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Summary5

Antibiotics that interfere with translation, when combined, interact in diverse and difficult-to-predict6

ways. Here, we demonstrate that these interactions can be accounted for by “translation bottlenecks”:7

points in the translation cycle where antibiotics block ribosomal progression. To elucidate the under-8

lying mechanisms of drug interactions between translation inhibitors, we generated translation bot-9

tlenecks genetically using inducible control of translation factors that regulate well-defined translation10

cycle steps. These perturbations accurately mimicked antibiotic action and their interactions, support-11

ing that the interplay of different translation bottlenecks causes these interactions. We further showed12

that the kinetics of drug uptake and binding together with growth laws allows direct prediction of a13

large fraction of observed interactions, yet fails for suppression. Simultaneously varying two trans-14

lation bottlenecks in the same cell revealed how the dense traffic of ribosomes and competition for15

translation factors results in previously unexplained suppression. This result highlights the importance16

of ”continuous epistasis” in bacterial physiology.17
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1 Introduction23

Inhibiting translation is one of the most common antibiotic modes of action, crucial for restraining24

pathogenic bacteria [Walsh, 2003]. Antibiotics targeting translation interfere with either the assem-25

bly or the processing of the ribosome, or with the proper utilization of charged tRNAs and trans-26

lation factors (Fig. 1A,B; Table 1) [Wilson, 2014]. Still, the exact modes of action and physiolog-27

ical responses to many such translation inhibitors are less clear, and responses to drug combina-28

tions are even harder to understand, even though they offer effective ways of fighting antibiotic re-29

sistance [Yeh et al., 2009]. Recently, mechanism-independent mathematical approaches to predict the30

responses to multi-drug combinations were proposed [Zimmer et al., 2016; Wood et al., 2012], yet31

these approaches rely on prior knowledge of pairwise drug interactions, which are diverse and have32

notoriously resisted prediction. They include synergism (inhibition is stronger than predicted), antag-33

onism (inhibition is weaker), and suppression (one of the drugs loses potency) [Bollenbach, 2015;34

Mitosch and Bollenbach, 2014] (Fig. 1C). To design optimized treatments, the ability to predict or alter35

drug interactions is crucial – a challenge that would be facilitated by understanding their underlying36

mechanisms [Chevereau and Bollenbach, 2015].37

Apart from their clinical relevance, antibiotic combinations provide powerful, quantitative and con-38

trolled means of studying perturbations of cell physiology [Falconer et al., 2011] – conceptually similar39

to studies of epistasis between double gene knockouts [Yeh et al., 2006; Segre et al., 2005]. Trans-40

lation inhibitors are particularly suited for this purpose since translation is a fundamental, yet complex41

multi-step process that still lacks a comprehensive quantitative description. Part of any such descrip-42

tion are “growth laws,” which quantitatively capture the compensatory upregulation of the translational43

machinery in response to perturbations of translation [Scott et al., 2010]. Growth laws have enabled44

a model that elegantly explains the growth-dependent bacterial susceptibility to individual translation45

inhibitors [Greulich et al., 2015]. Finally, well defined translation steps cannot only be perturbed chemi-46

cally [Blanchard et al., 2010; Wilson, 2014], but also genetically, as these steps are regulated by trans-47

lation factors – specialized proteins that mediate the stability of ribosomal subunits, catalyze assembly48

of 70S ribosome and initiation, deliver charged tRNAs to the ribosome, release finished peptides, and49

mediate ribosome recycling (Fig. 1A). Both genetic and chemical perturbations obstruct the progression50

of ribosomes along the translation cycle, which generally results in a lower growth rate. Comparing the51

effects of antibiotics to those of precisely defined genetic perturbations offers an opportunity to elucidate52

the mechanisms responsible for drug interactions between translation inhibitors.53

As drug interactions are largely determined by the modes of action of the combined antibiotics [Yeh54

et al., 2006], we hypothesized that a key determinant of interactions between pairs of translation in-55

hibitors are the specific steps in the translation cycle where the two inhibitors halt ribosomal progres-56

sion (Fig. 1A). As a second key determinant of these drug interactions, we considered the compensatory57

physiological response to translation inhibition captured quantitatively by ribosomal growth laws [Scott58

et al., 2010] together with the kinetics of antibiotic transport and ribosome binding. We show that these59

determinants suffice to understand how most drug interactions between translation inhibitors emerge60
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and that they can be predicted solely from known responses to the individual drugs. To establish this61

result, we used a combination of precise growth measurements, quantitative genetic perturbations of62

the translation machinery, and theoretical modeling.63
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Figure 1: Antibiotics targeting different translation steps show diverse drug interactions. (A,B) Schematic of the transla-

tion cycle and translation inhibitors. Translation factors are shown in dark gray boxes. Stability of the large subunit is mediated by

Der and initiation by initiation factors (IFs). Elongation factors Tu and G (EF-Tu, EF-G) catalyze ribosome progression. Release

of GDP from EF-Tu is facilitated by EF-Ts. Release factors (RFs) facilitate the ejection of the finished peptide from the ribosome,

whose recycling is mediated by the factor for ribosome recycling (Frr). Translation inhibitors are shown in white boxes (abbre-

viations in Table 1). (C) Examples of growth curves obtained by luminescence assay (left column) in the presence of different

antibiotics and their combinations and response surfaces corresponding to different interaction types (right column) (Methods).

Symbols on the growth curves indicate the condition used: no symbol, triangle, square and a circle correspond to no drug, CHL-

only, second drug only (see vertical axis), and the combination of both, respectively. The growth curves were shifted in time so

as to originate from the same point at time 0. Drug interactions are determined based on the shape of lines of equal growth

(isoboles). If the addition of the second drug has the same effect as increasing the concentration of the first, the isoboles are

straight lines [Loewe and Muischnek, 1926]. Deviations from this additive expectation reveal synergism (the combined effect is

stronger and isoboles curve towards the origin), antagonism (the effect is weaker and isoboles curve away from the origin), or

suppression (at least one of the drugs loses potency due to the other). (D) The drug-interaction network of translation inhibitors.

Color-code is as in (C); dashed gray lines denote additivity.
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2 Results64

2.1 Pairwise interactions between translation inhibitors are highly diverse65

To systematically map the network of drug interactions between translation inhibitors, we selected eight66

representative antibiotics that interfere with different stages of translation and bind to different sites on67

the ribosome (Fig. 1A,B; Table 1). To this end, we determined high-resolution dose-response surfaces68

for all pairwise combinations of these antibiotics (Fig. 1C), by measuring growth rates in two-dimensional69

drug concentration matrices using a highly precise technique based on bioluminescence [Kishony and70

Leibler, 2003; Yeh et al., 2006; Chait et al., 2007] (Methods). To quantify the drug interaction, we defined71

the Loewe interaction score LI that integrates deviations from Loewe additivity (Fig. 1C, Methods). In72

this way, we characterized all twenty-eight pairwise interactions and constructed the interaction network73

between the translation inhibitors (Fig. 1D).74

The translation inhibitor interaction network (Fig. 1D) that we measured has several notable proper-75

ties. First, antibiotics with similar mode of action tend to exhibit additive drug interactions: in particular,76

there are purely additive interactions between capreomycin (CRY), fusidic acid (FUS), and streptomycin77

(STR) (which all inhibit translocation) and chloramphenicol (CHL) and lincomycin (LCY) (which both78

inhibit peptide bond formation), respectively. This observation is consistent with the view that drugs with79

similar mode of action can substitute for one another. Second, kasugamycin (KSG) is a prominent hub80

in the network: it shows almost exclusively antagonistic and suppressive interactions with other trans-81

Antibiotic Abbreviation IC50 [µg/mL] Mode of action, notes

Chloramphenicol CHL 1.55± 0.01 Binds in the vicinity of the peptidyl-transferase centre (PTC) on the 50S

subunit; partially overlaps with the acceptor stem of tRNA on the A-site

[Wilson, 2014].

Lincomycin LCY 281± 3 Lincosamide antibiotic; binds next to PTC and interferes with peptide

bond formation [Wilson, 2014].

Erythromycin ERM 25.3± 0.2 Macrolide antibiotic that binds further down the nascent peptide exit chan-

nel (Fig. 1B), and physically blocks the egress of the newly synthesized

peptide chain [Wilson, 2014].

Kasugamycin KSG 127± 1 Aminoglycoside; interferes with translation initiation by destabilization of

the initiator tRNA on the P-site [Schluenzen et al., 2006].

Streptomycin STR 2.55± 0.01 Aminoglycoside; interferes with the tRNA binding on the A-site as it sta-

bilizes the non-cognate tRNAs and consequently inhibits translocation. It

additionally induces mistranslation [Blanchard et al., 2010].

Tetracycline TET 0.321± 0.001 Interferes with the binding of aminoacyl-tRNA to the A-site [Tritton, 1977].

Capreomycin CRY 23.6± 0.1 Inhibits translocation by binding to the interface between subunits and

stabilization of the ribosome in the pretranslocation state of the ribosome.

It only binds the fully assembled ribosome [Stanley et al., 2010].

Fusidic acid FUS 64.5± 0.2 Inhibits translocation by overstabilization of elongation factor G (EF-G)

binding to the ribosome and also lowers the rate of ribosome recy-

cling [Savelsbergh et al., 2009].

Table 1: Translation-targeting antibiotics used in this study and their characteristics.
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lation inhibitors. Third, we identified a previously unreported synergy between CRY and CHL. Some of82

the observed general trends in the drug interaction network, in particular the prevalence of antagonism,83

may be explained by a general physiological response to translation inhibition.84

A number of the interactions we measured confirm previous reports. For example, synergy between85

erythromycin (ERM) and tetracycline (TET) was observed before [Yeh et al., 2006; Russ and Kishony,86

2018]. Additivity between CHL and TET was also reported; moreover, this interaction proved to be87

highly robust to genetic perturbations [Chevereau and Bollenbach, 2015]. Globally, antagonism and88

suppression are more common in the translation inhibitor interaction network than synergy, consistent89

with a general prevalence of antagonistic interactions between antibiotics [Brochado et al., 2018].90

2.2 Growth-law based biophysical model correctly predicts some interactions91

but fails to predict suppression92

As a first step toward understanding the origin of the observed drug interactions, we developed a math-93

ematical model that predicts such interactions from the effects of the individual drugs alone. We gen-94

eralized a biophysical model for the effect of a single antibiotic on bacterial growth [Greulich et al.,95

2015] to the situation where two antibiotics are present simultaneously. The model consists of ordinary96

differential equations taking into account passive antibiotic transport into the cell, binding to the ribo-97

some (Fig. 2A,B), dilution of all molecular species due to cell growth, and the physiological response of98

the cell to the perturbation (Fig. 2C). The latter is described by ribosomal growth laws [Scott et al., 2010;99

Greulich et al., 2015], which quantitatively connect the growth rate to the total abundance of ribosomes100

when growth rate is varied by the nutrient quality of media or by translation inhibitors. All parameters of101

the model can be inferred from the dose-response curves of individual drugs (Fig. 2D).102

When two different antibiotics are present simultaneously, separate variables are needed to describe103

ribosomes that are bound by either of the antibiotics individually or simultaneously by both (Fig. 2A).104

In the absence of knowledge about direct molecular interactions on the ribosome (as for the pairs105

of lankamycin and lankacidin or of dalfopristin and quinupristin [Harms et al., 2004; Belousoff et al.,106

2011]), we assumed that the antibiotic binding and unbinding rates are independent of any previously107

bound antibiotic (Fig. 2B). The resulting model makes direct predictions for drug interactions between108

translation inhibitors using only parameters that are inferred from the individual drug dose-response109

curves.110

Using this model, we calculated the predicted response surfaces for all translation inhibitor pairs111

and compared them to the experimentally measured surfaces (Methods, Fig. 2E). Certain drug interac-112

tions were correctly predicted by this approach (ERM-KSG, TET-ERM in Fig. 2E-i and ii), indicating that113

binding kinetics and growth physiology alone suffice to explain these interactions. Correctly predicted114

drug interactions include additive cases which often involve antibiotics that have either the same mode115

of action (CRY-FUS, CRY-STR, FUS-STR, CHL-LCY) or partially overlapping binding sites (CHL-LCY,116

ERM-CHL) [Wilson, 2014]. For the latter, the assumption that the formation of the doubly-bound ribo-117

some population is prohibited, which yields an additive response surface, offers even better agreement118
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Figure 2: Mathematical model of combined antibiotic action based on growth laws partially predicts drug interactions.

