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Abstract Viruses that infect bacteria, i.e., bacteriophage or ‘phage’, are increasingly considered as
treatment options for the control and clearance of bacterial infections, particularly as compassionate use
therapy for multi-drug resistant infections. In practice, clinical use of phage often involves the application
of multiple therapeutic phage, either together or sequentially. However, the selection and timing of
therapeutic phage delivery remains largely ad hoc. In this study, we evaluate principles underlying why
careful application of multiple phage (i.e., a ‘cocktail’) might lead to therapeutic success in contrast to
the failure of single-strain phage therapy to control an infection. First, we use a nonlinear dynamics
model of within-host interactions to show that a combination of fast intra-host phage decay, evolution of
phage resistance amongst bacteria, and/or compromised immune response might limit the effectiveness
of single-strain phage therapy. To resolve these problems, we combine dynamical modeling of phage,
bacteria, and host immune cell populations with control-theoretic principles (via optimal control theory)
to devise evolutionarily robust phage cocktails and delivery schedules to control the bacterial populations.
Our numerical results suggest that optimal administration of single-strain phage therapy may be sufficient
for curative outcomes in immunocompetent patients, but may fail in immunodeficient hosts due to phage
resistance. We show that optimized treatment with a two-phage cocktail that includes a counter-resistant
phage can restore therapeutic efficacy in immunodeficient hosts.

Keywords Phage therapy · Mathematical modeling · Optimal control theory

1 Introduction

The spread of multi-drug resistant (MDR) pathogens is a global public health crisis [O’neill, 2014]. The
threat of the antibiotic resistance crisis has spurred research and development of alternative antimicro-
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bials, including phage [Kortright et al., 2019, Chan et al., 2013, Kutter et al., 2015, Young and Gill,
2015, Merril et al., 2003, Chan et al., 2016, 2018, Schooley et al., 2017, Forti et al., 2018, Dufour et al.,
2019]. Phage has been applied in compassionate use scenarios, for example, to successfully cure patients
both in the USA and in Europe [McCallin et al., 2019, Dedrick et al., 2019, Chan et al., 2018, Schooley
et al., 2017, Jennes et al., 2017], catalyzing the 2018 launch of the first North American phage therapy
center based at UCSD (IPATH). Yet, despite individual successes, phage therapy has a mixed record
in controlled clinical trials. For instance, a large-scale trial involving more than 200 patients failed to
demonstrate that phage treatment improved outcomes for children infected by Escherichia coli with
symptoms of severe diarrhea in Bangladesh [Sarker et al., 2016]. Similarly, the recent European phase II
clinical trial to treat burn wound patients failed to show superiority compared to a reference treatment
[Jault et al., 2019].

The host immune response is an important driver of within-host infection dynamics, but the afore-
mentioned phage therapy studies have not considered the effects of host immune status in shaping
the outcomes of phage therapy. To address this question, we have developed mathematical models in
prior work that consider the tripartite interactions between phage, bacterial pathogen, and host innate
immunity [Leung and Weitz, 2017]. Combined with animal experiments, the results have shown that
bacterial populations are not necessarily eliminated by either phage or the immune response alone. In-
stead, bacteria are eliminated when phage and the immune response work in synergy [Roach et al., 2017].
Importantly, curative success was not inevitable. For example, phage therapy was ineffective in innate
immune activation deficient hosts and neutropenic hosts. Therapeutic failure was caused by the spread
of phage-resistant bacteria as predicted by the mathematical models. Such failure raises a new challenge:
is it possible to rationally combine phage strains, dosage, and targeting to overcome therapeutic failure
in immunodeficient hosts and in other scenarios such as rapid phage clearance from the host?

Control theory is a potentially useful approach to address the problem of optimizing the dosage,
timing, and composition of therapeutic agents. For example, control theory has been applied to optimize
antiretroviral drug therapy for HIV infections [Culshaw et al., 2004, Jang et al., 2011, Croicu, 2015, Croicu
et al., 2017], minimize resistance in antibiotic treatment [Peña-Miller et al., 2012], and determine the
optimal dosing schedule of antimalarial medications [Thibodeaux and Schlittenhardt, 2011] and cancer
therapies [Castiglione and Piccoli, 2006, de Pillis et al., 2008, Ledzewicz et al., 2012]. These applications
of control theory have focused on modeling the within-host disease dynamics using a set of coupled
nonlinear differential equations describing the population dynamics of disease agents such as pathogens
or tumor cells, as well as host cells that include immune cells and/or cells targeted by pathogens. The cost
function to be minimized is then chosen to balance a number of treatment goals, including minimizing
pathogen/tumor load, maximizing healthy cell populations, and limiting treatment costs and toxicity.

As examples beyond within-host treatments of diseases, control theory has also been applied to
optimize strategies in controlling between-host transmission of infections. In these studies, the spread of
the infectious disease is modeled by standard epidemiological models such as the Susceptible-Infected-
Susceptible (SIS) model or the Susceptible-Infected-Recovered (SIR) model. The control strategies consist
of epidemiological interventions such as vaccination, sanitation, and treatment of infected individuals.
The cost function is determined based on minimization of the infected population or number of deaths
subjected to costs of the control efforts. Such epidemiological applications of control theory have been
used to optimize control strategies in vector-borne diseases [Blayneh et al., 2009], cholera epidemics
[Neilan et al., 2010], anthrax infection in animals [Croicu, 2019], and infectious disease with two strains
of pathogens [Rowthorn and Walther, 2017].

In this paper, we develop a control-theoretic framework to optimize monophage therapy and multi-
phage (cocktail) treatment of immunodeficient hosts and in other scenarios where standard phage therapy
is likely to fail. In Sect. 2, we introduce the mathematical model of phage therapy and define the control
problem. In Sect. 3, we analyze the optimal control problem, show that the optimal control solution
exists, and derive the necessary conditions for the optimal control via Prontryagin’s maximum principle
[Pontryagin et al., 1962]. Then, we implement a Hamiltonian-based algorithm [Hale et al., 2016, Wardi
et al., 2016] to numerically compute the optimal control solutions for monophage therapy and a phage
cocktail treatment consisting of two phage strains. The numerical results are presented in Sect. 4 followed
by a discussion in Sect. 5.
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2 Problem Formulation

