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Abstract 

Aberrant alternative splicing (AS) is widespread in cancer, leading to an extensive but largely 

unexploited repertoire of potential immunotherapy targets. Here we describe IRIS, a 

computational platform leveraging large-scale cancer and normal transcriptomics data to 

discover AS-derived tumor antigens for T-cell receptor (TCR) and chimeric antigen receptor T-

cell (CAR-T) therapies. Applying IRIS to RNA-Seq data from 22 glioblastomas resected from 

patients, we identified candidate epitopes and validated their recognition by patient T cells, 

demonstrating IRIS’s utility for expanding targeted cancer immunotherapy. 
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Main 

Cancer immunotherapy has gained tremendous momentum in the past decade. The clinical 

effectiveness of checkpoint inhibitors, such as neutralizing antibodies against PD-1 and CTLA-4, 

is thought to result from their ability to reactivate tumor-specific T cells1. Meanwhile, adoptive 

cell therapies use genetically modified T-cell receptors (TCRs) or synthetic chimeric antigen 

receptor T cells (CAR-T) for tumor-specific antigen recognition2. The finding that cancer cells 

express specific T-cell-reactive antigens has galvanized epitope discovery in recent years3–6. 

Nevertheless, the identification of tumor antigens remains a major challenge7,8. Although 

somatic mutation-derived antigens have been successfully targeted by cancer therapies9–12, this 

approach remains largely ineffective for tumors with low or moderate mutation loads7,13.   

Various types of dysregulation at the RNA level can generate immunogenic peptides in 

cancer cells13–15. Notably, tumors harbor up to 30% more alternative splicing (AS) events than 

normal tissues, and the resulting peptides are predicted to be presented by human leukocyte 

antigen (HLA)16. However, there are no integrated methods to systematically identify AS-

derived tumor antigens. Therefore, we leveraged tens of thousands of normal and tumor 

transcriptomes generated by large-scale consortium studies (e.g. GTEx, TCGA)17,18 to build a 

versatile, big data-informed platform for discovering AS-derived immunotherapy targets. Our in 

silico platform, named ‘IRIS’ (Isoform peptides from RNA splicing for Immunotherapy target 

Screening), incorporates three main components: processing of RNA-Seq data, in silico 

screening of tumor AS isoforms, and integrated prediction and prioritization of TCR and CAR-T 

targets (Fig. 1a).  

 IRIS’s RNA-Seq data-processing module uses standard input data to discover and 

quantify AS events in tumors using our ultra-fast rMATS-turbo software19,20. Identified AS 
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events are fed to the in silico screening module, which statistically compares AS events against 

any combination of samples selected from large-scale (>10,000) reference RNA-Seq samples of 

normal and tumor tissues (Supplementary Fig. 1) to identify AS events that are tumor-associated, 

tumor-recurrent, and potentially tumor-specific (Methods). Tumor specificity is a key metric for 

evaluating potential tissue toxicity, which is an important side effect of targeting lineage-specific 

antigens that are expressed by both tumor and normal cells21. In addition to screening multiple 

patient samples simultaneously in the default ‘group mode’, IRIS can be performed in the 

‘personalized mode’ to identify targets for a specific patient sample (Methods). Potential false-

positive events are removed by using a blacklist of AS events whose quantification across 

diverse RNA-Seq datasets is error-prone due to technical variances such as read length (Methods 

and Supplementary Fig. 2). IRIS’s target prediction module first constructs splice-junction 

peptides of predicted tumor isoforms and then predicts AS-derived targets for TCR/CAR-T 

therapies (Methods). This module performs tumor HLA typing using RNA-Seq data and then 

integrates multiple HLA-binding prediction algorithms for predicting TCR targets and/or peptide 

vaccines. In parallel, protein extracellular domain annotations are used for predicting CAR-T 

targets (Supplementary Fig. 3). IRIS also includes the option to confirm predicted AS-derived 

targets using mass spectrometry (MS) data via proteo-transcriptomics data integration. This 

option provides an orthogonal approach for target discovery and validation by integrating RNA-

Seq data with various types of MS data, such as whole-cell proteomics, surfaceomics, or 

immunopeptidomics data (Methods and Supplementary Fig. 4a).   

We performed a proof-of-concept analysis and preliminary confirmation of AS-derived 

epitopes by applying IRIS to RNA-Seq and MS-based immunopeptidomics data of cancer and 

normal cell lines. We identified hundreds of AS-derived epitopes that were supported by both 
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RNA-Seq and MS data (Supplementary Fig. 4b, Supplementary Table 1). MS-supported epitopes 

were enriched for transcripts with high expression levels and peptides with strong predicted 

HLA-binding affinities (Supplementary Fig. 4c-e), consistent with the expected pattern of HLA-

epitope binding22.   

