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 2 

Abstract. 31 

 32 

Herpes simplex virus 1 (HSV) is a ubiquitous human virus resident in a majority of the global 33 

population as a latent infection. Acyclovir (ACV), is the standard of care drug used to treat primary 34 

and recurrent infections, supplemented in some patients with intravenous immunoglobulin (IVIG) 35 

treatment to suppress deleterious inflammatory responses. We found that HSV, ACV and IVIG 36 

can all independently disrupt the gut bacterial community in a sex biased manner when given to 37 

uninfected mice. Treatment of HSV infected mice with ACV or IVIG alone or together revealed 38 

complex interactions between these drugs and infection that caused pronounced sex biased 39 

dysbiosis.  ACV reduced Bacteroidetes levels in male but not female mice, while levels of the 40 

Anti-inflammatory Clostridia (AIC) were reduced in female but not male mice, which is significant 41 

as these taxa are associated with protection against the development of GVHD in hematopoietic 42 

stem cell transplant (HSCT) patients. Gut barrier dysfunction is associated with GVHD in HSCT 43 

patients and ACV also decreased Akkermansia muciniphila, which is important for maintaining 44 

gut barrier functionality. Cumulatively, our data suggest that long-term prophylactic ACV treatment 45 

of HSCT patients may contribute to GVHD and potentially impact immune reconstitution. These 46 

data have important implications for other clinical settings, including HSV eye disease and genital 47 

infections, where ACV is given long-term.  48 

 49 

Author Summary. 50 

 51 

 Primary and reactivated HSV and VZV infections are treated with Acyclovir (ACV), an 52 

antiviral drug that blocks viral DNA synthesis. In some patients IVIG is used as adjunctive therapy 53 

to block deleterious inflammation. Long term preventative treatment of patients who receive stem 54 

transplants for various blood cancers has been successful in preventing life threatening 55 

reactivated HSV and VZV infections, but GVHD remains a major factor limiting transplant 56 
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success. Studies reported here reveal that HSV infection, ACV and IVIG given alone can all 57 

disrupt the gut microbiota and that complex interactions between these drugs and infection results 58 

in even more pronounced sex biased changes in the gut bacteria community structure. 59 

Importantly, ACV treatment decreased the levels of specific bacterial taxa, including the anti-60 

inflammatory Clostriodia and Bacteroidetes that have been shown to protect against development 61 

of GVHD in stem cell transplant patients. These data suggest that long term preventative 62 

treatment of patients with ACV may contribute to GVHD in transplant patients and have negative 63 

consequences in other HSV induced diseases treated long term with ACV. The health effects of 64 

long term ACV and IVIG treatments warrant further clinical studies.  65 

 66 

Introduction. 67 

 68 

Herpes Simplex Virus type 1 (HSV), a ubiquitous human virus is the major cause of HSV 69 

encephalitis (HSE), the most prevalent sporadic encephalitis resulting from either primary 70 

infection or reactivation of latent virus. However, despite improved diagnostic procedures and 71 

effective antiviral therapies, most HSE survivors have persistent neurological impairments, 72 

including memory and behavior disturbances, dysphasia and seizures, and only 50-65% of these 73 

survivors return to independent living [1, 2]. A delay in initiating Acyclovir (ACV) treatment past 74 

the second hospital day is associated with poor neurological outcomes [3, 4]. Recent clinical trials 75 

evaluating prolonged oral ACV/valaciclovir (VACV) treatment following standard 14-day 76 

intravenous ACV treatment reported improved neurocognitive outcomes in neonates but not 77 

adults for reasons that are obscure [5, 6]. Although, it is generally accepted that replication 78 

induced pathology underlies HSV related neurological dysfunction, supporting experimental or 79 

clinical evidence is lacking. Overwhelming evidence has linked inflammation to the development 80 

of various neurological disorders and neuropsychiatric diseases, including Alzheimer’s disease 81 
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(AD), schizophrenia, autism spectrum disorder (ASD), multiple sclerosis (MS), Parkinson’s 82 

