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Abstract 12 

High-throughput sequencing 16S rRNA gene surveys have enabled new insights into the 13 
diversity of soil bacteria, and furthered understanding of the ecological drivers of abundances 14 
across landscapes. However, current analytical approaches are of limited use in formalising 15 
syntheses of the ecological attributes of taxa discovered, because derived taxonomic units are 16 
typically unique to individual studies and sequence identification databases only characterise 17 
taxonomy. To address this, we used sequences obtained from a large nationwide soil survey 18 
(GB Countryside Survey, henceforth CS) to create a comprehensive soil specific 16S reference 19 
database, with coupled ecological information derived from the survey metadata.  Specifically, 20 
we modelled taxon responses to soil pH at the OTU level using hierarchical logistic regression 21 
(HOF) models, to provide information on putative landscape scale pH-abundance responses. 22 
We identify that most of the soil OTUs examined exhibit predictable abundance responses 23 
across soil pH gradients, though with the exception of known acidophilic lineages, the pH 24 
optima of OTU relative abundance was variable and could not be generalised by broad 25 
taxonomy. This highlights the need for tools and databases to predict ecological traits at finer 26 
taxonomic resolution. We further demonstrate the utility of the database by testing against 27 
geographically dispersed query 16S datasets; evaluating efficacy by quantifying matches, and 28 
accuracy in predicting pH responses of query sequences from a separate large soil survey. We 29 
found that the CS database provided good coverage of dominant taxa; and that the taxa 30 
indicating soil pH in a query dataset corresponded with the pH classifications of top matches 31 
in the CS database. Furthermore we were able to predict query dataset community structure, 32 
using predicted abundances of dominant taxa based on query soil pH data and the HOF models 33 
of matched CS database taxa. The database with associated HOF model outputs is released as 34 
an online portal for querying single sequences of interest (https://shiny-apps.ceh.ac.uk/ID-35 
TaxER/), and flat files are made available for use in bioinformatic pipelines. The further 36 
development of advanced informatics infrastructures incorporating modelled ecological 37 
attributes along with new functional genomic information will likely facilitate large scale 38 
exploration and prediction of soil microbial functional biodiversity under current and future 39 
environmental change scenarios. 40 

 41 
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Introduction 42 

Soil bacteria are highly diverse1, 2 and are significant contributors to soil functionality. 43 
Sequencing of 16S rRNA genes has enabled a wealth of new insights into the taxonomic 44 
diversity of soil prokaryotic communities, revealing the ecological controls on a vast diversity 45 
of yet to be cultured taxa with unknown functional potential3. However, despite thousands of 46 
studies across the globe, we are still some way from synthesising the new knowledge on the 47 
ecology of these novel organisms recovered through local and distributed soil surveillance. 48 
This is because there is currently no formalised way of retrieving ecological information on 49 
reference sequences which match user-discovered taxa (either clustered operational taxonomic 50 
units or amplicon sequence variants). Whilst we have a wealth of databases and tools for 51 
characterising the taxonomy of matched sequences4-6, databases do not include any associated 52 
ecological information on sequences matches. Whilst new software has recently become 53 
available that uses text mining to return some ecological data on matched sequences to NCBI, 54 
this information is currently limited to descriptions of sequence associated habitat7.  55 