2.1 A Mathematical Model of Phage Therapy

We propose a phage therapy model that considers the nonlinear dynamics arising from interactions
between sensitive bacteria S, phage-resistant bacteria R, phage PS (i.e., only targeting sensitive bacteria),
phage PR (i.e., only targeting phage-resistant bacteria) and the host innate immune response I, see Fig.
1. Hence, this model intentionally makes the assumption that phage are specialized in their infection
of bacteria; generalizations of this approach are considered in the Discussion. Two strains of bacteria
(S and R) reproduce given the limited environmental capacity KC . The phage-resistant bacteria are
emerged from sensitive bacteria through mutation with a fixed probability µ per cellular division. Both
strains of bacteria are killed by the immune response and both stimulate immune activation. The immune
response is stimulated by the presence of bacteria with a maximum activation rate α until it reaches
the maximum capacity KI . Phage populations PS and PR infect and lyse sensitive and phage-resistant
bacterial populations at rates F (PS) and F (PR) respectively. In this study, we assume that the two
phage types (PS and PR) have identical adsorption rate φ, burst size β and decay rate ω for simplicity. In
general, these two trait parameters can be strain-specific, and the optimal control analysis and simulation
procedures will be the same. The treatments inject phage into the system, the injection rates of phage
PS and phage PR at time t are ρS(t) and ρR(t) respectively. The dynamics of bacteria, phage and the
innate immune system can be modeled using the following system of nonlinear differential equations,

Ṡ =

logistic growth, mutation︷ ︸︸ ︷
rS

(
1− S +R

KC

)
(1− µ)−

lysis︷ ︸︸ ︷
SF (PS)−

immune killing︷ ︸︸ ︷
εIS

1 + (S +R)/KD
(1)

Ṙ =

logistic growth︷ ︸︸ ︷
r′R

(
1− S +R

KC

)
+

mutation from sensitive host︷ ︸︸ ︷
µrS

(
1− S +R

KC

)
−

lysis︷ ︸︸ ︷
RF (PR)−

immune killing︷ ︸︸ ︷
εIR

1 + (S +R)/KD
(2)

ṖS =

release of viruses︷ ︸︸ ︷
βSF (PS) −

adsorption︷ ︸︸ ︷
φSPS −

decay︷︸︸︷
ωPS +

phage injection︷ ︸︸ ︷
ρS(t) (3)

İ =

immune stimulation, activation and immune saturation︷ ︸︸ ︷
αI

(
1− I

KI

)(
S +R

S +R+KN

)
(4)

ṖR =

release of viruses︷ ︸︸ ︷
βRF (PR) −

adsorption︷ ︸︸ ︷
φRPR −

decay︷︸︸︷
ωPR +

phage injection︷ ︸︸ ︷
ρR(t) (5)

where F (Pi) = φPi/
(

1 + Pi

PC

)
for i ∈ {S,R} is the phage infection rate that characterizes the effect of

phage saturation during the infection. Specifically, phage saturation occurs when multiple phage adsorb
to the same target bacterial cell when at high phage population density. We constrain the injection rates
of two phage doses as following,

ρS(t) ≥ 0, ρR(t) ≥ 0, ρS + ρR(t) ≤ ρmax, ∀t (6)

where ρmax is the fixed maximal injection rate. The goal is to control the phage injection rates ρS(t) and
ρR(t) so as to minimize the bacterial population over the entire treatment and at the final time, while
limiting the amount of phage injected into the body (i.e., treatment costs). The specific cost functional
associated with this goal will be introduced later in Sect. 2.2.

Scaled Model. To simplify the system (1)-(5), we rescale state variables and parameters. As the state
variables and parameters have different units, we transform them, by scaling, into non-dimensional
variables. Accordingly, the dimensionless state vector x is

x = [x1, x2, x3, x4, x5]T =

[
S

KD
,
R

KD
,
PS
PC

,
I

KI
,
PR
PC

]T
, (7)
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Fig. 1 Schematic of phage therapy model in the system (1)-(5). Sensitive bacteria (S) and phage-resistant bacteria (R)
are targeted by phage (PS) and phage (PR), respectively. Innate immunity (I) is activated by the presence of bacteria and
attacks both bacterial strains.

where (·)T is the notation of matrix transpose. The scaled model parameters and control variables are:

ε̃ = εKI , q =
ρmax
PC

, kCD =
KC

KD
, kND =

KN

KD
, kPD =

PC
KD

, ψ = φKD,

u1(t) =
ρS(t)

ρmax
, u2(t) =

ρR(t)

ρmax
.

(8)

In doing so, the resulting scaled system is

ẋ1 = rx1

(
1− x1 + x2

kCD

)
(1− µ)− kPDx1I(x3)− ε̃x4x1

1 + x1 + x2
(9)

ẋ2 = r′x2

(
1− x1 + x2

kCD

)
+ rx1

(
1− x1 + x2

kCD

)
µ− kPDx2I(x5)− ε̃x4x2

1 + x1 + x2
(10)

ẋ3 = βx1I(x3)− ψx1x3 − ωx3 + qu1(t) (11)

ẋ4 = αx4(1− x4)

(
x1 + x2

x1 + x2 + kND

)
(12)

ẋ5 = βx2I(x5)− ψx2x5 − ωx5 + qu2(t), (13)

where I(xi) = ψxi/ (1 + xi) for i ∈ {3, 5} is the scaled phage infection rate function. Note that the
injection rates (ρS , ρR) are scaled by the maximal injection rate ρmax, the scaled injection rates (u1, u2)
are interpreted as the relative intensity (or strength) of the maximal injections, we have constrained:
u1(t) ≥ 0, u2(t) ≥ 0 and u1(t) + u2(t) ≤ 1, ∀t.

2.2 Objective Functional

Define the set U ⊂ R2 as a convex and compact set, U =
{
u ∈ R2

+ | ‖u‖1 ≤ 1
}

where Rd+ is the d
dimensional non-negative orthant. We define the space of admissible controls, denoted by U , as the set of
Lebesgue-measurable functions u : [t0, tf ] −→ U . The cost functional to be minimized over U is written
in the following Bolza form,

J (u) =

∫ tf

t0

θB(x1 + x2) +
θu
2
‖u‖22 dt+ θf (x1(tf ) + x2(tf )), (14)
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where θB , θu and θf are the regulator weights. We denote L(x, u) = θB(x1 + x2) + (θu/2) ‖u‖22 as the
running cost, which is the integrand of J (u). The terminal cost is denoted as g(x(tf )) = θf (x1(tf ) +
x2(tf )). The optimal control problem is

min{J (u)|u ∈ U}. (15)

This optimal control problem may not have a solution in the sense that the minimum in Eq. (15) does
not exist. But the infimum exists, and we denote it by

J ∗ := inf{J (u)|u ∈ U}. (16)

Moreover, suppose the minimizer in Eq. (15) exists (we will prove the existence in Sect. 3.1), it may
be impractical to implement it as a control unless u(t) is piece-wise continuous in t (by definition of
the problem, it only needs to be Lebesgue measurable). Therefore, we resort to a numerical algorithm
designed to compute a piecewise-continuous control u such that J (u) approximates J ∗ within any pre-set
degree of precision, the algorithm description can be found in Sect. 4.1.

3 Analysis of Optimal Controls

3.1 Preliminaries

Positively Invariant Set. For many complex population dynamics models, the populations remain bounded
forward in time, e.g., virus-host interactions [Beretta and Kuang, 1998], vector-borne diseases [Blayneh
et al., 2009]. The following proposition guarantees the boundedness of system (9)-(13) for any controls
u(t) ∈ U .

