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Abstract

With the aim of supporting ecological analyses in butterflies, the third most species-rich superfamily
of Lepidoptera, this paper presents the first time-calibrated phylogeny of all 496 extant butterfly
species in Europe, including 18 very localized endemics for which no public DNA sequences had been
available previously. It is based on a concatenated alignment of the mitochondrial gene COIl and up
to 11 nuclear gene fragments, using Bayesian inference of phylogeny. To avoid analytical biases that
could result from our region-focus sampling, our European tree was grafted upon a global genus-
level backbone butterfly phylogeny for analyses. In addition to a consensus tree, we provide the
posterior distribution of trees and the fully-concatenated alignment for future analyses.
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Background & Summary

The incorporation of phylogenetic information in ecological theory and research has led to significant
advancements by facilitating the connection of large-scale and long-term macro-evolutionary
processes with ecological processes in the analysis of species interactions with their abiotic and biotic
environments™®. Phylogenies are increasingly used across diverse areas of macroecological
research’, such as studies on large-scale diversity patterns®, disentangling historical and
contemporary processes’, latitudinal diversity gradients® or improving species area relationships’.
Phylogenetic information has also improved studies on assembly rules of local communities®*°,
including spatiotemporal community dynamics'! and multi-spatial and -temporal context-
dependencies™. Additionally, phylogenetic information has provided insights into the mechanisms

13-16

and consequences of biological invasions™ ™. They also contribute to assessments of ecosystem

functioning and service provisioning'”*®, though phylogenetic relationships cannot simply be taken as

19,20

a one-to-one proxy for ecosystem functioning™“". However, they are of great value for studies of

species traits and niche characteristics by quantifying the amount of phylogenetic conservatism?* and
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ensuring statistical independence? in multi-species studies. Using an ever increasing toolkit of

23,24

phylogenetic metrics™“", and a growing body of phylogenetic insights, the afore mentioned advances

across diverse research fields document how integrating evolutionary and ecological information can

enhance assessments of future impacts of global change on biodiversity>?’

20,28
).

and consequently inform
conservation efforts (but see also

Although the amount of molecular data has increased exponentially during the last decades, most
available phylogenetic studies are either restricted to a selected subset of species, higher taxa, or to
small geographic areas. Complete and dated species-level phylogenetic hypotheses for species-rich
taxa of larger regions are usually restricted to vascular plants®® or vertebrates, such as global birds°
or European tetrapods®, or the analyses are based on molecular data from a small subset of species
(e.g. 5% in ants®). Surprisingly, comparable phylogenetic hypotheses are rare for insects, which
comprise the majority of multicellular life on earth®, have enormous impacts on ecosystem
functioning, provide a multitude of ecosystem services®®, and have long been used as biodiversity
indicators®.

Here, we present the first comprehensive time-calibrated molecular phylogeny of all 496 extant
European butterfly species (Lepidoptera: Papilionoidea), based on one mitochondrial and up to
eleven nuclear genes, and the most recent systematic list of European butterflies®>. European

butterflies are well-studied, ranging from population level analyses™® to large-scale impacts of global

change®’, with good knowledge on species traits and environmental niche characteristics®**?,

40,41 42,43

population trends and large-scale distributions and are thus well placed for studies in the

emerging field of ecophylogenetics®.

Compared to other groups of insects, the phylogenetic relationships of butterflies are reasonably

44-46

well-known, with robust backbone molecular phylogenies at the subfamily and genus-level”. In

addition, molecular phylogenies also exist for most butterfly families*®>®

59-65

as well as major

subgroups
66-71

and comprehensive COIl data on species level are available from DNA barcoding

studies™ "". Some ecological studies on butterflies have already incorporated phylogenetic

information, e.g. on the impact of climate change on abundance trends’*”

13,74

, the sensitivity of
butterflies to invasive species or the ecological determinants of butterfly vulnerability”.
However, the phylogenetic hypotheses used in these studies had incomplete taxon coverage (but see
’®) and were not made available for reuse by other researchers. To fill these gaps in the literature,
and to facilitate the growing field of ecophylogenetics, here we present the first complete and time-
calibrated species-level phylogeny of a speciose higher invertebrate taxon above the family level for
an entire continent. Importantly, we provide this continent-wide fully resolved phylogeny in standard

analysis formats for further advancements in theoretical and applied ecology.
Methods
Taxonomic, spatial and temporal coverage

We analyse a dataset comprising all extant European species of butterflies (Papilionoidea), including
the families Papilionidae, Hesperiidae, Pieridae, Lycaenidae, Riodinidae and Nymphalidae. We base
our species concepts, as well as the area defined as Europe, on the latest checklist of European
butterflies™.