(A) Schematic of antibiotic binding and transport into the cell. Antibiotics (circles) bind to the unbound ribosomes (gray) in the first

binding step; bound ribosomes can be bound by a second antibiotic. (B) Schematic of antibiotics binding independently (top) or

competing for the same binding site (bottom). (C) Growth laws link intracellular ribosome concentration to the growth rate. Solid

line: ribosome concentration when growth rate is varied by varying nutrient quality; dashed lines: ribosome concentration when

growth rate is lowered by perturbation of translation. Circles show data from Ref. [Greulich et al., 2015]. (D) Data points are

dose-response curves for ERM and KSG; lines show best fits of the mathematical model. The best-fit values of the steepness

parameter α that encapsulates kinetic and physiological parameters (Methods) are shown. Both shallow (top panel, ERM) and

steep (bottom panel, KSG) dose-response curves are observed. (E) Examples of predicted dose-response surfaces. Scatter

plot depicts correlation between predicted and measured growth rate. The binding scheme assumed is indicated on the bottom

right and Pearson’s ρ on the top left. Predicted and measured dose-response surfaceare shown below the scatter plot. Color of

20% isobole (bottom) and plot markers (top) denotes the type of predicted interaction. (i) Response surface for antibiotics from

(D). Here, the independent binding scheme quantitatively predicts the response surface. (ii) As in (i) but for ERM-TET; model

with independent biding scheme correctly predicts mild synergism. (iii) For CHL-ERM, a competitive biding scheme results in an

additive interaction, which is observed experimentally. (iv) Interaction between STR-KSG is not explained by the model.

with the experimental data (Fig. 2E-iii).119

Other drug interactions clearly deviated from the model predictions. An example is the suppres-120

sive/antagonistic interaction between STR and KSG, which was predicted to be additive (Fig. 2E-iv).121

Such clear deviations could originate from the direct molecular interactions of the drugs on the ribo-122

some, and thus be specific for every pair of drugs. Alternatively, these mechanisms could originate123

from the multi-step structure of the translation cycle itself, making general predictions possible. In the124

most complex cases, drug interactions could result from drug effects that are unrelated to the primary125

drug target [Chevereau and Bollenbach, 2015], in particular from effects on drug uptake or efflux [Lazar126
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et al., 2013]. We focused on the most general hypothesis that drug interactions arise from the interplay127

of ribosomes halted in different stages of translation cycle such as initiation, translocation, recycling,128

etc. (Fig. 1).129

2.3 Inducible genetic bottlenecks in translation strongly affect antibiotic effi-130

cacy131

To test this hypothesis, we developed a technique to determine how halting ribosomes in different132

stages of the translation cycle affects the efficacy of various antibiotics. Specifically, we imposed ar-133

tificial bottlenecks in translation by genetically limiting the expression of translation factors that catalyze134

well-defined translation steps [Cole et al., 1987]. We constructed E. coli strains with translation factor135

genes under inducible control of a synthetic promoter [Lutz and Bujard, 1997]. These genes were in-136

tegrated in the chromosome outside of their endogenous loci and the endogenous copy of the gene137

was disrupted (Fig. 3A; Methods). This yielded six strains that enable continuous control of key trans-138

lation processes (Fig. 3B): stabilization of the 50S subunit (der), initiation (infB), delivery of charged139

tRNAs (tufA/B), release of GDP from elongation factors (tsf), translocation (fusA) and recycling of the140

ribosomes (frr) [Rodnina, 2018]. Reducing translation factor expression by varying the inducer con-141

centration resulted in a gradual decrease in growth which stopped at almost complete cessation of142

growth, reflecting the essentiality of translation factors (Fig. 3C, Methods and SI). Since the endoge-143

nous regulation of translation factors generally follows that of the translation machinery [Maaløe, 1979;144

Gordon, 1970; Blumenthal et al., 1976; Furano and Wittel, 1975], limiting the expression of a single145

translation factor imposes a highly specific bottleneck as all other components get upregulated. Fur-146

thermore, any global feedback regulation is left intact as we removed the factor from its native operon.147

These synthetic strains thus offer precise control over artificial translation bottlenecks that determine148

the rates of different translation steps.149

We next used these strains to assess the impact of bottlenecks on antibiotic efficacy. Accordingly,150

we measured growth rates over a two-dimensional matrix of concentrations of inducer and antibiotic151

for each of the six strains (Fig. 3C; Methods). To address if the action of the antibiotic is independent152

of the translation bottleneck, we analyzed these experiments using a multiplicative null expectation.153

Note that additivity as used for antibiotics (Fig. 1C) is not a suitable null expectation here since the154

responses to increasing concentrations of antibiotic and inducer are opposite. However, if antibiotic155

action is independent of the translation bottleneck, the growth rate should be a product of the relative156

growth rates of each of the two perturbations acting individually. Independence implies that the dose-157

response surface is obtained as a multiplication of the antibiotic dose-response and the translation factor158

induction curve. Deviations from independence indicate a nontrivial interaction between the bottleneck159

and the antibiotic action.160

We systematically identified interactions between translation inhibitors and bottlenecks by their devi-161

ation from independence. In general, antibiotic action can be alleviated or aggravated by a given bottle-162

neck, i.e., the bacteria can be less or more sensitive to the antibiotic due to the bottleneck, respectively.163
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Figure 3: Artificial translation bottlenecks strongly affect antibiotic efficacy. (A) Schematic of synthetic regulation

introduced to control the expression of a translation factor x, which creates an artificial bottleneck in translation at a well-defined

stage; lacI codes for the Lac repressor, which represses the PLlacO-1-promoter (Methods, [Lutz and Bujard, 1997]). (B) Constructs

were made for six translation factors mediating 50S stability (der), initiation (infB), recycling (frr), translocation (fusA), tRNA

delivery (tufAB) and GDP release (tsf), respectively. Higher expression alleviates the artificial bottleneck. Thicker lines or arrows

indicate higher rates. (C) Translation factor induction curves (upper row) and response surfaces over inducer-antibiotic grid for

different antibiotics (KSG and FUS, middle and bottom row, respectively) in combination with different bottlenecks (50S stability,

initiation, and translocation). Full induction of the translation factor rescues wild type growth; increasing bottleneck severity leads

to smooth decrease in growth rate to zero. Comparison of the response surfaces with independent expectation (dashed purple

line) identify alleviation (orange line) or aggravation (blue line). (D) Columns show bottleneck dependency vectors in color code;

dependency vectors quantify the response of a given antibiotic to the translation bottlenecks (Methods). (E) Clustering of the

bottleneck dependency vectors upon dimensionality-reduction by Principal Component Analysis (PCA; Methods). Circles show

dependency vectors projected onto the first two principal components (PC1, PC2); colors indicate cluster identity. The extended

cluster areas shown are convex hulls of bootstrapped projections (denoted by dots; Methods). Deviations of the three additional

antibiotics LAM, NIT, and TMP are denoted by a purple triangle, blue square, and green pentagon, respectively. The observed

clustering is highly significant (p ≈ 3× 10–4, bootstrap; Methods).

We quantified the magnitude of these effects by bottleneck dependency (BD) scores (Methods) and164

collected them into a single bottleneck dependency vector per antibiotic. The components of this vector165

describe the interaction between that antibiotic and all six translation bottlenecks. Bottleneck depen-166

dency vectors were diverse (Fig. 3D), indicating that bottlenecks at different stages of the translation167

cycle differentially affect antibiotic efficacy. These results are consistent with the hypothesis that the168

high diversity of drug interactions between translation inhibitors (Fig. 1D) originates in the diversity of169

translation steps targeted by the drugs (Fig. 1A).170

The bottleneck dependency vector of a given antibiotic provides a quantitative, functional summary171

of its interaction with the translation cycle. In this sense, it is a characteristic “fingerprint” of the antibiotic.172

Clustering of antibiotics based on these bottleneck dependency vectors (Methods) robustly grouped173

together antibiotics with similar mode of action (CRY and FUS, LCY and CHL in Fig. 3E, respectively).174

Further, drug interactions between antibiotics from the same cluster were strictly additive (Figs. 1D and175

3E). These results show that interactions of antibiotics with translation bottlenecks have considerable176
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explanatory power for drug mode of action and indicate that antibiotics acting as substitutes for one177

another can be identified based on these interactions.178

To challenge the predictive power of translation bottlenecks, we tested whether the mode of action179

of a partially characterized antibiotic can be inferred from its bottleneck dependency vector. We focused180

on lamotrigine (LAM), an anticonvulsant drug which was recently identified to inhibit maturation and in181

turn reduce the number of translating ribosomes, potentially by interfering with initiation factor 2 (IF2,182

encoded by infB) [Stokes et al., 2014]. The bottleneck dependency vector of LAM was most similar to183

that of KSG (Fig. 3D,E). As for LAM, a reduction of translating ribosomes is a signature of the initiation184

inhibitor KSG [Kaberdina et al., 2009]. Hence, this observation further corroborates that the similar185

bottleneck dependency vectors for translation inhibitors indicate similar mode of action.186

We further tested how an antibiotic with a mode of action unrelated to translation interacts with trans-187

lation bottlenecks. If drug interactions are primarily determined by their mode of action [Yeh et al., 2006;188

Brochado et al., 2018], antibiotics interfering with processes unrelated to translation should be af-189

fected similarly by all different translation bottlenecks as the net effects of translation bottlenecks are190

indistinguishable – all lead to cessation of protein synthesis. To test this idea, we chose the antibi-191

otic trimethoprim (TMP), which inhibits folate synthesis by binding to dihydrofolate reductase and is192

not known to directly perturb translation [Walsh, 2003]. Its bottleneck dependency vector indicates193

that all bottlenecks alleviated TMP’s action to various degrees (Fig. 3D) – a characteristic that is in-194

compatible with any of the clusters of translation inhibitors (Fig. 3E). Furthermore, TMP is known to195

primarily interact antagonistically or suppressively with translation inhibitors [Bollenbach et al., 2009;196

Yeh et al., 2006]. These results support the idea that the effects of specific translation bottlenecks197

are diverse for antibiotics targeting translation, but not for antibiotics with modes of action unrelated to198

translation.199

Streptomycin stands out among translation inhibitors, as its action is aggravated by all translation200

bottlenecks (Fig. 3D). This might be a consequence of additional unspecific modes of action. We corrob-201

orated this by measuring the bottleneck dependency vector of a prodrug nitrofurantoin (NIT). Nitrofuran-202

toin has complicated effects on the bacterial cell, including the formation of non-native disulfide bonds203

in protein structures [Bandow et al., 2003], DNA damage, and oxidative stress [Mitosch et al., 2017]. A204

similar bottleneck dependency between STR and NIT likely reflects that, beyond inhibiting translation,205

STR has strong secondary effects: it causes protein mistranslation, changes in membrane potential,206

and membrane permeabilization [Davis, 1987]. Some of these processes, in particular the production207

of dysfunctional proteins, overlap with those of NIT [Bandow et al., 2003], offering an explanation for the208

observed similarity of these seemingly unrelated drugs.209

2.4 Drug interactions can be predicted from antibiotic responses to translation210

bottlenecks211

We reasoned that the effects of translation bottlenecks on antibiotic action should also have predictive212

power for drug interactions involving translation inhibitors. We thus sought for a quantitative way of prob-213
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ing the contribution of translation bottlenecks to drug interactions between translation inhibitors. Trans-214

lation can be seen as a sequence of steps in which ribosomes progress through the protein production215

cycle. Antibiotics and genetic translation bottlenecks hinder this progression similarly by reducing the216

transition rates between such steps (Fig. 4A). In cases where an antibiotic specifically targets a single217

translation step and reduces the same transition rate as a genetic translation bottleneck, the antibiotic218

effect and the genetic translation bottleneck should be equivalent perturbations, i.e., the consequences219

of any perturbation elsewhere in the translation cycle should be independent of the exact means by220

which such a reduction has been effected (Fig. 4B).221

To establish the equivalence between translation bottlenecks and antibiotic action, we first trans-222

formed the measurements of growth rate as a function of translation factor induction into dose-response223

curves of a corresponding idealized antibiotic that targets a single translation step with perfect specificity.224