To explore IRIS’s ability to discover AS-derived immunotherapy targets in clinical 

samples, we generated RNA-Seq data from 22 resected glioblastomas (GBMs) and analyzed 

these data by IRIS. Candidate epitopes were then validated based on their recognition by patient 

T cells. Fig. 1b (top) summarizes the stepwise IRIS results. After uniform processing of RNA-

Seq data by rMATS-turbo, IRIS discovered 190,232 putative skipped exon (SE) events from the 

22 GBM samples. Using the in silico screening module, we compared these AS events against 

reference normal and tumor panels to evaluate tumor association, recurrence, and specificity 

(Methods). Specifically, AS events were compared against: normal brain samples from GTEx 

(tissue-matched normal panel, for evaluating tumor association), two cohorts of brain tumor 

samples - GBM and lower-grade glioma (LGG) - from TCGA (tumor panel, for evaluating tumor 

recurrence), and 11 other selected normal (nonbrain) tissues from GTEx (normal panel, for 

evaluating tumor specificity). After initially screening against the tissue-matched normal panel 

and removing blacklisted events, IRIS identified 6,276 tumor-associated AS events in the 22 

GBM samples (‘Primary’ set, Fig. 1b). Of these, 1,738 events were identified as tumor-recurrent 

and tumor-specific based on comparison with the tumor panel and normal panel, respectively 

(‘Prioritized’ set, Fig. 1b; Supplementary Table 2).  

Next, for each AS event, splice junctions of the tumor isoform (i.e. the isoform that was 

more abundant in the tumor samples than in the tissue-matched normal panel) were translated 

into peptides, followed by TCR/CAR-T target prediction (Fig. 1b). For the GBM dataset, IRIS 
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predicted 4,153 ‘primary’ tumor-associated epitope-producing splice junctions. Of these, 1,127 

were tumor-recurrent and tumor-specific compared to the tumor panel and normal panel, 

respectively, and were therefore predicted to be ‘prioritized’ TCR targets. In parallel, IRIS 

identified 416 ‘primary’ tumor-associated extracellular peptide-producing splice junctions, of 

which 87 were predicted to be ‘prioritized’ CAR-T targets. 

IRIS generates an integrative report for predicted immunotherapy targets (Supplementary 

Table 3). Representative examples for six prioritized TCR targets are shown in the bottom panel 

of Fig. 1b (see Supplementary Fig. 3b for CAR-T target examples). Violin plots depict exon 

inclusion levels across the 22 GBM samples (‘GBM-input’) and different sets of reference panels 

using the percent-spliced-in (PSI) metric23. Tumor isoforms can be either the exon-skipped (low 

PSI) or the exon-included (high PSI) isoform compared to the tissue-matched normal panel. As 

illustrated by the darker dots in the ‘Summary’ column, all six epitope-producing splice junctions 

were tumor-associated compared to the tissue-matched normal panel (‘Brain’), and tumor-

recurrent compared to the tumor panel (‘GBM’ and ‘LGG’). Two AS events (in TRIM11 and 

FAM76B) consistently showed distinct PSI values in tumors compared to normal brain and 

nonbrain tissues, indicating high tumor specificity. For candidate splice junctions, IRIS also 

calculates the fold-change (FC) of tumor isoforms between tumor samples and the tissue-

matched normal panel (Methods). For example, the tumor isoform in TRIM11 had an average 

isoform proportion of 8.60% in the 22 GBM samples and 0.13% in normal brain samples, 

representing an FC of 65.6 in tumor samples versus the tissue-matched normal panel. We should 

note that, as shown under ‘Predicted HLA-epitope binding’, a single splice junction can give rise 

to multiple putative epitopes with distinct peptide sequences and HLA binding affinities. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 15, 2019. ; https://doi.org/10.1101/843268doi: bioRxiv preprint 

https://doi.org/10.1101/843268


8 

 

Finally, we sought to validate the immunogenicity and T-cell recognition of IRIS-

identified candidate TCR targets using an MHC class I dextramer-based assay12,24. We focused 

on predicted AS-derived tumor epitopes with strong putative HLA-binding affinity to common 

HLA types found in at least five of the 22 patients. We selected seven AS-derived tumor-

associated epitopes (five HLA-A02:01 and two HLA-A03:01) for dextramer-based T-cell 

recognition testing (Supplementary Table 4). All but one epitope (last one in the table) showed 

some degree of tumor specificity when evaluated in normal (nonbrain) tissues (‘vs. Normal’, see 

Fig. 2a). We obtained customized HLA-matched, fluorescently labeled MHC class I 

dextramer:peptide (pMHC) complexes for each candidate epitope. We conducted flow cytometry 

to detect CD8+ T-cell binding with the pMHC complexes using available peripheral blood 

mononuclear cells (PBMCs) and/or ex vivo-expanded tumor-infiltrating lymphocytes (TILs). 

