1	The Legionella pneumophila metaeffector Lpg2505 (SusF) regulates SidI-mediated translation
2	inhibition and GDP-dependent glycosyltransferase activity
3	
4	Ashley M. Joseph ¹ , Adrienne E. Pohl ¹ , Theodore J. Ball ¹ , Troy G. Abram ² , David K. Johnson ³ ,
5	Brian V. Geisbrecht ² and Stephanie R. Shames ^{1*}
6	
7	¹ Division of Biology, ² Department of Biochemistry and Molecular Biophysics, Kansas State
8	University, Manhattan KS 66506
9	³ Molecular Graphics and Modeling Laboratory, Computational Chemical Biology Core,
10	University of Kansas, Lawrence KS 66047
11	
12	*Corresponding author: Stephanie R. Shames, <u>sshames@ksu.edu</u> , Phone: (785) 532-0110
13	
14	Running title: Metaeffector-mediated regulation of SidI function
15	
16	Key words: Dot/Icm effector, SidI, Legionella pneumophila, metaeffector, glycosyltransferase,
17	eEF1A
18	

19 Abstract

20 Legionella pneumophila, the etiological agent of Legionnaires Disease, employs an arsenal of 21 hundreds of Dot/Icm-translocated effector proteins to facilitate replication within eukaryotic phagocytes. Several effectors, called metaeffectors, function regulate the activity of other 22 23 Dot/Icm-translocated effectors during infection. The metaeffector Lpg2505 is essential for L. 24 pneumophila intracellular replication only when its cognate effector, SidI, is present. SidI is a 25 cytotoxic effector that interacts with the host translation factor eEF1A and potently inhibits 26 eukaryotic protein translation by an unknown mechanism. Here, we evaluated the impact of 27 Lpg2505 on SidI-mediated phenotypes and investigated the mechanism of SidI function. We 28 determined that Lpg2505 binds with nanomolar affinity to SidI and suppresses SidI-mediated 29 inhibition of protein translation. SidI binding to eEF1A and SusF is not mutually exclusive and these proteins bind distinct regions of SidI. We also discovered that SidI possesses GDP-30 31 dependent glycosyltransferase activity and that this activity is regulated by Lpg2505. We have 32 therefore renamed Lpg2505, SusF (suppressor of SidI function). This work reveals novel 33 enzymatic activity for SidI and provides insight into how intracellular replication of L. 34 pneumophila is regulated by a metaeffector.

35

36 Introduction

Legionella pneumophila is the etiological agent of Legionnaires' Disease, a severe inflammatory pneumonia that results from uncontrolled bacterial replication within alveolar macrophages. Upon phagocytosis, *L. pneumophila* avoids lysosomal degradation through establishment of an endoplasmic reticulum-derived compartment called the *Legionella*-containing
vacuole (LCV) (1). For biogenesis of the LCV and acquisition of nutrients from the host cell, *L. pneumophila* is dependent on a massive arsenal of over 300 individual effector proteins that are
translocated directly into the host cell through a Dot/Icm Type IVB secretion system (T4BSS) (2).
The cellular functions of the majority of effectors have yet to be elucidated, due in part to their
functional redundancy within macrophages (3).

46 Metaeffectors have emerged as a common theme in *L. pneumophila* pathogenesis and are 47 used by L. pneumophila to regulate effector function (4). The first metaeffector described was LubX, 48 which temporally regulates function of its cognate effector SidH by hijacking host ubiquitination 49 machinery to facilitate proteasomal degradation of SidH (5). At least 20 of the over 300 identified L. pneumophila effectors are metaeffectors (4) and two of these – SidJ and Lpg2505 – are members 50 of a small group of effectors that are individually important for L. pneumophila intracellular 51 52 replication within macrophages (6-8). SidJ is a glutamylase that covalently modifies and 53 abrogates the function of the SidE family of effector ubiquitin ligases (9–11). Lpg2505 is a 54 metaeffector of unknown function that suppresses toxicity of its cognate effector, SidI (Lpg2504), 55 and is important for intracellular replication only when wild-type *sidI* is expressed (6). This was 56 demonstrated by restoration of L. pneumophila $\Delta lpg2505$ intracellular replication upon either 57 deletion of *sidI* or expression of a non-toxic *sidI* allele (R453P). It was further found that Lpg2505 was sufficient to suppress SidI-mediated toxicity towards the yeast Saccharomyces cerevisiae (6). 58 59 Thus, SidI activity is deleterious to *L. pneumophila* in the absence of Lpg2505, a unique phenotype 60 for a translocated effector.

61	SidI is one of seven cytotoxic <i>L. pneumophila</i> effector proteins that inhibit host cell protein
62	translation (12). Like the majority of L. pneumophila effectors, sidI alone is dispensable for
63	intracellular replication within macrophages, likely due to functional redundancy with other
64	effectors (12). Other translation inhibiting effectors include Lgt1-3, SidL, LegK4, and Lpg1489 (12–
65	16). Lgt1-3 are glycosyltransferases that inhibit translation by glucosylating eukaryotic elongation
66	factor 1A (eEF1A) at Ser-53 (17–19). LegK4 is an effector kinase that phosphorylates heat-shock
67	protein 70 (Hsp70), thereby reducing its ATPase activity and protein refolding activities (16). SidL
68	and Lpg1489 have been experimentally demonstrated to inhibit host protein synthesis (13, 15),
69	but their modes of action are unknown. Like Lgt1-3, SidI also interacts with eEF1A; however, this
70	interaction is insufficient for translation inhibition (12). SidI also interacts with eEF1B γ and
71	induces the host heat shock response (12). To date, the mechanism(s) by which SidI functions
72	within the host cell to inhibit host protein synthesis have not been elucidated.

In this study we aimed to discern how Lpg2505 regulates SidI and gain insight into the molecular mechanism of SidI function. We discovered that Lpg2505 and SidI bind with nanomolar affinity and that Lpg2505 suppresses SidI-mediated translation inhibition *in vitro*. Furthermore, SidI interaction with Lpg2505 and eEF1A are not mutually exclusive and these two proteins bind with distinct regions of SidI. Finally, we discovered novel GDP-dependent glycosyltransferase activity for SidI, which is regulated by Lpg2505. For this reason, we have named Lpg2505 as <u>suppressor of SidI function</u> (SusF).