Synthesising relationships between soil amplicon abundances and environmental 56 
parameters is now necessary to progress ecological understanding of soil microbes beyond 57 
those few organisms that are readily cultivated. Determining microbial responses across 58 
environmental gradients can inform on the realised niche widths of discrete taxa, and may 59 
indicate the presence of shared functional traits across taxa8. This information is now urgently 60 
needed for microbes as we move into a period of increasing genomic data availability for 61 
uncultivated taxa. Coupling data on taxon responses across environmental gradients with 62 
functional trait information potentially allows a mechanistic and predictive understanding of 63 
both biodiversity and ecosystem level responses to environmental change. For example, a large 64 
body of theory exists describing how species responses to environmental change affects 65 
ecosystem functioning9-11. Here functional “response” groups are defined as species sharing a 66 
similar response to an environmental driver; and functional “effect” groups refer to species that 67 
have similar effects on one or more ecosystem processes.  The degree of coupling between 68 
response and effect groups can then allow prediction of functional effects under change. For 69 
instance if certain phylogenetic groups of taxa decrease due to environmental change, and these 70 
taxa also represent an effect group (eg these taxa possess a unique functional gene) then we 71 
can expect the function to also decrease. Conversely with uncoupled effect groups (eg 72 
responsive taxa all possess a ubiquitous functional gene), the system is likely to be more 73 
functionally resistant to change11. Applying such concepts to microbial ecology is a realistic 74 
ambition given the extensive availability of amplicon datasets coupled to environmental 75 
information, and the increasing feasibility of uncultivated microbial genome assembly from 76 
metagenomes or single cell genomics12-14.  77 

The fast evolution of microbial taxa coupled with potential horizontal gene transfer has 78 
led to assumptions that microbial diversity may be largely functionally redundant15. However 79 
we know from large-scale amplicon surveys that there are distinct differences in soil bacterial 80 
composition across environmental gradients, with soil pH frequently observed as a primary 81 
correlate16, 17. This implies that different microbial phylogenetic lineages possess adaptations 82 
conferring altered competitiveness in soils of different pH; paving the way for future studies 83 
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into the genomic basis, and thereby elucidating specific genetic “response traits”. There is also 84 
evidence that many specific bacterial functional capacities such as methanogenesis (an “effect” 85 
trait) are phylogenetically conserved and therefore may be less redundant18. Determining the 86 
degree of functional redundancy in taxa which respond across soil pH gradients, will permit 87 
new insight into the microbial biodiversity mechanisms underpinning soil functionality and 88 
resilience to change. Since soil pH is largely predictable from geo-climatic19 and land use 89 
features20; prediction of the abundances of individual bacterial taxa under environmental 90 
change scenarios is likely to be feasible. The immediate challenge is therefore to establish 91 
predictive frameworks for many soil bacterial taxa, which can be populated with genomic 92 
information as it becomes available; to ultimately facilitate predictions of microbial functional 93 
distributions.    94 

We believe that attempts to progress understanding of the ecological attributes of 95 
environmentally retrieved bacterial taxa can be streamlined immediately by making better use 96 
of the extensive amplicon datasets that exist, which already provide much useful information 97 
on taxa-environment responses. Indeed it has recently been shown that many prokaryotic taxa 98 
are distributed globally (particularly dominant OTUs21), yet there is currently no way to 99 
formally capture their ecological attributes in databases for further microbiological and 100 
ecological enquiry other than in supplementary material spreadsheets. Here we seek to address 101 
this by making available a database of representative sequences from a large 16S rRNA 102 
amplicon dataset from over 1000 soil samples collected across Britain. In addition to providing 103 
standard taxonomic annotation, we also seek to add ecological response information to each 104 
representative sequence. We focus here on soil pH responses as bacterial communities are 105 
known to respond strongly across soil pH gradients17. We will firstly model OTU abundances 106 
across to soil pH using hierarchical logistic regression (HOF)22, 23, a commonly used approach 107 
to examine vegetation responses across ecological gradients24 which has yet to be widely 108 
applied to microbial datasets. We will use model outputs to assign each OTU to a specific pH 109 
response group based on abundance optima, and in addition demonstrate the utility of the 110 
database in determining the phylogenetic relationships in ecological responses. The utility of 111 
the database will be further tested on 16S datasets to compare both the hit rate and modelled 112 
responses. The OTU database with associated HOF model outputs is released both as an online 113 
portal for visualising individual queries and as flat files for integration into existing 114 
bioinformatics pipelines.  115 
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Results and discussion 123 