Based on the binding of each AS-derived tumor epitope to a patient’s CD3+CD8+ T cells, we 

classified epitope reactivity as ‘positive’ (binding > 0.1% of cells), ‘marginal’ (binding 0.01-

0.1% of cells), or ‘negative’ (binding < 0.01% of cells). Epitopes that showed at least marginal 

reactivity were considered to be ‘recognized’ by patient T cells. We analyzed samples from two 

HLA-A02:01 and four HLA-A03:01 patients, as well as samples from three HLA-A02:01 and 

three HLA-A03:01 healthy donors (Supplementary Table 5, Supplementary Data).   

Both predicted HLA-A03:01 tumor epitopes were recognized by patient T cells. In 

particular, one epitope (KIGRLVTRK, in PLA2G6) was recognized by T cells from all four 

tested patients but only one of the three tested healthy donors. In one patient (LB2867), 

recognition of tumor epitope KIGRLVTRK was marginal in PBMCs but positive in the 

expanded TIL population, with epitope-reactive T cells representing 0.03% of T cells in PBMCs 

and 1.69% of T cells in TILs. This patient had been previously treated with neoadjuvant anti-PD-

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 15, 2019. ; https://doi.org/10.1101/843268doi: bioRxiv preprint 

https://doi.org/10.1101/843268


9 

 

1 and anti-CTLA-4 checkpoint blockade immunotherapy. These results suggest epitope 

KIGRLVTRK as a promising immunotherapy target in HLA-A03 patients from our GBM 

cohort. T cells from another patient (LB2907) showed positive reactivity to both tested HLA-

A03:01 epitopes. All four predicted HLA-A02:01 epitopes were recognized by T cells from 

tested patients and healthy donors. The non-tumor-specific epitope (YAIVWVNGV, bottom row 

in Fig. 2a) was tested in two patients and three healthy donors and was recognized by T cells in 

only one healthy donor (marginal reactivity, 0.013% of CD3+CD8+ T cells). Taken together, our 

dextramer-based assay results indicate that the AS-derived TCR targets predicted by IRIS can be 

recognized by tumor-infiltrating and peripheral CD3+CD8+ T cells.   

Dextramer-positive T cells are expected to contain many clonotypes, only a few of which 

are dominant. To discover and quantify which TCR clonotypes comprise the epitope-reactive T 

cells, we sorted the TILs from one patient (LB2867) for cells that reacted positively with the 

KIGRLVTRK pMHC complex (Fig. 2b), and performed V(D)J immune profiling using single-

cell RNA-Seq (scRNA-Seq) on the sorted population (Fig. 2c). Of the 325 unique TCR 

clonotypes, the 10 most abundant TCRs represented 86.3% of all clonotypes (Supplementary 

Table 6), with the most frequent clonotype comprising 38.9% of all epitope-reactive T cells. This 

result suggests that there was clonal expansion of a select few dominant TCR clones within the 

tumor that were able to recognize the AS-derived epitope. To further validate our findings using 

complementary approaches, we analyzed bulk expanded TILs using immunoSEQ and pairSEQ 

assays (Fig. 2c, Supplementary Fig. 5). We confirmed that the top 10 reported clonotypes from 

scRNA-Seq were present in the bulk TIL population based on the TCR β-chain CDR3 region. In 

addition, the pairSEQ assay, which uses statistical modeling to predict pairing of TCR α and β 

chains, found identically paired TCRs for seven of the top 10 TCRs from scRNA-Seq. Together, 
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these data suggest that a select few TCR clones dominantly recognize the AS-derived epitope 

KIGRLVTRK in this patient. 

In summary, we have developed IRIS, a big data-powered platform for discovering AS-

derived tumor antigens as an underexploited source of immunotherapy targets. Using IRIS 

followed by a dextramer-based assay, we discovered and validated AS-derived tumor epitopes 

recognized by T cells in patients. Our results provide experimental evidence for the 

immunogenicity of tumor antigens arising from AS and reveal novel potential targets for TCR 

and CAR-T therapies. The IRIS software can be downloaded from 

https://github.com/Xinglab/IRIS.  
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Methods 

IRIS module for RNA-Seq data processing. IRIS accepts standard formats of raw RNA-Seq 

FASTQ files and/or tab-delimited files of quantified AS events (from rMATS-turbo) as input 

data (Fig. 1a). For raw RNA-Seq data, IRIS provides a standalone pipeline that aligns RNA-Seq 

reads to the reference human genome hg19 using the STAR 2.5.3a25 two-pass mode, followed by 