80

81 Results

82 SusF and SidI bind with nanomolar affinity.

Lpg2505 (SusF) is sufficient to suppress SidI-mediated cytotoxicity and promote L. pneumophila 83 84 intracellular replication (6). To reveal a potential mechanism for SusF-mediated regulation of SidI, we evaluated whether SusF interacts with SidI. Since effectors function within host cells, we 85 investigated whether SidI and SusF interact in the presence of host cell lysates. HEK 293 cells 86 87 stably producing 3FLAG-eipotpe tagged SusF were generated and we initially attempted to 88 ectopically express GFP-tagged *sid1* within these cells for co-immunoprecipitation. However, 89 wild-type SidI could not be detected, likely due to potent translation inhibition. Thus, we 90 generated recombinant GST-tagged SidI (GST-SidI) and evaluated its ability to interact with 91 3FLAG-SusF within HEK 293 lysates (see Materials and Methods). We found that GST-SidI, but not 92 GST alone, retained 3FLAG-SusF on glutathione-coated beads (Fig 1A). Furthermore, GST-SidI but not GST alone - was retained on Ni-NTA beads coated with recombinant His6-SusF (Fig 1B). 93 94 Thus, SusF interacts with SidI in the presence or absence of mammalian cell lysates.

To determine if SidI and SusF bind directly, we examined the ability of these proteins to associate with one another throughout the course of sequential column chromatography procedures. SidI and SusF were co-expressed in *Escherichia coli*, purified by Ni-NTA affinity chromatography (see *Materials and Methods*), and the eluted proteins were separated by analytical format size exclusion chromatography. We found that SidI and SusF co-eluted from the column as a species corresponding to a molecular weight of ~150 kDa, as judged by comparison to a panel of known protein standards (**Fig 1C**). Bands corresponding to both proteins were detected in samples of

102	column fractions that had been separ	ated by SDS-PAGE and	d analyzed by Cooma	ssie staining (Fig
-----	--------------------------------------	----------------------	---------------------	----------------------------

103 **S1**). Thus, SidI and SusF interact directly and appeared to form a stable complex.

104 We subsequently used surface plasmon resonance (SPR) to investigate the affinity and kinetics of 105 the SusF-SidI interaction. We immobilized SusF on an SPR surface using random amine chemistry 106 and injected recombinant, purified SidI at increasing concentrations. We employed a single-cycle approach due to difficulty with regenerating the SusF surface following exposure to SidI. We 107 108 found that the reference-corrected sensorgram could be described fairly well by a Langmuir 109 binding model (K_D = 0.89 nM and χ^2 = 3.26) (Fig. S2), but was better fit to a two-state reaction 110 model (K_D = 3.1 nM and χ^2 = 0.79) (Fig 1D). A particularly noteworthy feature of the SusF-SidI 111 interaction is its long half-life, with an estimate dissociation rate constant between 2-5x10⁻⁴ s⁻¹. 112 This observation explains, at least in part, the ability of SusF and SidI to remain associated with one another throughout the co-purification procedures described above. Taken together, these 113 114 data indicate that SusF binds directly to SidI and forms a high-affinity complex with a K_D of ~ 1 115 nM.

116

117 SusF suppresses SidI-mediated translation inhibition.

Based on the high-affinity interaction between SidI and SusF, we hypothesized that SusF represses SidI-mediated translation inhibition. To test this hypothesis, we quantified translation of *Firefly* luciferase mRNA (Luc mRNA) *in vitro* (see *Materials and Methods*). This assay was used previously to demonstrate that \geq 5 ng of recombinant SidI was sufficient to completely abolish translation (12). We confirmed that purified His₆-SidI significantly attenuates protein translation

and additionally revealed that purified SusF alone has no impact on translation (Fig 2A). We
further determined that SusF significantly rescues translation in the presence of SidI (*P*<0.01, Fig
2B). Thus, SusF is sufficient to suppress SidI-mediated translation inhibition *in vitro*.

126 Our SPR data demonstrates that the SidI-SusF interaction occurs rapidly. We therefore 127 hypothesized that pre-formation of the SidI-SusF complex would not result in further attenuation 128 of SidI-mediated translation inhibition. To determine whether or not pre-formation of the SidI-129 SusF complex would enhance SusF-mediated suppression of translation inhibition, we incubated 130 SidI with SusF for 30 min prior to addition to the *in vitro* translation reaction. Pre-formation of 131 the SidI-SusF complex did not further attenuate SidI-mediated translation inhibition (Fig 2C; see 132 Materials and Methods). Furthermore, SusF was insufficient to reverse SidI-mediated translation inhibition since addition of SusF to the reaction after either 30 min or 60 min did not restore 133 translation (Fig 2C). Finally, we evaluated whether suppression of SidI-mediated translation 134 135 inhibition by SusF was dose dependent. SusF was added in concentrations ranging from 136 equimolar up to a 15-fold molar excess relative to SidI. An equimolar amount of SusF was 137 sufficient to suppress SidI-mediated translation inhibition and translation was not further 138 enhanced by addition of up to a 15-fold molar excess of SusF (Fig 2D). Thus, equimolar amounts 139 of SusF are sufficient to suppresses SidI-mediated translation inhibition.

140

141 SusF does not affect the interaction between SidI and eEF1A.

A previous report demonstrated that SidI interacts directly with the transcription factor
eukaryotic elongation factor 1A (eEF1A) (12). We therefore investigated whether the interactions

between SidI and eEF1A or SusF are mutually exclusive. GST-SusF or GST alone were 144 145 immobilized on glutathione beads and incubated with His6-SidI that was pre-incubated with HEK 293T lysates. We found that eEF1A was retained on the beads only in the presence of SidI 146 147 and that eEF1A did not impair interaction between SusF and SidI (Fig 3A). Subsequently, we 148 asked whether increasing the concentration of SusF would influence the SidI-eEF1A interaction. 149 We incubated GST-SidI with eEF1A (from HEK 293T lysates, see Materials and Methods) followed 150 by increasing concentrations of purified recombinant SusF. Despite SusF concentration increasing 151 100-fold, GST-SidI still retained eEF1A on the beads (Fig 3B), suggesting that SidI interacts with 152 SusF and eEF1A simultaneously. The same result was observed when SusF was incubated with 153 GST-SidI prior to HEK 293T lysates (Fig S3). Thus, SidI binding to eEF1A and SusF is not 154 mutually exclusive.

