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Summary sentence 21 
Network modeling of macrophage activation predicts responses to combinations of 22 
cytokines along both the M1-M2 polarization axis and a second axis associated with a 23 
mixed macrophage activation phenotype. 24 
 25 
Abstract 26 
Macrophages are subject to a wide range of cytokine and pathogen signals in vivo, 27 
which contribute to differential activation and modulation of inflammation. Understanding 28 
the response to multiple, often conflicting, cues that macrophages experience requires a 29 
network perspective. Here, we integrate data from literature curation and mRNA 30 
expression profiles to develop a large-scale computational model of the macrophage 31 
signaling network. In response to stimulation across all pairs of 9 cytokine inputs, the 32 
model predicted activation along the classic M1-M2 polarization axis but also a second 33 
axis of macrophage activation that distinguishes unstimulated macrophages from a 34 
mixed phenotype induced by conflicting cues. Along this second axis, combinations of 35 
conflicting stimuli, interleukin 4 (IL4) with lipopolysaccharide (LPS), interferon-γ (IFNγ), 36 
IFNβ, or tumor necrosis factor-α (TNFα), produced mutual inhibition of several signaling 37 
pathways, e.g. nuclear factor κB (NFκB) and signal transducer and activator of 38 
transcription 6 (STAT6), but also mutual activation of the phosphoinositide 3-kinases 39 
(PI3K) signaling module. In response to combined IFNγ and IL4, the model predicted 40 
genes whose expression was mutually inhibited, e.g. inducible nitric oxide synthase 41 
(iNOS) and arginase 1 (Arg1), or mutually enhanced, e.g. IL4 receptor-α (IL4Rα) and 42 
suppressor of cytokine signaling 1 (SOCS1), which was validated by independent 43 
experimental data. Knockdown simulations further predicted network mechanisms 44 
underlying functional crosstalk, such as mutual STAT3/STAT6-mediated enhancement 45 
of IL4Rα expression. In summary, the computational model predicts that network 46 
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crosstalk mediates a broadened spectrum of macrophage activation in response to 47 
mixed pro- and anti-inflammatory cytokine cues, making it useful for modeling in vivo 48 
scenarios. 49 
 50 
Introduction 51 
Macrophages are central mediators of inflammation across a diverse range of protective 52 
or pathogenic processes including antimicrobial defense, anti-tumor immune responses, 53 
allergy and asthma, wound healing, and autoimmunity.[1]–[6] Tumor-associated 54 
macrophages generally exhibit an anti-inflammatory phenotype in response to hypoxic 55 
tumor microenvironment signals.[5] In rheumatoid arthritis, both pro- and anti-56 
inflammatory cytokines stimulate macrophages to control inducible nitric oxide synthase 57 
(iNOS) expression and nitric oxide production, which is implicated in inflammation, 58 
angiogenesis, and tissue reconstruction.[6] After myocardial infarction, the macrophage 59 
population consists of subtypes that regulate the early pro-inflammatory and later anti-60 
inflammatory reparative phases of infarct remodeling. Pro-inflammatory macrophages 61 
mediate the release of pro-inflammatory cytokines, whereas anti-inflammatory 62 
macrophages mainly participate in wound-healing.[7]–[11]  63 

Macrophage infiltration into tissue and activation are coordinated by a variety of 64 
chemokines and cytokines. These environmental cues induce different macrophage 65 
phenotypes, characterized by distinct gene expression patterns and cell functions. 66 
Historically, macrophages in vitro have been classified into the classically (pro-67 
inflammatory, M1) activated and the alternatively (anti-inflammatory, M2) activated 68 
phenotypes, each associated with specific markers. Lipopolysaccharide (LPS) and 69 
interferon-γ (IFNγ) are the prototypical stimuli for M1-type activation, and interleukin(IL)-70 
4 is a prototypical M2-type stimulus.[12], [13] However, a number of studies have shown 71 
more diverse, stimulus-dependent macrophage phenotypes.[1], [4], [14]–[17] In vivo 72 
studies further indicate that macrophages respond to more complex, tissue-specific 73 
combinations of signaling factors than typically studied in vitro.[18], [19] Several recent 74 
reviews have noted that macrophage activation, orchestrated by complex 75 
spatiotemporally signaling cues, extends well beyond the linear M1/M2 spectrum and 76 
requires reassessment of current conceptual models.[20]–[22]  77 