Acquisition of sequence data
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The data were mainly collated from published sources and downloaded from NCBI GenBank (Table
S1). One mitochondrial gene, cytochrome c oxidase subunit | (COl, 1464 bp), was available for all
species in the data matrix, in particular the 5' half of the gene (658 bp, also known as the DNA
barcode). Eleven nuclear genes were included when available: elongation factor-1a (EF-1a, 1240 bp),
ribosomal protein S5 (RpS5, 617 bp), ribosomal protein S2 (RpS2, 411 bp), carbamoylphosphate
synthase domain protein (CAD, 850 bp), cytosolic malate dehydrogenase (MDH, 733 bp),
glyceraldehyde-3-phosphate dehydrogenase (GAPDH, 691 bp), isocitrate dehydrogenase (IDH, 711
bp), wingless (412 bp), Arginine kinase (ArgK, 596 bp) and Dopa Decarboxylase (DDC, 373 bp) and
histone 3 (H3, 329 bp). H3 has been sequenced almost exclusively from the family Lycaenidae, while
the other gene regions have been sampled widely also in the other butterfly families. For each gene,
the longest available sequence was used. However, in the case of several available sequences of
similar length, those of European origin were preferentially used. Sequences were aligned manually
to maintain protein reading frame, and were curated and managed using VoSeq”’.

In several cases, new sequences were generated for this study. For these specimens, protocols
followed Wahlberg and Wheat ’® or Wiemers and Fiedler ®. These include several species that did
not have any available published sequences, many of which are island endemics (Table 1). The new
sequences have been submitted to GenBank (accessions Xxxx-Xxxx).

Table 1. Newly sequenced species for which no published sequences had previously been available

Taxon Origin
Coenonympha orientalis Greece
Glaucopsyche paphos Cyprus
Gonepteryx maderensis ~ Portugal: Madeira

Hipparchia azorina Portugal: Azores
Hipparchia bacchus Spain: Canary Islands
Hipparchia cretica Greece: Crete
Hipparchia gomera Spain: Canary Islands
Hipparchia maderensis Portugal: Madeira
Hipparchia mersina Greece: Samos
Hipparchia miguelensis ~ Portugal: Madeira
Hipparchia sbordonii Italy: Pontine Islands
Hipparchia tamadabae Spain: Canary Islands
Hipparchia tilosi Spain: Canary Islands
Hipparchia wyssii Spain: Canary Islands
Lycaena bleusei Spain

Pieris balcana North Macedonia
Pieris wollastoni Portugal: Madeira
Thymelicus christi Spain: Canary Islands

Almost all genera are represented by multiple genes, except Borbo, Gegenes, Laeosopis, Callophrys
and Cyclyrius (the latter recently synonymized with Leptotes’®) which are represented only by the COI
gene. Species represented by only the DNA barcode tend to be closely related to species with more
genes sequenced (Table S1), minimizing the potential bias these samples could have in our analyses.

Phylogenetic tree reconstruction:
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A biogeographically restricted tree of a given taxon is inherently very asymmetrically sampled. To
avoid potentially strong biases when estimating topology and divergence times we chose to build
upon the recent genus-level tree of butterflies*’, which provides a well-supported time-calibrated
backbone and corresponds well with a recent phylogenomic analysis of Lepidoptera®. This backbone
tree contains 994 taxa, each taxon representing a genus across all Papilionoidea. The tree was time-
calibrated using a set of 14 fossil calibration points, which provided minimum ages and 10 calibration
points based on ages of host plant clades taken from the literature, which provided maximum ages.

Importantly, Chazot, et al. ad

tested the robustness of their results to a wide range of alternative
assumptions made in the time-calibration analysis, and showed that the estimated times of

divergences were robust.
Analysis overview

In order to produce our time-calibrated tree of European butterflies, we identified the position of the
European lineages and designed a grafting procedure accordingly. We split the European butterflies
that needed to be added to the tree into 12 subclades. For each of these subclades we combined the
DNA sequences of the taxa already included in the backbone to the DNA sequences of the European
taxa to assemble an aligned molecular matrix. After identifying the best partitioning scheme, we
performed a tree reconstruction without time-calibration (only estimating relative branch lengths).
The subclade trees were then rescaled using the ages estimated in the backbone and were
subsequently grafted. This procedure was repeated using 1000 trees from BEAST posterior
distributions of the backbone and subclade trees in order to obtain a posterior distribution of grafted
trees. The details of these procedures are described below.

Backbone and subclades

The time-calibrated backbone tree provided by Chazot, et al. ' contained about 55% of all butterfly
genera, including most genera occurring in Europe. A fixed topology was obtained using RAXML®! and
node ages where estimated with BEAST v.1.8.3.%%. We used this fixed topology from Chazot, et al.
to identify at which nodes European clades should be grafted. We partitioned the analysis into 12
subclades. For each subclade, the DNA sequences of all taxa already included in the global backbone
(including also non-European taxa) were combined with the DNA sequences of all the new European
taxa that were added. In addition to the focal taxa, we added between two and four outgroups.

The subclades, sorted by families, were defined as follows:
Papilionidae — All Papilionidae were placed into one subclade.

Hesperiidae — We identified two main clades to graft within the Hesperiidae: Hesperiinae and
Pyrginae. The Hesperiinae subclade was extended to also encompass the subfamilies Heteropterinae
and Trapezitinae. The genus Muschampia, not available in the backbone, was included in the
Pyrginae subclade.

Pieridae — All Pieridae were considered as a single clade.
Lycaenidae — All Lycaenidae were considered as a single clade.