155

156 SusF and eEF1A interact with distinct regions of SidI.

Since both SusF and eEF1A are capable of binding SidI simultaneously, we hypothesized that 157 158 these proteins interact with SidI at distinct sites. SidI has a molecular weight of ~ 110 kDa and consists of 942 amino acids. Since the structure of SidI has not been solved, we used the RaptorX 159 160 webserver (20) to predict the domain structure of SidI. Based on the predicted domains (Fig S4), 161 we generated SidI truncations consisting of amino acid residues 1-268 (SidIN), 269-942 (SidIc) and 162 269-874 (SidIcase) (Fig 4A). To determine which of these putative SidI domains is involved in interaction with SusF and eEF1A, we immobilized GST-tagged full-length SidI, SidIN, SidIc, 163 164 SidIca68, or GST alone on glutathione beads followed by incubation with lysates from HEK 293

cells stably producing 3FLAG-SusF. Western blot analysis was used to detect 3FLAG-SusF and 165 166 eEF1A bound to SidI truncation proteins (see Materials and Methods). We confirmed that GST-SidI, but not GST alone, was capable of retaining both SusF and eEF1A on the beads. 3FLAG-SusF was 167 further retained on beads coated with GST-SidIN and GST-SidIC but not GST-SidICA68, whereas 168 169 eEF1A was retained by GST-SidIc and GST-SidIcA68 (Fig 4B). To control for the potential influence 170 of 3FLAG-SusF on eEF1A binding to SidI, we repeated this experiment using HEK 293 cells that do not express 3FLAG-susF. We observed the same pattern of interactions between eEF1A and 171 172 the C-terminal region of SidI in the absence of 3FLAG-SusF (Fig S5). Based on these data, we 173 conclude that SusF interacts with SidI at regions within amino acid residues 1-268 and 874-942 174 whereas eEF1A interaction with SidI is dependent on amino acid residues 269-874. Together, 175 these data suggest SusF interacts with two regions of SidI that are distinct from the site of SidI 176 interaction with eEF1A.

177

178 SidI is not dependent on SusF for translocation into host cells.

The majority of *L. pneumophila* effector proteins rely on a C-terminal translocation signal for Dot/Icm-mediated translocation into host cells (21, 22). Based on the observed interaction between SusF and the C-terminal 68 amino acid residues of SidI, we hypothesized that SusF may impact Dot/Icm-mediated translocation of SidI. To test this hypothesis, we quantified the export of SidI fused to *Bordetella pertussis* adenylate cyclase (CyaA) (21). When CyaA fusion proteins reach the cytosol of eukaryotic cells they catalyze formation of cAMP, which can be quantified using cAMP-specific ELISA. Based on potent toxicity associated with wild-type SidI, a non-toxic

186	sidI allele (R453P; SidIRP) was used for these experiments (6, 12). Expression of CyaA-SusF and
187	CyaA-SidIRP was confirmed using Western blot analysis (Fig 5A). Subsequently, we found that
188	cAMP production by host cells was significantly increased following infection with wild-type
189	and $\Delta susF$, but not $\Delta dotA$, strains of <i>L</i> . <i>pneumophila</i> producing CyaA-SidIrp (Fig 5B). Translocation
190	of CyaA-RalF was used as a positive control for Dot/Icm-dependent translocation (21) (Fig 5A,
191	B). Together, these data demonstrate that SidI is not dependent on SusF for translocation into
192	host cells.

193

194 Binding to eEF1A is insufficient for SidI-mediated translation inhibition.

195 Subsequently, we investigated the ability of truncated SidI proteins to influence protein 196 translation. At concentrations equivalent to SidI, neither SidIN nor SidIca68 were sufficient to 197 inhibit protein translation in vitro (Fig 6A). Based on the interaction between SidIcades and eEF1A, 198 we also quantified translation in the presence of increasing concentrations of His6-SidIca68. We 199 found that His6-SidIcA68 significantly decreased translation at concentrations up to 25-fold greater 200 than SidI (Fig 6B), suggesting that this truncation retains some activity; however, SidIcA68-201 mediated translation inhibition is modest in comparison to an equal amount of SidI despite the 202 ability to interact with eEF1A (Fig 4B, Fig S5). These data further confirm that interaction with 203 eEF1A is insufficient for SidI-mediated translation inhibition (12).

204

205 SidI is a GDP-dependent glycosyltransferase.

206 Like many other bacterial effectors, the primary amino acid sequence of SidI does not have 207 obviously conserved motifs. Therefore, to gain insight into the putative function of SidI, we used a variety of computational methods to predict the structure and function of SidI. Though very 208 209 low primary sequence identity was present in the templates used, the HHPred webserver (23), 210 the Phyre2 webserver (24), the Raptor-X webserver (20), and the I-TASSER webserver (25–27) all produced models of various lengths, but with the same fold for overlapping regions. A DALI 211 212 search (28) for structural homologs against each of these models revealed that amino acid residues 213 368-868 of SidI have predicted structural homology to multiple bacterial and eukaryotic 214 glycosyltransferases with GT-B folds, including PimB, a GDP-mannose-dependent mannosyltransferase (Table S1, Fig S6). Orthogonally, the Ginzu domain parser on the Robetta 215 server also predicted the presence of a glycosyltransferase domain (29). Based on the consensus 216 217 between orthogonal computational approaches, we hypothesized that SidI possesses GDP-218 dependent glycosyltransferase activity and that GDP-mannose could be a substrate. To test this 219 hypothesis, we utilized a functional luminescence-based assay to quantify cleavage of GDP-220 mannose (see Materials and Methods). As a control, we also evaluated the ability of SusF, which 221 does not have predicted glycosyltransferase activity, to cleave GDP-mannose. We observed high 222 levels of free GDP only following incubation of recombinant His6-SidI with GDP-mannose, suggesting that SidI indeed possesses GDP-dependent glycosyltransferase activity (Fig 7A). We 223 further investigated whether SidI glycosyltransferase activity was specific to GDP-sugars and 224 225 evaluated its ability to cleave UDP-glucose, which is cleaved by Lgt1-3 (18, 30). SidI was capable 226 of cleaving UDP-glucose, but far less efficiently than GDP-mannose (Fig 7B), suggesting that

GDP-mannose is the preferred substrate. Together, these data suggest that SidI functionsspecifically as a GDP-dependent glycosyltransferase.