Developing more accurate conceptual models will require comprehensive 78 
assessments of macrophage phenotypes and systems biology frameworks that 79 
mechanistically link cues to phenotype. Advances in transcriptomics have provided 80 
genome-scale signatures of macrophage responses that extend beyond the limited 81 
marker panels previously considered. Omics studies have been critical in defining the 82 
complexity of macrophage responses that depend on cell source, timepoints of 83 
evaluation, and stimuli applied.[14], [23], [24] Network models are needed to 84 
mechanistically explain how complex cytokine inputs produce such signatures. [25], 85 
[21], [26] Large-scale network models have previously revealed key signaling properties 86 
of a number of mammalian cell types, including cardiac myocytes, fibroblasts, and T 87 
cells.[27]–[29]  88 

To address this challenge, here we developed a large-scale, logic-based 89 
differential equation (LDE) computational model of macrophage activation. We refined 90 
and validated the model semi-quantitatively using RNA-Seq data from LPS+IFNγ or IL4-91 
stimulated peritoneal macrophages. To examine how this network resolves conflicting 92 
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cytokine cues, as often occurs in vivo, we simulated all pairwise combinations of 9 93 
cytokine inputs. Predictions of gene expression in response to combined IFNγ and IL4 94 
treatment were validated against an independent RNA-Seq dataset, and comprehensive 95 
knockdown simulations were used to identify underlying crosstalk mechanisms. 96 
 97 
Results 98 
Developing a large-scale, logic-based differential equation model of the macrophage 99 
activation signaling network 100 
We performed a manual literature curation of the macrophage activation signaling 101 
network, integrating signaling pathways from review articles, original research articles, 102 
and a previous computational model (see Methods).[1], [30]–[32] This curated signaling 103 
network incorporated 9 cytokine inputs, including the classic M1-inducing LPS and 104 
IFNγ, M2-inducing IL4, as well as 7 other cytokines important in macrophage activation: 105 
IFNβ, IL1, IL6, IL10, IL12 and tumor necrosis factor-α (TNFα).[33], [13], [30], [15] A total 106 
of 39 mRNAs were selected as model outputs based on their association with 107 
macrophage polarization in previous studies and their differential expression in murine 108 
peritoneal macrophages stimulated by either LPS+IFNγ or IL4 for 4h.[34]  109 
Transcriptional feedback was incorporated for expression of IκBα, IL4Rα and autocrine 110 
cytokines IFNβ, IFNγ, IL1, IL6, IL10, IL12, and TNFα. Overall, this signaling network 111 
included 139 nodes (mRNA, proteins, and small molecules) connected by 200 reactions 112 
(Figure 1). Using this network structure, a logic-based differential equation (LDE) model 113 
of this signaling network was automatically generated as previously described (see 114 
Methods).[35]–[37] A full description of model structure, parameters, and supporting 115 
literature is provided in Supplementary Table S1. 116 
 117 
Predicting signaling and gene expression dynamics in response to pro- and anti-118 
inflammatory stimuli 119 
The model was used to predict the dynamics of macrophage gene expression in 120 
response to stimulation by either pro-inflammatory LPS+IFNγ or anti-inflammatory IL4 121 
(Figure 2A). Consistent with previous studies, genes used as pro-inflammatory 122 
phenotype markers such as IL1 and iNOS mRNAs were specifically induced by 123 
LPS+IFNγ stimulation, while anti-inflammatory markers such as arginase 1 (Arg1) 124 
mRNA were specifically induced by IL4 stimulation. IL1, IκBα, and matrix 125 
metallopeptidase 3/7/9 (MMP3/7/9) mRNAs were predicted to exhibit adaptive 126 
expression due to negative feedback regulation. Suppressor of cytokine signaling 1 127 
(SOCS1) expression was predicted to increase under both conditions, but somewhat 128 
more strongly with LPS+IFNγ (Figure 2B). Network-wide responses to LPS+IFNγ and 129 
IL4 stimulation are visualized in Supplementary Figure S1. 130 

Model predictions of mRNA expression were compared to experimental 131 
transcriptome responses of peritoneal macrophages stimulated with LPS+IFNγ or IL4 132 
for 4 h (Figure 2C; see Supplementary Figure S2 for differential expression analysis). 133 
Semi-quantitative comparisons between the model and experimental measurements 134 
were performed by root-mean squared (RMS) normalization of log2 fold changes in 135 
gene expression. For both LPS+IFNγ and IL4 stimulated conditions, we observed high 136 
consistency between the predicted model and experimentally measured expression 137 
profiles. In the LPS+IFNγ stimulated macrophages, 27 out of 29 genes were semi-138 
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quantitatively consistent (absolute difference in RMS-normalized fold change less than 139 
0.4). The two quantitatively inconsistent genes, C-C motif chemokine ligand 17 (CCL17) 140 
and peroxisome proliferator-activated receptor-γ (PPARγ), both qualitatively decreased 141 
in the RNA-Seq data and model predictions. In IL4-stimulated macrophages, 26 out of 142 
29 genes were semi-quantitatively consistent. Two of the three inconsistent genes, 143 
CCL17 and SMAD7, both qualitatively increased in the RNA-Seq data and model 144 
prediction. IL4 Receptor-α (IL4Rα) was predicted to be increase yet was not significantly 145 
differentially expressed in the RNA-Seq data. Overall the model exhibited 91.4% (53 of 146 
58) semi-quantitative match and another 6.9% (4 of 58) trend match with RNA-Seq 147 
data, for a total match of 98.3% (57 of 58).  148 