Proposition 1 Let Ω be the following subset of R5
+:

Ω = {x ∈ R5
+ | x1 + x2 ≤ kCD, x3 ≤

q + βψkCD
ω

, x4 ≤ 1, x5 ≤
q + βψkCD

ω
}.

Then, Ω is a positively invariant set under system (9)-(13).

Proof. It should be clear that the state solutions are bounded from below by zero such that x(t) ∈ R5
+

for all t ≥ 0, i.e., the densities of bacteria, phage and immune cells cannot be negative. The following
discussion assumes the initial condition is in set Ω, i.e., x(0) ∈ Ω. Note that

ẋ1 + ẋ2 ≤ rx1
(

1− x1 + x2
kCD

)
+ r′x2

(
1− x1 + x2

kCD

)
= (rx1 + r′x2)

(
1− x1 + x2

kCD

)
,

which implies that x1(t) + x2(t) ≤ kCD for t ≥ 0. Similarly, we must have x4(t) ≤ 1 for all t ≥ 0. The
control inputs (u1, u2)T ∈ U for all t ≥ 0, hence, we have

ẋ3 = βψx1

(
x3

1 + x3

)
− ψx1x3 − ωx3 + qu1 ≤ (βψx1 + q)− x3(ψx1 + ω).

Using the boundedness of x1, i.e., 0 ≤ x1 ≤ kCD, we have

ẋ3 ≤ (βψkCD + q)− x3ω.

Clearly, x3(t) ≤ (q + βψkCD)/ω for all t ≥ 0. Similarly, using the boundedness of x2, we have x5(t) ≤
(q+βψkCD)/ω for all t ≥ 0. Altogether, we find that Ω is positively invariant under system (9)-(13).

Existence of Optimal Control. Notably, the system (9)-(13) is control affine and the control set U is
compact and convex, the integrand of the cost functional, L(x, u), is convex on U for each x, and the
terminal cost function g(x) is continuous. Thus, the sufficient conditions for the existence of optimal
control are satisfied (see Theorem 4.1 in [Fleming and Rishel, 1976]). The similar exercises of proving the
existence of optimal control based on Theorem 4.1 in [Fleming and Rishel, 1976] are referred to [de Pillis
et al., 2008], [Jang et al., 2011], [Camacho et al., 2014], and [Blayneh et al., 2009].
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3.2 The Optimality System

The existence of optimal control has been established, we derive the optimality system by Pontryagin’s
Maximum Principle (PMP). Note that PMP gives the necessary conditions for the optimal control
[Pontryagin et al., 1962]. First, we formulate the optimal control problem as following

min{J (u)|u ∈ U} subject to ẋ = f(t, x, u), x(0) = x0, (17)

where J (u) is the cost functional given in Eq. (14), U is the admissible control space, f(t, x, u) is
right hand side (RHS) of system (9)-(13) and x0 is the initial condition. Applying PMP, we obtain the
optimality conditions that must be met for an optimal control in problem (17).

Theorem 1 If u∗(t) = [u∗1(t), u∗2(t)]T is an optimal control pair for the control problem in Eq. (17),
x∗(t) and λ∗(t) are the corresponding state trajectory and costate trajectory, then

u∗(t) = PU (û(t)) , û(t) = − q

θu

[
λ∗3(t)
λ∗5(t)

]
. (18)

where PU (û) represents the projection of û onto U in `2-norm. The detailed implementation of projection
operator PU is given in Appendix A.

Proof. Given that u∗ = [u∗1, u
∗
2]T is an optimal control pair for the control problem in Eq. (17), and x∗(t)

and λ∗(t) are the corresponding state trajectory and costate trajectory, then the following equations are
satisfied by PMP:

State equation : ẋ∗ = f(x∗, u∗) (19)

Costate equation : λ̇∗ = −
(
∂f

∂x
(x∗)

)T
λ∗ −

(
∂L
∂x

(x∗, u∗)

)T
(20)

Maximum principle : ∀t ∈ [0, tf ], H(x∗(t), λ∗(t), u∗(t)) = min {H(x∗(t), λ∗(t), u) | u ∈ U} (21)

Terminal condition : λ∗(tf ) =

(
∂g

∂x
(x∗(tf ))

)T
, (22)

where H is the Hamiltonian with form of H(x, λ, u) = λT f(x, u) + L(x, u). In our case, we have

H(x, λ, u) = λ1

[
rx1

(
1− x1 + x2

kCD

)
(1− µ)− kPDx1I(x3)− ε̃x4x1

1 + x1 + x2

]
+ λ2

[
r′x2

(
1− x1 + x2

kCD

)
+ rx1

(
1− x1 + x2

kCD

)
µ− kPDx2I(x5)− ε̃x4x2

1 + x1 + x2

]
+ λ3 [βx1I(x3)− ψx1x3 − ωx3 + qu1]

+ λ4

[
αx4(1− x4)

(
x1 + x2

x1 + x2 + kND

)]
+ λ5 [βx2I(x5)− ψx2x5 − ωx5 + qu2] + θB(x1 + x2) +

θu
2
‖u‖22

= Q+ qλ3u1 + qλ5u2 +
θu
2
‖u‖22 ,

where Q is the collection of terms that has no argument in u. The minimization of H over u ∈ U is
a linear constrained quadratic programming (QP) problem. We write the minimization problem in its
equivalent form,

min

{
Q+ qλ3u1 + qλ5u2 +

θu
2
‖u‖22 | u ∈ U

}
⇔ min

u∈R2
bTu+ uTAu

s.t 1
Tu ≤ 1, eT1 u ≥ 0, eT2 u ≥ 0

where e1 = [1, 0]T , e2 = [0, 1]T , 1 = [1, 1]T , and

A =
θu
2

[
1 0
0 1

]
, b = q

[
λ3
λ5

]
.
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Let u∗ be minimizer of above constrained QP problem, we observe that u∗ has following closed form

u∗ = PU (û) , û = − q

θu

[
λ3
λ5

]
.

where PU (û) represents the projection of û onto U . Next, we derive the system of costate in Eq. (20).
Note that ∂L/∂x = [θB , θB , 0, 0, 0], the terminal condition of costate equation is λ∗(tf ) = [θf , θf , 0, 0, 0]T

by Eq. (22). The Jacobian of the RHS of state equation is

∂f

∂x
=


J11 J12 J13 J14 0
J21 J22 0 J24 J25
J31 0 J33 0 0
J41 J42 0 J44 0
0 J52 0 0 J55

 ,

where

J11 =
r(1− µ)(kCD − 2x1 − x2)

kCD
− kPDI(x3)− ε̃(1 + x2)x4

(1 + x1 + x2)2
, J12 =

ε̃x1x4
(1 + x1 + x2)2

− r(1− µ)x1
kCD

J13 = −kPD
ψx1

(1 + x3)2
, J14 = − ε̃x1

1 + x1 + x2

J21 =
µr(kCD − 2x1 − x2)

kCD
− r′x2
kCD

+
ε̃x2x4

(1 + x1 + x2)2

J22 =
r′(kCD − x1 − 2x2)

kCD
− µrx1
kCD

− kPDI(x5)− ε̃(1 + x1)x4
(1 + x1 + x2)2

J24 = − ε̃x2
1 + x1 + x2

, J25 = −kPD
ψx2

(1 + x5)2

J31 = βI(x3)− ψx3 , J33 =
βψx1

(1 + x3)2
− ω − ψx1

J41 =
αkNDx4(1− x4)

(kND + x1 + x2)2
, J42 =

αkNDx4(1− x4)

(kND + x1 + x2)2
, J44 = α(

x1 + x2
x1 + x2 + kND

)(1− 2x4)

J52 = βI(x5)− ψx5 , J55 =
βψx2

(1 + x5)2
− ω − ψx2.