In essence, this procedure converts inducer concentrations into equivalent antibiotic concentrations: the225

two concentrations are identified as equivalent if they lead to the same relative growth rate (Fig. 4C,D;226

Methods). If the perturbations of factor and antibiotic are equivalent, then the true and idealized antibi-227

otic should act as substitutes for each other, and thus exhibit an additive drug interaction. Consequently,228

we can use this comparison (Figs. 4C and S4) to test systematically if the action of antibiotics is equiv-229

alent to specific translation bottlenecks.230

We found that the effect of certain translation inhibitors can be almost perfectly mimicked by trans-231

lation bottlenecks. Within our selection of antibiotics, several strong candidates for equivalent perturba-232

tions exist (Fig. 1A): CRY, FUS and STR with EF-G (translocation); KSG with IF2 (initiation); and TET233

with EF-Tu (tRNA-delivery). For example, remapping the response surface of CRY and EF-G yields an234

additive surface (Fig. 4E), corroborating that CRY and the EF-G translocation bottleneck are equiva-235

lent perturbations. In contrast, if the bottleneck is not equivalent to the drug, remapping does not yield236

an additive response surface; an example is CRY and the recycling bottleneck (Fig. 4F,ii). In general,237

demonstrating that an antibiotic acts as an equivalent perturbation to a specific translation factor pro-238

vides strong evidence for its primary mode of action, since translation factors are thought to control239

individual steps with high specificity.240

For antibiotics that are equivalent to specific translation factors (Fig. 4F), drug interactions with other241

antibiotics can be directly explained and predicted. In practice, this is done by remapping the antibiotic-242

translation factor response surfaces as described above (Fig. 5A,B). The resulting prediction will be243

faithful if the drug interaction originates exclusively from the combination of two bottlenecks in the trans-244

lation cycle. Drug interactions predicted using this procedure were often highly accurate (Fig. 5C). In245

particular, some of the most striking cases of antagonistic and suppressive interactions were correctly246

predicted. For example, the suppressive interaction of CHL with FUS was correctly predicted, including247

its direction: FUS loses potency when exposed to CHL (Fig. 5C-i). Further, the prediction of antagonism248

between CHL and STR was qualitatively correct (Fig. 5C-ii). Similarly, prediction of these interactions249

with FUS and STR were also correct for LCY (Fig. S5) which is similar to CHL (Fig. 3E). The remapping250

approach further correctly predicted the prevalent antagonism and suppression of the initiation inhibitor251
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Figure 4: Translation factor deprivation mimics the action of equivalent antibiotics. (A) Schematic of translation as a

sequence of steps (white), catalyzed by translation factors (gray). In the absence of perturbations, ribosomes progress through

the steps unimpeded, resulting in unperturbed growth. (B) Schematic of perturbed translation. Top: as the abundance of factor F1

is lowered (smaller factor symbol), the rate of step 1 decreases (thinner arrows) and ribosomes queue in front of the bottleneck.

Bottom: the same rate is reduced by an antibiotic. The effects of factor deprivation and antibiotic action on growth are equivalent.

(C) Schematic of conversion of inducer concentration in (here for the translocation factor) into the mimicked antibiotic concentra-

tion c (here: CRY). For each inducer concentration in, the growth rate from the induction curve g(in) is determined and the same

growth rate on the antibiotic dose-response curve y (c) is identified (gray dashed line); the inverse function of the dose-response

curve yields the equivalent antibiotic concentration as c = y–1 (g(in)). (D) Resulting conversion of inducer concentration ci into an-

tibiotic concentration c for three different pairs of equivalent perturbations: CRY-translocation (gray), KSG-initiation (yellow) and

TET-tRNA delivery (orange). (E) Inducer-antibiotic response surface (left) and mimicked antibiotic-antibiotic response surface

(right) upon conversion of inducer concentration as in (C) and (D). Purple dashed line shows isobole for multiplicative responses

at relative growth rate 0.2. The remapped response surface is additive, corroborating the equivalence of CRY and translocation

factor deprivation. (F) Comparison of response surfaces remapped as in E to the additive expectation. The bottlenecks and

antibiotics are shown on the bottom right, respectively. Errors in LI and in expected and remapped responses were evaluated by

bootstrapping (Methods). (i) Example from (E): additive expectation and remapped response surface agree (ρ = 0.99). (ii) As

(i), but for a recycling bottleneck. The large and statistically significant discrepancy in LI from 0 indicates that CRY and recycling

bottleneck are not equivalent (Methods, Fig. S4). (iii) As (i), but for KSG and initiation bottleneck (ρ = 0.98). (iv) As (i), but for

TET and tRNA delivery bottleneck (ρ = 0.99).

KSG with other translation inhibitors (Fig. 1D). Remapping qualitatively accounted for all observed in-252

teractions of KSG with quantitative agreement in several cases, including KSG-CHL (Fig. 5A-ii) and253

KSG-STR (Fig. 5C-iv and SI). Thus, several drug interactions with previously elusive mechanisms are254
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Figure 5: Equivalent translation bottlenecks can predict antibiotic interactions. (A) Example of drug interaction prediction

based on equivalent translation bottlenecks. (i) Response surface of CHL combined with the inducer for the initiation (infB) bottle-

neck shows mild alleviation. This response surface contains information about the interaction between CHL and any antibiotic that

interferes with initiation. The inducer axis is remapped into mimicked antibiotic concentration (lower box; Fig. 4C-E). (ii) Resultant

prediction of response surface for the initiation-inhibiting antibiotic KSG and CHL. (iii) Measured KSG-CHL response surface for

direct comparison; strong antagonism is observed as predicted. (iv) Point-by-point comparison of predicted and measured re-

sponse surfaces (Pearson’s ρ = 0.98). (B) Schematic showing antibiotics and their equivalent translation factor bottlenecks. Drug

interactions with these antibiotics can be predicted for any antibiotic with known response to the equivalent bottleneck. Color-

code shows cluster identity from Fig. 3E. (C) Comparison of predicted and measured response surfaces for different antibiotics

in combination with antibiotics that have a factor analog. Top row: scatter plots as in A-iv; bottom row: predicted and measured

response surfaces, respectively. (i) Suppression of FUS by CHL at high inhibition is correctly predicted. (ii) Antagonistic interac-

tion between KSG-LCY (KSG is mimicked by initiation bottleneck) is correctly predicted. (iii) Additivity between CHL-TET based

on mimicking TET by a tRNA delivery bottleneck is correctly predicted. (iv) Strong antagonism between KSG and STR based on

mimicking KSG by an initiation bottleneck is correctly predicted.

explained by the interplay of the specific steps in the translation cycle that are targeted by the constituent255

antibiotics.256

Our approach further explained nontrivial additive interactions. In particular, the additive interaction257

between CHL and TET is hard to rationalize: these antibiotics have completely different binding sites on258

the ribosome. However, CHL and TET interacted similarly with translation bottlenecks (Fig. 3E) and their259
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interaction was faithfully captured by the remapping approach (Fig. 5C-iii). This observation suggests260

that the action of CHL is largely equivalent to inhibiting tRNA delivery. As CHL binding interferes with a261

distal end of tRNA on the A-site [Wilson, 2014], this suggests that perturbation of tRNA dynamics is at262

the heart of the drug interaction between TET and CHL. KSG and ERM constitute another antibiotic pair263

that interacted additively and was clustered together. Remapping correctly predicted additivity between264

KSG-ERM (SI); however, ERM does not directly inhibit initiation as does KSG (Table 1). Yet, it is likely265

that the inability of ERM to inhibit translation when the nascent peptide chain is extended beyond a266

certain length effectively leads to a functional equivalence, which results in additivity and co-clustering267

of ERM and KSG.268

For certain antibiotic pairs, the predictions based on equivalent translation bottlenecks failed to ex-269

plain the observed drug interactions (e.g., for LCY-CRY and CHL-CRY; SI), indicating that these in-270

teractions have origins outside of the translation cycle. We expect that these cases are often due271

to idiosyncrasies of the drugs, which will require separate in depth characterization in each case. In272

contrast, our results show that various non-trivial drug interactions between antibiotics are systemati-273

cally explained by the interplay of specific bottlenecks in the translation cycle that are caused by the274

antibiotics. While the growth-law based biophysical model already explained ≈57% (16 of 28) of the275

observed interactions (Fig. S2), suppressive interactions were only captured after taking into account276

the multi-step nature of translation (Fig. S5), thus increasing the explained fraction to ≈71% (20 of 28).277

If suppressive drug interactions are caused by the interplay of different translation bottlenecks alone, it278

should be possible to recapitulate these interactions in a purely genetic way. We thus expanded our ap-279

proach of using genetic translation bottlenecks as proxies for antibiotics by introducing multiple genetic280

bottlenecks simultaneously in the same cell.281

2.5 Simultaneous titration of translation factors reveals robust suppression be-282

tween translocation and initiation inhibition283

We focused on the interactions between initiation inhibitors (such as KSG) and translocation inhibitors284

(such as CRY, STR, FUS) as they were exclusively antagonistic or suppressive (Fig. 1D). Moreover, the285

initiation inhibitor KSG alleviated a genetic translocation bottleneck and an initiation bottleneck in turn286

suppressed the effect of the translocation inhibitor FUS (Fig. 3C). These observations suggest that a287

universal mechanism underlies the suppression between initiation and translocation inhibitors.288

Thus, we constructed a synthetic strain that enables simultaneous independent control of initiation289

and translocation factor levels. We integrated the initiation and translocation factors outside their native290

loci under tight control of promoters inducible by IPTG and anhydrotetracycline (aTc), respectively, in291

a strain in which their endogenous copies were deleted (Figs. 6A and S6; Methods). To maximize292

the precision of induction that is achievable with different inducer concentrations, we put both factors293

under negative autoregulatory control by chromosomally integrated repressors [Klumpp et al., 2009;294

Scott et al., 2010]. The resulting strain showed no growth when at least one of the inducers was absent295

but wild type growth was fully rescued in the presence of both inducers (Fig. 6B). These observations296

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 15, 2019. ; https://doi.org/10.1101/843920doi: bioRxiv preprint 

https://doi.org/10.1101/843920
http://creativecommons.org/licenses/by-nc-nd/4.0/


confirm that both translation factors are essential and show that their expression can be varied over297

the entire physiologically relevant dynamic range, thus enabling quantitative genetic control of two key298

translation processes.299

Curtailing translation initiation suppresses the effect of a genetic translocation bottleneck. We de-300

termined the bacterial response to varying translocation and initiation factor levels by measuring growth301

rates over finely resolved two-dimensional concentration gradients of both inducers. The resulting re-302

sponse surface clearly showed that inhibition of initiation alleviates the effect of translocation inhibition303

(Figs. 6C and S6). This phenomenon exactly mirrors the antibiotic-antibiotic (KSG-FUS, Fig. 1D) and304

bottleneck-antibiotic interactions (initiation-FUS, Fig. 3C). Note that an all-or-nothing approach (Fig. 6B),305

which is analogous to common genetic epistasis measurements [Constanzo et al., 2010], would miss306

this suppressive effect, highlighting the importance of the quantitatively controlled perturbations we307

used. Taken together, these data show that the interplay of translation initiation and translocation alone308

is sufficient to produce strong suppression: dialing down initiation cranks up growth stalled by transloca-309

tion bottlenecks. The widespread suppression between antibiotics targeting initiation and translocation310

is thus explained as a general consequence of the combined inhibition of specific translation steps311

alone.312

What is the underlying mechanism of the suppressive interaction between initiation and transloca-313

tion inhibitors? We hypothesized that this suppression results from alleviating ribosome “traffic jams”314

that occur during translation of transcripts when the translocation rate is low (Fig. 6D). The traf-315

fic of translating ribosomes that move along mRNAs can be dense [Mitarai et al., 2008] and when316

a ribosome gets stuck (e.g., due to a low translocation rate), it blocks the translocation of subse-317

quent ribosomes. The resulting situation is similar to a traffic jam of cars on a road. Traffic jams318

form due to asynchronous movement and stochastic progression of particles in discrete jumps, which319

is a good approximation for the molecular dynamics of a translating ribosome. If particle progres-320

sion were deterministic and synchronous, no traffic jams would form. A classic model of queued321

traffic progression, which can be applied to protein translation [MacDonald et al., 1968; MacDonald322

and Gibbs, 1969], is the Totally Asymmetric Simple Exclusion Process (TASEP) [Shaw et al., 2003;323