To identify the key drivers of differential macrophage responses to LPS+IFNγ 149 
and IL4 input-dependent differential responses, we simulated network-wide node 150 
knockdowns. As shown in Supplementary Figure S3, the network response to 151 
knockdowns differed considerably between LPS+IFNγ and IL4 conditions. Network 152 
influence of a given node was quantified by summing the absolute change in all network 153 
nodes when that node was knocked down (columns in Supplementary Figure S3). The 154 
most influential nodes in LPS+IFNγ -treated macrophages differed considerably from 155 
the most highly influential nodes with IL4 treatment (Figure 3A). Node sensitivity was 156 
quantified by summing the absolute change in that node across all node knockdowns 157 
(rows in Supplementary Figure S3).  158 

Based on network-wide knockdown simulations, the top 10 most influential nodes 159 
and top 10 most sensitive nodes were ranked for both the LPS+IFNγ and IL4 stimulated 160 
conditions. Under LPS+IFNγ stimulation, the most influential nodes are the LPS-toll like 161 
receptor 4 (TLR4)-myeloid differentiation 88 (MyD88)- TNF receptor associated factor 6 162 
(TRAF6) signaling axis, phosphoinositide 3-kinases (PI3K)/AKT, and pro-inflammatory 163 
transcriptional factors signal transducer and activator of transcription 1 (STAT1) and 164 
nuclear factor κB (NFκB) (Figure 3B, left panel). The nodes most sensitive to 165 
knockdowns under LPS+IFNγ stimulation were induced by mitogen-activated protein 166 
kinases (MAPKs) and IL1 autocrine signaling, suggesting a highly interactive and 167 
feedback-dependent network. In contrast, with IL4 stimulation the most influential nodes 168 
were associated with the IL4-STAT6 signaling axis except IκBα (which was negatively 169 
regulated by the IL4-STAT6 pathway) and SOCS1, which negatively fed back to STAT6 170 
activation. The most sensitive nodes under IL4 stimulation were all STAT6-induced, 171 
consistent with the dominant signaling through the IL4-STAT6 signaling axis (Figure 172 
3B, right panel).  173 
  174 
Distinct macrophage phenotypes predicted in response to stimuli combinations 175 
During inflammation, macrophages are subjected to multiple, sometimes conflicting 176 
cues. Responses to combinations of stimuli may reveal the crosstalk mechanisms that 177 
underlie cellular decision making. To this end, we simulated the 9 single input stimuli, 36 178 
pairwise combinations, and negative control conditions. Network responses to cytokine 179 
combinations clustered into 6 phenotypes, which were largely determined by a 180 
dominating role of LPS, TNFα/IFNγ/IFNβ, IL1, or IL4 (Figure 4A, conditions listed in 181 
Table 1). Signaling modules distinctly induced by these stimuli are visualized in 182 
Supplementary Figure S4. 183 
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Principal component analysis separated M1-like phenotypes stimulated by pro-184 
inflammatory cytokines from the M2-like phenotype stimulated by anti-inflammatory 185 
cytokines along principal component 1 (PC1) (Figure 4B). Principal component 2 (PC2) 186 
provided further distinction among macrophage phenotypes beyond the well-established 187 
M1-M2 axis. LPS and IFNγ are both considered classic M1-inducing stimuli [1], [31], 188 
and they both strongly stimulated the NFκB module. However, LPS was distinguished 189 
along PC2 by stronger activation of MAPKs and STAT1 modules and IL1 mRNA 190 
expression, while IFNγ stimulated glycogen synthase kinase 3 (GSK3) (Figure 4C). IL4- 191 
and IL10-dominated combinations were both located in the positive PC1 direction, 192 
associated with a M2-like phenotype. However, PC2 distinguished their distinct 193 
regulation of STAT6 and STAT3 modules (Figure 4C), which is consistent with 194 
previously reported distinctions between M2-like phenotypes induced by IL4 and 195 
IL10.[38], [39] IL10-treated macrophages are generally considered as a deactivated M2 196 
phenotype, consistent with the IL10-induced phenotypes clustered together with the 197 
control condition. 198 