We have justified Eqs. (19)-(22).

3.3 Analysis of Optimal Control in Monophage Therapy

The monophage therapy can be modeled by a reduced form of system (1)-(5). The state vector of
population densities is [S,R, PS , I]T , the corresponding population dynamics is modeled analogously to
system (1)-(5) by excluding any terms associated with phage PR. Via the same scale transformations in
Eq. (7) and Eq. (8), the scaled system of monophage therapy model is

ẋ1 = rx1

(
1− x1 + x2

kCD

)
(1− µ)− kPDx1I(x3)− ε̃x4x1

1 + x1 + x2
(23)

ẋ2 = r′x2

(
1− x1 + x2

kCD

)
+ rx1

(
1− x1 + x2

kCD

)
µ− ε̃x4x2

1 + x1 + x2
(24)

ẋ3 = βx1I(x3)− ψx1x3 − ωx3 + qu1(t) (25)

ẋ4 = αx4(1− x4)

(
x1 + x2

x1 + x2 + kND

)
. (26)

7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 19, 2019. ; https://doi.org/10.1101/845172doi: bioRxiv preprint 

https://doi.org/10.1101/845172
http://creativecommons.org/licenses/by/4.0/


Note that the RHS of system (23)-(26) is the same as the RHS of system (9)-(13) by excluding all the
terms associated with x5. Here, the space of controls is denoted by U1, which is the set of Lebesgue-
measurable functions u1 : [t0, tf ] −→ U1, where U1 = [0, 1]. The optimal control formulation is

min{
∫ tf

t0

θB(x1 + x2) +
θu
2
u21 dt + θf (x1(tf ) + x2(tf )) | u1 ∈ U1}

subject to the system (23)-(26).

(27)

The existence of optimal control is still guaranteed. The necessary conditions of optimal control in
problem (27) are derived in Appendix B.

4 Numerical Results

4.1 The Hamiltonian-based Algorithm

We solve the optimal control problems by a Hamiltonian-based algorithm, this algorithm is presented
with greater detail in [Hale et al., 2016, Wardi et al., 2016]. A salient feature is that the algorithm
converges fast towards a near-optimal control (for a class of problems) if the Hamiltonian function is
convex in u and can be minimized effectively and efficiently. Here, we briefly describe this algorithm.
Two parameters are used to control the backtracking search, η ∈ (0, 1) and s ∈ (0, 1), and we used
η = s = 0.5. At the kth iteration of the algorithm, k = 1, 2, . . ., it starts with the kth control iteration
uk, and computes from it the next iteration, uk+1, as follows.

1. Given a control input uk, compute the state trajectory x forward using numerical integration.
2. Compute the costate trajectory λ backward with terminal condition, the terminal condition.
3. For every t in a fine grid on the interval [t0, tf ], compute v∗(t) that minimizes the Hamiltonian.

Interpolate the results by a zero-order hold (piecewise-constant interpolation) to define the control
v∗ := {v∗(t) : t ∈ [t0, tf ]}. It serves as the steepest-feasible descent direction from uk.

4. Compute Θ(uk) :=
∫ tf
t0

(
H(x, v∗, λ)−H(x, uk, λ)

)
dt.

5. Find `(uk) = min{` = 0, 1, 2, ... | J (s`v∗ + (1− s`)uk)− J (uk) ≤ ηs`Θ(uk)}.
6. Set uk+1 = (1− s`(k))uk + s`(k)v∗.

The state trajectory x(t) and the costate trajectory λ(t) are numerically integrated by Euler’s method
[Stoer and Bulirsch, 2013], the time step is ∆t = 5 × 10−4. The convergence indicator |Θ(u)| measures
the extent to which u fails to satisfy the PMP. The algorithm will be terminated either |Θ(u)| ≤ 10−8

or the maximum number of allowed iterations is reached.

4.2 Preliminaries of Simulations

Parameters. The model parameters and initial conditions of system (1)-(5) are given in Table 1. The in
silico experiments run for 3 days post infection and all the treatments start at 2 hours after initialization
(consistent with in vivo treatments in [Roach et al., 2017]), we thus set t0 = 2 hrs and tf = 72 hrs. We
fix the regulator weights θB = θf = 1. We will tune the value of θu to solve a practical variant of the
original control problems (17) and (27).

Practical Treatment Objective. The goal of the optimal control framework described in Sect. 2.2 is to
minimize the total bacterial population and penalizing the treatment costs by optimizing the scaled phage
injection rates. However, from a practical therapeutic perspective, we may want to find the minimal
phage dosage required to eliminate bacteria instead. Since the differential equation system (1)-(5) is
continuous, we assume the bacterial population is eliminated if there exists a time τ ∈ [0, tf ] such that
S(τ) +R(τ) ≤ next, where next = 1 CFU/g is the hard threshold of bacteria elimination.

The objective of practical therapy can thus be formalized as a constrained optimal control problem
that minimizes the integral of phage injection rates subject to the constraint of bacteria elimination
in a hybrid system where the state equations are different before and after bacterial elimination. The
discontinuous nature of bacterial elimination events poses considerable numerical challenge in explicitly
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solving the constrained hybrid optimal control problem. As a result, we utilize the ordinary control
formulations (17) and (27) to achieve the goal of eliminating bacteria with minimum dosage via a
heuristic approach. In this approach, we adjust the regulator weight θu and locate the highest value
that results in bacterial elimination. The total phage dosage is then computed to find the minimum
dosage corresponding to bacterial elimination.

Minimal Phage Dosage and Regulator Weight θu. Here, we detail the procedure of achieving the prac-
tical control objective by tuning regulator weight θu in a certain range. We search θu in the inter-
val [10−11, 1011], ranging from negligible treatment costs (θu = 10−11) to dominating treatment costs
(θu = 1011) in the control objective. For any fixed θu ∈ [10−11, 1011], we can numerically solve the op-
timal control problems (17) and (27) via a Hamiltonian-based algorithm. It is also easy to check if the
optimal control solution effectively eliminates bacterial populations based on the artificial threshold we
introduced.