Database Coverage  124 

The database was constructed from sequences obtained from the 2007 Countryside 125 
Survey (CS), a random stratified sampling of most soil types and habitats across Great Britain, 126 
full details of which are provided elsewhere10, 17, 25. Sequencing of 1113 soils using the 127 
universal 341f/806r 26primers targeting the V3 and V4 regions of the 16S rRNA gene yielded 128 
a total of 39952 reference sequence OTUs, after clustering at 97% sequence similarity and 129 
singleton removal. Coverage was assessed on a filtered dataset of 1006 samples which had at 130 
least 5000 reads per sample, using sample based species accumulation curves calculated per 131 
habitat class and pooled across all habitats (Fig.1). The curves for individual habitats, whilst 132 
not reaching saturation, reveal some interesting trends with grasslands exhibiting highest 133 
biodiversity at the landscape scale, which is likely attributable to the broad range of soil 134 
conditions they encompass. The pooled curves across all habitats however appear to begin to 135 
level off, which importantly reveals that in total the reference sequence dataset provides good 136 
coverage of the non-singleton 97% OTUs found across this landscape. 137 

Performance of database against independent datasets  138 

The coverage of this dataset was further assessed through blasting representative 139 
sequences from independent 16S datasets from various locations and habitats, against all 39952 140 
CS representative sequences (Table 1). For the two soil datasets, we found over 50% of the 141 
OTUs which had been independently generated in each of these studies, could be matched to 142 
the CS database based at > 97%. Expectedly, this was in stark contrast to a fresh water dataset 143 
which exhibited much less overlap with the CS soils database with a hit rate of only 33.2%. 144 
16S sequences from dataset 1 (Table 1), a study of land use change across the UK27, also 145 
sequenced with the same 341f/806r primer set, had the highest hit rate against the CS 146 
representative sequences (67.26%). Wider assessment of our own unpublished datasets using 147 
the exact same methodologies yield hit rates of 62% and 56% for soils from UK calcareous 148 
grasslands and tropical rainforests respectively. A separate survey of Welsh soils28 was also 149 
queried against the CS database, which used the commonly used Earth Microbiome primer set 150 
exclusively targeting the V4 region (as opposed to V3 and V4 targeted region used for the CS 151 
dataset). This dataset had a hit rate of 58.49% providing evidence that datasets amplified with 152 
other primer sets can be matched to the CS database with only marginal loss of coverage. 153 

We next wanted to explore possible reasons for obtaining less than 100% coverage from 154 
query soil datasets, given the good coverage of the CS reference sequence database evident 155 
from the rarefaction curve (Fig.1). We predicted this discrepancy was caused by rare OTU’s 156 
being unique to specific studies, and tested this by classifying the query OTU’s into 1000 157 
discrete abundance based quantiles (1 being the most abundant quantile and 1000 being the 158 
least). Plotting the proportion of query OTU’s which matched to the CS database by query 159 
OTU abundance class, confirmed that less abundant query OTU’s had less matches to the CS 160 
database (Fig.2). This adds weight to arguments that much of the rare taxa detected through 161 
amplicon sequencing could be spurious artefacts of the PCR amplification process29. 162 
Regardless of these issues, the high proportion of hits for dominant taxa in the query dataset 163 
validates the use of the large CS dataset as a comprehensive reference database.  164 

 165 
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Modelling OTU responses to soil pH.  166 

Since the majority of the 39952 reference OTU’s obtained across all CS samples likely 167 
derive from rare taxa with intrinsically little value for predictive modelling (low within-sample 168 
abundance, and occurrence across samples), we opted to only model taxa-pH relationships for 169 
those taxa which occurred in at least 30 samples. These taxa were selected from a cleaned 170 
dataset of 1006 samples which had at least 5000 reads per sample. Further examination of the 171 
species accumulation by sample curves for the resulting 13781 OTU’s, revealed saturation 172 
implying that this dataset had complete coverage of common OTU’s, defined by being present 173 
in at least 30 samples across Britain. Huisman-Olff-Fresco models were then applied to 174 
determine individual bacterial taxa responses to pH using the R package eHOF using a poisson 175 
error distribution14, 22. Model choice was determined using AIC and bootstrapping methods 176 
implemented in the package, whereby the model with the lowest AIC was initially chosen and 177 
its robustness then tested by rerunning models on 100 bootstrapped datasets (created by 178 
resampling with replacement). If the most frequently chosen model in the bootstrap runs was 179 
different to the initial model choice, the most common bootstrap choice was selected. The 180 
resultant pH-taxa response curves classified by the HOF models include I: no significant 181 
change in abundance in response to pH, II: an increasing or decreasing trend, III: increasing or 182 
decreasing trend which plateaus, IV: Increase and decrease by same rate (unimodal) and V: 183 
Increase and decrease by different rates causing skew (Fig.3).   184 