Co-stimulation of LPS, TNFα, IFNγ, or IFNβ with IL4 produced a mixed 199 
phenotype distinct from that observed with any individual stimulus (Figure 4B). As 200 
expected, combinations of these pro- and anti-inflammatory stimuli were mutually 201 
inhibiting along the M1-M2 axis. Surprisingly, these combinations were mutually 202 
activating along the PC2 dimension. PCA did not resolve unique markers of the mixed 203 
phenotype, indicating that closer examination of particular conflicting stimuli was 204 
needed to identify the drivers of mutual inhibition and activation. Compared to analysis 205 
of single treatments alone (Supplementary Figure S5), combination treatments 206 
decreased the variance explained by PC1 from 61% to 55% and increased the variance 207 
explained by PC2 from 14% to 17%. Together these results indicate an important 208 
dimension to macrophage activation beyond the classic M1-M2 polarization paradigm. 209 
 210 
Antagonistic stimulus combinations elicited both antagonistic and mutualistic responses 211 
in different signaling modules. 212 
To identify network mechanisms that may contribute to cross-talk between conflicting 213 
cues, we focused on IFNγ with IL4, as this pair often co-exists in vivo and has been 214 
studied experimentally.[40] Signaling module activation was quantified by the sum of the 215 
node activities within each module, as identified in the hierarchical clustering analysis. 216 
Addition of a conflicting stimulus decreased activity of IFNγ -induced MAPKs, NFκB, 217 
and STAT1 modules and IL4-induced STAT6 modules, demonstrating mutual inhibition 218 
of these modules (Figure 5A). In contrast, STAT3 and PI3K modules were further 219 
activated by co-stimulation with the pro- and anti-inflammatory inputs, consistent with 220 
our observation of a unique mixed phenotype. 221 

We further examined potential cross-talk between IFNγ and IL4 on gene 222 
expression, which was validated against independent published RNA-Seq data of 223 
murine bone marrow-derived macrophages treated with IFNγ and IL4 combinations for 224 
4 h (Figure 5B).[40] The difference in RMS-normalized change in gene expression 225 
between single cytokine (IFNγ or IL4) and combined IFNγ+IL4 conditions was computed 226 
for both model and experiments. Genes were grouped as IFNγ-, IL4-, or mutually-227 
induced based on the RNA-Seq responses. The model correctly predicted nine IFNγ-228 
induced genes suppressed by co-stimulation with IL4 (TNFα, IL18, IKBα, IL15, CXCL10, 229 
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IRF1, SOCS3, iNOS, ICAM1). One exception was CCL5 mRNA, which was not 230 
predicted to be differentially regulated by either IFNγ or IL4. The model also correctly 231 
predicted IFNγ -mediated inhibition of four IL4-induced genes (KLF4, Fizz1, Myc, Arg1). 232 
In addition to these mutually inhibitive effects, the model correctly predicted mutual 233 
induction of SOCS1 and IL4Rα gene expression by IFNγ+IL4 co-stimulation (predicted 234 
kinetics shown in Figure 5C).  235 

Responses to IFNγ+IL4 co-stimulation were visualized to identify network 236 
mechanisms contributing to mutual inhibition or activation (Supplementary Figure S6). 237 
SOCS1 mRNA was induced by IFNγ-stimulated interferon regulatory factor 1 (IRF1) and 238 
IL4-stimulated STAT6. Mutual induction of IL4Rα mRNA was mediated by IFNγ-239 
stimulated STAT3 and IL4-stimulated STAT6.  Mutual activation of PI3K/AKT was 240 
mediated by IFNγ-stimulated IL10 and TNFα as well as IL4-stimulated growth factor 241 
receptor-bound protein 2 (GRB2). Under combined IFNγ+IL4, network-wide 242 
knockdowns demonstrate that mutually activated PI3K and SOCS1 became highly 243 
influential in suppressing pro-inflammatory and anti-inflammatory genes, respectively 244 
(Figure 5D and Supplementary Figure S7). 245 
 246 
Discussion 247 
Here, we developed a computational model that provides a quantitative framework with 248 
which to understand how macrophages integrate and respond to multiple, often 249 
conflicting cues. The model was validated against transcriptome measurements from 250 
pro- and anti-inflammatory cues (LPS+IFNγ and IL4, respectively), as well as mixed 251 
IFNγ + IL4 stimulation. In response to combined treatments, macrophages were 252 
predicted to respond not only along the classic M1-M2 polarization axis but also along a 253 
second, orthogonal dimension differentiating inactive (M0) macrophages from 254 
macrophages that are activated by mixed cues. The model predicted key network 255 
mechanisms that mediate mutual inhibition among M1 and M2-associated cues, which 256 
include predicted mutual activation of the PI3K/STAT3 signaling module and enhanced 257 
gene expression of SOCS1 mRNA and IL4Rα. Overall, this study illustrates how 258 
systems analysis of responses to combined stimuli can reveal network principles that 259 
underlie cellular decision making.   260 

