in S. polymorphus is effective 

at producing nearly identical phenotypes to those observed in S. coeruleus, though with 

different timing. With the ability to culture S. polymorphus, identify and clone genes, and test 

gene function in this system, S. polymorphus can be used as a model for evolutionary 

comparisons of cell regeneration, host-symbiont interaction, or as a model for other fascinating 

biology. 
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Why RNAi was less effective in S. polymorphus is unknown and was not specifically 

probed in this study. Cells appear to consume similar amounts of food relative to their size, 

although it is possible that S. coeruleus is able to gather and process food faster than S. 

polymorphus. The reasons for this discrepancy in RNAi efficiency could be due to various 

factors. For example, S. polymorphus divides faster than S. coeruleus and so it could be due to 

difference in the cell cycles of these two species. Small RNAs are also known for playing critical 

roles in ciliate development and gene regulation [33-35], so these cell cycle differences might 

mean that the cell’s small RNA processing machinery is less available for RNAi. Or maybe the 

RNAi machinery in S. coeruleus is more highly expressed, more efficient, or otherwise more 

effective than in S. polymorphus. In any case, more genes will need to be tested to determine if 

this trend is true for more than just mob-1.  

With the ability to perform RNAi now paired with the data from the published 

transcriptomic study of genes that are upregulated during regeneration in S. polymorphus, 

experiments can now be performed to test gene function and determine genes that are required 

for regeneration in both S. coeruleus and S. polymorphus. Additionally, the demonstration that 

RNAi is effective in S. polymorphus adds one more species that is amenable to study in the 

Stentor genus, and suggests that RNAi by feeding might be broadly effective across the Stentor 

genus and would be a valuable tool to study gene function in any sequenced species that can 

be cultured. Several other Stentor species can be easily identified and isolated from the wild, 

often from the same ponds, including: S. igneus, S. roeselli, S. introversus, S. pyriformis, S. 

multiformis, and S. amethystinus. Unfortunately, not all of these species have been able to be 

stably cultured in the lab and transcriptomic or genomic sequences are not yet available for any 

of them. However, with the decreased costs and increased accessibility of 

genome/transcriptome sequencing, it is exciting to consider the possibilities once these other 

Stentor species are pursued as emerging models.  
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Figure 1: Stentor polymorphus. (A) An individual S. polymorphus cell imaged by brightfield 

microscopy. Cells are ~250-500 µm in length with a trumpet shape and green Chlorella 

symbionts visible within the cell. (B) Inset from (A) showing Chlorella symbionts (arrows). (C) 

Colorized illustration from C. G. Ehrenberg [36] that depicts clustering behavior of S. 

polymorphus in natural samples.  
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Figure 2: Isolation and culture of S. polymorphus (A) Figure showing S. polymorphus 

isolate. (B) Immunostaining of S. polymorphus cell stained with anti-a-tubulin (yellow) and DAPI 

(cyan) showing the moniliform morphology of the nucleus. (C) Phylogenetic tree constructed 

using 28S rDNA sequences from selected ciliates to demonstrate the identity of the S. 

polymorphus isolate. S. coeruleus and S. polymorphus groups are indicated and Loxodes vorax 

was used as an outgroup. (D) S. polymorphus anchoring on coconut fibers in culture (compare 

to Fig 1C). When provided with coconut fibers, cells clustered on the fibers as shown and 

generally did not anchor elsewhere on the glass dish. 
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Figure 3: Targeting genes by RNA interference in S. polymorphus results in specific 

defects. (A) Targeting a control gene not present in S. polymorphus results in cells with a 

normal trumpet shape. (B) Targeting tba-1 in S. polymorphus results in small cells. (C) 

Targeting mob-1 in S. polymorphus results in two different phenotypes. Disproportioned cells 

(left) have an elongated central region. Medusoid cells (right) possess multiple posterior-like 

protrusions (arrowheads). All of the observed phenotypes are consistent with the results of gene 

knockdown in S. coeruleus where homologs were targeted.  
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Figure 4: Comparison of mob-1 phenotype timing between S. coeruleus and S. 

polymorphus. (A) Images of Control (left) and mob-1 RNAi (right) cells comparing S. coeruleus 

(top) with S. polymorphus (bottom). Observed phenotypes are extremely similar between the 

two species, although medusoid cells retain a normal looking oral apparatus and the posterior 

protrusions (arrowheads) are not as elongated. Scale bar = 500 µm. (B) Data showing the 

appearance of phenotypes after feeding bacterial vectors targeting mob-1 in populations of 

either S. coeruleus (top) or S. polymorphus (bottom) cells over the course of the experiment. 

Error bars represent 95% confidence intervals. 
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