Cufflinks v2.2.126 and rMATS v4.0.2 (rMATS-turbo)19,20 for quantification of gene expression 

and AS events, respectively, based on the GENCODE (V26)27 gene annotation. To quantify AS 

events, we converted splice-junction counts in rMATS-turbo output into PSI23 values. For each 

dataset, we removed low-coverage AS events, defined as events with an average count of less 

than 10 reads for the sum of all splice junctions across all samples in that dataset (tissue/tumor 

type). We applied this procedure to the 22 GBM samples from the UCLA cohort (BioProject: 

PRJNA577155), as well as to the normal and tumor samples of the reference panels used by 

IRIS. For the GTEx normal samples, aligned BAM files downloaded from the dbGAP repository 

were used directly for AS quantification. 

  

Constructing big-data reference panels of AS events across normal human tissues and 

tumor samples. IRIS’s big-data reference panels of normal and tumor samples are available as 

pre-processed, pre-indexed databases for fast retrieval by the IRIS program (Supplementary Fig. 

1). Specifically, 9,662 normal samples from the GTEx project (V7)17 representing 53 tissue types 

of 30 histological sites were uniformly processed as described above. As shown in 

Supplementary Fig. 1a-b, exon-based quantification of AS events was able to distinguish 

samples by tissue type. Selected TCGA16,28 tumor samples (Supplementary Fig. 1c) were 
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processed similarly to form the tumor panel. Additionally, IRIS provides a stand-alone indexing 

function for users to include custom normal and tumor samples in their reference panels.  

 

IRIS module for in silico screening of tumor AS events. IRIS performs in silico screening 

using two-sided and one-sided t-tests to identify tumor-associated, tumor-recurrent, and tumor-

specific AS events in group comparisons. To define an AS event as significantly different from a 

reference group (i.e., to identify tumor-associated/tumor-specific events), IRIS sets two 

requirements: 1) a significant p-value from the two-sided t-test (default: p < 0.01), and 2) a 

threshold of PSI value difference (default: abs(Δψ) > 0.05). With a minor modification, to define 

an AS event as tumor-recurrent, IRIS compares a reference tumor panel with the tissue-matched 

normal panel and requires: 1) a significant p-value from the one-sided t-test in the same direction 

as the corresponding ‘tumor-associated’ event (default: p < 0.01/number of ‘tumor-associated’ 

events; Bonferroni correction applied due to large sample sizes in reference panels), and 2) a 

threshold of PSI value difference (default: abs(Δψ) > 0.05). In addition, as the normal or tumor 

reference panel may include multiple individual groups (e.g. tissue types), a threshold of the 

number of significant comparisons against groups in the normal or tumor reference panel is used 

to determine whether AS-derived antigens are tumor-specific or tumor-recurrent. For each AS 

event, IRIS defines the ‘tumor isoform’ as the isoform that is more abundant in tumors than in 

the tissue-matched normal panel. Optionally, to rank or filter targets, IRIS estimates the ‘fold-

change (FC) of tumor isoform’ as the FC of the tumor isoform’s proportion in tumors compared 

to the tissue-matched normal panel. In addition to the default ‘group mode’, IRIS can be used to 

screen targets for a specific patient sample through the ‘personalized mode’. This mode uses an 
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outlier detection approach, combining a modified Tukey’s rule29 and a user-defined threshold of 

PSI value difference. 

 

Identification of AS events that are prone to measurement errors due to technical variances 

across big-data reference panels. IRIS’s big-data reference panels were constructed by 

integrating various large-scale datasets with distinct technical conditions, such as RNA-Seq read 

length30. Such technical variances across datasets could introduce discrepancies in the 

quantification of AS events30. To identify error-prone AS events, we employed a data-based 

heuristic strategy to assess the effects of RNA-Seq read length (48 bp vs. 76 bp) and aligner 

(STAR vs. Tophat) on AS quantification (PSI value) (Supplementary Fig. 2a). For a given tissue 

type (in this study, brain tissue), 10 randomly selected 76-bp RNA-Seq files from GTEx were 

artificially trimmed to 48 bp, and both 76- and 48-bp RNA-Seq files were aligned with 

STAR2.5.3a. Corresponding Tophat (v.1.4.1)-aligned 76-bp BAM files were directly 

downloaded from GTEx. AS events were quantified by rMATS-turbo. Events with significantly 

different PSI values (p < 0.05, abs(Δψ) > 0.05 from paired t-test) among RNA-Seq datasets with 

distinct technical conditions were included in a blacklist. Results of this analysis for GTEx 

normal brain samples are shown in Supplementary Fig. 2b.     