In order to find the treatment (i.e., profiles of phage injection rate) that can eliminate bacteria with
minimal dosage, we sweep over the range of θu and extract all the ‘θu’ values that lead to successful
bacterial elimination. Assuming such ‘θu’ values exist, we then find the minimum effective phage dosage
by computing the integral of phage injection rate that corresponds to the highest ‘θu’ value resulting in
bacterial elimination, e.g., dosage of a treatment that has two types of phage isD =

∫ tf
t0
ρS(t)+ρR(t) dt. In

the case that no optimal control treatment can eliminate the bacteria with θu in the range of [10−11, 1011],
we assume phage therapy would fail under all reasonable phage dosages in such conditions.

However, the computational costs of finding the value of θu corresponding to the minimum effective
dosage (θ∗u) via brute-force searching are very high. Intuitively, we note that if bacteria is eliminated for a
given θ′u ∈ [10−11, 1011], then bacteria would also be eliminated for all θu ≤ θ′u, i.e., relaxing penalization
on treatment costs would always eliminate bacteria. Likewise, if bacteria is not eliminated for θ′u, then
bacteria is also not eliminated for all θu ≥ θ′u as higher penalization on treatment costs would lead to a
less effective treatment.

Building upon these intuitions, we implement a binary search algorithm to find θ∗u. We first evaluate
the two boundary cases (θu = 10−11 and θu = 1011) and assume that phage therapy would fail in
general if the optimal treatment corresponding to θu = 10−11 fails. In addition, if the optimal treatment
corresponding to θu = 1011 can successfully eliminate bacteria, its associated phage dosage is identified
as the minimum effective dosage. If both of the aforementioned boundary conditions are not satisfied,
we compute the optimal treatment corresponding to an intermediate weight θui = 10(L+R)/2 where
L = −11 and R = 11 for the two boundaries. If optimal treatment with θui works, we update left
searching boundary L ← (L + R)/2; otherwise, we update right searching boundary R ← (L + R)/2.
We iterate this procedure for n = 8 times (corresponding to a precision of about 22/28 ≈ 0.08 at power
scale, where 22 is the length of power scale range for θu ∈ [10−11, 1011]) to estimate the value of θ∗u.

Classification of Injection Strategies. In this study, we focus on three types of injection strategies: an
optimal control strategy in monophage therapy, namely, one dimensional optimal control (1D-OC ); an
optimal control strategy using multiple types of phage, namely, two dimensional optimal control (2D-
OC ); and a practical therapeutic treatment using either single or multiple types of phage. The 1D-OC
and 2D-OC are optimal controls solved numerically from problems (27) and (17) respectively. However,
1D-OC and 2D-OC are usually continuous signals, which cannot be directly implemented in (current)
clinical treatment, we thus have to convert the continuous treatment to a (discrete) multi-dose treatment.

In this paper, we only focus on developing multi-dose treatment guided by 2D-OC treatment in
immunodeficient scenarios. There are two types of phage in 2D-OC and we allow one-time dose injection
for each type of phage in the practical therapeutic treatment. The timings of injecting phage PS and
phage PR (in practical therapeutic treatment guided by 2D-OC) are denoted by TPS

and TPR
respectively.

We define TPS
= min{τ ∈ [t0, tf ] | ρS(τ) ≥ ρS(t) ∀t ∈ [t0, tf ]}, i.e., the first time that injection rate

of phage PS arrives its maximal rate. TPR
is defined in the same way as TPS

. We define the integral of
phage injection rate ρS(t) over [t0, tf ] as DS , and the analogous integral of the second phage type as DR.
In doing so, given a 2D-OC treatment (ρS(t), ρR(t)), the practical therapeutic treatment guided by this
2D-OC treatment is: injecting DS amount of phage PS at time TPS

and injecting DR amount of phage PR
at time TPR

. The in silico experiments using practical therapeutic treatment assumes bacteria and phage
are eliminated locally when their population densities drop below a threshold of 1 g−1. As the practical
therapeutic treatment guided by 2D-OC is only an approximation of the optimal treatment, it is possible
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for the practical strategy to fail to eliminate bacteria. In this situation, we iteratively amplify the dosages
(ten percent higher for each step) of the two phage types used in practical therapeutic treatment while
fixing the timings of phage injection until bacterial populations are eliminated.

4.3 Monophage Therapy in Immunocompetent Hosts

For immunocompetent hosts with intact immune activation, monophage therapy can be highly effective
in curing bacterial infections [Roach et al., 2017]. However, phage therapy can still fail when the phage
decay rate is high, or when the phage infection rate is low due to inefficient phage strains or partial
resistance [Leung and Weitz, 2017, Roach et al., 2017]. To explore these potential modes of failure, we
set the phage infection rate to be φ = 3.38 × 10−8 g/(h PFU), slightly lower than the estimated value
φ = 5.4× 10−8 g/(h PFU) in [Roach et al., 2017]. We then plot the performances of 1D-OC strategy by
their minimal phage dosages for eliminating the bacterial population given a range of phage decay rate
ω ∈ [10−2, 102](h−1).

Fig. 2 Minimal phage amount for eliminating bacterial cells using 1D-OC strategy (green dots). There is no 1D-OC
treatment that can eliminate bacteria in the regime of high phage decay rate (ω ≥ 2.5h−1). Two 1D-OC examples are
provided in Fig. 3: the corresponding time series of population densities and injection rate trajectories. See model parameters
and simulation details in Sect. 4.2.

In Fig. 2, we find that the minimum phage dosage needed by 1D-OC strategies to eliminate the
bacteria increases monotonically with the phage decay rate. In addition, the dosage increase becomes
extremely rapid at decay rate ω ∼ 1 h−1 and 1D-OC therapy fails for all practical dosages when ω > 2.5
h−1. The time series of population dynamics at slow phage decay rate are plotted in Fig. 3A. The single-
impulse like optimal injection rate shows that the 1D-OC treatment (in this case) is approximately a
single-dose treatment: injecting a small amount of phage (about 5 × 102 PFU) at the very beginning
of treatment 2 hours post infection. In doing so, the optimized treatment reduces the phage-sensitive
bacterial population quickly and controls the emergence of resistant bacteria in an early stage. On the
other hand, when phage decay at a fast rate, the 1D-OC strategy maintains the phage concentration and
treatment efficacy by continuously injecting phage into the system over a longer period of time (see Fig.
3B).

10

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 19, 2019. ; https://doi.org/10.1101/845172doi: bioRxiv preprint 

https://doi.org/10.1101/845172
http://creativecommons.org/licenses/by/4.0/


(B) 1D-OC example (*: fast phage decay)

(A) 1D-OC example (+: slow phage decay)

Fig. 3 Time series of population densities and optimal injection rates of two 1D-OC examples (labeled in Fig. 2): slow
phage decay (ω = 0.01h−1) and fast phage decay (ω = 2.5h−1). (A) Optimal injection rate, ρS(t), is obtained by solving
control problem (27) with tuned regulator weight θu = 1011. Bacteria is eliminated around 50 hrs post infection. (B)
Optimal injection rate, ρS(t), is obtained by solving control problem (27) with tuned regulator weight θu = 10. Bacteria is
eliminated around 50 hrs post infection. See model parameters and simulation details in Sect. 4.2.