The proportion of OTUs assigned to each model is shown in Table 2, and reveals that 185 
most of the soil OTUs exhibited some trend with soil pH, and with the unimodal skewed model 186 
(V) being the most commonly fitted model type (45.76%). OTU’s were then assigned to pH 187 
response groups based on the fitted pH optima. We classified OTUs demonstrating an acidic 188 
preference if the fitted optima was below pH 5.2, based on previous data showing this 189 
represented a critical threshold for bacterial communities10, which was further confirmed by a 190 
similar regression tree analyses of this sequence dataset (not shown). This pH value also 191 
represents a critical threshold in microbial functioning30. Similarly, a second threshold was 192 
designated at pH 7, with OTUs exhibiting an optima above this being classed as neutral, and 193 
those between 5.2 and 7 classed as “mid”. Plateau model shapes (model III), were sometimes 194 
more difficult to classify, since two optima are provided which span the plateau, and in some 195 
cases these crossed the pH 5.2 and 7 thresholds.  Whilst OTUs exhibiting this response were 196 
in the minority, we opted to assign a separate designation representing this range, for instance 197 
“acid to mid” for an OTU with two optima above and below pH 5.2. The proportion of taxa 198 
classified to each pH response group are shown in Table 3. This reveals that OTUs with acidic 199 
preference are in the minority, consistent with reduced bacterial biodiversity being frequently 200 
observed in acidic soils17.  201 

Representative sequences of all 13781 OTU’s were aligned with Clustal Omega 1.2.1 202 
(http://www.clustal.org/), and used to construct a Phylogenetic tree with FastTree 2.1.731, with 203 
the generalized time-reversible (GTR) model of nucleotide evolution. The tree is shown in Fig. 204 
4 together with the pH classification derived from the HOF models. Distinct phylogenetic 205 
clustering is apparent for phyla with representatives known to have acidophilic preferences 206 
such as the Acidobacteria15. Additionally other phyla such as the Verrucomicrobia appear to 207 
possess clades with a distinct pH preference. However, the overall impression across other 208 
taxonomic groups is that the pH abundance optima can vary substantially amongst closely 209 
related taxa. This emphasises the need to move beyond the association of traits with broad 210 
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phylogenetic lineages; and identifies the need to determine traits at finer levels of taxonomic 211 
resolution.  212 

Incorporating CS data and pH responses into a sequence identification tool  213 

A web application was developed using the Shiny package (https://shiny.rstudio.com/) 214 
which enables users to BLAST a 16S query sequence against the countryside survey 215 
representative sequences, subsequently allowing visualization of key environmental 216 
information including HOF model outputs, relevant to individual matched sequences. The 217 
Graphic User Interface was implemented in R (3.4.1) using the Shiny package alongside 218 
ShinyJS to execute JavaScript functions from R. BLASTn commands are executed from R 219 
using the users query sequence, e value of 0.01, and the reference sequence database of CS 220 
representative sequences. eHOF model objects were converted to binary using the Rbase 221 
serialize function and stored in a PostgreSQL (9.3.17) database (https://www.postgresql.org/) 222 
alongside model and other environmental metadata (Supp.fig.1).  BLAST results are displayed 223 
as an interactive table of hits, each hit linking to a plot of the pH model fit (based upon raw 224 
read number), a LOESS fit (based on relative abundance), a box plot of habitat associations 225 
and a simple interpolated map showing relative abundance distribution across Britain 226 
(Supp.fig.2).  Additionally we provide a text box which can be populated with user submitted 227 
trait related information on matched OTUs. The application is available at https://shiny-228 
apps.ceh.ac.uk/ID-TaxER/ and to facilitate batch processing of query sequences the sequence 229 
database, taxonomy and trait matrix are released via github (https://github.com/brijon/ID-230 
TaxER-flat-files) for integration into bioinformatics pipelines. 231 