Riodinidae — The only European Riodinidae species, Hamearis lucina, was already available in the
backbone tree.
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Nymphalidae — European Nymphalidae were divided into seven subclades. (i) A subclade for the
Apaturinae. (ii) In order to add Danaus chrysippus we generated a tree of Danainae. (iii) We
combined the sister clades Heliconiinae and Limenitidinae into a single subclade. (iv) Nymphalinae
was treated as a single subclade. (v) A first clade of Satyrinae contained the genera Kirinia, Pararge,
Lasiommata, Tatinga, Chonala and Lopinga. (vi) A second Satyrinae clade contained the genera
Calisto, Euptychia, Callerebia, Proterebia, Gyrocheilus, Strabena, Ypthima, Ypthimomorpha,
Stygionympha, Cassionympha, Neocoenyra, Pseudonympha, Erebia, Boerebia, Hyponephele,
Cercyonis, Maniola, Aphantopus, Pyronia, Faunula, Grumia, Paralasa, Melanargia, Hipparchia,
Berberia, Oeneis, Neominois, Karanasa, Brintesia, Arethusana, Satyrus, Pseudochazara and Chazara.
(vii) A third Satyrinae clade was created for the genus Coenonympha. Charaxinae were not treated
separately from the backbone. Charaxes jasius is the only Charaxinae occuring in Europe and
Charaxes castor (which is very closely related to C. jasius®®) was already included in the backbone
tree from Chazot et al. /. Hence, we used the position of Charaxes castor for Charaxes jasius.

Partitioning the dataset

For each subclade we ran Partition Finder 2 ®* in order to partition the data and choose substitution
models. The dataset was initially partitioned into genes and codon positions. Branch lengths were set
to linked and the comparison between partitioning strategies was made using the greedy algorithm
and BIC score®.

Phylogenetic reconstruction

For each subclade, the dataset was imported in BEAUTi v.1.8.3%° and partitioned according to the
partitioning strategy identified by Partition Finder 2. We enforced the monophyly of the clade to be
grafted (i.e., excluding the outgroups). All other relationships were estimated by BEAST v.1.8.3.%%. We
used an uncorrelated relaxed clock with lognormal distribution. By default, we started by setting one
molecular clock per partition. If convergence or good mixing could not be obtained after running
BEAST we reduced the number of molecular clocks (see details for each dataset further below). We
did not add any time-calibration and therefore only estimated the relative timing of divergence. We
performed at least two independent runs with BEAST for each subclade. We checked for
convergence and mixing of the MCMC using Tracer v.1.6.0®” and in the case of full convergence of
the runs, the posterior distribution of trees from different runs were combined after removing the
burn-in fraction.

Grafting procedure

Subclades were grafted on the backbone as follows. One backbone was sampled from the posterior
distribution of time-calibrated trees from Chazot, et al. *’. For each subclade, one subclade tree was
sampled from the posterior distribution of trees, the outgroups removed and the tree was rescaled
based on the crown age of the subclade extracted from the backbone tree. Finally, the rescaled
subclade tree was grafted on the backbone after removing all lineages belonging to this subclade in
the backbone (i.e. only keeping the stem branch). We repeated this procedure for 1000 backbone
trees and 1000 subclade trees and thus we obtained a posterior distribution of 1000 grafted trees.
The topology of the backbone was fixed (see *’) but the topologies of the subclades were free. Hence
the posterior distribution of grafted trees includes a posterior distribution of topologies and node
ages.
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We describe below the details of the phylogenetic tree reconstruction for each subclade.

1- Papilionidae

Dataset — The dataset for the Papilionidae consisted of 36 taxa to which three outgroups were
added: Macrosoma tipulata (Hedylidae), Achlyodes busiris (Hesperiidae), Pieris rapae (Pieridae). We
concatenated 11 gene fragments (COI, CAD, EF-1a, GAPDH, ArgK, IDH, MDH, RpS2, RpS5, DDC,
wingless).

Partition Finder — Partition Finder identified 12 subsets.

Subset # Substitution model Gene fragments and codon positions

Subset 1 TRN+I+G ArgK_posl, RpS2_posl, EF-1a_posl, RpS5_posl

Subset 2 TRN+I+G COl-begin_pos2, RpS5_pos2, ArgK_pos2,
GAPDH_pos2, CAD_pos2, MDH_pos2, IDH_pos2, COl-
end_pos2

Subset 3 HKY ArgK_pos3

Subset 4 HKY+I+G CAD_pos3

Subset 5 GTR+G wingless_pos1, IDH_posl, GAPDH_pos1, MDH_posl,
CAD_posl

Subset 6 TRN+G COl-end_pos3, COl-begin_pos3

Subset 7 GTR+G DDC_pos2, COl-end_pos1, COl-begin_pos1

Subset 8 GTR+I+G DDC_pos3, wingless_pos3, RpS2_pos3

Subset 9 K80+G DDC_posl, wingless_pos2

Subset 10 | GTR+G EF-1a_pos3

Subset 11 | TRNEF+I RpS2_pos2, EF-1a_pos2

Subset 12 | GTR+G RpS5_pos3, GAPDH_pos3, IDH_pos3, MDH_pos3

BEAST analysis —In order to improve the quality of our runs we replaced the default priors for rates of
substitutions by uniform prior ranging between 0 and 10 for the following cases: subset5.at,
subset5.cg, subset7.cg, subset7.gt, subsetl12.cg, subsetl2.gt. We used one molecular clock per subset
identified by Partition Finder and obtained good mixing and convergence. We used a Birth-Death
tree prior. We performed three runs of 40 million generations, sampling trees and parameters every
4000 generations.