4.4 Phage Therapy in Immunodeficient Hosts

Previous work has shown that a deficient immune response may lead to failure of phage therapy in an
acute pneumonia system [Roach et al., 2017]. Here, we explore whether phage combination therapy (phage
cocktails) that includes a host-range mutant phage targeting resistant bacteria can restore therapeutic
effectiveness in immuno-deficient hosts, and identify optimal ways to achieve that. In the immuno-
deficient model, immune signaling is assumed to be absent such that the immune response intensity is
maintained at a basal level, I = I0. In addition, the initial density of sensitive bacteria that is 2 log
lower than the initial density of sensitive bacteria because immunodeficient hosts are highly susceptible
to bacterial infection [Roach et al., 2017]. We further assume that the wild-type and host-range mutant
phage target the phage-sensitive and phage-resistant bacteria respectively with no cross infectivity. First,
we compute 2D-OC treatments corresponding to minimal phage dosages given a range of basal-level
immune density. Then, we test a practical approximation of the 2D-OC treatment by converting the
2D-OC phage injection profile into discrete doses of each phage strain (see Sect. 4.2 for details). For each
basal-level immune density, we evaluate the performance of the practical therapeutic treatment guided
by the 2D-OC treatment at the same basal-level immune density.

The numerical results show that the the minimal phage amount of both 2D-OC and practical ther-
apies for eliminating bacterial cells decreases with increasing basal-level immune density (see Fig. 4A).
Moreover, for practical therapeutic treatments in the entire range of the basal-level immune density, the
optimal timings of injecting the two types of phage are both at the very beginning of treatment (i.e.,
TPS

= TPR
≈ 2 hrs). Furthermore, given our model and parameter assumptions the optimal control al-

gorithm always result in a dosage of phage PS about ten times higher than the dosage of phage PR (i.e.,
DS/DR ≈ 10), see Fig. 4B. When the basal-level immune density is very high, I0 ≈ 8.5 × 106 (cell/g),
the practical treatment only needs a small amount of phage PS (about 102 PFU) to eliminate bacteria
(see Fig. 4B and Fig. S1 in Appendix C.). To investigate the phage delivery schedules identified by the
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Fig. 4 Minimal phage amount for eliminating bacterial cells using 2D-OC strategy (left) and the practical therapeutic
treatment (right). (Left) Minimal phage amount for eliminating bacterial cells using 2D-OC strategy (red) and practical
therapeutic treatment guided by 2D-OC strategy (green). Two in silico experiments (high immune density I0 = 8×106 cell/g
and low immune density I0 = 3× 106 cell/g) are provided in Figs. 5 and 6 respectively. (Right) Dosage of phage PS (red)
and dosage of phage PR (blue) used in practical therapeutic treatment. The timings of injecting two types of phage dose
are both about two hours post infection (i.e., TPS

= TPR
≈ 2 hrs). Note that the total dosage of two types of phage (add

up of PS phage dosage and PR phage dosage) is the green curve in the left panel. See model parameters and simulation
details in Sect. 4.2.

optimal control strategies and understand the advantages of phage combination therapy, we compare the
injection rate and population dynamics of 1D-OC, 2D-OC and practical therapeutic strategies in Figs.
5 and 6.

For the 1D-OC case at high level of immune response (see Fig. 5A), the optimal phage dosing
occurs over a time period of nearly 60 hours with injection rate starting at around the maximal value
of 109 PFU/(h g) and decreasing after 24 hours. The immunodeficiency necessitated a much higher
dosage of phage sustained over a long period of time even for a low initial bacterial inoculum. The
aggressive phage dosing results in a roughly exponential decrease in phage-sensitive bacteria, but the
phage-resistant bacteria is not effectively controlled and increases slightly in population. Phage-resistant
bacteria is even more problematic at low baseline immune level (see Fig. 6A), where the resistant mutants
grow exponentially until they reach the carrying capacity despite a more aggressive phage dosing that
maintains a maximum injection rate until 48 hours post infection. The failure of phage therapy in these
cases is a result of the deficient immune response not being able to control phage-resistant bacteria,
as confirmed by the population dynamics at sufficiently high baseline immune response (see Fig. S1
in Appendix C.) which shows effective control of both phage-sensitive and phage-resistant bacterial
populations at much lower phage dose.

Figs. 5B-C and 6B-C show how judicious use of a phage cocktail in the 2D-OC strategy can improve
the robustness of therapeutic success. In Fig. 5B, the host-range mutant phage is injected for the entire
dosing schedule to preemptively inhibit the phage-resistant bacteria. Initially, wild-type phage targeting
the phage-sensitive bacteria is injected at a higher dose than the host-range mutant phage as the initial
inoculum consists mostly of sensitive bacteria. That balance is shifted as the relative proportion of
resistant bacteria increases and the host-range mutant phage becomes the major component of the
cocktail at around 12 hrs post infection. Thus, the optimal injection rates (in 2D-OC treatment) exhibit
interesting and complex temporal patterns. However, in real clinical treatments, it is not (yet) feasible to
implement such a complicated phage delivery schedules. In Fig. 5C, the practical therapeutic treatment,
i.e., a discretized form of the continuous 2D-OC treatment, also shows efficacy in eliminating the bacteria.
In the case of low baseline immune response, the temporal patterns in treatment strategies (2D-OC and
practical treatments) are similar to the case of high baseline immune response (see Figs. 6B-C and
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compare to Figs. 5B-C), but the dosage of two types of phage used in treatments are much higher.
This is consistent with our previous work showing that the host immune status may be a critical factor
determining phage therapy efficacy [Roach et al., 2017]. In addition, for low immune level the time of
switching over to a strategy dominated by the counter-resistant phage is delayed to about 36 hours after
infection as opposed to around 12 hours in the high immune baseline case.