Zia et al., 2011].324

We developed a variant of the TASEP that describes the traffic of translating ribosomes on mRNAs325

and takes into account the laws of bacterial cell physiology. There are several differences between the326

classic TASEP and translating ribosomes moving along a transcript. First, a ribosome does not merely327

occupy a single site (codon), but rather extends over 16 codons [Kang and Cantor, 1985]. Second, the328

total number of ribosomes in the cell is finite and varies as dictated by bacterial growth laws [Scott et al.,329

2010; Scott et al., 2014]. Third, translation steps are mediated by translation factors that bind to the ri-330

bosome in a specific state and push the ribosome into another state [Rodnina, 2018]. These transitions331

are stochastic with rates that depend on the abundance of ribosomes in a specific state and on the abun-332

dance of translation factors available to catalyze the step. Thus, the initiation and translocation-attempt333

rates, which are constants in the classic TASEP, depend on the state of the system. We formulated a334
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Figure 6: Suppression between inhibition of translocation and initiation is explained by dissolution of ribosome traffic

jams in a phase transition. (A) Schematic of ribosomes progressing along a transcript – a stuck ribosome can cause a traffic

jam. Ribosomes undergo factor-mediated initiation events with attempt rate ζ and translocation with attempt rate γ. Expression

of initiation and elongation factor G (translocation) are controlled by level of inducer (IPTG and aTc, respectively). (B) Results of

all-or-nothing growth assay: bacteria grow only when both essential factors are induced. (C;i) Measured growth rate response

surface for the dual inducible promoter strain from (A) as a function of both inducer concentrations; red line shows ridge of

maximum growth. (C;ii) Cross-section of the response surface along dashed purple line in (i) (gray circles) and at maximal aTc

induction (white circles); solid lines are smoothed profiles. Black arrow denotes decrease in translocation; if initiation is lowered

simultaneously with translocation (orange arrow), growth reduction is smaller. (D) Schematic of theoretical model: translation

is described as an ensemble of transcripts competing for the limited and growth-rate-dependent pool of ribosomes. Ribosomes

advance on transcripts as described by a generalized totally asymmetric simple exclusion process (TASEP) for particles of size

L, see (A) and text. When γ < ζ(1 + L1/2), ribosomes saturate and traffic jams develop, resulting in a drop in elongation and

growth (black arrow, transition happens at black triangle) (Methods, [Klumpp and Hwa, 2008; Lakatos and Chou, 2003]). When

ζ < γ/(1 + L1/2), a phase transition occurs (green triangle): traffic jams dissolve; elongation and growth increase (along the

green arrow). (E;i) Growth rate predicted by the generalized TASEP model recapitulates suppression of translocation inhibition

by lowered initiation; note that, unlike in (C), axes show the concentrations of translation factors. States below and to the right of

the green line are in the translocation limiting regime. (E;ii) Cross-sections of the response surface: solid purple line corresponds

to dashed purple line in (i). As the initiation factor level is decreased, the critical point of the phase transition (green triangle) is

reached; growth starts increasing after passing the critical point, and decreases again after passing the maximum (red square)

as the number of translating ribosomes becomes limiting. (F) Bottleneck dependency (BD) score quantifies the deviation from

independent expectation (BD = 0) for the response surfaces in (C;i) and (E;i); error bars are 5%-95% bootstrap intervals.

generalized TASEP that captures these extensions, estimated all of its parameters based on literature,335

and derived the model equations analytically (Methods); the resulting growth rate was calculated nu-336

merically. In brief, our generalized TASEP model provides a physiologically-realistic description of the337

factor-mediated traffic of ribosomes on multiple transcripts.338

Without any free parameters, the generalized TASEP qualitatively reproduced the suppressive ef-339

fect of lowering the initiation rate under a translocation bottleneck (Fig. 6E). This suppression results340

from a phase transition between the translocation- and the initiation-limited regime (Methods). In the341

translocation-limited regime (black arrow in Fig. 6E-ii), ribosome traffic is dense and cannot be further342
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increased by boosting the initiation attempt rate. Upon decreasing the initiation attempt rate α (green343

arrow in Fig. 6E-ii), a phase transition to the initiation-limited regime occurs. Beyond the critical point344

of this phase transition (green triangle in Fig. 6E-ii), the elongation velocity, and with it the growth rate,345

begins to increase with decreasing initiation attempt rate. Thus, ultimately, a non-equilibrium phase tran-346

sition in which ribosome traffic jams dissolve underlies the suppressive effect. To compare measured347

and predicted surfaces that have different axes, we calculated their deviation from independence as for348

the bottleneck dependency score (Figs. 3D and S3). By this measure, the model faithfully captured the349

clear deviation from the multiplicative expectation (Fig. 6F); the agreement with the experimental data is350

surprisingly good, especially since the model results are parameter-free and not a fit to the experimental351

data.352

Taken together, these results show that suppressive drug interactions between translation inhibitors353

are caused by the interplay of two different translation bottlenecks. Close agreement of the experiments354

with a plausible theoretical model of ribosome traffic, which captures physiological feedback mediated355

by growth laws, strongly suggests that suppression is caused by ribosome traffic jams. Such traffic356

jams result from imbalances between translation initiation and translocation; they dissolve in a phase357

transition that occurs when one of these processes is slowed, leading to an overall acceleration of358

translation and growth. Thus, a non-equilibrium phase transition in ribosome traffic is at the heart of359

suppressive drug interactions between antibiotics targeting translation initiation and translocation.360

3 Discussion361

We established a framework that combines mathematical modeling, high-throughput growth rate mea-362

surements, and genetic perturbations to elucidate the underlying mechanisms of drug interactions be-363

tween antibiotics inhibiting translation. Kinetics of antibiotic-target binding and transport together with364

the “growth laws”, i.e., bacterial response to translation inhibition (Fig. 2), form a biophysically-realistic365

baseline model for predicting antibiotic interactions from properties of individual antibiotics alone. This366

model explained some interactions, but not all, failing specifically on suppressive interactions. Predic-367

tions improved by taking into account the step-wise progression of ribosomes through the translation368

cycle (Fig. 4, 5). This was achieved by mimicking antibiotic perturbations of this progression genetically,369

which directly identified the contribution of antibiotic-imposed translation bottlenecks to the observed370

drug interactions. Finally, to explain the origin of suppressive interactions unaccounted for by the bio-371

physical model, we modeled the traffic of translating ribosomes explicitly. Our results show that translo-372

cation inhibition can cause ribosomal traffic jams, which dissolve in a non-equilibrium phase transition373

when initiation is inhibited simultaneously with translocation, thereby restoring growth (Fig. 6). This374

phase transition explains the suppressive drug interactions between antibiotics targeting initiation and375

translocation.376

Taken together, our framework mechanistically explains twenty out of twenty-eight observed drug377

interactions (Fig. 1, S2, S5), as judged by highly stringent quantitative and statistical criteria (Methods).378

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 15, 2019. ; https://doi.org/10.1101/843920doi: bioRxiv preprint 

https://doi.org/10.1101/843920
http://creativecommons.org/licenses/by-nc-nd/4.0/


Here, even the cases rejected as quantitatively different are insightful. For example, the remapping-379

based prediction of CHL-FUS interaction (Fig. 5C-ii) over-estimates the suppression and is rejected on380

quantitative basis; yet remapping correctly suggests the occurrence of suppression and its direction.381

Qualitative observations like these deepen our understanding of drug interactions as they highlight382

potential mechanisms of drug interaction, on top of which additional mechanisms are acting. While we383

focused on translation inhibitors, key elements of our framework can be generalized to drugs with other384

modes of action. Specifically, when considering a drug that targets a specific process mediated by an385

essential enzyme, our method of equating the deprivation of the enzyme with the action of an antibiotic386

is readily applicable.387

Mimicking the effects of two drugs with controllable genetic perturbations generalizes the concept388

of genetic epistasis to continuous perturbations. Epistasis studies compare the effects of double gene389

knockouts to those of single knockouts and identify epistatic interactions – an approach that can reveal390

functional modules in the cell [Segre et al., 2005; Tong et al., 2004; Constanzo et al., 2010]. Our results391

show that continuous genetic perturbations provide essential additional information on genetic inter-392

actions (Fig. 6). Firstly, the direction of epistatic interactions cannot be extracted from measurements393

of single and double mutants. Secondly, the quantitative information obtained from such “continuous394

epistasis” measurements provides more stringent constraints for mathematical models of biological sys-395

tems. In particular, continuous epistasis data can be powerful for the development of whole-cell models396

that describe the interplay of different functional modules in the cell. Thirdly, this approach allows in-397

cluding essential genes in epistatic interaction networks even for haploid organisms, which otherwise398

requires the use of less well-defined hypomorphs. Thus, continuous epistasis measurements as in399

Fig. 6C augment all-or-nothing genetic perturbations.400

Continuous epistasis measurements further enable a deeper understanding of previously mysteri-401

ous antibiotic resistance mutations. Specifically, translation bottlenecks that alleviate the effect of an402

antibiotic expose a latent potential for resistance development. Indeed, mutations leading to effects403

that are equivalent to factor-imposed bottlenecks occur under antibiotic selection pressure. For ex-404

ample, resistance to ERM in E. coli can be conferred by mutations in proteins of the large ribosomal405

subunit, which hinder its maturation and lower its stability [Zaman et al., 2007]. Consistent with this406

observation, our results indicate that the action of ERM is alleviated by lowering the stability of the 50S407

subunit (Fig. 3D). Furthermore, mutations in recycling factor were selected in Pseudomonas aerugi-408

nosa evolved for resistance to the TET derivative tigecycline [Sanz-Garcia et al., 2018]. The observed409

alleviation of TET action by a recycling bottleneck (Fig. 3D) offers a mechanistic explanation for the ben-410

eficial effects of these mutations. Mutations in other genes predicted based on the effect of translation411

bottlenecks may be difficult to observe, especially in clinical isolates, due to the associated fitness cost412

and selection pressure for reverting the mutations in the absence of the antibiotic. Beyond mutations413

conferring resistance to individual drugs, consistent or conflicting dependencies of different antibiotics414

on translation bottlenecks may further indicate the potential for evolving cross-resistance and collateral415

sensitivity, respectively [Baym et al., 2016].416
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In conclusion, we presented a systematic approach for discovering the mechanistic origins of drug417

interactions between antibiotics targeting translation. As the translation machinery is highly conserved,418

the interaction mechanisms for drugs targeting specific steps of translation we uncovered may gen-419

eralize to diverse other organisms. Our approach of mimicking drug effects with continuous genetic420

perturbations is general and can be extended to antibiotics with other primary targets, other types of421

drugs, and other organisms. Our quantitative analysis relies on the established correlation between422

ribosome content and growth rate in varying nutrient environments [Scott et al., 2010]. This highlights423

the importance of elucidating such growth laws in other organisms for gaining a deeper understanding424

of combined drug action. In the long run, extending our combined experimental-theoretical approach425

to other types of drugs and other biological systems will enhance our understanding of drug modes of426

action and interaction mechanisms and provide deeper insights into cell physiology.427
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7 Material and Methods590

Bacterial strains591

Escherichia coli K-12 MG1655 strain was used as wild-type (WT) strain. When necessary, selec-592

tion on kanamycin was performed at 25 µg/mL (for post-recombineering selection, see below) or at593

50 µg/mL (for P1 transduction and plasmid selection). A concentration of 100 µg/mL was used for594

ampicillin (pCP20, resistance cassette resolution) and spectinomycin (pSIM19, recombineering).595

To measure the bioluminescence time traces, pCS-λ encoding the bacterial luxCDABE operon596

driven by the constitutive λ-PR promoter was transformed into the strains of interest [Kishony and597

Leibler, 2003]. Selection for the luminescence plasmid was used during the preparation of glycerol598

stocks (kanamycin 50µg/mL) but was omitted during the measurements to avoid unknown chemical in-599

teractions between used antibiotics. The plasmid was stably maintained as we observed no significant600

fitness deficit due to pCS-λ and no apparent spontaneous loss of the plasmid.601

The translation factor titration platform was established in a strain HG105 (MG1655 ∆lacIZYA) [Gar-602

cia et al., 2011]. Briefly, endogenous genes encoding for translation factors were first sub-cloned into603

pKD13 vector under the control of PLlacO–1 promoter with FRT-flanked kanamycin resistance cassette604