disease (PD), depression and anxiety [7-9].  83 

 84 

 Having unequivocally established that HSE arises from exaggerated CNS inflammatory 85 

responses and that the immunomodulatory activities of intravenous immunoglobulins (IVIG) can 86 

prevent HSE in a mouse model [10], we tested the hypothesis that persistent inflammation, which 87 

is documented in humans and mice after HSE [11-14], causes neurobehavioral impairments in 88 

survivors, that should be impeded by IVIG’s anti-inflammatory activity [10]. Compared to treatment 89 

of HSV infected mice with ACV or PBS alone, treatment with ACV+IVIG from day 4 pi reduced 90 

CNS inflammation and anxiety, consistent with our hypothesis. Strikingly, development of learning 91 

and memory (LM) deficits that were evident only in female PBS treated mice, were inhibited by 92 

ACV treatment and counterintuitively, aggravated by ACV+IVIG treatment. Treatment of infected 93 

male mice with ACV+IVIG also impaired LM compared to ACV or PBS alone, revealing that IVIG 94 

antagonized the beneficial effects of ACV [15]. Intriguingly, the differential antagonistic effects of 95 

ACV+IVIG on cognitive behavior in HSV infected mice, compared to ACV and PBS treatment 96 

alone, were reflected in differential serum proteomic profiles [15].  These reported antagonistic 97 

effects of ACV and IVIG on LM present a conundrum, since they are at odds with the known 98 

mechanisms of action of these drugs.  99 

 100 

 Rapidly accumulating evidence is revealing the critical role of the microbiome in regulating 101 

brain homeostasis and function such that perturbation of the gut bacteria community structure 102 

and function is increasingly being implicated in a variety of neurodegenerative and 103 

neuropsychiatric diseases.  In an effort to gain insight into how HSV induces LM impairment and 104 

the paradoxical effects of ACV and IVIG, we investigated a role for the gut microbiota. HSV 105 

infection, ACV and IVIG were all associated with significant disruption of the gut bacterial 106 

community structure that was sex biased. Furthermore, treating HSV infected mice with either 107 
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ACV or IVIG alone or both drugs together resulted in more pronounced sex-biased shifts in the 108 

gut bacterial community structure compared to uninfected mice. These results have significant 109 

clinical implications, particularly when patients receive prolonged ACV or IVIG treatment. 110 

 111 

Results. 112 

 113 

 Equal numbers (n=8) of female and male C57BL/6 mice were bilaterally inoculated with 114 

virulent HSV1 strain 17+ (1x105 PFU/eye) by corneal scarification as previously described [15]. 115 

At day 4 post infection (pi), ACV was administered at 1.25 mg / mouse by intraperitoneal injection 116 

(ip) daily for 3 days, while IVIG was given as single dose of 25 mg/mouse by ip injection on day 117 

4pi [15]. Fresh fecal pellets (n=1-2/ mouse) were collected on day 7 pi and stored at -80oC until 118 

processed for Illumina 16S rRNA gene sequencing to determine the effects of infection and drug 119 

treatment on the gut microbiome. Normal male and female mice differed in gut bacteria 120 

composition and unexpectedly, HSV ocular infection caused further shifts in the gut bacteria 121 

community and amplified this sex difference, as shown in a PCoA plot of Hellinger beta diversity 122 

distance values for infected compared to uninfected male and female mice (Figure 1A; P<0.05, 123 

Adonis Tests). In addition, HSV infection had a greater effect on gut bacterial communities in 124 

males (P=0.003) compared to females (P=0.011) (Figure 1A). Significant differences were 125 

observed at the phyla level, particularly for firmicutes (Figure 1B) with more marked differences 126 

evident at the species level for Clostridium aerotolerans and other clostridial species, for example 127 

Clostridium XIVa that ferment carbohydrates in the gut resulting in production of short chain fatty 128 

acids (SFCs) that contribute to barrier integrity and also exhibit anti-inflammatory properties 129 