(B) 2D-OC treatment (*: high level of baseline immune response)

(A) 1D-OC treatment

(C) Practical treatment guided by 2D-OC in (B)

Single-dose PS

Single-dose PR

Fig. 5 Comparison of time series of population densities with different treatments in the high level of baseline immune
response, I0 = 8 × 106 cell/g. (A) Optimal injection rate, ρS(t), is obtained by solving control problem (27) with tuned
regulator weight θu = 10−11 (the smallest regulator weight on treatment costs). There does not exist curative 1D-OC
treatment due to the outgrowth of phage-resistant bacteria R. (B) Optimal injection rate, ρS(t) and ρR(t), is obtained
by solving control problem (17) with tuned regulator weight θu = 10. Bacteria is eliminated around 30 hrs post infection.
(C) The practical therapeutic treatment is obtained from optimal injection rate in (B): two doses, PS phage dose and PR

phage dose, both are injected at two hours post infection with amount of 2.6× 107 PFU and 2.3× 106 PFU respectively.
Bacteria is eliminated around 30 hrs post infection. See model parameters and simulation details in Sect. 4.2.
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(B) 2D-OC treatment (+: low level of baseline immune response)

(A) 1D-OC treatment

(C) Practical treatment guided by 2D-OC in (B)

Single-dose PS

Single-dose PR

Fig. 6 Comparison of time series of population densities with different treatments in the low level of baseline immune
response, I0 = 3 × 106 cell/g. (A) Optimal injection rate, ρS(t), is obtained by solving control problem (27) with tuned
regulator weight θu = 10−11 (the smallest regulator weight on treatment costs). There does not exist curative 1D-OC
treatment due to the outgrowth of phage-resistant bacteria R. (B) Optimal injection rate, ρS(t) and ρR(t), is obtained by
solving control problem (17) with tuned regulator weight θu = 10−2. Bacteria is eliminated around 60 hrs post infection.
(C) The practical therapeutic treatment is obtained from optimal injection rate in (B): two doses, PS phage dose and PR

phage dose, both are injected at two hours post infection with amount of 3 × 109 PFU and 3 × 108 PFU respectively.
Bacteria is eliminated around 60 hrs post infection. See model parameters and simulation details in Sect. 4.2.

5 Discussion

In this paper, we developed a control-theoretic framework to optimize the use of monophage treatment
and phage cocktails for treating bacterial infections in immunodeficient hosts or in other scenarios such
as high phage decay rate where standard phage therapy is likely to fail. By incorporating phage admin-
istration as the control in a mathematical model describing the nonlinear interactions between phage,
pathogenic bacteria and host immunity, we derive a Hamiltonian-based algorithm to numerically min-
imize bacterial burden while limiting the phage dose. Our results indicate that optimal control may
provide important insights to guide clinical use of phage therapy. In particular, a single dose of phage
may be sufficient to treat immunocompetent patients when the phage clearance rate is low, whereas
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phage administration may need to be sustained over a longer period when phage clearance is fast. In
immunodeficient hosts, our results suggest that the success of optimal administration of phage cocktails
can largely be reproduced in a simplified, discretized version of the optimal therapy that would be easier
to implement practically. The only trade-off observed for the simplified practical therapy is a slight in-
crease of the minimum effective dose in cases of severe immunodeficiency. Our optimal control framework
indicates that a single phage strain may be effective for therapy at relatively high immunity levels, but
the use of multiple therapeutic phage is required for low immune intensities.

To ensure that the optimal control problem remains mathematically tractable, a number of simplifying
assumptions have been made. For example, within-host dynamics is assumed to be deterministic, whereas
biological processes such as mutations are inherently stochastic. The gap between mathematical models
and complex clinical trials can be even wider due to various confounding factors. In addition, the optimal
control solutions are solved based on specific objective functional and model parameters. Hence, different
sets of parameters, models, and the objective costs could yield different suggested treatments such that the
robustness of our optimal treatments may not be guaranteed. Our model also focuses on acute infections,
and did not consider spatial heterogeneity or cocktails consisting of more than two phage strains. These
issues could be addressed in future work by extending our modeling framework to incorporate stochastic
control [Hashemian and Armaou, 2017, Fleming and Rishel, 1976] in spatial models with multiple strains
of phage. In doing so, it will be important to consider host adaptive immunity, which is important
in chronic infections and can generate specific responses against phage [Hodyra-Stefaniak et al., 2015,
Górski et al., 2012]. Finally, we note that host-range phage mutants may be able to infect multiple strain
types [Flores et al., 2011]; hence future work should also address how to optimally combine phage with
overlapping host ranges.

In conclusion, the theoretical framework presented in this paper is intended to help advance the ratio-
nal design of monophage and phage cocktail therapy. Phage cocktails have been proposed as a solution to
tackle phage resistance and broaden the antimicrobial spectrum of phage preparations [Chan et al., 2013,
Tanji et al., 2004, Zhang et al., 2010], but it is often unclear how to optimize their composition to obtain
maximum effectiveness. Part of the difficulty in determining the appropriate dosage and composition
of phage treatments is due to the self-amplifying nature of phage. Our work demonstrates how control
theory can be applied to optimize the dose and timing of therapeutic agents that have the ability to
proliferate in vivo, and provide insights, both of a conceptual and practical nature, in the development
of phage therapy. In doing so, our framework can also be extended to other therapeutic contexts with
replicating agents, such as the use of probiotic bacteria [Manzanares et al., 2016, Parker et al., 2018], as
well as cancer therapies involving oncolytic viruses [Lawler et al., 2017, Fukuhara et al., 2016] and live
immune cells [June et al., 2018, Bol et al., 2016].

Appendix

A. Implementation of Projection Operator PU

Here we present a closed form of projection operator PU via a geometric approach, recall that u∗ = PU (û)
in Theorem 1, then we have following:

u∗ = û, if û ∈ {u | eT1 u ≥ 0, eT2 u ≥ 0, 1Tu− 1 ≤ 0},
u∗ = PA(û), if û ∈ {u | 1Tu− 1 ≥ 0, 1̃Tu+ 1 ≥ 0, 1̃Tu− 1 ≤ 0},
u∗ = [0, 1]T , if û ∈ {u | eT2 u− 1 ≥ 0, 1̃Tu− 1 ≥ 0},
u∗ = [0, û2]T , if û ∈ {u | eT1 u ≤ 0, eT2 u ≥ 0, eT2 u− 1 ≤ 0},
u∗ = [0, 0]T , if û ∈ {u | eT1 u ≤ 0, eT2 u ≤ 0},
u∗ = [û1, 0]T , if û ∈ {u | eT1 u ≥ 0, eT1 u− 1 ≤ 0, eT2 u ≤ 0},
u∗ = [1, 0]T , if û ∈ {u | 1̃Tu+ 1 ≤ 0, eT1 u ≥ 1},

where 1̃ = [−1, 1]T and A = {u | 1Tu−1 = 0}. Computing the projection of û on to A is straightforward.
The orthogonality principle yields û−PA(û) must be colinear with 1, also PA(û) ∈ A, i.e., û−PA(û) = z1
and 1

TPA(û)− 1 = 0. This yields z = (1T û− 1)/(1T1) and thus PA(û) = û− z1.
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B. The Optimality System of Optimal Control in Monophage Therapy

Here, we derive the necessary conditions for the optimal control problem (27) via PMP.