 232 

Utility in predicting pH preferences and community structure using a query dataset 233 

To demonstrate both the utility of the reference sequence database, and the HOF 234 
modelling approach to identify environmental responses of soil bacterial taxa, we used a query 235 
dataset of >400 samples collected across Britain (dataset 1, Table 1). Since this survey 236 
focussed on productive habitats (grassland and arable land uses), with only a few acidic 237 
samples, it was not appropriate to generate independent HOF models. Instead we classified the 238 
samples according to the same pH cutoff levels identified above (pH5.2 and 7) and then 239 
determined pH responsive taxa using Indicator species analyses32. As can be seen in Fig.5a, 240 
the pH groupings were clearly evident in the sample based ordination. Representative 241 
sequences from this dataset were then blasted against the CS database, and optimum pH and 242 
pH classification metrics retrieved from the top hit for subsequent comparison. In total 477 243 
indicators for the three pH groupings were retrieved, of which 454 had a match greater than 244 
97% similarity to the CS database.  Of the 155 acidic indicator taxa identified in the query 245 
dataset, 129 (83%) were reliably classified as acidic OTUs based on matches to the CS database 246 
(Fig 5b), with 20 OTUs “incorrectly” classified as having a mid-pH optima. However the 247 
predicted optima of these OTUs was mainly below pH 6 and most lie very close to pH 5.2. 248 
Similarly for the 226 query taxa identified as indicating neutral soils, 203 (90%) had a neutral 249 
pH classification in the CS database, with 15 being incorrectly classed as mid, though the 250 
optima for these was between pH 6.5 and 7. Sixty-seven indicators of the query mid pH soils 251 
were obtained of which 64 (96%) had a mid pH classification based on match to the CS 252 
database. Overall this analyses shows that information on soil pH preferences from independent 253 
datasets can be reliably obtained using our approach.  254 
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We then sought to test whether we could reliably predict community structure using the 255 
CS HOF model outputs to predict query OTU abundances. We identified the most abundant 256 
OTUs in the query dataset, and blasted against the CS database. CS HOF models were then 257 
used to predict the abundances of the 100 matched dominant OTUs within the 424 query 258 
samples. This predicted community matrix was then subject to NMDS ordination with the first 259 
axis scores plotted against the actual observed ordination scores generated from 24260 OTUs. 260 
The results in Fig 5c show that the observed and predicted first axis ordination scores were 261 
highly related (r2 = 0.88) demonstrating that it is possible to predict broad scale community 262 
change from individual OTU relative abundance pH models. These findings add to a growing 263 
body of literature on the predictability of soil bacterial communities33-35; but furthermore 264 
demonstrate the utility of our overall approach in deriving meaningful ecological information 265 
from matches to a 16S rRNA sequence database incorporating ecological responses.  266 

Conclusions 267 

This work demonstrates how large scale soil molecular survey data can be used to build 268 
robust predictive models of bacterial abundance responses across environmental gradients. The 269 
models were applied to the single soil variable of pH which is known globally to be the 270 
strongest predictor of soil bacterial community structure in surveys spanning wide 271 
environmental gradients. We have produced an informatics tool incorporating extensive 272 
sequence data from a wide range of soils, linked to taxonomic and ecological response 273 
information. This currently includes data on the modelled pH optima, and the predictive utility 274 
in this regard was demonstrated using an independent dataset. Other ecological information is 275 
also made available via an online portal including habitat association, spatial distribution, and 276 
metrics relating to abundance and occurrence. We are currently working on incorporating other 277 
information on the sensitivities of discrete OTUs to land use change; and there is the wider 278 
potential for users to update the trait matrix with other observations (more information provided 279 
at https://github.com/brijon/ID-TaxER-flat-files). Such information could include sensitivities 280 
to perturbations such as climate change, as well as rRNA derived links to wider genome data 281 
to inform on function.  282 