The entire predicted GDP-dependent glycosyltransferase domain of SidI is encoded by amino acids 350-874, which is encompassed within SidIcA68 truncation (**Fig 4A**). To determine whether SidIcA68 alone is sufficient to cleave GDP-mannose, we incubated His6-SidIcA68 with GDP-mannose and quantified generation of free GDP. Full-length SidI and SidIN, which is not predicted to possess glycosyltransferase activity, were included as controls. Neither SidIN nor SidIcA68 were sufficient to cleave GDP-mannose (**Fig 7C**), suggesting that SidI enzymatic activity is dependent on both the N- and C-terminal domains.

236

237 SidI enzymatic activity is dampened by SusF

238 Based on the ability of SusF to suppress SidI-mediated translation inhibition, we hypothesized 239 that SusF could regulate SidI-mediated GDP-dependent glycosyltransferase activity. Thus, SidI-240 mediated GDP-mannose cleavage in the presence of equimolar amounts of SusF was quantified as above. We found that SusF was sufficient to significantly decrease - but not inhibit - SidI GDP-241 dependent glycosyltransferase activity (**P < 0.01, Fig 7D). We further evaluated whether 242 243 addition of molar excess of SusF would further decrease SidI glycosyltransferase activity; however, addition of up to a 5-fold molar excess of SusF to SidI was not sufficient to significantly 244 245 inhibit SidI activity compared to equimolar quantities (Fig 7E). Thus, SusF dampens SidI glycosyltransferase activity in vitro. 246

247

248 Discussion

Legionella pneumophila is an opportunistic, intracellular pathogen that exploits host cell 249 250 machinery to promote intracellular replication through the translocation of effector proteins. SidI 251 is one of seven cytotoxic effectors that inhibit eukaryotic protein translation (SidI, SidL, Lgt1-3, 252 LegK4, Lpg1489) (12, 13, 15, 18). Within this family of effectors, SidI is distinct as its regulation by 253 the metaeffector Lpg2505 (SusF) is essential for intracellular replication (6). Our study aimed to 254 explore the role of SusF in regulation of SidI function and elucidate potential mechanisms behind 255 SidI-mediated toxicity. Here we demonstrate that SusF binds directly to SidI with high affinity 256 and modulates both SidI-mediated translation inhibition and novel GDP-dependent 257 glycosyltransferase activity, which has not been previously observed for a bacterial effector. We 258 further demonstrate that SidI is able to simultaneously bind SusF and eEF1A, which interact with 259 distinct regions of SidI. This work is the first to define the enzymatic activity of SidI and the 260 contribution of SusF to SidI-mediated phenotypes.

L. pneumophila is reliant on the host cell-derived amino acids for intracellular replication (31). It can therefore be speculated that *L. pneumophila* utilizes multiple effector proteins to halt host protein synthesis at the elongation step in order to facilitate proteasomal degradation of partially folded polypeptides. The translation inhibiting effectors characterized to date have diverse functions. The effector Lgt1 was found to target the host elongation factor eEF1A and homology searches led to the discovery of the orthologous effectors Lgt2-3(19). The Lgt effectors function by glycosylation of eEF1A at Ser-53, which results in blockade of host protein synthesis

(32). The Lgts also glycosylate a eukaryotic release factor related protein (eRF3) and the Hsp70
subfamily B suppressor 1 (Hbs1) (33, 34). Based on the function of Lgt1-3, attempts were made to
identify SidI-mediated post-translational modification of eEF1A; however, no modifications were
discovered (12). Although SidI was previously assumed to lack glycosyltransferase activity (12,
35), we discovered that SidI, like the Lgts, is indeed able to cleave GDP-mannose, suggesting that
SidI is a mannosyltransferase. However, future investigation is required to reveal the target of
SidI's activity *in vivo* and the molecular mechanism by which SidI inhibits translation.

275 SidI induces the host stress response through formation of a complex between heat shock 276 factor 1 (HSF1) and eEF1A(12). The formation of this complex in conjunction with a non-coding 277 RNA promotes the binding of HSF1 to the heat shock element (HSE), inducing host cell *Hsp70* 278 expression (12, 36). Notably, despite the upregulation of transcription, Hsp70 protein levels did 279 not differ between infected and uninfected cells (12), likely due to robust translation inhibition 280 by L. pneumophila effectors. A more recent study revealed that the eEF1A1 isoform facilitates 281 expression of heat shock genes independently of its role in protein translation (37). Since SidI, but 282 not Lgt1, induced expression of *Hsp70* in addition to eEF1A-mediated activation of the heat shock 283 factor 1 (HSF1) transcription factor, it could be hypothesized that SidI modulates eEF1A to 284 specifically amplify heat shock genes, which could enhance survival of L. pneumophila infected 285 cells. Moreover, the effector LegK4 phosphorylates Hsp70, which results in loss of protein 286 translation. It is tempting to envision a scenario whereby SidI and LegK4 function in concert to 287 modulate host Hsp70 activity. The importance for modulation of heat shock proteins has also 288 been demonstrated by previous observations that Hsp90 is essential for L. pneumophila replication

in *Acanthamoeba castellanii* (38). Further investigation is required to define the influence of SusF
on SidI-mediated modulation of the heat shock response.

291 Regulation of effector function by metaeffectors is an essential component of the L. 292 pneumophila virulence strategy. The first identified L. pneumophila metaeffector, LubX, functions 293 as an E3 ubiquitin ligase that is translocated into the host cytosol at late stages of infection and 294 catalyzes ubiquitination of the effector protein SidH, targeting it for proteasomal degradation (5). 295 L. pneumophila $\Delta lubX$ mutants replicate similarly to wild-type bacteria, suggesting that LubX is 296 not individually required for intracellular replication in host cells examined (5). Like SusF, the 297 metaeffector SidJ directly contributes to intracellular replication by suppressing the toxicity of the 298 SidE family of effectors (SdeA, SidE, SdeB and SdeC) (7, 39). However, unlike SusF, 299 overexpression of SidJ is toxic to eukaryotic cells (39). The SidE family of effectors also contributes 300 directly to intracellular replication through a novel mechanism of phosphoribosyl-ubiquitin 301 conjugation to host substrates (40–42). Unlike the SidE effectors, loss of *sidI* or the *sidI-lpg2505* 302 operon has no effect on L. pneumophila intracellular growth (6), suggesting that SidI functions 303 redundantly within macrophages. However, in the absence of SusF, SidI is deleterious to L. 304 pneumophila intracellular replication (6), a phenotype not observed for any other effector.