 

IRIS module for predicting AS-derived TCR and CAR-T targets. To obtain protein 

sequences of AS-derived tumor isoforms, IRIS generates peptides by translating splice-junction 

sequences into amino-acid sequences using known ORFs from the UniProtKB31 database. Within 

each AS event, the splice-junction peptide sequence for the tumor isoform is compared to that of 
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the alternative normal isoform, to ensure that the tumor isoform splice junction produces a 

distinct peptide. 

For TCR target prediction, IRIS employs seq2HLA32, which uses RNA-Seq data to 

characterize HLA class I alleles for each tumor sample. IRIS then uses IEDB API33 predictors to 

obtain the putative HLA binding affinities of candidate epitopes. The IEDB ‘recommended’ 

mode runs several prediction tools to generate multiple predictions of binding affinity, which 

IRIS summarizes as a median IC50 value. By default, a threshold of median(IC50) < 500 nM 

denotes a positive prediction for an AS-derived TCR target. 

For CAR-T target prediction, IRIS maps AS-derived tumor isoforms to known protein 

extracellular domains (ECDs), as potential candidates for CAR-T therapy (Supplementary Fig. 

3a). Specifically, IRIS generates pre-computed annotations of protein ECDs. First, protein 

cellular localization information was retrieved from the UniProtKB31 database (flat file 

downloaded in April 2018). ECD information was retrieved by searching for the term 

‘extracellular’ in topological annotation fields, including ‘TOPO_DOM’, ‘TRANSMEM’, and 

‘REGION’, in the flat file. Second, BLAST34 was used to map individual exons in the gene 

annotation (GENCODE V26) to proteins with topological annotations. Third, the BLAST result 

was parsed to create annotations of the mapping between exons and ECDs in proteins. These pre-

computed annotations are queried to search for AS-derived peptides that can be mapped to 

protein ECDs as potential CAR-T targets. 

 

Proteo-transcriptomics data integration for MS validation. IRIS includes an optional proteo-

transcriptomics data integration function that incorporates various types of MS data, such as 

whole-cell proteomics, surfaceomics, or immunopeptidomics data, to validate RNA-Seq-based 
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target discovery at the protein level (Supplementary Fig. 4a). Specifically, sequences of AS-

derived peptides are added to canonical and isoform sequences of the reference human proteome 

(downloaded from UniProtKB in September 2018). For immunopeptidomics data, fragment MS 

spectra are searched against the RNA-Seq-based custom proteome library with no enzyme 

specificity using MSGF+35. The search length is limited to 7-15 amino acids. The target-decoy 

approach is employed to control the false discovery rate (FDR) or ‘QValue’ at 5%.  

 

IRIS analysis of immunopeptidomics data. Published matching RNA-Seq and MS 

immunopeptidomics data of B-LCL-S1 and B-LCL-S2 cell lines (B lymphoblastoid cell lines 

from two individual donors) were retrieved from Laumont et al.36 (GEO: GSM1641206, 

GSM1641207, and PRIDE: PXD001898). Raw RNA-Seq data of the JeKo-1 lymphoma cell line 

were obtained from the Cancer Cell Line Encyclopedia via the NCI Genomic Data Commons 

(https://portal.gdc.cancer.gov/legacy-archive/). Corresponding immunopeptidomics MS data of 

JeKo-1 were retrieved from Khodadoust et al.37 (PRIDE: PXD004746).  

RNA-Seq data of the normal (B-LCL-S1, B-LCL-S2) and cancer (JeKo-1) cell lines were 

analyzed by IRIS as described above, with minor modifications. Specifically, AS events 

identified by the IRIS RNA-Seq data processing module were not subjected to the in silico 

screening module, but instead were directly used for the MS search. For MSGF+, FDR was set at 

5%, which had the best concordance with predicted binding affinities (Supplementary Fig. 4c-d). 

For comparison of predicted HLA binding and nonbinding peptides (Supplementary Fig. 4d), a 

set of nonbinding peptides was created by randomly selecting peptides with median(IC50) > 500 

nM to the same number of binding peptides (median(IC50) < 500 nM).   
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IRIS discovery of candidate TCR and CAR-T targets from 22 GBM samples. RNA-Seq 

samples were processed by IRIS. Detected skipped exon (SE) events were analyzed by using the 

IRIS screening and target prediction modules with the aforementioned default parameters. For 

reference panels, the ‘tissue-matched normal panel’ comprised normal brain tissue samples from 

GTEx; the ‘normal panel’ comprised other normal (nonbrain) tissue samples of 11 selected vital 

tissues (heart, skin, blood, lung, liver, nerve, muscle, spleen, thyroid, kidney and stomach) from 

GTEx; and the ‘tumor panel’ comprised two cohorts of brain tumor samples (GBM and LGG) 

from TCGA. The blacklist of AS events created for brain was applied before in silico screening 

by IRIS to eliminate error-prone AS events (Supplementary Fig. 2).  