(kanR) and rrnB terminator TrrnB upstream and downstream of the gene, respectively [Datsenko and605

Wanner, 2000; Klumpp et al., 2009; Scott et al., 2010; Lutz and Bujard, 1997]. The tandem of kanR
606

and a gene with all regulatory elements was integrated into the chromosome (galK locus) using λ-red607

recombineering (plasmid pSIM19 [Datta et al., 2006]). The kanamycin resistance cassettes here and in608

the following steps were resolved using yeast FLP resolvase expressed from pCP20 [Cherepanov and609

Wackernagel, 1995]. Loss of the resistance cassette and curing of the pCP20 plasmid were checked610

by streaking on selection agar plates with antibiotics and by junction PCR (for resolution). Following the611

resolution of kanR, the endogenous factor was inactivated by in-frame deletion: kanR was integrated612

into the gene locus and then resolved, which left a 34 aa-residue peptide [Datsenko and Wanner,613

2000]. We were unable to introduce kanR directly into the strain with PLlacO–1 driven frr; therefore,614

we first performed the deletion in an auxiliary strain MG1655 ∆frr::kanR bearing the ASKA plasmid615

with frr [Kitagawa et al., 2005] [JW0167(-GFP)], which complemented the chromosomal deletion when616

IPTG was added. Deletion was possible in the auxiliary strain. We then moved the deletion by gen-617

eralized P1 transduction [Lennox, 1955]. For tufAB, we P1-transduced the deletions (∆tufA::kanR and618

∆tufB::kanR) sequentially from the respective gene deletion strains from the KEIO collection [Baba619

et al., 2006]. All other deletions were performed directly in the strains of interest using λ-red recombi-620

neering using pKD13 as a template for the cassette amplification [Datsenko and Wanner, 2000]. In the621

last step, lacI driven by the PLlacO–1 promoter (yielding a growth-rate independent negative autoregula-622

tion [Klumpp et al., 2009; Scott et al., 2010]) together with the FRT-flanked kanR was integrated into intS623

locus and the resistance cassette was resolved. The allele ∆intS::kanR-PLlacO–1-lacI-TrrnB was moved624

into the strains by generalized P1 transduction. All chromosomal modifications were validated by PCR.625

The factor titration platform and the repressor operon were Sanger-sequenced at the integration junc-626

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 15, 2019. ; https://doi.org/10.1101/843920doi: bioRxiv preprint 

https://doi.org/10.1101/843920
http://creativecommons.org/licenses/by-nc-nd/4.0/


tions using PCR primers or a primer binding into the kanR promoter region (which is upstream of the627

PLlacO–1 promoter prior the resolution). The final genotype for the strains bearing the factor titration628

platforms is HG105 ∆galK::frt-PLlacO–1-x ∆x::frt ∆intS::frt-PLlacO–1-lacI, where x denotes the chosen629

factor. These strains contained no plasmids and no antibiotic resistance cassettes but had a single630

copy of a translation factor under inducible control.631

To generate the strain with independently regulated initiation and translocation factors, we started632

with a strain carrying a single infB copy driven by PLlacO–1. Then, the negatively autoregulated tetR633

repressor was integrated into the chromosome, followed by FLP resolvase-mediated resolution of the634

selection marker. This enabled the integration of PLtetO–1-driven fusA into the intS locus; resolution was635

followed by the disruption of the endogenous copy of fusA. Furthermore, we introduced a negatively636

auto-regulated lacI into the xylB locus. This yielded a marker-less strain with the two essential genes637

infB and fusA under inducible, negatively autoregulated and independent control. The final genotype is:638

HG105 ∆galK::frt-PLlacO–1-infB ∆infB::frt ∆ycaCD::frt-PLtetO–1-tetR ∆intS::frt-PLtetO–1-fusA ∆fusA::frt639

∆xylB::frt-PLlacO–1-lacI. Oligonucleotide sequences, targeted template, restrictions sites (when used)640

and brief description of use are in Supplementary Table S2. All DNA modifying enzymes and Q5641

polymerase used in PCR were from New England Biolabs.642

Growth rate assay and two-dimensional concentration matrices643

Rich lysogeny broth (LB) medium, which at 37◦C supports a growth rate of 2.0 ± 0.1 h–1, was used.644

LB medium was prepared from Sigma Aldrich LB broth powder (L3022), pH-adjusted by adding NaOH645

or HCl to 7.0 and autoclaved. Antibiotic stock solutions were prepared from powder stocks (for catalog646

numbers, see Table S1), dissolved either in ethanol (CHL, ERM and TET), DMSO (LAM and TMP) or647

water (KAN, CRY, LCY, KSG, FUS and STR), 0.22 µm filter sterilized and kept at -20◦C in the dark until648

used. Antibiotics were purchased from Sigma Aldrich or AvaChem. A previously established growth-649

rate assay based on photon counting was used to precisely quantify the absolute growth rates over650

the course of 5-9 generations [Kishony and Leibler, 2003]. Cultures were grown in 150 µL of media651

in white 96-well microtiter plates (Nunc 236105), which were tightly sealed by transparent adhesive652

foils (Perkin-Elmer 6050185 TopSeal-A PLUS) to prevent contamination and evaporation. We prepared653

glycerol stocks of WT and factor-titration platform strains from saturated overnight cultures. We inocu-654

lated the cultures with ∼ 102 cells per well (1:106 dilution) from either thawed glycerol stocks (for the655

drug interaction network) or from liquid cultures in which we first incubated the bacteria containing the656

factor titration-platform for 1 h in the absence of IPTG (inoculated by 1:2000 dilution of the glycerol657

stock) to partially dilute out the remaining factor molecules before additional 1:1000 dilution into mea-658

surement plates. Between 10-20 plates were cycled through a plate reader using a stacking system659

(Tecan M1000). We built a custom incubator box around the stacker towers to facilitate ventilation and660

fix the temperature to 37◦C. This incubator was designed and troubleshot by BK and Andreas Anger-661

mayr (IST Austria and University of Cologne) and built by IST Miba Machine Shop. Each plate was662

read every 20-40 min and was shaken (orbital 10 s, 582 rpm) immediately before reading (settle time663
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10 ms, integration time 1 s). Plates were manually pipetted and concentration gradients of antibiotics664

and IPTG were prepared by serial dilution (0.70-fold). Growth rates were determined as a best-fit slope665

of a linear function fitted to the log-transformed photon counts per second. The detailed fitting procedure666

and examples of growth curves are shown in Fig. S1. The experimental and analysis procedure led to667

reproducible measurements of growth rates between days (Fig. S1, ρ ≈ 0.86). Two-dimensional gradi-668

ents were usually set up in a 12×16 matrix (across two 96-well plates). For the double factor titration669

experiment the inducer gradients were set up across 6 plates to form a 24×24 grid.670

Normalization of dose-response surfaces671

All growth rates were normalized with respect to the average growth rate in drug-free medium [for672

factor-titration strains at highest inducer concentration (5 mM)]. Small differences between individual673

dose-response curves were inevitable due to challenges at preparing identical concentrations gradients674

on different days. To correct for such day-to-day variability, we rescaled the concentration units to the675

IC50 for each drug. The IC50 was obtained from fitting the Hill function y (x) = 1/
[
1 + (x /IC50)n

]
to676

the individual dose-response curves. The dose-response curve of each drug was measured seven677

times and averaged. The IC50 and corresponding errors reported in Table 1 are extracted from such678

average dose-response curves. Induction curves were normalized slightly differently, using a shifted679

and increasing Hill function in the form g(in) = [(in + in0)/IC50]n /
{

1 + [(in + in0)/IC50]n
}

, where in0 is a680

concentration offset. The latter parameter was required as the complete cessation of growth was not681

achievable in some cases even in the absence of inducer as the promoter PLlacO–1 is leaky. Inducer682

concentrations were thus rescaled via in→ (in + in0)/IC50.683

Smoothing of dose-response surfaces684

To reduce noise when plotting response-surfaces, we smoothed the data using a custom Mathematica685

script that implements locally weighted regression (LOESS) [Cleveland and Devlin, 1988]. This ap-686

proach only smoothed the contours and did not alter the character of dose-response surfaces. Smooth-687

ing was only used for plotting and not for the analysis in which only linear interpolations between points688

were used (Mathematica function Interpolation).689

Quantification of the drug interaction type and bottleneck dependency690

Loewe interaction score691

To quantify the drug interaction between a pair of antibiotics, we defined the Loewe interaction score as692

LI = log
( ∫

g(x1, x2)dx1dx2∫
g(x1, x2)adddx1dx2

)
, (1)

where g(x1, x2) and gadd(x1, x2) are the measured and the predicted additive dose-response surfaces693

over a 2D concentration field (x1, x2), respectively. The score LI is a log-transformed ratio of volumes694
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underneath the dose-response surfaces. It is positive for antagonistic and suppressive interactions, 0695

for perfectly additive, and negative for synergistic interactions. To avoid imposing arbitrary bounds for696

classifying a measured interaction as synergistic or antagonistic/suppressive (rather than additive), we697

performed smooth bootstrapping on a set of ideal additive response surfaces to establish a distribution of698

interaction indices expected for perfectly additive but noisy surfaces. To achieve this, we generated ad-699

ditive dose-response surfaces for drugs with Hill steepness parameter n between 1.8 and 6.6 (obtained700

as 10% and 90% percentiles of the steepnesses distribution for measured dose-response curves). We701

estimated the variabilities of measurements σv from data from eight replicated dose-response curves702

with seven replicates per data point and fitting errors σf from the slope of all growth rate fits. Both error703

and variability distributions were well described by log-normal distributions. For each point on the gener-704

ated surfaces, we added Gaussian noise with standard deviation given as
√
σ2

v + σ2
f , where both σv and705

σf were drawn from respective log-normal distributions. We calculated LI score for 2000 response sur-706

faces and obtained the distribution shown in Fig. S1D. We determined boundaries separating synergistic707

and antagonistic LI scores (blower and bupper, respectively) from additive interval as Bonferroni-corrected708

percentiles (for 5%/28 ≈ 0.18% and 99.82%) of the bootstrapped distribution Fig. S1D). Mean LI scores709

for measured response surfaces falling outside of the interval with these boundaries were classified as710

synergistic or antagonistic; otherwise, the interaction was classified as additive.711

Bottleneck dependency score712

Similar to LI, the bottleneck dependency score BD is an integrative quantity that concisely reports on713

the response-averaged deviation from independence. To calculate this score, the antibiotic and inducer714

concentrations are first converted into corresponding responses using the induction- and antibiotic dose-715

response curves (Fig. S3). Mathematically, this means that rx = y (c) and ry = g(in) for antibiotic716

and inducer, respectively. In response space, the null-expectation is independence, i.e. the expected717

response is a product of individual responses. Thus, we define the BD score as718

BD = log
(∫

r (rx , ry )drx dry∫
rx ry drx dry

)
. (2)

This score is zero when the two perturbations (bottleneck and antibiotic) are independent; it is pos-719

itive or negative for alleviation and aggravation, respectively. As for the LI score, we evaluated the720

independence interval of BD scores by bootstrapping the BD score for independent surfaces at given721

induction and antibiotic dose-response curves. Evaluating the percentiles of such null-distributions gave722

the boundaries for evaluation of the type of deviation from independence (alleviation or aggravation).723

Growth law-based biophysical model724

Single antibiotic The mathematical model used for predicting bacterial growth in the presence of725

antibiotic combination is an extension of the model presented in Ref. [Greulich et al., 2015]. In-depth726

analysis of the model will be presented elsewhere. In brief, the model captures the crucial processes of727
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antibiotic binding and transport as well as physiological constraints. We briefly summarize the results728

for a single antibiotic and its main ingredients. The growth laws are given as729

ru = λ/κt + rmin, (3)

and730

rtot = ru + rb = rmax – λ∆r
(

1
λ0

–
1

κt∆r

)
, (4)

where ru , rb and rtot are concentrations of unbound, bound and total ribosomes. The constants κt =