Several modes of metaeffector function have been described. A large-scale screen by Urbanus and colleagues led to the discovery of 17 novel *L. pneumophila* metaeffectors that function to suppress the toxicity of their cognate effectors (4). They uncovered several mechanisms by which metaeffectors regulate their cognate effectors through abrogation of effector enzymatic activity *in vitro* (LegL1, SidP, LupA). Similarly, we found that SusF dampens SidI activity *in vitro*;

however, residual SidI activity is retained, suggesting that SusF functions to fine-tune SidI activity. Although we have not identified the *bona fide* substrate of SidI, our observation that SidI interacts with both SusF and eEF1A simultaneously at distinct regions suggests that SidI may modify eEF1A or use interaction with eEF1A to gain access to a host substrate. Future investigation will reveal the role of SusF in SidI function and how this contributes to *L. pneumophila* intracellular replication.

316 Through structural homology prediction and biochemical analysis, we revealed that SidI 317 likely possesses GDP-dependent glycosyltransferase activity. Although we have not directly 318 demonstrated the transfer of mannose to a substrate protein, it is unlikely that SidI functions only as a nucleotide-sugar hydrolase in the context of infection. Moreover, detection of free nucleotide 319 320 liberation from nucleotide-sugar donors is a pre-requisite for transfer of glycans to substrate 321 molecules and is an established method to identify glycosyltransferase activity without knowing 322 the acceptor substrate (43). Our use of a luciferase-based assay eliminates the requirement for 323 radioactive nucleotide-sugars.

Several *L. pneumophila* effectors function as glycosyltransferases, including the translation inhibitors Lgt1-3; however, none have been shown to utilize GDP-conjugated sugars. In fact, bacterial GDP-dependent glycosyltransferases seem to be involved primarily in biogenesis of cell surface structures (44–46). SidI has predicted structural homology to mycobacterial phosphatidylinositol mannosides (PIMs), which are GT-B glycosyltransferases (45, 47). To our knowledge, no other translocated bacterial effector has been demonstrated to have GDPdependent glycosyltransferase activity. The primary site of protein glycosylation in eukaryotic

331 cells is the Golgi apparatus; however, nucleotide sugars, including GDP-mannose, are 332 synthesized in the cytoplasm of eukaryotic cells prior to transport into the Golgi (48, 49). Thus, SidI likely hijacks cytoplasmic GDP-mannose prior to its translocation into the Golgi. Based on 333 334 the relatively low abundance of individual effectors in *L. pneumophila* infected cells it is unlikely 335 that SidI function influences glycoprotein production by host cells. Thus, SidI is a GDP-336 dependent glycosyltransferase and this activity is likely critical for SidI-mediated translation 337 inhibition and cytotoxicity. Further biochemical and structure-function analysis will reveal the detailed molecular mechanism by which SidI functions, its bona fide substrate in host cells and 338 339 how SusF regulates its activity to promote *L. pneumophila* intracellular replication.

340 In this study, we have revealed a direct high-affinity interaction between SidI and its metaeffector SusF, defined a novel enzymatic activity for SidI and uncovered that SusF can 341 modulate SidI function in vitro. Our work has provided a foundation for future biochemical and 342 343 cell biological studies to reveal how SidI functions to modulate host cell processes. The severe 344 virulence defect resulting from expression of *sidI* in the absence of *susF* underlies the importance 345 of defining the molecular mechanism of SidI-SusF function. Moreover, the lack of precedent for 346 a bacterial GDP-dependent glycosyltransferase effector protein suggests that SidI possesses novel 347 enzymatic activity, which must be regulated by SusF to promote L. pneumophila intracellular 348 replication. Our future work will focus on uncovering this mechanism in order to gain critical insight into translation inhibition and metaeffector function. 349

350

351 Materials and Methods

352 Bacterial strains, cell culture, growth conditions and reagents.

353 Escherichia coli stains used for cloning (Top10; Invitrogen) and protein expression [BL21 (DE3); a 354 gift from Dr. Craig Roy, Yale University] were maintained in Luria-Bertani (LB) medium 355 supplemented with antibiotics as appropriate for plasmid selection [50 µg mL⁻¹ kanamycin 356 (GoldBio), 100 µg mL⁻¹ ampicillin (GoldBio) and 25 µg mL⁻¹ chloramphenicol (GoldBio)]. 357 Legionella pneumophila Philadelphia-1 Lp01 (50) and $\Delta dotA$ (51) strains were cultured on 358 supplemented charcoal-N (2-acetamido)-2-aminoethanesulfonic acid (ACES)-buffered yeast 359 extract (CYE) and grown at 37°C as described previously (52, 53). CYE was supplemented with 360 10 µg mL⁻¹ chloramphenicol for plasmid maintenance as required. Protein expression in *E. coli* and L. pneumophila was induced with 1 mM isopropyl-β-D-1-thiogalactopyranoside (IPTG) 361 (GoldBio). 362

All mammalian cells were grown at 37° C/5% CO₂ for up to 30 passages. HEK 293 cells were cultured in Dulbecco's Modified Eagle Medium (DMEM; Gibco) supplemented with 10% heatinactivated fetal bovine serum (HIFBS; Gibco). CHO FcγrII cells (54) (a gift from Dr. Craig Roy) were cultured in MEMa (Gibco) supplemented with 10% HIFBS.

367 Unless otherwise specified, all chemicals were obtained from MilliporeSigma (St Louis, MO).
368 Oligonucleotide primers used in this study are listed in Table 1.

