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(C) Practical treatment guided by 2D-OC in (B)
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Fig. 6 Comparison of time series of population densities with different treatments in the low level of baseline immune
response, Ip = 3 x 10° cell/g. (A) Optimal injection rate, pg(t), is obtained by solving control problem (27) with tuned
regulator weight 6,, = 10~1! (the smallest regulator weight on treatment costs). There does not exist curative 1D-OC
treatment due to the outgrowth of phage-resistant bacteria R. (B) Optimal injection rate, ps(t) and pg(t), is obtained by
solving control problem (17) with tuned regulator weight 6,, = 10~2. Bacteria is eliminated around 60 hrs post infection.
(C) The practical therapeutic treatment is obtained from optimal injection rate in (B): two doses, Ps phage dose and Pgr
phage dose, both are injected at two hours post infection with amount of 3 x 109 PFU and 3 x 108 PFU respectively.
Bacteria is eliminated around 60 hrs post infection. See model parameters and simulation details in Sect. 4.2.

5 Discussion

In this paper, we developed a control-theoretic framework to optimize the use of monophage treatment
and phage cocktails for treating bacterial infections in immunodeficient hosts or in other scenarios such
as high phage decay rate where standard phage therapy is likely to fail. By incorporating phage admin-
istration as the control in a mathematical model describing the nonlinear interactions between phage,
pathogenic bacteria and host immunity, we derive a Hamiltonian-based algorithm to numerically min-
imize bacterial burden while limiting the phage dose. Our results indicate that optimal control may
provide important insights to guide clinical use of phage therapy. In particular, a single dose of phage
may be sufficient to treat immunocompetent patients when the phage clearance rate is low, whereas
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phage administration may need to be sustained over a longer period when phage clearance is fast. In
immunodeficient hosts, our results suggest that the success of optimal administration of phage cocktails
can largely be reproduced in a simplified, discretized version of the optimal therapy that would be easier
to implement practically. The only trade-off observed for the simplified practical therapy is a slight in-
crease of the minimum effective dose in cases of severe immunodeficiency. Our optimal control framework
indicates that a single phage strain may be effective for therapy at relatively high immunity levels, but
the use of multiple therapeutic phage is required for low immune intensities.

To ensure that the optimal control problem remains mathematically tractable, a number of simplifying
assumptions have been made. For example, within-host dynamics is assumed to be deterministic, whereas
biological processes such as mutations are inherently stochastic. The gap between mathematical models
and complex clinical trials can be even wider due to various confounding factors. In addition, the optimal
control solutions are solved based on specific objective functional and model parameters. Hence, different
sets of parameters, models, and the objective costs could yield different suggested treatments such that the
robustness of our optimal treatments may not be guaranteed. Our model also focuses on acute infections,
and did not consider spatial heterogeneity or cocktails consisting of more than two phage strains. These
issues could be addressed in future work by extending our modeling framework to incorporate stochastic
control [Hashemian and Armaou, 2017, Fleming and Rishel, 1976] in spatial models with multiple strains
of phage. In doing so, it will be important to consider host adaptive immunity, which is important
in chronic infections and can generate specific responses against phage [Hodyra-Stefaniak et al., 2015,
Gorski et al., 2012]. Finally, we note that host-range phage mutants may be able to infect multiple strain
types [Flores et al., 2011]; hence future work should also address how to optimally combine phage with
overlapping host ranges.

In conclusion, the theoretical framework presented in this paper is intended to help advance the ratio-
nal design of monophage and phage cocktail therapy. Phage cocktails have been proposed as a solution to
tackle phage resistance and broaden the antimicrobial spectrum of phage preparations [Chan et al., 2013,
Tanji et al., 2004, Zhang et al., 2010], but it is often unclear how to optimize their composition to obtain
maximum effectiveness. Part of the difficulty in determining the appropriate dosage and composition
of phage treatments is due to the self-amplifying nature of phage. Our work demonstrates how control
theory can be applied to optimize the dose and timing of therapeutic agents that have the ability to
proliferate in vivo, and provide insights, both of a conceptual and practical nature, in the development
of phage therapy. In doing so, our framework can also be extended to other therapeutic contexts with
replicating agents, such as the use of probiotic bacteria [Manzanares et al., 2016, Parker et al., 2018], as
well as cancer therapies involving oncolytic viruses [Lawler et al., 2017, Fukuhara et al., 2016] and live
immune cells [June et al., 2018, Bol et al., 2016].