The classic M1-M2 paradigm distinguishes between pro- and anti-inflammatory 261 
macrophages through differential expression of phenotype markers (e.g. IL1, IL6, iNOS, 262 
TNFα for M1; (Arg1, found in inflammatory zone 1 (Fizz1), PPARγ for M2).[1], [3], [31] In 263 
vitro studies frequently use LPS, IFNγ, or LPS+IFNγ treatment to induce the M1-like 264 
phenotype and IL4 or IL10 to induce the M2-like phenotype in mouse, although each 265 
stimulus yields a somewhat different activation state. Furthermore, these simplified 266 
stimulation conditions do not replicate the dynamic multi-factorial stimuli macrophages 267 
experience in vivo.[1], [2], [20], [21] The signaling network mediating macrophage 268 
activation is highly complex, making comprehensive perturbations of cytokine and 269 
intracellular perturbations experimentally intractable.[15], [40], [41]  270 

Model predictions of response to classic M1/M2 polarization stimuli LPS+IFNγ or 271 
IL4 were largely consistent with RNA sequencing data from peritoneal macrophages 272 
and predicted distinctly influential signaling nodes under these conditions. In response 273 
to 36 stimulus pairs, the macrophage network model responded not only along the 274 
classic M1-M2 polarization axis but also along a second axis that further differentiated 275 
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among macrophage phenotypes (Figure 6). Along this new dimension, antagonistic 276 
combinations of IL4 and IFNγ or other pro-inflammatory stimuli (LPS induced a mixed 277 
phenotype distinct from either inactive or M1/M2 polarized macrophages. Many classic 278 
M1 and M2 markers were mutually inhibited, yet the PI3K signaling module and SOCS1 279 
and IL4Rα mRNAs (in the STAT3 module) were mutually activated. Knockdown 280 
simulations predicted that SOCS1 and PI3K were not only responsive but also helped to 281 
mediate the mutual inhibition characteristic of the mixed phenotype.  282 

Macrophage phenotypes are typically assessed based on markers of mRNA or 283 
protein abundance.[1], [3], [31] Here, modeling of dynamic post-translational regulation 284 
of signaling increased the ability to resolve distinct macrophage phenotypes, particularly 285 
in response to antagonistic cytokine combinations and at early timepoints. PI3K, AKT 286 
and GSK3 activities were among the strongest contributors to the mixed phenotype 287 
activation axis orthogonal to the M1-M2 polarization axis. Simulated knockdown of PI3K 288 
and AKTt were also highly influential on macrophage network state with combined IFNγ 289 
+ IL4 stimulation.  Indeed, PI3K/AKT signaling has been described as a converging 290 
point for macrophage activation in response to multiple inflammatory stimuli, with 291 
distinct roles depending on the stimulus.[42]  Further, signaling dynamics aided 292 
understanding of the mechanisms by which mRNA markers of macrophage phenotype 293 
were mutually inhibited or stimulated.  294 

Macrophage activation has previously been modeled using alternative modeling 295 
formalisms and differing scope. A previous Boolean model of macrophage polarization 296 
was developed and specifically refined based on data from bone marrow-derived 297 
macrophages treated with LPS or IL4 with IL13 [32]. For the 10 genes in common 298 
between their model and ours, a logic-based differential equation version of the Boolean 299 
model also predicts gene expression in response to LPS or IL4 that is mostly consistent 300 
with the RNA-Seq data from peritoneal macrophages used in our analysis 301 
(Supplementary Figure S8). The model developed here incorporates additional 302 
cytokine inputs (IFNγ, IL1, IL6, IL12, and TNFα), cross-talk mechanisms, and genes that 303 
were important for analysis of combined stimuli. The logic-based differential equation 304 
framework allowed prediction of continuous dynamics and levels of all nodes in the 305 
network, allowing semi-quantitative comparisons of perturbation responses, 306 
experimental validation, and future analysis of dynamically varying inputs. While we 307 
focused analysis towards early changes in signaling and transcription, models focusing 308 
on downstream kinetics of gene regulation have shown an important role for regulation 309 
of mRNA stability.[43] Future model revisions incorporating mRNA stability,[43] 310 
microRNAs,[32]  and chromatin modifications[40] may provide further insight into the 311 
feedbacks guiding macrophage activation dynamics.  312 