369

370 Molecular cloning, plasmid construction and generation of *Legionella* strains.

371 Legionella pneumophila Lp01 gDNA was isolated using the Illustra genomicPREP DNA isolation 372 spin kit (GE Healthcare) and was used as a template for cloning *sidI* and *susF* into the indicated plasmid vectors. For recombinant protein production, sidl was amplified using primer pairs 373 374 SidIBamHI-F/SidINotI-F and cloned as a BamHI/NotI fragment into pGEX-6P-1 (GE Healthcare) 375 and pT7HMT (55). susF was amplified using primer pairs SusFBglII-F/SusFNotI-R and cloned as 376 a BgIII/NotI fragment into BamHI/NotI-digested pGEX-6P-1 and pcDNA4T/O-3xFLAG (56). For 377 cloning into pT7HMT, susF was amplified using SusFSalI-F/SusFNotI-R primer pairs and cloned 378 as a Sall/Notl fragment. For generation of Sidl truncations, the regions of interest were amplified 379 with primer pairs SidIBamHI-F/SidINNotI-R (SidIN), SidICBamHI-F/SidINotI-R (SidIc), or 380 SidICBamHI-F/SidICA68NotI-R (SidIcA68) and cloned as BamHI/NotI fragments into pT7HMT or 381 pGEX-6P-1. For generation of pcyaA::sidIRP, sidIR453P was amplified from pSR47S::sidIR453P (6) with 382 SidIBamHI-F2/SidIPstI-R and cloned as a BamHI/PstI fragment into pcyaA (21). DNA sequences 383 were confirmed by Sanger sequencing (GENEWIZ, South Plainfield, NJ).

L. *pneumophila* Lp01 wild-type and Δ*dotA* producing CyaA-SidI constructs were generated by electroporation of *pcyaA*::*sidI*_{RP} into competent strains using a BioRad Gene Pulser at 2.4 kV, 200 Ω , and 0.25 µF and plated on CYE supplemented with 10 µg mL⁻¹ chloramphenicol. CyaA-SidI production was confirmed by Western blot as described below. *L. pneumophila* strains harboring *pcyaA*::*ralF* (21) were a gift from Dr. Craig Roy (Yale University).

389

390 <u>Transfection and selection of stable tissue culture cells</u>

HEK 293 cells were transfected with pcDNA4T/O-3FLAG::*susF* using FuGENE HD (Roche)
transfection reagent according to manufacturers' instructions. At 48 h post-transfection, cells 500
µg mL⁻¹ zeocin (Invitrogen) was added to culture medium and this selection was maintained for
10 days. Subsequently, cells were maintained in 200 µg mL⁻¹ zeocin and production of 3FLAGSusF was confirmed by Western blotting, as described.

396

397 <u>Recombinant protein expression and purification</u>

Overnight E. coli BL21 (DE3) cultures were sub-cultured at 1:100 for 3 h in LB supplemented with 398 399 the appropriate antibiotics followed by induction of protein expression with 1 mM IPTG, and 400 induced at 16°C overnight. Bacterial cultures were centrifuged at 4,200 r.c.f. for 5 min at 4°C and 401 washed with ice-cold PBS followed by incubation in bacterial lysis buffer [50 mM Tris pH 8, 100 402 mM NaCl, 1 mM ethylenediaminetetraacetic acid (EDTA), 200 µg mL-1 lysozyme, 2 mM 403 dithiothreitol (DTT), 10 µg mL⁻¹ DNase, and complete protease inhibitor] for 30 min on ice. 404 Bacteria were sonicated on ice followed by centrifugation at 17,000 r.c.f. for 30 min at 4°C. Clarified bacterial lysates were incubated with either Ni-NTA beads plus 15 mM imidazole (His-405 tag) or Glutathione Agarose beads (GST-tag) for 1-2 h at 4°C with rotation. For His-tagged 406 407 proteins, Ni-NTA agarose beads were transferred to 10 mL polyprep chromatography columns 408 (BioRad) and washed with 20 mL of ice-cold wash buffer (50 mM Tris pH 8, 100 mM NaCl, 1 mM 409 EDTA, 40 mM imidazole) followed by elution in 7 mL of elution buffer (50 mM Tris pH 8, 100 mM NaCl, 1 mM EDTA, 200 mM imidazole). For GST-tagged proteins, glutathione agarose beads 410 411 were transferred to a 10 mL polyprep chromatography column and washed with 20 mL wash

412 buffer I (PBS, 0.05% Triton X-100), followed by wash buffer II (PBS, 0.05% Triton X-100, 0.5 M 413 NaCl) and eluted in GST elution buffer (50 mM Tris pH 9.5, 10 mM glutathione). Protein eluates were visualized by SDS-PAGE and Coomassie brilliant blue staining. Elution fractions containing 414 protein were combined, dialyzed into PBS and quantified by Bradford Assay (Thermo Scientific). 415 416 In some cases, the poly-histidine tag was removed from recombinant proteins by site-417 specific proteolysis using Tobacco Etch Virus protease. Following digestion as previously 418 described (55), the sample was reapplied to a Ni-NTA beads and the unbound fraction containing 419 the target protein was collected. Samples were further purified by gel filtration chromatography 420 using either a Superdex 75 (26/60) or Superdex 200 (26/60) column attached to an AKTA-format 421 FPLC (GE Healthcare) and PBS as a running buffer. Elution fractions containing protein were 422 analyzed by SDS-PAGE and Coomassie brilliant blue staining, as described above.

423

424 <u>Affinity chromatography for protein-protein interaction</u>

425 Overnight E. coli cultures grown in LB plus appropriate antibiotic were sub-cultured 1:100 into 426 20 mL LB and grown at 37°C for 3 h followed by induction with 1 mM IPTG for 4 h. Cultures were centrifuged for 10 min at 1500 r.c.f., washed with ice-cold PBS and pelleted in 1 mL aliquots 427 428 prior to storage at -20°C for <72 hours until use. Pellets were re-suspended in 1 mL of cold lysis 429 buffer (50 mM Tris pH 8, 100 mM NaCl, 1 mM EDTA) supplemented with 200 µg mL⁻¹ lysozyme, 430 and complete protease inhibitor and incubated on ice for 30 min. Two millimolar DTT was added 431 to lysates before sonicating on ice. Lysates were then clarified by centrifugation at 12,600 r.c.f. for 432 15 min at 4°C. Supernatants were collected in fresh, pre-chilled microcentrifuge tubes.