0.06 µM–1h–1, rmin = 19.3 µM, rmax = 65.8 µM and ∆r = rmax – rmin = 46.5 µM were experimentally

determined in Refs. [Scott et al., 2010; Greulich et al., 2015]. Transport of antibiotic is captured by the

average flux as J(aex, a) = pinaex –pouta, where pin and pout are influx and efflux rates, respectively, and

a and aex are the intracellular and external antibiotic concentration, respectively. The kinetics of binding

of the antibiotic to the ribosome is given as f (ru , rb, a) = –kona(ru – rmin) + koffrb, where kon and koff are

binding and unbinding rates, respectively, and KD = koff/kon. The fraction of inactive ribosomes rmin

is assumed not to bind antibiotics [Greulich et al., 2015]. The following system of ordinary differential

equations (ODEs) describes the kinetics of the system

da
dt

= –λa + f (ru , rb, a) + J(aex, a), (5a)

dru
dt

= –λru + f (ru , rb, a) + s(λ), (5b)

drb
dt

= –λrb – f (ru , rb, a). (5c)

In Eqs. (5) the terms -λX (with X = a, rb, rtot) describe effective dilution due to growth and s(λ) = λrtot is731

the ribosome synthesis rate. In balanced exponential growth all time derivatives in Eqs. (5) vanish and732

the steady-state solution reads733 (
λ

λ0

)3
–
(
λ

λ0

)2
+
(
λ

λ0

)[
1
4

(
λ∗0
λ0

)2
+

aex
2IC∗50

(
λ∗0
λ0

)]
–

1
4

(
λ∗0
λ0

)2
= 0, (6)

where λ∗0 = 2
√

poutκtKD and IC∗50 = ∆rλ∗0/(2pin). This equation can be recast into734

c =
1

α2 + 1

(
α2

y
– α2 + 4y – 4y2

)
, (7)

where

c = aex/IC50, (8a)

y = λ/λ0, (8b)

α = λ∗0/λ0. (8c)

Here, IC50 is the concentration required to halve the growth rate (compared to zero drug) and we took735

into account that IC50/IC∗50 = (α2 + 1)/2α. Importantly, the dependence of the relative growth rate y on736

the relative concentration c dramatically changes when α < αcrit = 2/3
√

3 ≈ 0.385, as Eq. (7) exhibits a737

concentration interval in which growth rate has two stable solutions.738
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Pair of antibiotics When a pair of antibiotics is considered, additional ODEs are added to describe

the binding of individual antibiotics to ribosomes (first binding step) as well as the simultaneous binding

of two antibiotics to the already bound ribosome (second binding step):

dai
dt

= –λai + fi (ru , rb,i , ai ) + δoff,ikoff,i r
a1,a2
b – δon,ikon,iai rb,̄i + Ji (aex,i , ai ), (9a)

drb,i
dt

= –λrb,i – fi (ru , rb,i , ai ) + δoff,̄ikoff,̄i r
a1,a2
b – δon,̄ikon,̄i āi rb,i , (9b)

dra1,a2
b
dt

= –λra1,a2
b +

∑
i=A,B

δon,ikon,iai rb,̄i –
∑

i=A,B

δoff,ikoff,i r
a1,a2
b (9c)

dru
dt

= –λru +
∑

i=A,B

fi (ru , rb,i , ai ) + s(λ). (9d)

In the system of Eqs. (9), the kinetic parameters and the transport flux and binding functions depend739

on the antibiotic (indices i). The additional terms δoff,ikoff,i r
a1,a2
b and δon,ikon,iai rb,̄i describe the rates of740

detachment of the i-th antibiotic from double-bound ribosomes ra1,a2
b and binding of the i-th antibiotic741

to the ribosome already bound by the other antibiotic ī , respectively. The parameter δj ,i determines742

the relative changes in rate constants when the other antibiotic is bound. Here, we investigated two743

cases: independent binding of the two antibiotics, i.e., δj ,i = 1 and competition δj ,i = 0, where binding of744

either antibiotic excludes binding of the other one. The effects of different values of δj ,i will be presented745

elsewhere.746

We obtained the steady state solution of Eqs. (9) numerically by forward time integration (Mathe-747

matica function NDSolve). While forward integration requires explicit values of kinetic constants kon and748

KD , the steady state solutions are largely independent of the exact parameter values as long as the pa-749

rameter ratios α and IC∗50 are the same and kon � κt . Upon fitting α to the normalized dose-response750

curves, we fixed kon = 100 µM–1h–1 (which gave consistent results for all dose-response curves). For751

each dose-response curve, we determined the optimized value of KD – this was required due to explicit752

need of parameters in forward integration (Fig. S2). By constraining these parameters, we can calculate753

the steady state solutions of Eqs. (9).754

Clustering of bottleneck-dependency vectors755

We performed clustering of BD vectors projected on a space of lower dimensionality. For dimensionality756

reduction, we used Principal Component Analysis (PCA). We used the first three principal components757

which explained ηr ≈ 95.38% of variance. In this projected three-dimensional space, we performed758

unsupervised agglomerative clustering (Mathematica function FindClusters) with cosine distance as a759

measure of cluster cohesion.760

We estimated the p-value of the observed clustering by bootstrapping. We used the Rand index (RI)761

[Rand, 1971] as a criterion for evaluating the difference between clustering results. For example, if w762

is the clustering obtained for the reshuffled sample and clustering w ′ is obtained for PCA projection of763
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median bottleneck dependency vectors (shown in Figs. 3,S3), then the Rand index is764

RI(w , w ′) =

∑N
i<j ψij

N(N – 1)/2
∈ [0, 1]. (10)

Here, ψij is 1 if the i-th and j-th data points are either inside or outside of the same cluster and zero765

otherwise; the denominator is the total number of unique pairs between N elements. We generated 104
766

reshuffled datasets, evaluated RI for each dataset and calculated the cumulative distribution function.767

We evaluated an empirical p-value as768

p = 1 – CDF
(

1 –
1

N(N – 1)/2

)
≈ 3× 10–4, (11)

which is an estimate of the probability for obtaining the observed clustering of median BD vectors by769

chance. The cluster areas shown in Fig. 3 were obtained by smooth bootstrapping of median BD770

vectors for a given noise statistics, PCA projection and subsequent calculation of the minimal convex771

hull (Mathematica function ConvexHullMesh). The additional response vectors for LAM, TMP and NIT772

were PCA projected (using Mathematica function DimensionReduction obtained for the median values773

of BD vectors). Note, that the plots in Fig. 3E show projections onto PC1,2 but clustering was performed774

on first three principal components (Fig. S3).775

Remapping776

Our remapping procedure converts inducer concentrations in into the concentrations c of an idealized777

antibiotic that precisely targets the translation step controlled by the titrated factor. This requires an778

induction curve and a dose-response curve: The former is described by an increasing Hill function g(in),779

and the latter by solving Eq. (7) for y . The conversion between concentrations is formally described780

as c = y–1 (g(in)) at a given α, which can be arbitrarily chosen for the idealized antibiotic. When781

α < αcrit, the dose-response curve is bistable and has a region in which more than one response782

will yield the same concentration – in these cases we consider only the concentration corresponding783

to the highest stable growth rate as the other solutions are either unstable or will be outcompeted.784

Further, higher inducer concentrations are remapped to lower antibiotic concentrations and an infinite785

inducer concentration corresponds zero antibiotic concentration. As this is impractical, we considered786

all mimicked concentrations (normalized with respect to IC50) that are below 0.1 as equivalent to 0.787

Regularization of surfaces788

Strains containing the factor titration platform have mostly very similar antibiotic dose-response curves789

as the wild-type at maximal inducer concentrations. However, to correct for small deviations, we790

rescaled the antibiotic concentrations on the antibiotic-inducer grid. The shape of this transformation791

is derived from equating the responses of two Hill functions with different steepnesses. Consider two792

Hill functions with Hill exponents nWT and nt for WT and factor-titrating strain, respectively. Then, by793
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equating the responses captured by these Hill functions, we calculated the rescaled relative (with re-794

spect to IC50) antibiotic concentrations as ca,t = cnt /nWT
a,WT . We refer to this conversion as the “power-law795

transform”. Such regularized surface was then used in remapping.796

Remapping-based equivalence797

Factor deprivation is equivalent to the action of a specific antibiotic if both perturbations can substitute for798

each other. Upon remapping the inducer concentration, the response surface for an equivalent inducer-799

antibiotic pair is transformed into an additive response surface. To determine if the deprivation of a800

specific factor is equivalent to the action of a specific antibiotic, we performed the remapping in tandem801

with bootstrapping. Bootstrapping assesses the effects of uncertainties in the remapping parameter802

α (obtained from a fit to a drug dose-response curve), artifacts of the response surface over inducer-803

antibiotic grid and sampling, and inherent noisiness of growth rate determination. We first restricted804

the dataset to data points with relative growth equal to 0 or above 0.1 with growth rate coefficient of805

determination R2 > 0.8. In each round of bootstrapping, the following steps are carried out:806

◦ drawing of a remapping parameter α from a normal distribution, centered at the best-fit-value and807

with standard deviation estimated from fitting, and remapping,808

◦ drawing of a random sample from remapped data points that is of random size (between 75% and809

100% of the data set),810

◦ addition of Gaussian noise to the growth rates (estimated from the growth rate fit),811

◦ calculation of the ideal additive surface at a given α for comparison, and812

◦ calculation of LI score.813

This procedure was repeated 100 times for each bottleneck-antibiotic pair and yielded a set of distri-814

butions. Each LI distribution was then statistically evaluated for being inside the additive interval. We815

obtained the cumulative distribution function (CDF) for each distribution and we calculated its value on816

both ends of additive interval (Fig. S1). If either 1 – CDF (blower) or CDF
(
bupper

)
is below p = 0.05, the817

pair is considered inequivalent – this is the case in which the remapped surface is unlikely to be additive.818

For each antibiotic, more than one of the bottlenecks could be statistically equivalent – we thus deemed819

the bottleneck-antibiotic pair with the highest correlation between average remapped and ideal additive820

growth rates to be the primary candidate for equivalence of perturbations.821

Quantitative comparison of predicted and measured response surfaces822

Both measured and predicted surfaces match along the individual concentration axes, as those were823

obtained from the fits of dose-response curves. Thus, points corresponding to such measurements are824

always a good match and in turn increase Pearson correlation invariantly of a potential mismatch in825

surface segments further away from individual axes. We thus sought an applicable metric that would826

identify systematic deviations from predicted isoboles.827

We developed an “isobole sliding” method in which we determine a mean deviation of points close828

to some predicted growth rate from measured values. It provides a concise quantitative description of829
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differences between predicted and measured isoboles and identifies the most discrepant areas of the830

surfaces. For that we systematically move along the (ordered) predicted growth values gi and select831

S = 20 consecutive points and average their deviations from measured values of growth rate hi . This832

yields a deviation trajectory t(ĝ) of a mean deviation as a function of average predicted growth rate833

t(ĝ) =
1
S

j+S–1∑
i=j

(hi – gi ), where gi < gi+1 and ĝ =
1
S

j+S–1∑
i=j

gi . (12)

Keeping the number of points S in the window fixed allows the comparison between different subsets of834

the data.835

To assess the probability of observing such deviation by chance, we created a benchmark dataset by836

replacing all measured values with predicted ones to which we added Gaussian noise (estimated from837

bootstrapped dispersion, but of at least 0.05 relative growth units). For each bootstrapped realization838

(obtained either by remapping or the biophysical model), we randomly drew a subset of random size839

(between 75% and 100% of the data set) to estimate the robustness of the prediction with respect840

to a low number of outliers. We collapsed each isobole sliding trajectory into a single number (s)841

by calculating an maximal deviation, s = maxĝ |t(ĝ)|, thus yielding a distribution of s values for both842

measured and benchmark trajectory maxima.843

Ideally, the distribution of maximal average deviations should either overlap or be below the bench-844

mark distribution. To assess the statistical deviation, we evaluated the CDF of predicted-measured845

distribution at the 95-percentile of the benchmark distribution. If the value was below 0.05, we rejected846

the prediction. This method requires that there are no systematic deviations over the whole surface,847

thus yielding a very stringent criterion for considering a match between two surfaces. Thus, even if two848

surfaces match qualitatively, isobole sliding might still return a statistically significant mismatch.849

To estimate the upper bound of prediction-measurement consistency, we checked for consistency850

of the measured replicates. For this we considered one of the replicates as a prediction of the other.851