(Figure 1C). A notable difference was also observed for Akkermansia muciniphila that has many 130 

health promoting activities, including maintaining gut barrier health (Figure 1C). 131 

 132 
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 Treating HSV infected mice with ACV from day 4 pi for three days resulted in even more 133 

drastic shifts in the gut bacteria composition and exaggerated sex differences (Figure 2A), than 134 

for infection alone. Considerable abundance changes were evident at the Phyla level for 135 

Bacteroidetes, Firmicutes and Verrucomicrobia (Figure 2B) and at the species level (Figure 2C). 136 

Notably, whereas HSV infection reduced the abundance of Firmicutes significantly in male but 137 

not female mice (Figure 1B), ACV reversed this effect restoring the abundance to the level in 138 

uninfected male mice, while also increasing the abundance in female mice (Figure 2B and Figure 139 

1B). Notable abundance changes at the species level included drastic suppression of Clostridium 140 

aerotolerans in infected male mice compared to increased abundance in females (Figure 1C), 141 

while ACV treatment further increased this abundance only in females (Figure 2C). Akkermansia 142 

muciniphila abundance was increased by infection in male mice but reduced in females (Figure 143 

1C), while ACV treatment resulted in total suppression of this species in female mice compared 144 

to a marked reduction in male mice (Figure 2C). There are many other similar changes in species 145 

abundance that are differentially impacted by ACV treatment in a sex-biased manner, indicative 146 

of complex interactions between infection, ACV effects on infected host cells, and bacteria, as 147 

well as metabolites produced by bacterial metabolism of ACV. 148 

 149 

 Treatment of uninfected mice with IVIG alone also shifted the gut bacteria community 150 

composition with a notable marked sex effect as determined by a beta diversity analysis (Figure 151 

3). Males and females showed a major reduction in A. muciniphila, and a lesser reduction of 152 

Verrucomicrobia in males, compared to females that showed increased abundance of this phylum 153 

in response to IVIG treatment (Figure 4). The abundance of many other bacterial species was 154 

differentially altered by IVIG treatment of males and females, for example, Clostridium 155 

aerotolerans, Bacteroides acidifaciens and Porphyromonadaceae (Figure 4B). The response to 156 

IVIG was distinct in HSV infected mice, and the complex interactions between infection, ACV and 157 

IVIG were also evident at the phyla and species levels and were strongly sex biased as well 158 
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(Figure 4A and 4B). IVIG treatment decreased A. muciniphila abundance markedly in infected 159 

males and females as did ACV, whereas in contrast, treatment with ACV+IVIG caused a notable 160 

increase in its abundance, indicative of antagonistic effects of these two drugs in the context of 161 

infection (Figure 4B) In a similar vein, C. aerotolerans abundance increased markedly in males, 162 

but was unchanged in females treated with IVIG, while in contrast, it was strongly decreased in 163 

males but slightly increased in females treated with ACV alone. In contrast, treatment with 164 

ACV+IVIG suppressed an IVIG-induced increase in males and an ACV-induced increase in 165 

females, revealing antagonism between ACV and IVIG in the context of HSV infection (Figure 166 

4B). 167 

 168 

 Patients with hematologic and other malignancies have benefited immensely from 169 

allogeneic hematopoietic stem cell transplantation (allo-HSCT or HSCT), which can be a potent 170 

curative immunotherapy. However, life threatening complications such as graft-versus-host 171 

disease (GVHD), relapse, and infections that include reactivated HSV and VZV limit its application 172 

[16]. HSV and varicella zoster (VZV) reactivation has been successfully suppressed by 173 

prophylactic ACV treatment, though ACV-resistant (ACVr) HSV is an emerging problem [17, 18]. 174 

Long term ACV prophylactic treatment is now routine for HSCT patients, because it was found to 175 

correlate with reduced HSV and ACVr HSV disease in those treated for longer than 1 year [19]. 176 

 177 

 Given this routine clinical practice, we evaluated the effects of ACV on fecal bacteria, 178 

because gut microbes have been implicated in GVHD pathophysiology and because we posit that 179 