433 Supernatants were added to either pre-equilibrated Ni-NTA magnetic beads or magnetic 434 glutathione agarose beads following manufacturer's protocol (Pierce) for binding His- or GSTtagged fusion proteins, respectively. After the initial batch binding, beads were washed 2x with 435 wash buffer [Ni-NTA: 50 mM Na₃PO₄, 300 mM NaCl, 15 mM imidazole, 0.05% Tween-20, pH 8; 436 437 Glutathione: 125 mM Tris-Cl, 150 mM NaCl, 1mM DTT, 1 mM EDTA, pH 7.4] prior to addition of recombinant protein or subsequent cell lysate and batch binding for 1 h at 4°C with rotation. 438 439 Beads were washed 2x with wash buffer before adding the final cell lysate or recombinant protein and incubating for 1 h at 4°C with rotation. Following binding, beads were washed 2x with wash 440 441 buffer and transferred to fresh, pre-chilled 1.5 mL microcentrifuge tubes and resuspended in 25 442 µL of 3x Laemmli sample buffer and boiled for 10 min. Samples were analyzed by SDS-PAGE 443 and Coomassie brilliant blue or Western Blot, as indicated.

For experiments to examine eEF1A binding, lysates were derived from either HEK293T or
HEK293 3FLAG-SusF cells grown to ≥70% confluence on tissue culture (TC) treated dishes. Cells
were washed 1x with ice-cold PBS and lysed in 1 mL of mammalian lysis buffer [1% NP-40 (v/v),
150 mM NaCl, 20 mM Tris-Cl pH 7.5, 10 mM Na₄P2O7, 50 mM NaF, and complete protease
inhibitor]. Lysates were collected in pre-chilled, 1.5 mL centrifuge tubes and centrifuged at 11,000
r.c.f. for 20 min at 4°C. Supernatants were collected in pre-chilled, 1.5 mL centrifuge tubes and
stored on ice until use.

451

452 <u>CyaA effector translocation assay</u>

453 Translocation of CyaA fusion proteins was performed as described (21). Briefly, CHO FcyrII cells 454 (a gift from Dr. Craig Roy) were seeded into 24-well plates at 1x10⁵ cells per well 24 h prior to infection. Cells were infected at a multiplicity of infection (MOI) of 30 with L. pneumophila Lp01 455 wild-type or $\Delta dotA$ that had been cultured on CYE supplemented with 10 µg mL-1 456 457 chloramphenicol and 1 mM IPTG followed by opsonization by incubation for 30 min with an α -L. pneumophila antibody (Invitrogen, PA17227; 1:1000) at RT. Cell culture media was 458 supplemented with 1 mM IPTG to ensure expression of CyaA-SidI fusion protein. Infected cells 459 were incubated for 1-2 hours at 37°C/5% CO₂ followed by aspiration of culture media and 460 461 washing 3 times with ice-cold PBS. Cells were lysed for 30 minutes in 200 µL of ice-cold lysis 462 buffer (50 mM HCl, 0.1% Triton-X100) with rocking at 4°C. Samples were either stored at -80°C 463 until use or immediately mixed with 12 µL 0.5M NaOH in 95% ethanol and centrifuged for 5 min 464 at 11,000 r.c.f. Supernatants were dried in a Speed Vac and stored at -80°C until use. cAMP was 465 quantified using a cAMP Direct Biotrak EIA (non-acetylation) kit (GE Healthcare). Briefly, dried samples were resuspended in 250 µL Assay Buffer and ELISA was performed following 466 manufacturer's protocol. Absorbance at 655 nm was read in a Victor 2 microplate reader 467 468 (PerkinElmer).

469

470 *In vitro* protein translation assay

Translation assays were performed using the Promega Flexi® Rabbit Reticulocyte Lysate System
(RLL; L4540) following manufacturer's protocol. Briefly, a master mix of RLL was generated and
aliquoted into individual tubes. Four nanograms of purified His6- SidI (see above) were added as

indicated. Purified recombinant (untagged) SusF was added at the indicated concentrations.
Proteins were equilibrated to room temperature before use. All reactions were brought to 50 μL
with ultra-pure water. Reactions were mixed by pipetting and briefly centrifuged before
incubation at 30°C for 90 min. Translation of *Firefly* luciferase mRNA (Promega) was quantified
using a Victor 2 microplate reader (PerkinElmer).

479

480 <u>Glycosyltransferase activity assay</u>

Glycosyltransferase activity was evaluated using GDP- or UDP-Glo[™] Glycosyltransferase Assay 481 482 kits (Promega) with GDP-mannose (VA1095) or UDP-glucose (V6991), respectively, following 483 manufacturers' recommendations. Briefly, 5 µg of purified His6-SidI and/or molar equivalent (or excess as indicated) SusF were added to 100 µL of 50mM Tris pH 7.4 with 10 µM of GDP-mannose 484 or UDP-glucose. Ten µM GDP or UDP were used as controls as indicated. Reactions were carried 485 486 out for an hour at 37°C and quantification of free nucleotide (GDP or UDP) was achieved by addition of GDP- or UDP-GloTM nucleotide detection reagent following manufacturers' 487 instructions and analyzed via luminescence using a Victor 2 microplate reader (PerkinElmer). 488

489

490 SDS-PAGE and Western Blot

Boiled protein samples were loaded onto either 4-20% gradient SDS-PAGE gels (BioRad), 12% or
15% SDS-PAGE gels. Following electrophoresis, proteins were visualized with Coomassie
brilliant blue or transferred to PVDF membranes using a BioRad wet transfer cell. Membranes

were incubated with blocking buffer [5% nonfat milk powder dissolved in tris-buffered saline-0.1% Tween 20 (TBST)]. Primary antibodies [α -eEF1A (#2551S Cell Signaling Technology), α -Flag-M2 (Sigma), or α -CyaA[3D1] (#EG800 Kerafast)] were used 1:1000 in blocking buffer and detected with HRP-conjugated secondary antibodies (1:5000; ThermoFisher). Membranes were washed, incubated with ECL substrate (GE Amersham) and imaged by chemiluminescence using an Azure Biosystems c300 Darkroom Replacer.