In screening for the ‘Primary’ set of AS events, we considered an event to be ‘tumor-

associated’ if it was significantly different from the tissue-matched normal panel, using the 

default criteria described in ‘IRIS module for in silico screening of tumor AS events’. In 

screening for the ‘Prioritized’ set, we prioritized an AS event if it was both ‘tumor-recurrent’ 

(significantly different from the tissue-matched normal panel, in the same direction as input 

GBM samples, in at least 1 of 2 groups in the GBM/LGG tumor panel) and ‘tumor-specific’ 

(significantly different from multiple of 11 groups in the normal panel in the same direction as 

the tissue-matched normal panel). Here, we used at least 2 groups but this threshold can be user-

defined to allow for higher stringency. 

When selecting potential TCR targets for dextramer validation, we applied three 

additional criteria: 1) predicted median(IC50) ≤ 300 nM; 2) predicted binding to common HLA 

types, including HLA-A02:01 and HLA-A03:01; and 3) predicted binding to at least five patients 

in the GBM cohort. After excluding targets with low gene expression (average FPKM < 5), we 

selected seven epitopes to test for T-cell recognition by dextramer assays. 
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Patients. Tumor specimens were collected from 22 consenting patients with GBM who 

underwent surgical resection for tumor removal at the University of California, Los Angeles 

(UCLA; Los Angeles, CA). From these patients, we also obtained PBMCs and TILs from two 

HLA-A02:01+ and four HLA-A03:01+ patients. All patients provided written informed consent, 

and this study was conducted in accordance with established Institutional Review Board-

approved protocols.  

 

PBMC collection. Peripheral blood was drawn from patients before surgery and diluted 1:1 in 

RPMI media (Thermo Fisher Scientific, cat. no. MT10041CV). PBMCs, extracted by Ficoll 

gradient (Thermo Fisher Scientific, cat. no. 45-001-750), were washed twice in RPMI media. 

Collected PBMCs were frozen in 90% human AB serum (Thermo Fisher Scientific, cat. no. 

MT35060CI) and 10% DMSO (Sigma, cat. no. C6295-50ML) and stored in liquid nitrogen. In 

parallel, PBMCs from healthy HLA-A02:01 and HLA-A03:01 donors were purchased from 

Bloodworks Northwest (Seattle, WA) or Astarte Biologics (Bothell, WA). 

 

TIL collection. Surgically resected tumor samples were digested with a brain tumor dissociation 

kit (Miltenyi Biotec, cat. no. 130-095-42) and gentle MACS dissociator (cat. no. 130-093-235). 

After digestion and myelin depletion, collected cells were labeled with CD45 microbeads (cat. 

no. 130-045-801) and separated on Miltenyi LS columns (cat. no. 130-042-401) and MidiMACS 

Separator (cat no. 130-042-302). Collected CD45+ cells were cultured at 1×106 cells/mL in X-

VIVO 15 Media (Fisher Scientific, cat. no. BW04-418Q) containing 2% human AB serum with 

50 ng/mL anti-CD3 antibody (BioLegend, cat. no. 317304), 1 μg/mL anti-CD28 antibody (BD 
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Biosciences, cat. no. 555725), 1 μg/mL anti-CD49d antibody (BD Biosciences, cat. no. 555501), 

300 IU/mL IL-2 (NIH, cat. no. 11697), and 10 ng/mL IL-15 (BioLegend, cat. no. 570302). Cells 

were expanded for 3-4 weeks and replenished with fresh media and cytokines every 2-3 days. 

Before freezing, expanded cells were placed in media containing 50 IU/mL IL-2 for 1-2 days and 

then frozen in the same freezing media as PBMCs.  

 

Collection of tumor RNAs and RNA sequencing. RNA from freshly collected or flash-frozen 

tumor specimens was extracted by using the RNeasy Mini Kit (Qiagen, cat. no. 74014). Paired-

end RNA-Seq was performed at the UCLA Clinical Microarray Core using an Illumina HiSeq 

3000 at a read length of 2×100 bp or 2×150 bp.  

 

Dextramer flow-cytometric analysis of PBMCs and TILs. For each AS-derived peptide 

selected for validation, custom-made HLA-matched MHC Class I dextramer:peptide (pMHC) 

complexes were purchased from Immudex (Copenhagen, Denmark). Immudex also provided 

pMHC complexes for common cytomegalovirus (CMV) epitopes (cat. nos. WB2132 and 

WC2197) and for a nonhuman epitope (NI3233) as a negative control. Each pMHC complex was 

purchased with two separate tags for APC or PE fluorescence labeling, to increase specificity to 

targeted T cells with dual labeling. 