ACV contributes to the development of GVHD by changing the gut microbiota. First, we identified 180 

gut bacterial changes in humans with GVHD [20-30]. Next, we determined whether the ACV-181 

induced changes that we detected in this mouse study matched those GVHD-associated 182 

changes. Whenever we identified taxa that were altered in both types of studies, the direction of 183 

the change was the same, and it was consistent with our hypothesis that ACV contributes to the 184 
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development of human GVHD by changing the gut microbiota. In the following, we describe these 185 

results, and we note that these ACV-induced changes were only observed in the HSV-infected 186 

mice and not in the uninfected mice. 187 

 188 

 Reduced levels of several taxa belonging to the phylum Bacteroidetes have been shown 189 

to be associated with GVHD, indicating that these gut bacteria may play a protective role. In a 190 

pediatric study, GVHD patients had lower levels of the family Bacteroidaceae and the genus 191 

Parabacteroides [30]. In a longitudinal study, pediatric patients that had lower levels of 192 

Bacteroidetes prior to HSCT were more likely to develop GVHD [24]. In our study, all three if these 193 

taxa were reduced by ACV treatment in male but not female mice (Figure 5A). 194 

 195 

 Reduced levels of Anti-Inflammatory Clostridia (AIC) have also been detected in human 196 

GVHD patients [20, 23-25, 27-30], indicating that these gut bacteria may play a protective role. 197 

This terminology was first introduced by Piper et al. [31] in the context of short bowel syndrome, 198 

and then introduced to the GVHD literature by Simms-Waldrip et al. [30]. AIC taxa include 199 

members of the families Clostridiaceae, Erysipelotrichaceae, Eubacteriaceae, Lachnospiraceae 200 

and Ruminococcaceae. In a pediatric study, decreases in Blautia and Clostridium bolteae were 201 

associated with the development of GVHD [30]. In an adult study, lower levels of Blautia, Blautia 202 

hansenii, and Blautia stercoris were associated with the development of GVHD [28]. In a 203 

longitudinal study, reduced levels of the Blautia before HSCT was shown to be a predictive marker 204 

for the development of GVHD [27]. In our study, all of these taxa were reduced by ACV treatment 205 

in female but not male mice (Figure 5B).  206 

 207 

 In a more detailed analysis of AIC bacteria, we observed that while HSV infection 208 

increased the abundance of Blautia hansenii only in males, ACV treatment reduced its abundance 209 

in females but had no effect on its abundance in males (Supplemental Figure 1). Remarkably, 210 
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a dramatic increase in B. hansenii in uninfected females was observed after IVIG treatment, and 211 

this increase was abrogated by ACV (compare NoHSV_F, NoHSV_IVIG_F and 212 

NoHSV_ACVplusIVIG_F) (Supplemental Figure 1), a result that supports sex-based differential 213 

effects of these drugs. However, during HSV infection, both IVIG and ACV reduced B. hansenii 214 

in females, whereas only IVIG reduced abundance in males. Interestingly, HSV infection 215 

significantly increased the abundance of the AIC genera Blautia, Allobaculum, and Clostridium 216 

XVIII but not Turicibacter in both males and females (Supplemental Figure 2). ACV treatment of 217 

HSV infected female mice resulted in significant decreases in the abundances of 4 AIC genera: 218 

Blautia, Allobaculum, Clostridium XVIII and Turicibacter, whereas in infected males, ACV 219 

decreased the abundance of Marvinbryantia and Oscillibacter (Supplemental Figure 2). In 220 

addition, ACV increased the abundance of Turicibacter in uninfected females but not males. 221 

 222 

 Finally, the two most abundant operational taxonomic units (OTUs), which exhibited a 223 

change in their relative abundances due to ACV treatment, were assigned to the family 224 