Theorem 2 If u∗1 is an optimal control solves problem (27), and x∗(t) and λ∗(t) are the corresponding
state trajectory and costate trajectory, then

u∗1(t) =


0, if λ∗3(t) ≥ 0

− qλ
∗
3(t)
θu

, if − θu
q ≤ λ

∗
3(t) < 0

1, if λ∗3(t) < − θuq .
(28)

Proof. According to PMP, if u∗1 is an optimal control of problem (27), and if x∗(t) and λ∗(t) are the
corresponding state trajectory and costate trajectory, then the following equations are satisfied,

State equation : ẋ∗ = f(x∗, u∗1) (29)

Costate equation : λ̇∗ = −
(
∂f

∂x
(x∗)

)T
λ∗ −

(
∂L
∂x

(x∗, u∗1)

)T
(30)

Maximum principle : ∀t ∈ [0, tf ], H(x∗(t), λ∗(t), u∗1(t)) = min {H(x∗(t), λ∗(t), u1) | u1 ∈ U1} (31)

Terminal condition : λ∗(tf ) =

(
∂g(x∗(tf ))

∂x

)T
, (32)

where H is the Hamiltonian. Define the Hamiltonian as H(x, λ, u1) = λT f(x, u1) +L(x, u1), we find that

H(x, λ, u1) = Q̃ + qλ3u1 + (θu/2)u21, where Q̃ is the collection of terms that has no argument in u1.
Minimizing H(x, λ, u1) over u1 ∈ U1 yields Eq. (28). The costate equation with terminal condition is

λ̇∗ = −
(
∂f

∂x
(x∗)

)T
λ∗ −

(
∂L
∂x

(x∗, u∗1)

)T
, λ∗(tf ) =

(
∂g(x∗(tf ))

∂x

)T
,

where ∂L/∂x = [θB , θB , 0, 0], λ∗(tf ) = [θf , θf , 0, 0]T . The Jacobian is

∂f

∂x
=


J11 J12 J13 J14
J21 J22 0 J24
J31 0 J33 0
J41 J42 0 J44

 ,
where

J11 =
r(1− µ)(kCD − 2x1 − x2)

kCD
− kPDI(x3)− ε̃(1 + x2)x4

(1 + x1 + x2)2
, J12 =

ε̃x1x4
(1 + x1 + x2)2

− r(1− µ)x1
kCD

J13 = −kPD
ψx1

(1 + x3)2
, J14 = − ε̃x1

1 + x1 + x2

J21 =
µr(kCD − 2x1 − x2)

kCD
− r′x2
kCD

+
ε̃x2x4

(1 + x1 + x2)2
, J22 =

r′(kCD − x1 − 2x2)

kCD
− µrx1
kCD

− ε̃(1 + x1)x4
(1 + x1 + x2)2

J24 = − ε̃x2
1 + x1 + x2

, J25 = −kPD
ψx2

(1 + x5)2

J31 = βI(x3)− ψx3 , J33 =
βψx1

(1 + x3)2
− ω − ψx1

J41 =
αkNDx4(1− x4)

(kND + x1 + x2)2
, J42 =

αkNDx4(1− x4)

(kND + x1 + x2)2
, J44 = α(

x1 + x2
x1 + x2 + kND

)(1− 2x4).

We have justified Eqs. (29)-(32).
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(B) 2D-OC treatment

(A) 1D-OC treatment

(C) Practical treatment guided by 2D-OC in (B)

Single-dose PS

Single-dose PR

Fig. S1 Comparison of time series of population densities with different treatments in the high level of baseline immune
response, I0 = 8.5× 106 cell/g. (A) Optimal injection rate, ρS(t), is obtained by solving control problem (27) with tuned
regulator weight θu = 1011 (the largest regulator weight on treatment costs). Bacteria is eliminated around 30 hrs post
infection. (B) Optimal injection rate, ρS(t) and ρR(t), is obtained by solving control problem (17) with tuned regulator
weight θu = 1011. Note that the optimal injection rate of phage PR is nearly zero, i.e., ρR(t) ≈ 0 ∀t ∈ [t0, tf ]. Thus, the
optimal injection rates solved from 2D-OC and 1D-OC are nearly identical, i.e., ρS(t) is a single-pulse signal centered at
t = 2 hrs. Bacteria is eliminated around 30 hrs post infection. (C) The practical therapeutic treatment is obtained from
optimal injection rate in (B): single-dose, PS phage dose, is injected at two hours post infection with amount of 5×102PFU.
Bacteria is eliminated around 30 hrs post infection. See model parameters and simulation details in Sect. 4.2.

C. Effective Single-Dose Treatment in Immunodeficient Hosts (Baseline Immune Response is
Sufficiently High)

When the baseline immune response is sufficiently high in immunodeficient hosts, all the treatment
strategies (1D-OC, 2D-OC and practical treatments) can eliminate bacteria with a low dose of phage PS
injected at very beginning of treatment (see Fig. S1 in Appendix C.).
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Table 1 Parameters and initial conditions in the system (1)-(5)

Parameters Value Source

r, maximum growth rate of bacteria 0.75 h−1 [Roach et al., 2017]
r′, maximum growth rate of phage-resistant bacteria 0.675 h−1 [Roach et al., 2017]

µ,
probability of emergence of phage-resistant mutant

per cellular division
2.85× 10−8 [Roach et al., 2017]

KC , carrying capacity of bacteria (wild-type) 1.0× 1010 CFU/g [Roach et al., 2017]
KC , carrying capacity of bacteria (immunodeficient hosts) 8.5× 1011 CFU/g [Roach et al., 2017]
β, burst size of phage 100 [Roach et al., 2017]
w, decay rate of phage 0.07 h−1 [Roach et al., 2017]
ε, killing rate parameter of immune response 8.2× 10−8 g/(h cell) [Roach et al., 2017]
α, maximum growth rate of immune response 0.97 h−1 [Roach et al., 2017]
KI , maximum capacity of immune response 2.4× 107 cell/g [Roach et al., 2017]

KI ,
maximum capacity of immune response

(no innate immune activation)
same as I0 [Roach et al., 2017]

KD,
bacterial concentration at which immune response

is half as effective
4.1× 107 CFU/g [Roach et al., 2017]

KN ,
bacterial concentration when immune response

growth rate is half its maximum
1.0× 107 CFU/g [Roach et al., 2017]

φ, adsorption rate of phage 5.4× 10−8 g/(h PFU) [Roach et al., 2017]
PC , phage density at half saturation 1.5× 107 PFU/g [Roach et al., 2017]
S0, initial bacterial density 7.4× 107 CFU/g [Roach et al., 2017]
S0, initial bacterial density (immunodeficient hosts) 7.4× 105 CFU/g [Roach et al., 2017]
R0, initial phage-resistant bacterial density 1 CFU/g [Roach et al., 2017]
I0, initial immune response 2.7× 106 cell/g [Roach et al., 2017]
I0, initial immune response (immunodeficient hosts) 3× 106 ∼ 8.5× 106, cell/g this study
PS(0), initial WT phage density 0 PFU/g this study
PR(0), initial host-range mutant phage density 0 PFU/g this study
ρmax, maximal phage dose injection rate 109 PFU/(h g) this study
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