Grafting — For grafting, the outgroups were removed, as well as Baronia brevicornis, the first
Papilionidae to diverge and endemic to Mexico, i.e. we grafted at the most recent common ancestor
(mrca) of all Papilionidae but Baronia brevicornis.

2- Hesperiidae: Hesperiinae

Dataset — The dataset for the Hesperiinae consisted of 169 taxa to which two outgroups were added:
Typhedanus ampyx (Hesperiidae), Mylon pelopidas (Hesperiidae). We concatenated 10 gene
fragments (COI, CAD, EF-1a , GAPDH, ArgK, IDH, MDH, RpS2, RpS5, wingless).

Partition Finder — Partition Finder identified 17 subsets.

Subset # Substitution model Gene fragments and codon positions
Subset 1 GTR+I+G COl-end_pos1, COl-begin_pos1, ArgK_pos1
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Subset 2 GTR+I+G ArgK _pos2, IDH pos2, EF-1a_pos2

Subset 3 GTR+G ArgK_pos3

Subset 4 TRN+I+G CAD_pos3, IDH_pos3

Subset 5 GTR+I+G IDH_pos1, CAD_posl

Subset 6 GTR+I+G CAD_pos2, MDH_pos2

Subset 7 TRN+I+G COl-begin_pos3, COIl-end_pos3

Subset 8 HKY+I+G RpS5_pos2, COl-begin_pos2, GAPDH_pos2, COI-
end_pos2

Subset 9 GTR+I+G EF-1a_pos3

Subset 10 | GTR+I+G EF-1a_posl, MDH_posl

Subset 11 | GTR+I+G RpS2_pos3, GAPDH_pos3, RpS5_pos3

Subset 12 | GTR+I+G GAPDH_pos1, wingless_pos2

Subset 13 | TRN+I+G MDH_pos3

Subset 14 | JC+ RpS2_pos2

Subset 15 | GTR+I+G RpS2_posl, RpS5 posl

Subset 16 | GTR+I+G wingless_pos3

Subset 17 | SYM+I+G wingless_pos1

BEAST analysis — Preliminary analyses showed problems with the subset 3 (ArgKin_pos3) and was
therefore removed from the analyses. In order to improve the quality of our runs we replaced the
default priors for rates of substitutions by uniform priors ranging between 0 and 10 for the following
cases: subsetl17.cg. The substitution model for the subset 14 was also changed into HKY+| after
preliminary analyses. We used one molecular clock per subset identified by Partition Finder and
obtained good mixing and convergence. We used a Birth-Death tree prior. We performed two runs of
150 million generations, sampling trees and parameters every 15000 generations.

Grafting — For grafting, the outgroups were removed and the subclade grafted at the mrca of
Hesperiinae.

3- Hesperiidae: Pyrginae

Dataset — The dataset for the Pyginae consisted of 77 taxa to which three outgroups were added:
Typhedanus ampyx (Hesperiidae), Pyrrhopyge zenodorus (Hesperiidae) and Hasora khoda
(Hesperiidae). We concatenated 10 gene fragments (COI, CAD, EF-1a , GAPDH, ArgK, IDH, MDH,
RpS2, RpS5, wingless).

Partition Finder — Partition Finder identified 14 subsets.

Subset # Substitution model Gene fragments and codon positions

Subset 1 TRN+I+G EF-1a_posl, IDH posl, RpS2 posl, RpS5 posl,
ArgK _posl

Subset 2 TRN+I+G EF-1a_pos2, GAPDH_pos2, MDH_pos2, COI-

begin_pos2, COl-end_pos2, IDH_pos2, CAD _pos2,
RpS5_pos2, ArgK_pos2

Subset 3 GTR+G ArgK_pos3
Subset 4 HKY+I+G CAD_pos3
Subset 5 GTR+I+G CAD_posl, MDH_posl1, GAPDH_posl

Subset 6 HKY+G COl-begin_pos3
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Subset 7 GTR+I+G COl-end_pos1, COl-begin_posl
Subset 8 TRN+I+G COl-end_pos3

Subset 9 GTR+G EF-1a_pos3

Subset 10 | GTR+I+G RpS2_pos3, GAPDH_pos3, RpS5_pos3
Subset 11 | GTR+I+G MDH_pos3, IDH_pos3

Subset 12 | JC+G wingless_pos2, RpS2_pos2

Subset 13 | HKY+G wingless_pos3

Subset 14 | SYM+G wingless_pos1

BEAST analysis — In order to improve the quality of our runs we replaced the default priors for rates
of substitutions by uniform prior ranging between 0 and 10 for the following cases: subset7.ac,
subset7.gt, subsetl4.cg, subset3.cg. Preliminary analyses showed problems when using a separate
molecular clock for each subset identified by Partition Finder. We restricted the analysis to one
molecular clock. We used a Birth-Death tree prior. We performed two runs of 100 million
generations, sampling trees and parameters every 10000 generations.

Grafting — For grafting, the outgroups were removed and the subclade grafted at the mrca of
Pyrginae.

4- Pieridae

Dataset — The dataset for the Pieridae consisted of 126 taxa to which three outgroups were added:
Bicyclus anynana (Nymphalidae), Achylodes busiris (Hesperiidae) and Papilio glaucus (Papilionidae).
We concatenated 11 gene fragments (COIl, CAD, EF-1a, GAPDH, ArgK, IDH, MDH, RpS2, RpS5, DDC,
wingless).