We anticipate this simple database and tool will be of use to the soil molecular 283 
community, but also hope it prompts further global efforts to better capture relevant ecological 284 
information on newly discovered microbial taxa. We acknowledge some limitations of the 285 
current tool, and identify some possibilities to develop further: Firstly being a 16S rRNA 286 
amplicon dataset, the database inventory will be affected by known biases relating to PCR 287 
primers and amplification conditions36; and obviously, user datasets built on a different region 288 
of the 16S rRNA gene will not produce any matches. Additionally the length of sequences 289 
means only limited taxonomic resolution is currently provided, and ecological inferences based 290 
on BLAST matches must consider the strength of match, and variance within the matched 291 
region with respect to taxonomic discrimination37. Emerging long read sequencing 292 
technologies applied to survey nucleic acid archives in the future may improve these current 293 
constraints38. With respect to the pH models, many other factors can of course influence 294 
bacterial abundances3, 39, and we note the large degree of variance in relative abundance for a 295 
taxon even within its apparent pH niche optima (Fig 3). Such variance could may be caused by 296 
nutrient availability, stress etc and more complex models, albeit constrained by pH, need to be 297 
formulated to advance predictive accuracy. More generally, we assert that observed taxon 298 
relative abundance only inform on relative taxon success at a given soil pH, and does not 299 
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identify any explicit underpinning ecological mechanism (eg pH stress tolerance versus 300 
competitive fitness)40. However, linking emerging genomic data to detailed environmentally 301 
relevant sequence databases such as detailed here, will likely improve future understanding in 302 
relation to elucidating specific functional response traits and determining mechanisms 303 
underpinning bacterial community assembly along soil gradients. Finally, and importantly, the 304 
CS database is spatially constrained to a temperate island in Northern Europe, and would 305 
benefit from a more global extent to capture other soil biomes such as drylands. Improvements 306 
here could be made from integrating data from global sequencing initiatives, or leveraging data 307 
from sequence repositories provided consistent environmental metadata can also be retrieved 308 
in order to reliably predict response trait characteristics. 309 

 310 

Methods 311 

Samples were collected as part of the Centre for Ecology and Hydrology Countryside 312 
survey (CS) between June and July 2007 covering sites throughout Great Britain. Samples were 313 
chosen through a stratified random sample of 1 km squares using a 15 km grid, implementing 314 
the institute of Terrestrial Ecology (ITE) land classification to ensure incorporation of different 315 
land classes, with up to 5 randomly sampled cores taken within each square. Metadata for each 316 
soil sample were collated including soil organic matter, soil organic carbon, bulk density, pH, 317 
indicator of phosphorus availability using methodologies detailed elsewhere17, 25. 318 

DNA was extracted from 0.3g of soil using the MoBIO PowerSoil-htp 96 Well DNA 319 
Isolation kit (Carlsbad, CA) according to manufacturer protocols.  Amplicon libraries were 320 
constructed according to the dual indexing strategy of Kozich et al41, using primers 341F42 and 321 
806R43. Amplicons were generated using a high fidelity DNA polymerase (Q5 Taq, New 322 
England Biolabs) on 20 ng of template DNA employing an initial denaturation of 30 seconds 323 
at 95 ºC, followed by (25 for 16S and 30 cycles for ITS and 18S) of 30 seconds at 95 ºC, 30 324 
seconds at 52 ºC and 2 minutes at 72 ºC. A final extension of 10 minutes at 72 ºC was also 325 
included to complete the reaction. Amplicon sizes were determined using an Agilent 2200 326 
TapeStation system (~550bp) and libraries normalized using SequalPrep Normalization Plate 327 
Kit (Thermo Fisher Scientific). Library concentration was calculated using a SYBR green 328 
quantitative PCR (qPCR) assay with primers specific to the Illumina adapters (Kappa, 329 
Anachem). Libraries were sequenced at a concentration of 5.4 pM with a 0.6 pM addition of 330 
an Illumina generated PhiX control library. Sequencing runs, generating 2 x 300 bp, reads were 331 
performed on an Illumina MiSeq using V3 chemistry.  332 