Appendix
A. Implementation of Projection Operator Py

Here we present a closed form of projection operator Py via a geometric approach, recall that u* = Py (i)
in Theorem 1, then we have following:
u =1, ifac{ulelu>0, edu>0, 17u—1<0},
w =Paa), ifte{u|1Tu—-1>0, 1Tu+1>0, 17u—-1<0},
w =[0,1]7, ifae{u|elu—1>0, 1Tu—1>0},
[0,a2)7, ift € {u|efu<0, eu>0, esu—1<0},
=10,00", ifa e {u|efu<0, elu <0},
[ 1 2
*=Tlay,0)7, ifae{u|elu>0, efu—-1<0, elu <0},
(1,007, ifde{u| 17u+1<0, elu>1},
where 1T = [~1,1]7 and A = {u | 17u—1 = 0}. Computing the projection of @ on to A is straightforward.

The orthogonality principle yields 4—7P 4 (@) must be colinear with 1, also P4 (@) € A, i.e., t—P (1) = z1
and 17P4 (@) — 1 = 0. This yields z = (174 — 1)/(171) and thus P4(a) = @ — 21.
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B. The Optimality System of Optimal Control in Monophage Therapy

Here, we derive the necessary conditions for the optimal control problem (27) via PMP.

Theorem 2 If uf is an optimal control solves problem (27), and x*(t) and X\*(t) are the corresponding
state trajectory and costate trajectory, then

0, if A5(t) =0
ui(t)y =4 = =% <) <0 (28)
1, if A(t) < %’*.

Proof. According to PMP, if u} is an optimal control of problem (27), and if 2*(t) and A*(¢) are the
corresponding state trajectory and costate trajectory, then the following equations are satisfied,

State equation : ©* = f(x*,u}) (29)

. LNk af * T * oL * g
Costate equation: \* = — ((%:(x )) A (&v(x 7U1)) (30)

Mazimum principle : Vt € [0,¢7], H(z™(t), \"(t), ui(¢)) = min {H(z"(t), A\ (), w1) | w1 € U1} (31)

t
Terminal condition: X*(ty) = ( (8( f))> , (32)
x
where  is the Hamiltonian. Define the Hamiltonian as H(z, A, u1) = AT f(z,uq) + L(x,u1), we find that
Hz, N\ u1) = Q + qlzug + (0,/2)u?, where @ is the collection of terms that has no argument in wu;.
Minimizing H(x, A, u1) over uy € U; yields Eq. (28). The costate equation with terminal condition is

e (Ya) x - (P vy = (B0

where L/0z = [0p,05,0,0], \*(tf) = [0f,04,0,0]7. The Jacobian is

Ji1 Ji2 J13 Jia
Of | Jo1 Ja2 0 Jou
al' o J31 0 J33 0
Jun Jao 0 Jyy

where
Jor = r(1—p)(kep — 221 — x2) _ hppT(zs) — €1+ 22)xy _ €x1Ta B r(1— p)z

" kcp PR Ao 4202 " % (411 + a2)? kcp

1/)171 ?171

Jis = —kpp ot gy = e

13 PD(1+:L‘3)2 14 15 21 + 29
Jor = pr(kep — 2z1 — x2) B r'zo N €X2Ty Jow = r(kep — 21 — 219) _prz €1+ z1)xy

A kcp kep | (I4a +x0)2 " "2 kcp kep (14 x4 x2)?

€T Yo

Jog= -2 Jpe = —kpp 2

SN PP+ 25)2

By

J31 = 0Z(x3) — a3, Jsz3= ——5 —w —Yx

31 = PL(z3) — Yz3 , Js3 0+ 252 hay

akNDx4(1 — 1‘4) OékJND.Z‘4(1 — .1‘4) 1+ o

Ji = Jas = D= o — LTy o).