Partition Finder — Partition Finder identified 17 subsets.

Subset # Substitution model Gene fragments and codon positions

Subset 1 GTR+I+G ArgK_posl, EF-1a_posl, GAPDH_posl

Subset 2 TRN+I+G ArgK_pos2, DDC_pos2, CAD_pos2, IDH_pos2

Subset 3 KHY ArgK_pos3

Subset 4 HKY+I+G CAD_pos3

Subset 5 GTR+I+G CAD_posl, RpS2 posl, IDH posl, RpS5 posl,
MDH_posl

Subset 6 HKY+G COl-begin_pos3

Subset 7 GTR+I+G COl-begin_pos1, COIl-end_posl

Subset 8 GTR+I+G MDH_pos2, COI-begin_pos2, RpS5_pos2, COI-
end_pos2, EF-1a_pos2, GAPDH_pos2

Subset 9 TRN+I+G COl-end_pos3

Subset 10 | K80+G DDC_pos3, RpS2_pos3

Subset 11 | SYM+G DDC_pos1, wingless_posi1

Subset 12 | GTR+I+G EF-1a_pos3

Subset 13 | GTR+I+G RpS5_pos3, GAPDH_pos3

Subset 14 | GTR+I+G IDH_pos3, MDH_pos3

Subset 15 | JC+ RpS2_pos2

Subset 16 | GTR+I+G wingless_pos3

Subset 17 | K80+G wingless_pos2
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BEAST analysis — In order to improve the quality of our runs we replaced the default priors for rates
of substitutions by uniform prior ranging between 0 and 10 for the following case: subset7.cg. The
substitution model for the subset 7 was also changed into GTR+G after preliminary analyses. We
used one molecular clock per subset identified by Partition Finder and obtained good mixing and
convergence. We used a Birth-Death tree prior. We performed two runs of 100 million generations,
sampling trees and parameters every 10000 generations.

Grafting — For grafting, the outgroups were removed and the subclade grafted at the mrca of
Pieridae.

5- Lycaenidae

Dataset — The dataset for the Lycaenidae consisted of 187 taxa to which three outgroups were
added: Bicyclus anynana (Nymphalidae), Pieris rapae (Pieridae) and Hamearis lucina (Riodinidae). We
concatenated 12 gene fragments (COI, CAD, EF-1a, GAPDH, ArgK, IDH, MDH, RpS2, RpS5, DDC,
wingless and H3).

Partition Finder — Partition Finder identified 12 subsets.

Subset # Substitution model Gene fragments and codon positions

Subset 1 TRN+I+G ArgK_posl, H3 posl, EF-1a_posl, RpS5_posl,
GAPDH_posl

Subset 2 GTR+I+G RpS5_pos2, GAPDH_pos2, ArgK_pos2, DDC_pos2,
MDH_pos2, COI-begin_pos2, COl-end_pos2, EF-
la_pos2, IDH _pos2, CAD_pos2

Subset 3 GTR+G H3 pos3, ArgK_pos3, wingless_pos3

Subset 4 HKY+I+G CAD_pos3

Subset 5 GTR+G wingless_pos2, RpS2_posl, MDH_pos1, IDH_pos],
CAD_posl

Subset 6 GTR+G COl-begin_pos3, COIl-end_pos3

Subset 7 GTR+I+G COl-begin_pos1, COIl-end_posl

Subset 8 TRNEF DDC_pos3, RpS2_pos3

Subset 9 SYM+G wingless_pos1, DDC_pos1l

Subset 10 | GTR+I+G EF-1a_pos3

Subset 11 | GTR+G MDH_pos3, RpS5_pos3, GAPDH_pos3, IDH _pos3

Subset 12 | JC+ RpS2_pos2, H3 pos2

BEAST analysis — In order to improve the quality of our runs we replaced the default priors for rates
of substitutions by uniform prior ranging between 0 and 10 for the following cases: subset3.cg,
subset6.ag, subset6.at, subsetll.gt_subst7.cg. We used one molecular clock per subset identified by
Partition Finder and obtained good mixing and convergence. We used a Birth-Death tree prior. We
performed two runs of 150 million generations, sampling trees and parameters every 15000
generations.

Grafting — For grafting, the outgroups were removed and the subclade grafted at the mrca of
Lycaenidae.
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6- Nymphalidae: Danainae

Dataset — The dataset for the Danainae consisted of 7 taxa to which two outgroups were added:
Euploea camaralzeman (Nymphalidae) and Lycorea halia (Nymphalidae). We concatenated 9 gene
fragments (COIl, CAD, EF-1a, GAPDH, IDH, MDH, RpS2, RpS5, wingless).

Partition Finder — Partition Finder identified 8 subsets.