Sequenced paired-end reads were joined using PEAR44, quality filtered using FASTX 333 
tools (hannonlab.cshl.edu), length filtered with the minimum length of 300bp. The presence of 334 
PhiX and adapters were checked and removed with BBTools (jgi.doe.gov/data-and-335 
tools/bbtools/), and chimeras were identified and removed with VSEARCH_UCHIME_REF45 336 
using Greengenes Release 13_5 (at 97%). Singletons were removed and the resulting sequences 337 
were clustered into operational taxonomic units (OTUs) with VSEARCH_CLUSTER at 97% 338 
sequence identity. Representative sequences for each OTU were taxonomically assigned by 339 
RDP Classifier with the bootstrap threshold of 0.8 or greater using the Greengenes Release 340 
13_5 (full) as the reference. All statistical analyses and visualisations were conducted within 341 
the R package, predominantly using the vegan and ggplot packages unless otherwise indicated. 342 

 343 
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Tables 485 

 486 
Table 1. Validating the use of the CS OTU sequences as a database, through querying with 487 
independent datasets. Reference sequences from independent datasets were BLAST searched against 488 
countryside survey representative sequences, and the proportion of OTUs matched at over 97% 489 
similarity reported. British soil query datasets had highest hit rates irrespective of methodologies, with 490 
a set of riverine samples showing lowest proportion of OTU’s matching the CS soil reference database. 491 
 492 

 493 

 494 
Table 2. Percentage of 13781 CS OTUs fitted to each HOF model.  Each OTU was classified to 495 
one of five HOF model types according to fitted relationships with soil pH. The different model 496 
response shapes are shown in Fig 3. 497 
 498 

 499 

 500 
Table 3. Percentage of 13781 CS OTU’s classified to different pH response groups. Each OTU was 501 
assigned to a pH response classification based on the modelled pH optima. The model outputs with one 502 
optima (II, IV,V) were classified as acidic, mid or neutral based on pH thresholds identified above.  503 
Plateau shaped models with 2 optima (model III), which spanned the pH thresholds were labelled as 504 
either mid to neutral, acid to neutral, or acid to mid. 505 

Query 
Dataset 

Habitat Description  Query 
OTU 

 hit rate 

Primer Citation    

1 Grassland and arable 
soils, Britain  

67.26% 341f/806r  V3-V4 Malik et al., 201827    

2 All habitat soils 
survey, Wales 

58.49% 515f/806rB  V4 
 

George et al., 201928    

3 Thames River, 
Britain 

33.2% 341f/806r  V3-V4 
 

Unpublished temporal 
extension of Read et al, 201546 

   

Model fit Percentage of  Countryside survey 
OTU’s 

V (Skewed Unimodal) 45.76%  

III (Plateau) 24.13% 

IV  (Unimodal) 23.52% 

II  (Monotonic) 6.11% 
I (No trend) 0.49%  

pH Response group Percentage of  Countryside survey 
OTU’s 

Mid  (5.2 < Optima < 7) 34.8% 
Neutral (Optima > 7) 31.62% 
Acid  (Optima < 5.2) 23.08% 
Mid to Neutral (5.2 < Optimum1 < 7 and Optimum 2 > 7) 7.41%  

Acid to Neutral  (Optimum1 <5.2 and Optimum2 >7) 1.52 % 
Acid to Mid  (Optimum1 <5.2 and 5.2 < Optimum2 < 7 )  1.14% 
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Figures 506 

 507 

 508 

 509 

 510 

 511 

Fig.1 Coverage of bacterial 97% OTUs within the Countryside Survey (CS) dataset.  Sample 512 
based richness accumulation curves were calculated across 1006  CS soil samples (“All sites”),  and 513 
within specific habitats. Standard deviations are calculated from random permutations of the data.  514 
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 527 