Doing so, we observed that twenty-one out of twenty-eight (75%) surfaces act as statistically significant852

predictions for one another. This serves as an approximate upper bound for how many predictions-853

measured pairs can be at most expected to match at the given experimental variability.854

Assessment of predictive power855

At this point we can assess the consistency of predictions. Using the method described above, we eval-856

uated both independent and competitive binding schemes for their congruence with measured surfaces.857

The scheme that led to the distribution with the smallest mean maximal deviation, was considered as858

best-match. However, both schemes can yield a good match – by asking how many of the schemes859

yield a match in both replicates, we obtain an estimate for a fraction of correct predictions (Fig. S2). By860

counting in how many cases at least one of the schemes yields a match between replicates, we find861

that sixteen out of twenty-eight interactions can be accounted for by a biophysical model.862

Applying isobole sliding to the prediction of remapping shows that even small quantitative deviations863

will lead to discarding of the prediction (Fig. S5). However, counting additionally explained interactions864
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by remapping (TET-CRY, TET-FUS, KSG-CHL, CRY-KSG) increases the total tally of explained interac-865

tions to twenty out of twenty-eight (≈71.4%), which is below the estimated self-consistency bound of866

75%. As discussed above, qualitative matches are not included in this metric.867

TASEP model of translation within growth law framework868

There are several specific differences between the classical open TASEP system and translation in the869

context of the bacterial cell. Firstly, the pool of ribosomes is finite and variable in size (as dictated by the870

growth laws). Secondly, the ribosomes span over more than one site – it occupies L ≈ 16 codons [Kang871

and Cantor, 1985]. Thirdly, steps in translation are mediated by translation factors that bind to the872

ribosome in a specific state and (stochastically) push the ribosome into another state. The rates depend873

on the abundance of ribosomes in a specific state and the abundance of the factor catalyzing the874

step. Thus, the rates, which are kept fixed in the classical TASEP, become variable and system-state875

dependent.876

Mathematical framework877

Analytical results for TASEP of extended particles In the absence of ribosome pausing, estab-878

lished analytical results for the TASEP of extended particles can be used [Klumpp and Hwa, 2008;879

Lakatos and Chou, 2003; Shaw et al., 2003; Zia et al., 2011]. If the release of ribosomes at the end880

of the transcript is not limiting, two different regimes of ribosome traffic exist, namely the initiation- and881

translocation-limited regime. These regimes are separated by a non-equilibrium phase transition. The882

current of ribosomes J in the two regimes is given by:883

Jinit(ζ, γ) =
ζ (γ – ζ)

[γ + ζ (L – 1)]
and Jtran(ζ, γ) =

γ(
1 +
√

L
)2 , (13)

where ζ and γ are initiation and translocation attempt-rates, respectively. The ribosome (coverage)884

density ρ reads:885

ρinit(ζ, γ) =
Lζ

[γ + ζ (L – 1)]
and ρtran(ζ, γ) = ρmax =

1
1 + 1/

√
L

. (14)

The elongation velocity u depends both on the current and the ribosome density ρr = ρ/L via u = Js/ρr ,886

where s is the step size (1 aa). This in turn yields887

uinit(ζ, γ) = s(γ – ζ) and utran(ζ, γ) = s
γ

1 + 1/
√

L
. (15)

Distribution of ribosomes across different classes The total ribosome concentration rtot is888

rtot = ri + rtr + rmin, (16)

where ri and rtr are the concentrations of non-initiated and translating ribosomes, respectively. Trans-889

lating ribosomes are distributed across numerous mRNA transcripts in the cell and their concentration890
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can be written as:891

rtr =
1
V

M∑
p
ρr ,pDp =

1
V

M∑
p

ρp

L
Dp ≈

1
V

M
ρ

L
D̄ = Ξρr D̄, (17)

where Dp and ρr ,p are the length and ribosome density of the p–th transcript, respectively, M is the892

total number of transcripts and V the cell volume (Ξ = M/V is the concentration of transcripts). The893

density of ribosomes ρr = ρ/L is a TASEP-derived quantity and depends on the initiation attempt rate894

α and translocation attempt rate γ. In the last step, we assumed for simplicity that the density of895

ribosomes across the transcripts does not vary significantly between transcripts. However, if transcripts896

do differ in their ribosomes densities, the ones with higher densities will enter the translocation limiting897

regime (in which traffic jams form) already at a smaller decrease in translocation attempt rate. If those898

transcripts code for essential genes, this will correspondingly lead to a decrease in growth rate already899

at such smaller decreases in translocation attempt rate. Such traffic jams would still be relieved by900

lowering initiation rate even though traffic jams have not developed on all other transcripts. Thus, the901

qualitative conclusions of the analysis below would still hold, but the results would be quantitatively902

different. However, taking differences between transcripts into account would require explicit modeling903

of individual transcripts and is beyond the scope of this work. Assuming similar ribosomes densities904

allows replacement of the sum with MD̄, where D̄ is the average length of transcripts being translated;905

the proteome-weighted average length is D̄ ≈ 209 [Milo and Phillips, 2016].906

The growth rate is proportional to the elongation velocity of ribosomes along the transcript u(α, γ)907

and to the number of translating ribosomes. However, there is a limit for the maximal elongation rate908

umax because other processes (e.g., charged tRNA delivery) become limiting at some point in a given909

nutrient environment. We estimated the maximal elongation rate from the Michaelis-Menten-like relation910

between RNA/protein (R/P) and translation rate obtained in Ref. [Dai et al., 2016]: u = kel(R/P)/[(R/P) +911

Kel], where kel = 22 aa/s and Kel = 0.11. We calculated the theoretical (R/P) = (R/P)min + λ0/κR/P
t ≈912

0.54, where κR/P
t = 4.5 h–1 and (R/P)min = 0.09 [Scott et al., 2010]. Plugging this (R/P) into the913

Michaelis-Menten function for the translation rate, we obtain umax ≈ 18 aa/s. Thus, the growth rate is914

given as915

λ = κt rtr min
[

u(ζ, γ)
umax

, 1
]

. (18)

However, the growth rate feeds back into the total ribosome concentration via the growth law as916

rtot = ri + rtr + rmin = rmax – λ∆r
(

1
λ0

–
1

κt∆r

)
. (19)

We can estimate Ξ at λ0 as917

λ0
κt

= Ξρr D̄ =⇒ Ξ =
λ0

κtρr D̄
. (20)

Factor-dependent translocation attempt rate The ribosome will perform a specific step only when

the associated factor is bound to it: the step-attempt rate is proportional to the probability Pb of the

ribosome being bound by a factor. This probability can be calculated by assuming a population of

elongation factors with concentration cef = cef,b + cef,n and translating ribosomes rtr = rtr,b + rtr,n, where
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the indices b and n denote the factor-bound and unbound subpopulations, respectively. Binding is

described by

drtr,b
dt

= koncef,nrtr,n – koffrtr,b, (21a)

dcef,b
dt

= koncef,nrtr,n – koffcef,b. (21b)

Solving for steady state, noting that rtr,b = cef,b and defining KD = koff/kon we obtain the probability for a918

ribosome to be bound as919

Pb =
rtr – rtr,n

rtr
= 1 –

(rtr – KD – cef) +
√

4Kd rtr + (rtr – KD – cef)
2

2rtr
. (22)

The binding constant of EF-G to the ribosome complex I (pre-translocation analog with N-Ac-dipeptidyl-920

tRNA at the A-site and deacylated-tRNA in the P-site) [Yu et al., 2009] is KD = 0.27 ± 0.02 µM; we921

used this value in our calculations. In the case of WT regulation there are ∼ 0.83 EF-G molecules922

per ribosome and the expression of the factor is coupled to the ribosome number (i.e., their ratio is923

constant) [Dai et al., 2016].924

Factor-dependent initiation attempt rate Successful initiation events are not limited to a single L-925

codon long slot on a mRNA (that can be free or occupied) but can occur on any transcript; and only926

the factor-bound ribosomes can attempt an initiation event. Thus, the initiation rate can be described by927

Michaelis-Menten kinetics:928

ζ = ζ0[IF]
ri

Km + ri
. (23)

We can estimate Km from kinetic rates determined by Milon et al [Milon et al., 2012] where the free 30S929

subunit is bound (almost simultaneously) by IF1 and IF2 with rate (2–10)×102 µM–1s–1 and dissociates930

at rate 30 s–1. From these values, we estimate Km ≈ 0.05 µM.931

Estimation of model parameters It is useful to estimate if WT translation is in the initiation or translo-932

cation limited regime, which we can obtain from the average ribosome density. We can estimate the933

ribosome density as ρr = 3βr Nr /(rmtm), where Nr , βr , rm and tm are the number of ribosomes, the934

fraction of active ribosomes, the rate of mRNA synthesis per cell, and the average mRNA life-time, re-935

spectively [Bremer and Dennis, 1996]. The fraction of translating ribosomes βr is estimated from fitting936

a Hill function to data from Ref. [Dai et al., 2016] (Fig. S6). For higher growth rates, the relation be-937

tween growth rate and (calculated) ribosome density linearizes; extrapolating to λ0 = 2.0 h–1, we obtain938

ρr ≈ 0.042 (Fig. S6), which yields Ξ ≈ 3.7 µM. For cells grown in LB, the average number of transcripts939

per cell was measured as NmRNA ≈ 7800 [Bartholomäus et al., 2016]. To estimate the mRNA concen-940

tration, we use Ξ = NmRNA/Vcell = (NmRNA/mdry)× (mdry/mwet)× (mwet/Vcell), where mdry/mwet ≈ 1/3.1941

and mwet/Vcell ≈ 1.09 g/mL are growth-rate independent quantities (see SI of Ref. [Greulich et al.,942

2015]). We obtained the dry mass of the cell at λ = 2.0 h–1 by extrapolating from measured data943

at various growth rates [Bremer and Dennis, 1996] as mdry ≈ 1.01 pg/cells (Fig. S6) which in turn944

yields Ξ ≈ 4.5 µM. This value differs from the estimate above by ≈ 22%.945
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The estimated ribosome density is ρr ≈ 0.042, which is lower than the maximal attainable ribosome946

density of ρr,max = ρmax/L = 1/(L +
√

L)|L=16 = 0.05. Thus, translation in the WT is likely in the initiation-947

limited regime. Thus, the equations for ribosomal density and elongation velocity for the initiation limiting948

regime are used to estimate the apparent initiation and translocation attempt rates:949

ρr (ζ) =
ζ

γ + ζ(L – 1)
≈ 0.042 and u = (γ – ζ)s ≈ 18 aa/s. (24)

The apparent rates are γ ≈ 20.3 s–1 and ζ ≈ 2.3 s–1. This allows us to estimate γ0 = γ/Pb, where950

we note that cef,WT ≈ 43.0 µM (estimated from 0.83 × 51.9 µM where the ribosome concentration is951

calculated from the growth law). Next, we estimate the number of translating ribosomes from Eq. (18)952

as 32.6 µM, which yields Pb ≈ 0.98 and finally γ0 ≈ 20.7 s–1. We further note that there are 0.3953

IF2 molecules per ribosome [Bremer and Dennis, 1996], implying [IF]WT ≈ 15.6 µM, from which we954

estimate ζ0 ≈ ζ/[IF]WT ≈ 0.15 µM–1s–1.955

With these parameter values, our model is fully defined and the growth rate is calculated (Mathe-956

matica function NSolve) as its output based on the concentration of translation factors. To verify the957

impact of unperturbed ribosome density ρr (one that supports maximal growth rate at saturating factor958

concentrations), we systematically calculated the response surfaces for different values of ρr between959