“ (knp + 21 + 22)? 2 (knp + 1 + 22)? “ (331 + 2+ knp I 2
We have justified Eqs. (29)-(32). O
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(C) Practical treatment guided by 2D-OC in (B)
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Fig. S1 Comparison of time series of population densities with different treatments in the high level of baseline immune
response, Ip = 8.5 x 106 cell/g. (A) Optimal injection rate, ps(t), is obtained by solving control problem (27) with tuned
regulator weight 6, = 10! (the largest regulator weight on treatment costs). Bacteria is eliminated around 30 hrs post
infection. (B) Optimal injection rate, ps(t) and pr(t), is obtained by solving control problem (17) with tuned regulator
weight 0, = 10'!. Note that the optimal injection rate of phage Pg is nearly zero, i.e., pr(t) ~ 0 Vt € [to,tf]. Thus, the
optimal injection rates solved from 2D-OC and 1D-OC are nearly identical, i.e., ps(t) is a single-pulse signal centered at
t = 2 hrs. Bacteria is eliminated around 30 hrs post infection. (C) The practical therapeutic treatment is obtained from
optimal injection rate in (B): single-dose, Pg phage dose, is injected at two hours post infection with amount of 5 x 102PFU.
Bacteria is eliminated around 30 hrs post infection. See model parameters and simulation details in Sect. 4.2.

C. Effective Single-Dose Treatment in Immunodeficient Hosts (Baseline Immune Response is
Sufficiently High)

When the baseline immune response is sufficiently high in immunodeficient hosts, all the treatment

strategies (1D-OC, 2D-OC and practical treatments) can eliminate bacteria with a low dose of phage Pg
injected at very beginning of treatment (see Fig. S1 in Appendix C.).
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Table 1 Parameters and initial conditions in the system (1)-(5)
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Parameters Value Source
r, maximum growth rate of bacteria 0.75 h—! [Roach et al., 2017]
r’, maximum growth rate of phage-resistant bacteria 0.675 h~! [Roach et al., 2017]
7 probability of emergence of p.hzfmg%e—remstant mutant 2.85 % 10—8 [Roach et al., 2017]
per cellular division
K¢, carrying capacity of bacteria (wild-type) 1.0 x 10'% CFU/g [Roach et al., 2017]
K¢, carrying capacity of bacteria (immunodeficient hosts) 8.5 x 10! CFU/g [Roach et al., 2017]
B, burst size of phage 100 [Roach et al., 2017]
w, decay rate of phage 0.07 h~1! [Roach et al., 2017]
€, killing rate parameter of immune response 8.2 x 1078 g/(h cell) [Roach et al., 2017]
a, maximum growth rate of immune response 0.97 h™! [Roach et al., 2017]
K7, maximum capacity of immune response 2.4 x 107 cell/g [Roach et al., 2017]
Ky, naxirmum Capa(?lty of IIIINE response same as Ig [Roach et al., 2017]
(no innate immune activation)
bacterial concentration at which immune response 7 . .
Kp, s half as effective 4.1 x 10" CFU/g [Roach et al., 2017]
K bacterial concentration when immune response 1.0 x 107 CFU/ [Roach et al., 2017]
N growth rate is half its maximum ' & 0ach €t al,
¢, adsorption rate of phage 5.4 x 1078 g/(h PFU) [Roach et al., 2017]
Pc, phage density at half saturation 1.5 x 107 PFU/g [Roach et al., 2017]
So, initial bacterial density 7.4 x 107 CFU/g [Roach et al., 2017]
So, initial bacterial density (immunodeficient hosts) 7.4 x 10° CFU/g [Roach et al., 2017]
Ry, initial phage-resistant bacterial density 1 CFU/g [Roach et al., 2017]
I, initial immune response 2.7 x 106 cell/g [Roach et al., 2017]
Ip, initial immune response (immunodeficient hosts) 3 x 10% ~ 8.5 x 105, cell/g  this study
Pg(0), initial WT phage density 0 PFU/g this study
Pgr(0), initial host-range mutant phage density 0 PFU/g this study
Pmaz, maximal phage dose injection rate 10° PFU/(h g) this study
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