Porphyromonadaceae and the species A. muciniphila (Figure 5C). While we did not find these 225 

taxa associated with GVHD in prior human studies, GVHD has been associated with intestinal 226 

barrier dysfunction [32-36]. Supporting our hypothesis that ACV contributes to the development 227 

of GVHD by changing the gut microbiota, members of the Porphyromonadaceae have been 228 

shown to cause gut barrier dysfunction [37, 38], and our Porphyromonadaceae OTU was 229 

increased in its abundance by ACV. In addition, A. muciniphila was decreased by ACV treatment 230 

in our study, and it has been shown to strengthen gut barrier functioning [39-41]. 231 

 232 

Discussion. 233 

 234 

 Our intention in this brief report is to alert the scientific community and especially clinicians 235 

to the fact that HSV infection, the antiviral drug ACV, and the immunomodulatory biological, IVIG, 236 
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can all independently result in significant perturbations of the gut bacterial communities. Our data 237 

reveal complex interactions between HSV infection and ACV or/and IVIG treatment that result in 238 

marked alterations to gut bacterial communities. Although the clinical consequences of these 239 

changes have not yet been elucidated, they could have profound implications in several settings 240 

including HSCT-associated GVHD. 241 

 242 

 Though the mechanisms by which ocular HSV infection causes gut dysbiosis are unclear, 243 

neuroinflammatory mechanisms and effects on the enteric nervous system via connected 244 

brainstem neuronal circuits can be envisaged [15, 42]. Indeed, recent paradigm-shifting reports 245 

reveal that peripheral neurons, including nociceptive and sensory neurons, can directly sense and 246 

respond to environmental alarms by releasing neuropeptides that can regulate immune responses 247 

in target organs including the gut [43, 44]. Persistence of gut dysbiosis was not evaluated here, 248 

but results from a behavioral study alluded to earlier suggest long-term effects of infection and 249 

drug treatment on gut bacterial ecology should be investigated [15]. Sex biased effects on HSV 250 

induced dysbiosis merit further study, as these may involve microglial responses to HSV infection 251 

and the microglial compartment is known to be regulated by the microbiota in a sex biased manner 252 

[45-47]. 253 

 254 

 The mechanism by which ACV, the standard antiviral for HSV infections, changes the gut 255 

microbiota likely involves its uptake into bacteria. ACV is preferentially phosphorylated by the viral 256 

encoded thymidine kinase (Tk) resulting in cell retention and eventual incorporation into viral DNA 257 

resulting in inhibition of viral replication via DNA chain termination. Because Tk is conserved in 258 

numerous bacterial species, ACV can be taken up and incorporated into DNA, resulting in 259 

bactericidal effects [48-51]. Indeed, early studies on DNA replication mechanisms relied on 260 

labeling bacterial DNA with tritiated thymidine  and many bacterial taxa can be imaged using 261 

nucleoside analogues such as 1-(2_-deoxy-2_-fluoro-_-D-arabinofuranosyl)-5-[125I] iodouracil 262 
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([125I]FIAU) that are substrates for HSV Tk [52-55]. Incorporation of [methyl-3H]thymidine into 263 

DNA has been unequivocally demonstrated for members of the Clostridium genus [56] and our 264 

data show ACV reduced the abundance of the Blautia genus (order Clostridiales; [57]) Blautia 265 

hansenii, Blautia stercoris, and Clostridium bolteae in females but not males. Additionally, 266 

interrogating the NCBI reference genome sequence for Blautia hansenii confirmed the presence 267 

of a thymidine kinase enzyme. Our data are therefore consistent with ACV causing dysbiosis by, 268 

at least in part, inhibiting the growth of various bacteria taxa via the Tk mechanism, though other 269 

mechanisms involving bacterial metabolism of ACV cannot be excluded. Clearly, the mechanisms 270 

by which ACV affects gut bacterial ecology are complex, which is further supported by the sex-271 

biased effects. 272 

 273 

 We also explored the effects of IVIG treatment alone and in combination with ACV in HSV-274 

infected and uninfected mice, because IVIG has been used to treat HSV encephalitis (HSE) and 275 

is also a frontline therapy for autoimmune encephalitis, which is triggered by HSE and other insults 276 