In conclusion, the macrophage network model developed here provides a 313 
framework for network-based understanding of how macrophages respond to complex 314 
stimuli. Integrated network analyses and experimental studies in the context of mixed 315 
stimuli are needed to better characterize and understand the spectrum of macrophage 316 
phenotypes in physiologic and pathologic settings.  317 

 318 
  319 
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Materials and Methods 320 
Model development  321 
An initial macrophage signaling network was constructed based on literature search in 322 
PubMed, identifying review articles and original articles using the search terms 323 
“macrophage polarization”, “macrophage activation”, “computational modeling”, and 324 
“peritoneal macrophages”.[1], [30]–[32] The signaling network was then extended to 325 
include additional established macrophage activation markers that were differentially 326 
expressed in peritoneal macrophages from wild type (WT) C57/BL6J mice treated with 327 
either 1 µg/ml LPS and 20 ng/ml IFNγ or 20 ng/ml IL4 for 4h (see RNA-seq analysis, 328 
below).  329 

Differences between initial model predictions and experimental measurements 330 
indicated an important role of crosstalk between pro- and anti-inflammatory stimuli. This 331 
motivated further model extension through focused literature search on 1) autocrine 332 
loops identified with keywords such as “macrophage signaling pathway” IFNβ, IL10, or 333 
IL12;[44]–[49] 2) inclusion of feedback loops reported for SOCS and GSK3;[50], [51, p. 334 
1], [52, p. 3], [53], [54] and 3) the addition of key nodes such as PI3K and cAMP 335 
response element-binding protein (CREB).[15], [30], [48], [55] Autocrine loop candidates 336 
were first identified by reviewing the significantly induced cytokines in the LPS+IFNγ 337 
and IL4 stimulated macrophages, indicating roles for the IL12-STAT4 and the IL10- 338 
STAT3 signaling axes. The core feedback nodes including SOCS1, SOCS3, GSK3 339 
were examined next and added. Additional signaling modules reported as key cross-340 
talking nodes of multiple pathways such as PI3K and CREB were also added into the 341 
network. The finalized macrophage signaling network model includes 9 cytokines critical 342 
in macrophage polarization, LPS, IFNγ, IFNβ, IL1, IL4, IL6, IL10, IL12, and TNFα. The 343 
model consists of 139 nodes (mRNA, proteins, and small molecules) and 200 reactions.  344 

The signaling network structure was automatically translated into a logic-based 345 
differential equation model as previously described[27], [36], [37], [56] using open 346 
source Netflux software (https://github.com/saucermanlab/Netflux). The activity of each 347 
node was modeled using ordinary differential equations with steady state properties 348 
determined by normalized Hill activation or inhibition functions with default parameters 349 
and continuous AND/OR logic gating[56]. Default reaction parameters include reaction 350 
weight (1), Hill coefficient (1.4), and EC50 (0.5). Default node parameters include yinit 351 
(0) and ymax (1).[56] The node parameter τ (time constant) was scaled according to the 352 
type of node: 6 min for signaling post-translational modifications, 30 min for mRNA 353 
expression, and 1 h for protein expression based on previous macrophage-specific 354 
studies.[43], [57]–[60] Reactions weights involving protein translation, or with multiple 355 
inputs were set to 0.5 to avoid basal saturation. The baseline level of input was defined 356 
as 5% activity for all inputs (weight = 0.05). Where specified, simulations of particular 357 
cytokine stimuli (LPS+IFNγ or IL4) were performed by increasing the weights of 358 
corresponding input reactions from 5% to 70% (weight = 0.7). The model was simulated 359 
in MATLAB v2015b using the adaptive time step solver ODE15S.  360 
 361 
RNA-seq analysis and semi-quantitative model validation 362 

All animal procedures were approved by the Institutional Animal Care and Use 363 
Committee at the University of Mississippi Medical Center and were conducted in 364 
accordance with the Guide for the Care and Use of Laboratory Animals published by the 365 
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United States National Institutes of Health (Eighth edition; revised 2011). Peritoneal 366 
macrophages were isolated from adult (3-6 month old) C57BL/6J mice (n=4) as 367 
previously described.[61], [62]  Cells were plated at 1.5x106 cells/well, incubated 368 
overnight at 37°C, and then washed with fresh media. Macrophages were assigned to 369 
one of three treatment groups: 1) stimulated with 1 µg/mL LPS (Sigma, L2880) and 20 370 
ng/mL IFNγ (R&D, 485-MI) for 4 h; 2) stimulated with 20 ng/mL IL4 (R&D, 404-ML) for 4 371 
h; or 3) untreated for 4 h, serving as the negative control. 372 