Subset # Substitution model Gene fragments and codon positions

Subset 1 HKY+ MDH_pos3, CAD_pos3

Subset 2 GTR+G RpS5_posl, RpS2_posl, GAPDH _posl, EF-1a_posl,
wingless_posl, MDH_pos1, CAD_posl, IDH_posl

Subset 3 HKY+ COl-end_pos2, COl-begin_pos2, RpS5_pos2,
GAPDH_pos2, MDH_pos2, EF-1a_pos2, CAD_pos2,
IDH_pos2

Subset 4 HKY+G COl-end_pos3, COl-begin_pos3

Subset 5 TRN+G COl-end_pos1, COl-begin_posl

Subset 6 HKY+G EF-1a_pos3, RpS5_pos3

Subset 7 GTR+G GAPDH_pos3, RpS2_pos3, IDH_pos3, wingless_pos3

Subset 8 JC RpS2_pos2, wingless_pos2

BEAST analysis — We used one molecular clock per subset identified by Partition Finder and obtained
good mixing and convergence. We used a Birth-Death tree prior. We performed two runs of 20
million generations, sampling trees and parameters every 2000 generations.

Grafting — For grafting, the outgroups were removed and the subclade grafted at the mrca of
Danainae.

7- Nymphalidae: Apaturinae

Dataset — The dataset for the Apaturinae consisted of 9 taxa to which two outgroups were added:
Timelaea albescens (Nymphalidae) and Biblis hyperia (Nymphalidae). We concatenated 10 gene
fragments (COI, CAD, EF-1a, GAPDH, ArgK, IDH, MDH, RpS2, RpS5, wingless).

Partition Finder — Partition Finder identified 7 subsets.

Subset # | Substitution model | Gene fragments and codon positions

Subset 1 | TRN+G wingless_pos1, CAD_posl1, IDH_pos1, ArgK_pos1,
RpS5_posl, RpS2 posl, EF-1a_posl, MDH_posl,
GAPDH_posl

Subset 2 | GTR+I COl-begin_pos2, EF-1a_pos2, ArgKk_pos2, MDH_pos2,
CAD_pos2, COl-end_pos2, IDH_pos2, RpS5_pos2,
GAPDH_pos2

Subset 3 | GTR+G EF-1a_pos3, RpS2_pos3, RpS5_pos3, GAPDH_pos3,
ArgK_pos3, wingless_pos3

Subset 4 | HKY+I IDH_pos3, MDH_pos3, CAD pos3

Subset 5 | HKY+G COl-end_pos3, COl-begin_pos3

Subset 6 | TRN+G COl-end_pos1, COl-begin_posl

Subset7 | IC RpS2_pos2, wingless_pos2
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BEAST analysis — We used one molecular clock per subset identified by Partition Finder and obtained
good mixing and convergence. We used a Birth-Death tree prior. We performed two runs of 20
million generations, sampling trees and parameters every 2000 generations.

Grafting — For grafting, the outgroups were removed and the subclade grafted at the mrca of
Danainae.

8- Nymphalidae: Heliconiinae + Limenitidinae

Dataset — The dataset combined the sister clades Heliconiinae and Limenitidinae and consisted of 92
taxa to which three outgroups were added: Amnosia decora (Nymphalidae), Apatura iris
(Nymphalidae) and Libythea celtis (Nymphalidae). We concatenated 11 gene fragments (COI, CAD,
EF-1a, GAPDH, ArgK, IDH, MDH, RpS2, RpS5, DDC, wingless).

Partition Finder — Partition Finder identified 14 subsets.

Subset # Substitution model Gene fragments and codon positions

Subset 1 GTR+I+G wingless_pos2, RpS2_pos1, ArgK_posl

Subset 2 GTR+I+G DDC _pos2, IDH_pos2, GAPDH_pos2, RpS5_pos2, EF-
la_pos2, ArgK _pos2

Subset 3 GTR+G ArgK_pos3

Subset 4 HKY+I+G MDH_pos3, CAD_pos3

Subset 5 GTR+I+G DDC_pos1, wingless_pos1, CAD_pos1, RpS5 posi,
MDH_posl, IDH posl

Subset 6 GTR+I+G CAD_pos2, MDH_pos2, COIl-begin_pos2, COI-
end_pos2

Subset 7 GTR+I+G COl-end_pos3, COl-begin_pos3

Subset 8 GTR+I+G COl-end_pos1, COl-begin_posl

Subset 9 GTR+I+G DDC_pos3, wingless_pos3, RpS5_pos3, RpS2_pos3

Subset 10 | GTR+I+G EF-1a_pos3

Subset 11 | TRN+I+G EF-1a_posl, GAPDH posl

Subset 12 | GTR+I+G GAPDH_pos3

Subset 13 | GTR+I+G IDH_pos3

Subset 14 | JC+ RpS2_pos2

BEAST analysis — Preliminary analyses showed problems with the subset 14 (RpS2_pos2) which was
therefore removed from the analyses. In order to improve the quality of our runs we replaced the
default priors for rates of substitutions by uniform priors ranging between 0 and 10 for the following
case: subset7.cg. We used one molecular clock per subset identified by Partition Finder and obtained
good mixing and convergence. We used a Birth-Death tree prior. We performed two runs of 100
million generations, sampling trees and parameters every 10000 generations.

Grafting — For grafting, the outgroups were removed and the subclade grafted at the split between
Limenitidinae and Heliconiinae.

9- Nymphalidae: Nymphalinae
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Dataset — The dataset of Nymphalinae consisted of 83 taxa to which two outgroups were added:
Historis odius (Nymphalidae) and Pycina zamba (Nymphalidae). We concatenated 11 gene fragments
(COl, CAD, EF-1a, GAPDH, ArgK, IDH, MDH, RpS2, RpS5, DDC, wingless).