[58-60]. Moreover, IVIG is being evaluated in a randomized control trial for children with all-cause 277 

encephalitis to determine whether neurological outcomes are improved compared to standard 278 

antiviral therapy alone, which is similar to our behavioral study that generated paradoxical results 279 

[15, 61]. Reports that IVIG’s antigenic repertoire includes reactivities to a variety of gut commensal 280 

antigens and metabolites have increased recently [62-64], which is consistent with a report that 281 

gut commensals can somehow trigger systemic IgG responses under homeostatic conditions that 282 

protect against systemic infection [65, 66]. We speculate that by neutralizing bacterial/host 283 

antigens/metabolites, IVIG is able to influence host immunity, the nervous system, and other 284 

physiological processes, resulting in perturbation of gut bacteria ecology. We speculate that the 285 

disparate and complex effects of ACV and IVIG alone and in combination on the gut bacteria 286 

ecology likely account for their antagonistic effects on cognitive behavior in mice latently infected 287 

with HSV that we alluded to earlier [15]. 288 
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 289 

 This study has several limitations. Being exploratory in nature, analyses of the gut bacteria 290 

were done at a single time point immediately after infection or drug treatment, rather than as a 291 

longitudinal study that would have provided information on the persistence of the dysbiotic state 292 

as well as mechanistic insights as to how HSV, ACV and IVIG provoke dysbiosis. Ideally, the 293 

effects of ACV should be tested in latently infected mice, since virtually all HSCT patients harbor 294 

latent HSV. However, because HSV infection alone disrupts the gut bacterial community, 295 

assessing the effects of ACV on the gut bacteria community structure in the latently infected mice 296 

would likely be difficult. Because ACV was given ip to mice but usually orally to HSCT patients 297 

[67], its effects on the gut bacteria community maybe underestimated in our study.  298 

 299 

 Notwithstanding these caveats, our finding that ACV treatment of HSV infected mice 300 

decreased the relative abundances of several bacterial taxa is important because these bacteria 301 

have been negatively correlated with the induction of and mortality from GVHD in HSCT patients 302 

[24, 27, 28, 30]. These results are also consistent with our hypothesis that ACV contributes to the 303 

development of GVHD by changing the gut microbiota. In the context of allo-HSCT, GVHD occurs 304 

when donor immune cells recognize recipient tissues as foreign, leading to immune-mediated 305 

damage to several organs and tissues including the gastrointestinal tract. This has led 306 

researchers to posit that the reduction of anti-inflammatory bacteria such as AIC contribute to 307 

GVHD pathology [30]. The results from our study extend this hypothesis to include ACV treatment 308 

as a putative contributor to GVHD, because ACV reduced AIC bacteria in the gut. ACV treatment 309 

also decreased the relative abundances of several members of the Bacteroidetes, some of which 310 

have been shown to exhibit anti-inflammatory properties [68-71]. More relevantly, the capsular 311 

polysaccharide A (PSA) from Bacteroides fragilis reduced HSV-associated mortality in mice by 312 

dramatically reducing immune-mediated inflammation [72]. In addition, the two most abundant 313 

OTUs identified in our study, whose relative abundances were positively (Porphyromonadaceae) 314 
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and negatively (A. muciniphila) correlated with ACV treatment, have been shown to weaken [37, 315 

38] and strengthen [39-41] gut barrier function, respectively. These results provide an additional 316 

link between ACV treatment and GVHD, because barrier dysfunction, which can cause systemic 317 

inflammation, is a hallmark of GVHD [32-36]. Finally, long-term ACV prophylaxis initiated early 318 

after HSCT might also impair immune reconstitution based on results from a study of antibiotic 319 

depletion of gut bacteria in a murine model of syngeneic bone marrow transplantation [73]. These 320 

tantalizing results warrant independent validation and further detailed studies using a murine 321 

autologous BMT model to more rigorously evaluate the impact of long-term ACV prophylaxis on 322 