0.001 and 0.049 (Fig. S6). With decreasing unperturbed ρr , the concentration of mRNA Ξ increases960

according to Eq. (20). When Ξ � ∆rL/ρmaxD̄, the traffic jams of ribosome are not possible anymore961

as there are too many mRNAs that can carry more ribosomes than available. The critical unperturbed962

ribosome density is ρr,crit = λ0/(κt∆r )× ρr,max (Fig. S6).963

Effect of mRNA growth-rate dependence964

The concentration of mRNA could in principle be growth rate-dependent. However, direct dependence965

of mRNA as a function of the growth rate is difficult to estimate from existing literature as total RNA966

is mostly composed of rRNA and tRNA [Dai et al., 2016; Scott et al., 2010]; estimation of the mRNA967

fraction is thus prone to errors. However, if we assume proportionality between ribosome and mRNA968

concentration, a simplified form can be written down asΞ = Ξ0rtot/rtot,0, where Ξ0 and rtot,0 = rmin+λ0/κt969

are the estimates of mRNA concentration from the previous section and total ribosome concentration970

in the unperturbed case, respectively. Plugging this dependence into the model does not qualitatively971

change the suppressive interaction between inhibition of initiation and translocation (Fig. S6). In this972

scenario, the increasing number of mRNA transcripts partially alleviates the densification of ribosomes973

on transcripts. However, the over-all increasing number of translating ribosomes sequesters the elon-974

gation factors – this effect is still alleviated by lowering the initiation rate and in turn the density of975

ribosomes.976

Rescue mechanisms and inefficiency of direct response to translocation inhibition977

Bacteria have evolved rescue mechanisms for stalled ribosomes (tmRNA, ArfA and ArfB). However,978

these mechanisms are mostly aimed at the rescue of ribosomes that were stalled due to limiting supply979
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of building blocks or those in non-stop complexes. Former is an unlikely scenario during translocation980

limitation: as the building blocks are under-consumed, non-stop complexes can form via the forma-981

tion of damaged or truncated mRNA (e.g., via cleavage by RNases) or via collision-induced frame-982

shifts [Simms et al., 2019; Keiler, 2015]. However, the tmRNA pathway requires an empty A-site on983

the ribosome, which is occupied in the pre-translocation complex, thus hindering the rescue initiation.984

Likewise, the ArfA pathway is hindered by an occupied A-site – it requires release factor 2 to bind to the985

A-site of the ribosome to initiate premature release and recycling. ArfB on the other hand, can recover986

the lack of tmRNA and ArfA pathways only when heavily overexpressed [Chadani et al., 2011] and is987

considered ineffective in the WT regime. In sum, established rescue mechanisms are unlikely to recover988

stuck ribosomes and we therefore omit these mechanisms from the analysis.989

Additionally, the cell could have an initiation-inhibiting mechanism in place as a response to translo-990

cation inhibition. However, the observed responses of bacteria to translation inhibition show global991

derepression of the translation machinery by reducing the levels of ppGpp. Besides the upregulation of992

all translation components mentioned in the main text [Maaløe, 1979; Gordon, 1970; Blumenthal et al.,993

1976; Furano and Wittel, 1975], an additional effect of lower levels of ppGpp is a direct increase of ini-994

tiation. The catalytic function of the initiation factor is lowered when ppGpp levels are high, and higher995

when ppGpp is reduced [Milon et al., 2006]. These arguments show that an alleviating response of996

translocation inhibition by either rescue mechanisms or by direct down-regulation of initiation is unlikely.997
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8 Supplementary Information998

Table S1: Chemicals used in this study. Table contains chemical names and purpose categories, catalog codes and vendor

information.

Table S2: Oligonucleotides used in this study. Spreadsheet contains primer names, sequences, templates and brief de-

scription of use. Spreadsheet is divided into tabs, each corresponding to the aim of a specific cloning step.
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Figure S1: All dose-response surfaces and examples of growth curves. (A) Duplicates of dose-response surfaces for

all 28 antibiotic pairs. Due to small, but systematic variability in concentrations between replicates done on different days, we

rescaled concentration axes with respect to the IC50. Dose-response surfaces were smoothed using LOESS (Methods). Black and

gray dots denote measured points from different experiments. Isoboles from duplicates are in high agreement; small deviations

are caused by occasional outliers that skew the isoboles. As the dose-response surface was measured over a 12×16 grid, the

duplicates change the drug axes (12×16→16×12) on different days to check for effects coming from spreading the measurements

over different plates. (B) An example of growth curves over a 12×16 grid. Note, that here the concentrations change between

wells in a geometric manner, i.e. the ratio between concentrations in neighboring wells is fixed. (C) Exemplary growth curve

and details of the fitting procedure. The growth rate is determined by fitting a line in the regime of exponential growth. The

determination of this regime in the growth curve is carried out automatically; procedure: (i) check if the maximum value of

luminescence is above the lower bound of the fitting interval lummin = 103 cps and take points before the maximum, (ii) take

points that are the latest to rise over lummin, (iii) determine the upper limit (bnd) of the fitting interval to be either ten-fold above the

lummin (guaranteeing log2 10 ≈ 3.3 doublings of fitting interval) or eight-times less than the track maximum (three doublings away

from saturation) and (iv) fit a line to the log-transformed values of the luminescence signal if there are at least three data points. If

lummin is not exceeded, the well is counted as having no growth; if any of the other criteria is not fulfilled, growth is characterized as

undetermined. (D) Reproducibility of absolute growth rate measurements between replicates. The smooth kernel representation

of replicate measurements (Mathematica function SmoothKernelDistribution), performed on different days and different plate

arrangements, demonstrates a good agreement overall. Only non-zero growth rates of sufficient quality (R2 > 0.5 and relative

error < 0.5) are included. (E) Distribution of Loewe interaction indices of noisy additive surfaces for pairs of drugs with different

steepnesses, as obtained by bootstrapping. Note, that this reveals a slight bias towards antagonism.
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Figure S2: Details of the biophysical model for pairwise antibiotic combinations See caption on the next page.
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Figure S2: Details of the biophysical model for pairwise antibiotic combinations (A) Average dose-response curves

with best fit model for individual antibiotics. Inset denote the corresponding antibiotic and best-fit steepness parameter α with

standard error. Dose-response curves are predominantly shallow for our selection of antibiotics, i.e., α > αcrit. Dashed segment

of KSG dose-response curve represents an unstable solution. (B) Example of an effect of numerical parameters (KD and kon)

on root-mean-square error (with respect to the experimental data). Parameters are required for forward time integration. Root-

mean-square error was normalized with respect to the maximal error in the scanned interval. Effective dissociation constant KD

exhibits roughly two orders of magnitude wide plateau (double-headed arrow; minimum is denoted by a circle). First order binding

rate constant kon does not exhibit a plateau but rather flattens out – consistently with the requirement that kon � κt . (C) All

predictions for replicated measurements. Predicted surface is show in full; overlaid thick and dashed purple isobole denote 20%

and 50% isobole, respectively, of the measured surface. Each prediction is evaluated for goodness of prediction as described

in Methods. Check-mark and cross denote a match and mismatch, respectively. Inset text denotes the best-matching binding

scheme. (D) Illustration of isobole sliding method. Left: two examples of deviation trajectories t(ĝ) for ERM-TET (pentagram)

and KSG-STR (five-point star). Thin gray and red lines present hundred bootstrapped repetitions of measured and benchmark

trajectories. Two trajectories (thick black and red lines for measured and benchmark, respectively) are highlighted. Black and

purple arrows denote maximal deviation of the trajectory from zero for measured and benchmark trajectory. Length of the arrow is

max average deviation s. Right: all s values from bootstrapped repetitions are collected in the histogram. Pair of ERM-TET offers

a better match with benchmark distribution compared to KSG-STR. (E) Performance of all schemes against the measurements.

Upper and bottom half of each circle denote independence or competition, respectively, as denoted. Green and red color denote

match and mismatch, respectively.
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Figure S3: Bottleneck-antibiotic dose-response surfaces and functional classification. See caption on the next page.
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Figure S3: Bottleneck-antibiotic dose-response surfaces and functional classification. (A) Dose-response surfaces for

all bottleneck-antibiotic pairs. Surfaces were smoothed using LOESS (Methods). Note the different characters of deviations from

independence. (B) Examples of response surfaces over response-response grid. In the response space (rx , ry ), independence

is defined as rx ry . Logarithm of the ratio of volumes underneath the measured and independent surface yields a deviation

index. For every antibiotic, six bottleneck dependencies together yield a bottleneck dependency vector. (C) Values of bottleneck

dependencies for all bottleneck-antibiotic pairs. (D) Projection of bottleneck dependencies on PCA vectors. (i) As in Fig. 3E.

(ii) Projection on PCA vectors PC2 and 3. Note the separation of clusters in both projections. (E) Bootstrapped clustering

of randomized vectors yields a series of clustering results. With these clustering results at hand, we calculate the Rand index

RI(w , w ′). From the distribution of RI(w , w ′), we estimate the empirical cumulative distribution function and corresponding p-value

[Eq. (11)] for the clustering result in Fig. 3E.
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Figure S4: Remapping-based assessment of primary mode of action. (A) Scatter plots of growth rates expected for

additivity and obtained by self-remapping (Methods). LI was statistically compared to the boundaries of the additive interval.

Green check marks denote that LI did not fall outside of the additivity interval; in these cases, the rounded correlation ρ is

reported. A good agreement with the additive expectation suggests equivalency of antibiotic and genetic perturbation. (B)

Examples of histograms of LI for CRY in combination with a translocation and recycling bottleneck [see matching pentagon and

star in (A)], respectively. (C) Color-coded sequential evaluation of equivalence between bottleneck and translation inhibitor. Red

and yellow denote that LI was outside or inside of the additive interval, respectively. From the cases in which the LI is statistically

inside the additive interval, the case with highest correlation was chosen as the putative primary mode of action (green). This

approach correctly identified the mode of action for all cases in which it is known from literature (CRY, FUS, STR, KSG and TET).
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Figure S5: All possible predictions from perturbations of equivalent effects. Predicted surface obtained by remapping

is show in full; overlaid thick and dashed purple isobole denote 20% and 50% isobole, respectively, of the measured surface.

Each prediction is evaluated for goodness of prediction as described in Methods. Check-mark and cross denote a match and

mismatch, respectively.
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Figure S6: Double titration platform and model analysis. (A) Schematics represent the genetic elements of double titration

control: negatively auto-repressed transcription factors lacI and tetR that control the expression of initiation factor infB and elon-

gation factor G fusA, respectively; expression is dependent on the shown inducers (IPTG and aTc). The grid shows the growth

curves for the response surface in Fig. 6. Different shades of gray show the growth rate. Only fits of good quality and with growth

rates above 0.199 are included. (B) Active ribosome fraction as a function of growth rate in different nutrient environments. Data

is from Ref. [Dai et al., 2016]. The solid line represents a best-fit Hill function (x /a)/ [1 + (x /a)], where a ≈ 0.12 h–1. (C) Calculated

ribosome density ρr = 3βr Nr /(rmtm). The arrow denotes the density for λ0 = 2.0 h–1. Solid line shows best fit. (D) Dry mass mea-

surements from Ref. [Bremer and Dennis, 1996] and best-fit linear function (solid line). Arrow denotes the density for λ0 = 2.0 h–1.

(E) Impact of varying the initial ρr on resulting bottleneck dependency score. Numbered green squares correspond to the exam-

ples showcased in (F). The white circle shows the result for the estimated value of WT ρr ≈ 0.042. The red circle shows the

point (ρr ≈ 0.0106) where first derivative becomes positive and the BD score starts increasing. The solid vertical line shows the

critical value λ0ρr,max/(κt∆r ) above which traffic jams due to translocation limitation can form. (F) Response surfaces for ρr values

shown in (E). For ρr � 0.01 the ridge line (red; defined by the concentration of initiation factor that supports the highest growth

rate at a given concentration of translocation factor) is not well defined, and tends towards high concentrations of initiation factor.

For ρr > 0.1, the ridge line moves towards the “corner” of the response surface. After the value λ0ρr,max/(κt∆r ) is surpassed,

traffic jams develop when the translocation rate is sufficiently low. (G) Two models of mRNA concentration dependence. Black

lines denote the dependence of mRNA on growth rate if the co-regulation between total RNA and mRNA (Methods) is assumed;

solid and dashed lines correspond to variation of the nutrient quality and translation perturbation, respectively. The arrow denotes

the estimated mRNA concentration for cells grown in LB (Methods); this concentration is assumed constant (dashed purple line)

in the model shown in the main text. If the mRNA concentration exceeds ∆r /
(
ρmax,rD̄

)
, traffic jams do not develop. Elongation

factors are still sequestered as the number of translating ribosomes increases, which in turn decreases the growth rate. (H) Direct

comparison of model predictions. Prediction with growth-dependent mRNA concentration Ξ is depicted in full gray-scale tones;

isoboles from the prediction assuming a constant pool of mRNA are shown in purple. Both results are qualitatively equivalent.
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