Partition Finder — Partition Finder identified 12 subsets.

Subset # Substitution model Gene fragments and codon positions

Subset 1 TRN+I+G wingless_pos1, ArgK_posl, MDH_pos1, CAD_pos1,
IDH_posl, GAPDH posl

Subset 2 GTR+I+G DDC _pos2, IDH pos2, ArgKk_pos2, EF-1a_pos2,
RpS5_pos2, MDH_pos2, CAD_pos2

Subset 3 GTR+G EF-1a_pos3, ArgK_pos3

Subset 4 HKY+I+G MDH_pos3, CAD_pos3

Subset 5 GTR+G COl-end_pos3, COl-begin_pos3

Subset 6 GTR+G COl-end_pos1, COl-begin_posl

Subset 7 GTR+I+G COl-begin_pos2, COIl-end_pos2

Subset 8 TRNEF wingless_pos3, DDC_pos3

Subset 9 SYM+G DDC_posl, wingless_pos2

Subset 10 | GTR+I+G RpS5_posl, RpS2 posl, EF-1a_posl

Subset 11 | GTR+G IDH_pos3, RpS2_pos3, GAPDH_pos3, RpS5_pos3

Subset 12 | JC+ RpS2_pos2, GAPDH_pos2

BEAST analysis — In order to improve the quality of our runs we replaced the default priors for rates
of substitutions by uniform priors ranging between 0 and 10 for the following case: subset5.cg.
Preliminary analyses revealed problems when using one molecular clock per subset identified by
Partition Finder. We restricted the analysis to one molecular clock for the mitochondrial gene
fragments and one molecular clock for the nuclear gene fragments. We used a Birth-Death tree prior.
We performed two runs of 100 million generations, sampling trees and parameters every 10000
generations.

Grafting — For grafting, the outgroups were removed and the subclade grafted at the mrca of
Nymphalinae.

10- Nymphalidae: Satyrinae 1

Dataset — The first Satyrinae dataset consisted of 13 taxa, belonging to the genera Kirinia, Pararge,
Lasiommata, Tatinga, Chonala and Lopinga, to which three outgroups were added: Bicyclus anynana
(Nymphalidae), Acrophtalmia leuce (Nymphalidae) and Ragadia makuta (Nymphalidae). We
concatenated 5 gene fragments (COIl, EF-1a, GAPDH, RpS5, wingless).

Partition Finder — Partition Finder identified 6 subsets.

Subset # Substitution model Gene fragments and codon positions

Subset 1 HKY+G COl-begin_pos3, COIl-end_pos3

Subset 2 TRN+G COl-begin_pos1, COIl-end_posl

Subset 3 HKY+I EF-1a_pos2, RpS5 pos2, GAPDH_pos2, COI-
end_pos2, COIl-begin_pos2

Subset 4 GTR+G GAPDH_pos3, EF-1a_pos3, RpS5_pos3

Subset 5 TRN+G wingless_pos2, wingless_posl, GAPDH_pos1, EF-
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la_posl, RpS5 posl
Subset 6 GTR wingless_pos3

BEAST analysis — We used one molecular clock per subset identified by Partition Finder and obtained
good mixing and convergence. We used a Birth-Death tree prior. We performed two runs of 20
million generations, sampling trees and parameters every 2000 generations.

Grafting — For grafting, the outgroups were removed and the subclade grafted at the crown of the
clade after removing the outgroups.

11- Nymphalidae: Satyrinae 2

Dataset — The second Satyrinae dataset consisted of 161 taxa, belonging to the genera Calisto,
Euptychia, Callerebia, Proterebia, Gyrocheilus, Strabena, Ypthima, Ypthimomorpha, Stygionympha,
Cassionympha, Neocoenyra, Pseudonympha, Erebia, Boerebia, Hyponephele, Cercyonis, Maniola,
Aphantopus, Pyronia, Faunula, Grumia, Paralasa, Melanargia, Hipparchia, Berberia, Oeneis,
Neominois, Karanasa, Brintesia, Arethusana, Satyrus, Pseudochazara and Chazara, to which three
outgroups were added: Coenonympha pamphilus (Nymphalidae), Taygetis virgilia (Nymphalidae) and
Pronophila thelebe (Nymphalidae). We concatenated 10 gene fragments (COI, CAD, EF-1a , GAPDH,
ArgK, IDH, MDH, RpS2, RpS5, wingless).

Partition Finder — Partition Finder identified 11 subsets.