GVHD and engraftment, because results from such studies might eventually lead to improved 323 

outcomes for HSCT patients. Ideally, such future studies should be performed with mice harboring 324 

wild microbiota, because several recent reports show that immune responses in mice with wild 325 

microbiomes model human immune responses more closely than conventional mice with SPF 326 

microbiota [74-76]. 327 

 328 

Materials and Methods. 329 

 330 

Ethics Statement 331 

All animal procedures were performed with prior approval of the City of Hope Institutional Animal 332 

Care and Use Committee (IACUC) under protocol # 07043 and within the framework of the Guide 333 

for the Care and Use of Laboratory Animals. C57BL6/J (B6) were bred in the vivarium at City of 334 

Hope. 335 

 336 

Mouse Studies 337 

  338 

Master stocks of HSV1 strain 17 composed of only of cell-released virus were prepared in 339 

and their titers determined on mycoplasma-free CV-1 cell monolayers. Single use aliquots of virus 340 
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in Hanks balanced salt solution supplemented with 2% fetal bovine serum were stored at -80°C. 341 

Male and female mice, 6–8 weeks of age, were infected with HSV1 17+, a virulent strain. Mice 342 

were sedated with ketamine (60 mg/kg) and xylazine (5 mg/kg) prior to HSV inoculation by corneal 343 

scarification. B6 mice were bilaterally inoculated with 1x 105 PFU per eye and monitored daily as 344 

previously described [15, 77]. 345 

 346 

Administration of Acyclovir and Intravenous Immunoglobulins. 347 

 348 

ACV obtained from (APP Pharmaceuticals, Schaumburg, IL) was given at 50 mg/kg of 349 

body weight by intraperitoneal (ip) injection daily for 3 days starting on day 4 pi and PBS was 350 

given according to the same schedule to control mice. IVIG (Carimune, NF) obtained from CSL 351 

Behring (King of Prussia, PA, USA) was given ip as a single 0.5 ml dose (25 mg/mouse) on day 352 

4 pi or it was given in combination with a 3 day course of ACV. 353 

 354 

Illumina Bacterial 16S rRNA gene sequencing. 355 

 356 

Illumina bacterial 16S rRNA gene libraries were constructed as follows. PCRs were 357 

performed in an MJ Research PTC-200 thermal cycler (Bio-Rad Inc., Hercules, CA, USA) as 25 358 

µl reactions containing: 50 mM Tris (pH 8.3), 500 µg/ml bovine serum albumin (BSA), 2.5 mM 359 

MgCl2, 250 µM of each deoxynucleotide triphosphate (dNTP), 400 nM of the forward PCR primer, 360 

200 nM of each reverse PCR primer, 1 µl of DNA template, and 0.25 units JumpStart Taq DNA 361 

polymerase (Sigma-Aldrich, St. Louis, MO, USA). PCR primers 515F 362 

(GTGCCAGCMGCCGCGGTAA) and 806R (GGACTACHVGGGTWTCTAAT) were used to 363 

targeted the 16S rRNA gene containing portions of the hypervariable regions V4 and V5, with the 364 

reverse primers including a 12-bp barcode [78]. Thermal cycling parameters were 94°C for 5 min; 365 

35 cycles of 94°C for 20 s, 50°C for 20 s, and 72°C for 30 s, and followed by 72°C for 5 min. PCR 366 
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products were purified using the MinElute 96 UF PCR Purification Kit (Qiagen, Valencia, CA, 367 