Transcriptome measurements and analyses were performed as previously 373 
described [63], [64]. RNA was extracted using the Pure Link RNA Mini Kit (Ambion, 374 
Foster City, CA) in accordance with manufacturer instructions. cDNA libraries were 375 
assembled using the TruSeq Total Stranded RNA with RiboZero Kit (Ambion), set-A, 376 
quantified using the Qubit System (Invitrogen, Carlsbad, CA). cDNA library size and 377 
quality were determined with the Experion DNA 1K Chip (Bio-Rad, Hercules, CA). cDNA 378 
libraries were sequenced using the NextSeq 500 High Output Kit (300 cycles, paired 379 
end 100 bp) on the Illumina NextSeq 500 platform (Illumina, San Diego, CA). 380 
Sequenced reads (length = 30–50; Cloud Computing Platform), and Fastq file 381 
sequences were aligned to the reference genome USCS-GRCm38/mm10 using the 382 
STAR aligner with the RNA-Seq Alignment Application [65]. RNAseq count matrices 383 
were analyzed for differential mRNA expression compared to the untreated group 384 
(adjusted p-value < 0.05) using the R ‘DESeq2’ package [66]. IL4-treated and LPS+ 385 
IFNγ-treated groups were each separately compared to the untreated group. Gene set 386 
enrichment analysis was performed with Reactome2016 pathways in EnrichR, which 387 
uses Fisher’s exact test to compute a combined score as c = ln(p-value)*(z-score) [67]. 388 
For heatmap visualization, normalized counts output from DESeq2 were normalized by 389 
log10(counts per million). All statistical analysis was performed using R version 3.5.1 390 
and RStudio 1.0.143. 391 

For comparison to model predictions, experimentally measured log2 fold 392 
changes of mRNA compared to negative control were normalized by the root mean 393 
square (RMS) between treatment groups. Likewise, model-predicted log2 fold changes 394 
in mRNA compared to negative control (baseline inputs 5%) were normalized by the 395 
RMS between treatment groups. Genes were classified as semi-quantitatively 396 
consistent if the absolute difference between model and experimentally measured RMS-397 
normalized log2 fold change was smaller than 0.4 (20% of the ±1 range).  398 

Published RNA-Seq data of murine bone marrow-derived macrophage (BMDMs) 399 
treated with IFNγ, IL4, IFNγ+IL4, or negative control for 4 h [40] were obtained from 400 
Gene Expression Omnibus with the GEOquery package in R (GSE84520). DESeq2 [66] 401 
was applied to identify differentially expressed genes (adjusted p-value < 0.05). These 402 
data were used as a second validation of IL4 predictions, as well as to validate 403 
predictions of IFNγ and combined IFNγ+IL4. The difference in RMS-normalized change 404 
in gene expression between single cytokine (IFNγ or IL4) vs. combined IFNγ+IL4 405 
conditions was computed for both model and experiments. 406 
 407 
Sensitivity analysis  408 
Comprehensive single-knockdowns were simulated to identify the functional influence of 409 
each node in a given experimental condition.[37] Complete knockdown was simulated 410 
by setting ymax = 0 for that node. Change in activity was calculated as the difference in 411 
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an individual node activity with and without knockdown in response to the specified 412 
stimulus at 4 h. The sensitivity of a node in a given condition was quantified by summing 413 
the absolute activity changes for that node across all node knockdowns (e.g. the 414 
corresponding row of Supplementary Figure 3). The influence of a node in a given 415 
condition was quantified by summing the absolute activity changes of all nodes in 416 
response to that knockdown of that node (e.g. the corresponding column of 417 
Supplementary Figure 3).  418 
 419 
Combined stimuli screening 420 
Network responses to the 9 single inputs, 36 pairwise combinations, and control 421 
conditions were hierarchically-clustered to identify macrophage phenotypes and 422 
signaling modules. Phenotypes were identified by clustering across conditions (rows) 423 
using the Ward method, focusing on the variance between different treatment 424 
responses. Signaling modules were identified by clustering across nodes (columns) 425 
using the complete linkage method, which focuses on the associations among the 426 
different signaling nodes. Module activities were calculated as the sum of node activities 427 
within each module. Principal component analysis (PCA) and variable contribution 428 
analysis was performed using the FactoMineR package in R.  429 
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Tables 629 
 630 
Table 1. Clusters of network responses to single and paired cytokine stimuli. 631 
Stimulus Cluster  Stimulus Conditions 
TNFa/IFN Single: IFNγ, IFNβ, TNFα 

Pairs: IFNγ+IFNβ, IFNγ+TNFα, IFNg+IL10, IFNγ+IL12, 
IFNβ+TNFα, IFNβ+IL6, IFNb+IL10, IFNb+IL12, TNFα+IL6, 
TNFα+IL10, TNFα+IL12 