Subset # Substitution model Gene fragments and codon positions

Subset 1 GTR+I+G ArgK_pos1, wingless_pos1, RpS2_posi1, IDH_pos],
CAD_posl, EF-1a_posl, GAPDH_posl, RpS5 posl,
MDH_posl

Subset 2 HKY+I+G MDH_pos2, ArgKk_pos2, CAD_pos2, IDH_pos2,
RpS5_pos2, EF-1a_pos2, GAPDH_pos2

Subset 3 GTR+G ArgK_pos3, wingless_pos3

Subset 4 HKY+G IDH_pos3, MDH_pos3, CAD_pos3

Subset 5 GTR+G COl-begin_pos3, COIl-end_pos3

Subset 6 GTR+G COl-begin_pos1, COIl-end_posl

Subset 7 TRN+I+G COl-begin_pos2, COIl-end_pos2

Subset 8 GTR+I+G EF-1a_pos3, RpS5_pos3

Subset 9 HKY+G GAPDH_pos3

Subset 10 | TRNEF+G RpS2_pos2, wingless_pos2

Subset 11 | K80+G RpS2_pos3

BEAST analysis — In order to improve the quality of our runs we replaced the default priors for rates
of substitutions by uniform prior ranging between 0 and 10 for the following cases: subset5.ac,
subset5.ag, subset5.at, subset5.cg, subset5.gt. We used one molecular clock per subset identified by
Partition Finder and obtained good mixing and convergence. We used a Birth-Death tree prior. We
performed two runs of 100 million generations, sampling trees and parameters every 10000
generations.
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Grafting — For grafting, the outgroups were removed and the subclade grafted at the crown of the
clade after removing the outgroups.

12- Nymphalidae: Satyrinae 3

Dataset — The third Satyrinae dataset consisted of 15 taxa all belonging to the genus Coenonympha,
to which two outgroups were added: Sinonympha amoena (Nymphalidae) and Oressinoma sorata
(Nymphalidae). We concatenated 9 gene fragments (COIl, CAD, EF-1a, GAPDH, IDH, MDH, RpS2,
RpS5, wingless).

Partition Finder — Partition Finder identified 6 subsets.

Subset # Substitution model Gene fragments and codon positions

Subset 1 HKY CAD_pos3

Subset 2 TRN+G RpS2_pos2, COl-begin_pos1, COl-end_pos1,
CAD_posl, IDH _posl

Subset 3 HKY RpS5_pos2, MDH_pos2, GAPDH_pos2, EF-1a_pos2,
IDH_pos2, CAD_pos2

Subset 4 GTR+G COl-end_pos3, COl-begin_pos3

Subset 5 HKY+ COl-end_pos2, COl-begin_pos2

Subset 6 HKY+G wingless_pos3, RpS2_pos3, EF-1a_pos3

Subset 7 TRN+G wingless_pos1, RpS2_posl, MDH_pos1,
GAPDH_pos1, RpS5 posl, EF-1a_posl

Subset 8 HKY+G RpS5_pos3, MDH_pos3, GAPDH_pos3, IDH pos3

Subset 9 JC wingless_pos2

BEAST analysis — We used one molecular clock per subset identified by Partition Finder and obtained
good mixing and convergence. We used a Birth-Death tree prior. We performed two runs of 20
million generations, sampling trees and parameters every 2000 generations.

Grafting — For grafting, the outgroups were removed and the subclade grafted at the crown of
Coenonympha.

Data Records

The analysed dataset (a concatenated alignment of the genes COI, CAD, EF-1a, GAPDH, ArgK, IDH,
MDH, RpS2, RpS5, DDC, wingless, and H3) is available in FASTA format at DOI:
10.5281/zenodo.3531555. The posterior distribution of ML trees and the consensus tree are
available in NEWICK format at DOI: 10.5281/zenodo.3531555.

Technical Validation

Species identities of the chosen sequences for the dataset were validated by blasting the DNA
barcode sequence against the Barcode Of Life Database, which has a good representation of
European butterfly species due to a number of barcoding projects implemented in different
countries. In almost all cases, the sequences came from the same voucher specimen itself. In 88
cases (Supporting Information), the sequences used were from different individuals. In these cases
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special care was taken to use sequences from reliable sources, preferably those with voucher
photographs.

We based our time-calibration from a recent re-evaluation of the timing of divergence of higher-level
Papilionoidea. We used the topology inferred by Chazot et al. *’ as a backbone in our grafting
procedure. This topology was fixed in Chazot et al. ¥/, hence only node ages were estimated. Within
each subclade we grafted however, we let BEAST estimate the topology in addition to node height.
Several sections of the European butterfly tree remain poorly supported. This most likely arises from
the lack of molecular information as well as recent and rapid diversification events within
Polyommatus, Hipparchia, or Pseudochazara for example. We show here a synthetic tree
summarizing the posterior distribution of topologies and node ages but the posterior distribution of
grafted trees can be found in Supporting Information, providing a distribution of alternative
topologies and node ages estimated by BEAST. We strongly advise any researcher using our
phylogenetic framework to repeat the analyses on at least 100 trees randomly sampled from this
posterior distribution in order to account for topology and node age uncertainty. This tree can also
help identify the sections of the tree lacking molecular information and therefore points at the
sections that should be targeted in the future when generating new molecular data.

Usage Notes

We have generated a robust phylogenetic hypothesis for all European species of butterflies with
associated times of divergence (Fig. 1). Our purpose is to provide a complete phylogenetic
framework for use by the ecological and evolutionary communities. The demand for such a
phylogenetic information is high at the moment and various proxies have been used that are not
ideal, starting already in 2005%%. We provide a posterior distribution of topologies and node ages, in
order for researchers to be able to take phylogenetic and node age uncertainty into account if they
so wish. The tree files are provided in standard Newick format as output from BEAST. Future studies
will not necessarily be as comprehensive as the tree we provide. In such cases we recommend using
tools such as the ape package® in R” to remove tips from the tree that are not relevant to a given
study.
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