 528 

Fig.2 The CS database provides good coverage of dominant taxa within a query dataset. Query 529 
OTU reference sequences (dataset 1, table 1) were grouped into 1000 bins by decreasing rank (e.g the 530 
1000th bin contains the least abundant OTUs); and the proportion of each bin matching the CS dataset 531 
calculated and displayed on the y axis. The proportion of matches to the CS database (> 97% similarity) 532 
declines as query taxa become rarer, despite the comprehensive nature of the CS database. 533 
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 563 

 564 

 565 

Fig.3 Examples of the five HOF model types. HOF models were generated through fitting 566 
countryside survey OTU abundances to soil pH (a pH range from 3.63 to 8.75). The five HOF models 567 
used were:  I: no change in abundance across pH gradient, II:  montonic an increase or decrease in 568 
abundance along pH gradient, III: plateau an increase or decrease in abundance along pH gradient that 569 
plateaus, IV: symmetrical unimodal, abundance increases and decreases across gradient at an equal 570 
rate, V: skewed unimodal, abundance increases and decreases across gradient at unequal rates. 571 

 572 

 573 

I II III

IV V 
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 574 

Fig.4 The phylogenetic distribution of bacterial pH optima. A phylogenetic tree of all OTUs with 575 
present in >100 samples (totalling 6385 OTU’s), with each OTU annotated according to pH 576 
classification based on HOF model optima (outer ring). 577 
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 581 

Fig.5 Validating the pH models using a query dataset. Taxa strongly responsive to soil pH were 582 
identified from Query dataset 1 (Table 1), and then matched to the CS database to evaluate utility of 583 
the approach. a)  NMDS ordination plot of the query dataset, with pH groupings denoted by colour 584 
(red =pH<5.2; green=pH>5.2<7; and blue=ph>7). b) Indicator species analyses on the query dataset 585 
revealed 477 OTUS strongly associated with the three pH classes (“Observed pH class”). The y axis 586 
values and point colour denote the predicted pH optimum, and predicted pH class following matching 587 
to CS database. c) The relative abundances of the 100 most abundant taxa in the query dataset were 588 
predicted using the CS HOF models of matched taxa, and subjected to NMDS ordination. The plot 589 
shows that the predicted abundances of these taxa reliably predicted the observed data first axis 590 
NMDS scores.  591 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 16, 2019. ; https://doi.org/10.1101/843847doi: bioRxiv preprint 

https://doi.org/10.1101/843847
http://creativecommons.org/licenses/by-nc-nd/4.0/


 592 

Supp.fig.1 ID-TaxER database Infrastructure 16S sequences are queried over the web via the R 593 
Shiny interface. A BLAST search is then performed against a blast database containing representative 594 
16S sequences from the 2007 Countryside survey . Model information and associated metadata for 595 
match hits are located in a PostgreSQL database of OTU taxonomy/ model data, (model objects are 596 
stored as binary and retrieved for the user) and results displayed via the shiny interface. 597 
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 606 

Supp.fig.2 Example outputs from the ID-TaxER online portal.  Using the DA101 /Ca. U. 607 
copiosus47 16S sequence (GenBank: Y07576.1) as a query, we found 98.3% identitiy to CS 608 
OTU19097 (taxonomy=k_Bacteria; p_Verrucomicrobia; c_Spartobacteria; o_Chthoniobacterales; 609 
f_Chthoniobacteraceae; g_DA101): a) HoF model output showing the number of reads of  CS 610 
OTU19097 per sample plotted against soil pH; with the line representing the model fit ( Model V, 611 
unimodal response to pH with an optima at pH 6.18) b) the relative abundance of OTU19097 against 612 
sample pH, with the line representing a LOESS fit; c) boxplot showing the median and ranges of the 613 
relative abundance of OTU19097 per CS habitat class; d) inverse distance weighted interpolation map 614 
of the relative abundance of OTU19097 across Britain. 615 

 616 

 617 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 16, 2019. ; https://doi.org/10.1101/843847doi: bioRxiv preprint 

https://doi.org/10.1101/843847
http://creativecommons.org/licenses/by-nc-nd/4.0/