Ctrl Single: control, IL6, IL10, IL12 
Pairs: IFNg+IL6, IL6+IL10, IL6+IL12, IL10+IL12 

Anti-pairs Pairs: LPS+IL4, IFNg+IL4, IFNβ+IL4, TNFα+IL4 
IL4 Single: IL4 

Pairs: IL1+IL4, IL4+IL6, IL4+IL10, IL4+IL12 
IL1 Single: IL1 

Pairs: IFNγ+IL1, IFNβ+IL1, TNFα+IL1, IL1+IL6, IL1+IL10, IL1+IL12 
LPS Single: LPS 

Pairs: LPS+IFNγ, LPS+IFNb, LPS+TNFα, LPS+IL1, LPS+IL6, 
LPS+IL10, LPS+IL12 

 632 
Figure Legends 633 
 634 
Figure 1. Network model of the peritoneal macrophage signaling network.  Each of 635 
node represents a protein (rectangle), mRNA (hexagon), or small molecule (ellipse) in 636 
the network model.  Each arrow indicates an activating (pointed arrow) or inhibiting 637 
(flathead arrow) reaction.  Purple arrows highlight feedback reactions.  Reactions 638 
involving multiple reactants were combined via AND logic gate (circled box).  Multiple 639 
reactions affecting the same product were combined using OR gate logic. To simplify 640 
visualization, the translated nodes were overlapped under the corresponding signaling 641 
node (e.g. translated IL1 node covered by IL1 protein).  642 
 643 
Figure 2.  Distinct network dynamics predicted in response to LPS+IFNγ and IL4.  644 
A) Dynamics of predicted gene expression in response to stimulation with LPS+IFNγ or 645 
IL4.  Stimuli were added at 0 h.  B) Kinetics of selected mRNAs in response to 646 
stimulation with LPS+IFNγ or IL4.  C) mRNA expression profiles predicted by the model, 647 
validated against RNA-Seq measurements from peritoneal macrophages treated with 648 
LPS+IFNγ or IL4 for 4h. For semi-quantitative comparison between model and 649 
experiment, the log2 fold change of each mRNA vs. control was normalized by the root 650 
mean square between the M1 and M2 conditions.  Classic M1 (orange) and M2 (green) 651 
phenotype markers are highlighted. 652 
 653 
Figure 3. Network-wide knockdown simulations predict distinct mechanistic 654 
drivers of macrophage activation with pro- and anti-inflammatory stimuli. A) 655 
Overall network influence of node knockdowns under stimulation with either LPS+IFNγ 656 
(orange) or IL4 (green). Nodes were ranked by the overall influence of their knockdown 657 
on all other network nodes, under conditions of LPS+IFNγ stimulation. B) Predicted 658 
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effect of knockdown of influential nodes on activity of highly sensitive nodes, under 659 
conditions of LPS+IFNγ or IL4 treatment.  660 
 661 
Figure 4. Distinct macrophage activation states induced by combined stimuli.  A) 662 
Network-wide response to 9 single input stimuli, 36 pairwise combinations, and negative 663 
control conditions at 4 h.  Hierarchical clustering was performed to identify six 664 
phenotype clusters (color coded rows) and signaling modules (column dendrogram).  B) 665 
Principal component analysis (PCA) scores reveal relationships between the six 666 
phenotype clusters induced by combined stimuli.  C) PCA loadings indicate the 667 
contribution of each node’s activity to the PC1 and PC2 dimensions.  M1-associated 668 
(orange) and M2-associated (green) labels indicate representative signaling modules 669 
within the quadrants.  670 
 671 
Figure 5. Macrophage network model predicts both mutual inhibition and mutual 672 
activation in response to conflicting cues.  A) Model-predicted signaling module 673 
activities in response to IFNγ and IL4 treatments at 4h, column normalized.  B) 674 
Experimental validation of mRNA expression predicted in response to IFNγ, IL4, or 675 
IFNγ+IL4. For both experimental data [40] and model predictions, mRNA were 676 
independently normalized by RMS-normalized log2 fold change at 4 h. C) Predicted 677 
expression dynamics of selected mRNAs in response to IFNγ, IL4, or IFNγ+IL4.  D) 678 
Context-dependent network response to node knockdowns under treatments of IFNγ, 679 
IL4, or IFNγ+IL4. 680 
 681 
Figure 6.  Illustrative roadmap of macrophage activation phenotypes and 682 
signaling modules induced by combinations of stimuli. Combinations of pro- and 683 
anti-inflammatory stimuli induced a distinct mixed phenotype associated with mutual 684 
activation of PI3K and STAT3 modules yet mutual inhibition of M1- and M2- associated 685 
markers.  686 
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