To facilitate proper gating of CD8+ T cells from PBMC and TIL populations, the 

following panel of antibodies (from BioLegend) was set up: CD3 BV605 (cat. no. 300460), CD8 

FITC (cat. no. 344704), CD4 BV421 (cat. no. 317434), CD19 BV421 (cat. no. 302234), CD56 

BV421 (cat. no. 362552), and CD14 BV421 (cat. no. 301828). For single-color compensation 

controls, OneComp eBeads were used (Thermo Fisher Scientific, cat. no. 01-1111-41). 
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For each set of pMHC complexes, at least 3×106 cells were stained according to 

manufacturer’s guidelines. Briefly, cells were thawed in a 37°C water bath and washed with 

RPMI and D-PBS (Fisher Scientific, cat. no. MT21031CV) before staining for cell viability with 

the Zombie Violet Viability Kit (BioLegend, cat. no. 423113). Next, the appropriate amount of 

each pMHC complex in a staining buffer of D-PBS with 5% fetal bovine serum (Fisher 

Scientific, cat. no. MT35016CV) was added to each sample. After 10 min, the aforementioned 

antibody cocktail was added. After a 30-min incubation period, cells were washed twice in the 

same staining buffer. All samples were tested in a BD LSRII flow cytometer, and data were 

analyzed with FlowJo (Treestar). For gating, the lymphocyte population was first selected using 

forward and side scatter, and then the BV421-negative population was gated out (i.e. excluding 

dead cells and the CD14, CD19, CD56, and CD4 populations) before selecting the CD3+CD8+ 

population. To set for proper gating of dextramer-positive cells, we used cells that were stained 

with the full antibody panel but no pMHC complexes, and cells that were given the nonhuman 

pMHC complex.     

 

TCR sequencing using scRNA-Seq. Cells were stained by following the dextramer procedure 

with PE-conjugated pMHC complexes only. Cells were sorted by using the BD FACSAria flow 

cytometer, and PE+ cells were collected. V(D)J immune profiling of sorted cells was done with 

scRNA-Seq, using the 10X Genomics Chromium Single Cell Immune Profiling Workflow at the 

UCLA Clinical Microarray Core. Each T cell was encapsulated in an oil emulsion droplet with a 

barcoded gel bead, and reverse transcription was performed to create a barcoded cDNA library. 

The V(D)J-enriched and gene expression libraries were sequenced using the 10X Genomics 
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Chromium Controller. After sequencing, the Cell Ranger pipeline was used to align reads, filter, 

count barcodes and assign unique molecular identifiers.  

 

Next-generation immune repertoire sequencing using the immunoSEQ platform. To assess 

the T-lymphocyte repertoire of bulk expanded TIL populations, we used the immunoSEQ assay 

(Adaptive Biotechnologies). This multiplex PCR system uses a mixture of primers that target the 

rearranged V and J segments of the CDR3 region to assess TCR diversity within a given sample. 

Genomic DNA from each sample was extracted by using the QIAamp DNA Blood Midi Kit 

(Qiagen, cat. no. 51185). We provided at least 1 μg of DNA (~60,000 cells) from each sample to 

Adaptive Biotechnologies for sequencing at a deep resolution. Resulting sequencing data were 

analyzed with the immunoSEQ Analyzer Platform (Adaptive Biotechnologies).  

 

High-throughput αβ TCR pairing using the pairSEQ platform. We provided Adaptive 

Biotechnologies with frozen bulk expanded TIL samples for their pairSEQ assay, to predict 

which α and β chains may pair to form a functional TCR. Briefly, T cells were randomly 

distributed into wells of a 96-well plate. The mRNA was extracted, converted to cDNA, and 

amplified by using TCR-specific primers. The cDNA of T cells from each well was given a 

specific barcode, and all wells were pooled together for sequencing. Each TCR sequence was 

mapped back to the original well through computational demultiplexing. Putative TCR pairs 

were identified by examining whether a sequenced TCR α chain was frequently seen to share the 

same well with a specific sequenced TCR β chain, above statistical noise.    

 

Code availability 
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IRIS source code is accessible on GitHub at https://github.com/Xinglab/IRIS.  