USA). 368 

 369 

16S rRNA gene data processing. 370 

 371 

We used the UPARSE pipeline for de-multiplexing, length trimming, quality filtering and 372 

operational taxonomic units (OTU) picking using default parameters or recommended guidelines 373 

that were initially described in [79] and which have been updated at 374 

https://www.drive5.com/usearch/manual/uparse_pipeline.html. Briefly, after demultiplexing, 375 

sequences were trimmed to a uniform length of 249 bp, then filtered at the recommended 1.0 376 

expected error threshold. Sequences were then dereplicated and clustered into zero-radius OTUs 377 

using the UNOISE3 algorithm [80], which also detects and removes chimeric sequences; this 378 

method is based on making OTUs at 100% identity. An OTU table was then generated using the 379 

otutab command. OTUs having non-bacterial DNA were identified by performing a local BLAST 380 

search [81] of their seed sequences against the nt database. OTUs were removed if any of their 381 

highest-scoring BLAST hits contained taxonomic IDs within Rodentia, Viridiplantae, Fungi, or 382 

PhiX. Taxonomic assignments to the OTUs were performed with SINTAX [82] using RDP 383 

Classifier 16S training set number 16 [83] as the reference database. 384 

 385 

16S rRNA gene data analyses. 386 

Beta diversity was measured using QIIME 1.9.1 [84] to calculate a Hellinger beta diversity 387 

distance matrix, which was depicted using principle coordinates analysis (PCoA), and statistically 388 

assessed by performing Adonis tests. Statistical differences among the taxa were determined 389 

using edgeR [85, 86]. Taxa relative abundance figures were made using Prism (GraphPad, La 390 

Jolla, CA). Comparative analyses of the bacterial taxa between human GVHD studies and our 391 

mouse study excluded sequence-selective qPCR, because the selectivity of such assays is 392 
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questionable given the conserved nature of the 16S rRNA gene, and because the results of such 393 

studies are not typically validated by sequence analyses. The bacterial sequences have been 394 

deposited in the National Center for Biotechnology Information (NCBI)’s Sequence Read Archive 395 

(SRA) under the BioProject Accession Number PRJNA549765. 396 

 397 

  398 
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Figure 1. Fecal Bacteria from HSV-Infected and Uninfected Mice. A. Principal-coordinates analysis (PCoA) of 
Hellinger beta diversity distance values generated from 16S rRNA gene sequences. All four groups were different 
(P<0.05, Adonis Tests). The number of mice (n) in each genotype-microbiota group are shown in parentheses. B. 
Bacteria phyla associated with HSV-infected and uninfected mice. C. Bacterial species (or higher taxa) associated with 
HSV-infected and uninfected mice. Females = _F and Males = _M. 
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Figure 2. Fecal Bacteria from HSV-Infected Mice Treated and Not Treated with ACV. A. Principal-coordinates 
analysis (PCoA) of Hellinger beta diversity distance values generated from 16S rRNA gene sequences. All four groups 
were different (P<0.05, Adonis Tests). The number of mice (n) in each genotype-microbiota group are shown in 
parentheses. B and C. Bacteria phyla and species (or higher taxa), respectively, associated with HSV-infected mice 
treated and not treated with ACV. Females = _F and Males = _M. 
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Figure 3. Beta Diversity Analysis of Fecal Bacteria from HSV-Infected and Uninfected Mice Treated and Not 
Treated with ACV and/or IVIG. Principal-coordinates analysis (PCoA) of Hellinger beta diversity distance values 
generated from 16S rRNA gene sequences. The number of mice (n) in each genotype-microbiota group are shown in 
parentheses. Females = _F and Males = _M.
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Figure 4. Fecal Bacterial from HSV-Infected and Uninfected Mice Treated and Not Treated with ACV and/or 
IVIG. A and B. Bacteria phyla and species (or higher taxa), respectively, associated with HSV-infected and uninfected 
mice treated and not treated with ACV, IVIG, or ACV+IVIG. Females = _F and Males = _M. 
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Figure 5. Fecal Bacterial from HSV-Infected and Uninfected Mice Treated and Not Treated with ACV. A and B. Fecal bacterial 
taxa that were were changed in both human GVHD studies and by ACV in this study. A and B. Members of the Bacteroidetes and 
AIC, respectively. C. The two most abundant bacterial OTUs. The only pairwise differences shown are between ACV treated and 
untreated mice for each sex (FDR-adjusted P values < 0.05). Bars = standard error. Females = _F and Males = _M. 
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