 

Data availability 

The 22 UCLA GBM RNA-Seq data generated for this study were uploaded to BioProject 

database (BioProject: PRJNA577155). RNA-Seq data used to construct IRIS’s normal and tumor 

reference panels of AS events are available from the GTEx project (https://gtexportal.org/) and 

The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/legacy-archive/). For the IRIS 

proteo-transcriptomics analysis, matching RNA-Seq data and MS immunopeptidomics data of B-

LCL-S1 and B-LCL-S2 cell lines were retrieved from Laumont et al. (GEO: GSM1641206, 

GSM1641207 and PRIDE: PXD001898). Raw RNA-Seq data of the JeKo-1 lymphoma cell line 

were obtained from the Cancer Cell Line Encyclopedia via the NCI Genomic Data Commons 

(https://portal.gdc.cancer.gov/legacy-archive/). Corresponding immunopeptidomics MS data of 

JeKo-1 were retrieved from Khodadoust et al. (PRIDE: PXD004746). 
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Figure Legends 

 

Figure 1. IRIS: A big data-powered platform for discovering AS-derived cancer 

immunotherapy targets. 

a, Workflow for IRIS, integrating computational modules, large-scale reference RNA-Seq 

panels, and dedicated statistical testing programs. IRIS has three main modules: RNA-Seq data 

processing (top), in silico screening (middle), and TCR/CAR-T target prediction (bottom). The 

prediction module includes an option for proteo-transcriptomics integration of RNA-Seq and MS 

data.  

b, Stepwise results of IRIS to identify AS-derived cancer immunotherapy targets from 22 GBM 

samples (top). Identified skipped-exon (SE) events from the IRIS data-processing module were 

screened against tissue-matched normal panel (‘Normal Brain’) to identify tumor-associated 

events (‘Primary’ set), followed by tumor panel and normal panel to identify tumor-recurrent and 

tumor-specific events, respectively (‘Prioritized’ set). After constructing splice-junction peptides 

of tumor isoforms, TCR/CAR-T targets were predicted. As an illustrative example, IRIS 

readouts for prioritized candidate TCR targets are shown (bottom). Violin plots (left) show PSI 

values of individual AS events across GBM (‘GBM-input’) versus three reference panels. Dots 

(middle) summarize screening results. Darker-colored dots indicate stronger tumor features 

(association/recurrence/specificity) versus each reference panel. FC is estimated fold change of 

tumor isoform’s proportion in GBM (‘GBM-input’) versus tissue-matched normal panel 

(‘Brain’). Predicted HLA-epitope binding (right) is output of prediction module. Preferred 

features for immunotherapy targets in this study are shown in blue. Amino acids at splice 

junctions in epitopes are underlined. ‘Best HLA’ is HLA type with best predicted affinity 
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(median IC50) for given splice-junction epitope. ‘#Pt. w/HLA’ is number of patients with HLA 

type(s) predicted to bind to a given epitope. Three epitopes in TMEM62 and PLA2G6 (blue) were 

predicted to bind to common HLA types (HLA-A02:01 and HLA-A03:01) and were selected for 

experimental validation.   

 

Figure 2. IRIS-predicted AS-derived TCR targets recognized by CD3+CD8+ T cells in 

tumors and peripheral blood from patients. 

a, Summary of dextramer-based validation of IRIS-predicted AS-derived epitopes. PBMCs 

and/or TILs from four HLA-A03 and two HLA-A02 patients were tested for recognition of IRIS-

predicted epitopes. Within each HLA type, epitopes are listed by order of tumor specificity (high 

to low) versus normal panel (11 normal nonbrain tissues). Reactivity (‘Positive’, ‘Marginal’, or 

‘Negative’) in assay was evaluated as percentage of dextramer-labeled cells among PBMCs/TILs 

(>0.1%, 0.01%-0.1%, or <0.01% of CD3+CD8+ cells, respectively) after subtracting negative 

control (nonhuman peptide). 'Dextramer assay summary' was determined by the mean percent 

reactivity of CD3+CD8+ cells across individual tests. 

b, Flow cytometric analysis showing that ex vivo-expanded TILs from one HLA-A03 patient 

(LB2867) contained T cells that recognized epitope KIGRLVTRK. Rows correspond to cells that 

recognize APC- and PE-labeled dextramers (top), only PE-labeled dextramers (middle), or only 

APC-labeled dextramers (bottom). Percentages of epitope-specific cells are shown. 

c, Immune profiling results revealing immune repertoire composition of KIGRLVTRK-specific 

T cells from one patient (LB2867). The scRNA-Seq assay was performed on sorted 

KIGRLVTRK-specific T cells, whereas pairSEQ and immunoSEQ assays captured TCR clones 

from bulk TIL RNAs of same patient. Table (left) lists seven most abundant T-cell clones from 
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scRNA-Seq, with percentages of matching CDR3 sequences from TCR β chains. *For pairSEQ 

and immunoSEQ, percentages are the best frequencies of matching TCR pair or β-chain clones. 

The 3D scatterplot (right) shows that these approaches converged on three dominant TCR clones. 

For comparison, the same epitope in the table and 3D scatterplot are identified by use of the 

same color for the sequence (table) and text box (plot). 
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