500

501 Surface Plasmon Resonance

502 Direct binding of His-SidI to SusF was assessed by SPR using a Biacore T-200 instrument (GE 503 Healthcare) at 25 °C, according to the general methods previously described (57). Briefly, all 504 experiments were carried out in a running buffer of HBS-T (20 mM HEPES (pH 7.4), 140 mM 505 NaCl, and 0.005% (v/v) Tween-20 and a flow-rate of 30 μ l/min (57). SusF (50 μ g mL⁻¹ in 10 mM 506 acetate, pH 4.5) was immobilized to a final density of 1063 RU on one flow cell of a CMD-200M 507 surface (XanTec Bioanalytics, GmbH; Dusseldorf, Germany) using standard NHS/EDC coupling. A reference surface was prepared in a similar manner by ethanolamine quenching of NHS/EDC-508 509 activated flow cell. Experimental sensorgrams of His6-SidI binding to immobilized SusF were 510 obtained in reference-corrected, single-cycle mode using sequential concentrations of 0.8, 4, 20, 511 100, and 500 nM His₆-SidI. Each association phase consisted of 2 min sample injection, followed 512 by a 1.5 min dissociation phase, except for the final injection which incorporated a 60 min 513 dissociation phase for more accurate determination of the dissociation rate. Kinetic analysis was

514	performed using Biacore T-200 Evaluation Software v3.1 (GE Healthcare). Sensorgrams were
515	analyzed using both Langmuir and Two-State Reaction binding models and a local value of R_{max} .

516

517 Analytical Gel Filtration Chromatography

Samples of recombinant proteins were characterized by analytical-scale gel-filtration chromatography as a mean of assessing their apparent molecular weight. All samples and standards (500 µl total volume) were separated on a Superdex 200 10/300 column (GE Healthcare) attached to an AKTA-format FPLC system using a flow-rate of 0.5 ml/min and PBS as a running buffer. Fractions of 1 ml were collected for subsequent analysis by SDS-PAGE and Coomassie brilliant blue, as described above.

524

525 Molecular Modeling

Homology models were created using four different servers, using the full sequence of SidI as inputs and default parameters for each server. Using HHPred (23), a number of templates were identified for residues 376 to 868, and the top 25 templates were forwarded for modeling. Using Phyre2 (24), a smaller region, residues 585 to 763, was chosen for modeling. Raptor-X (20) and I-TASSER (25–27) both produce full-length models. Raptor-X predicted residues 350 to 870 to be a domain. I-TASSER presented five models of low confidence, one of which contained a glycosyltransferase domain with a GT-B fold, which was selected as the working model.

533

534 <u>Statistical Analysis</u>

Statistical analysis was performed with GraphPad Prism software using Students' t-test, as
indicated, with a 95% confidence interval. For all experiments, data are expressed as mean ±
standard deviation (s.d.) of samples in triplicates.

538

539 Acknowledgements

- 540 We thank Drs. Philip Hardwidge and Mary Weber for critical reading of the manuscript and Dr.
- 541 Craig Roy for providing strains and cell lines. This work was funded through an NIH NIGMS
- 542 COBRE Research Project Award (P20GM113117; to SRS), a Kansas-INBRE Developmental
- 543 Research Project Award (P20GM103418; to SRS), a Kansas State University College of Arts and
- 544 Sciences Undergraduate Research Award (to TJB), a Kansas-INBRE Semester Scholar Award
- 545 (P20GM103418; to AEP), and start-up funds from Kansas State University (to SRS).

546

547 References

548

- 549 1. Horwitz M. 1983. Formation of a novel phagosome by the Legionnaires' disease bacterium
 550 (*Legionella pneumophila*) in human monocytes. The Journal of Experimental Medicine 158:1319
 551 1331.
 552
- 553 2. Ensminger AW. 2016. *Legionella pneumophila*, armed to the hilt: justifying the largest arsenal of554 effectors in the bacterial world. Curr Opin Microbiol 29:74 80.
- 555
- 3. Ghosh S, O'Connor TJ. 2017. Beyond Paralogs: The Multiple Layers of Redundancy in
- 557 Bacterial Pathogenesis. Front Cell Infect Microbiol 7:467.
- 558
- 4. Urbanus ML, Quaile AT, Stogios PJ, Morar M, Rao C, Leo R, Evdokimova E, Lam M, Oatway

C, Cuff ME, Osipiuk J, Michalska K, Nocek BP, Taipale M, Savchenko A, Ensminger AW. 2016. 560 561 Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila. Mol Syst Biol 12:893. 562 563 564 5. Kubori T, Shinzawa N, Kanuka H, Nagai H. 2010. Legionella metaeffector exploits host 565 proteasome to temporally regulate cognate effector. Plos Pathog 6:e1001216. 566 6. Shames SR, Liu L, Havey JC, Schofield WB, Goodman AL, Roy CR. 2017. Multiple Legionella 567 568 pneumophila effector virulence phenotypes revealed through high-throughput analysis of 569 targeted mutant libraries. Proc National Acad Sci 63:201708553. 570 571 7. Jeong K, Sexton JA, Vogel JP. 2015. Spatiotemporal Regulation of a Legionella pneumophila 572 T4SS Substrate by the Metaeffector SidJ. Plos Pathog 11:1 22. 573 574 8. Liu Y, Luo Z-Q. 2007. The Legionella pneumophila effector SidJ is required for efficient 575 recruitment of endoplasmic reticulum proteins to the bacterial phagosome. Infect Immun 75:592 576 603. 577 578 9. Black MH, Osinski A, Gradowski M, Servage KA, Pawłowski K, Tomchick DR, Tagliabracci 579 VS. 2019. Bacterial pseudokinase catalyzes protein polyglutamylation to inhibit the SidE-family 580 ubiquitin ligases. Science 364:787–792. 581 582 10. Bhogaraju S, Bonn F, Mukherjee R, Adams M, Pfleiderer MM, Galej WP, Matkovic V, Lopez-583 Mosqueda J, Kalavil S, Shin D, Dikic I. 2019. Inhibition of bacterial ubiquitin ligases by SidJ-584 calmodulin catalysed glutamylation. Nature 572:382–386. 585 586 11. Gan N, Zhen X, Liu Y, Xu X, He C, Qiu J, Liu Y, Fujimoto GM, Nakayasu ES, Zhou B, Zhao 587 L, Puvar K, Das C, Ouyang S, Luo Z-Q. 2019. Regulation of phosphoribosyl ubiquitination by a 588 calmodulin-dependent glutamylase. Nature 572:387-391. 589 590 12. Shen X, Banga S, Liu Y, Xu L, Gao P, Shamovsky I, Nudler E, Luo Z-Q. 2009. Targeting 591 eEF1A by a Legionella pneumophila effector leads to inhibition of protein synthesis and induction 592 of host stress response. Cell Microbiol 11:911 926. 593 594 13. Guo Z, Stephenson R, Qiu J, Zheng S, Luo Z-Q. 2014. A Legionella effector modulates host 595 cytoskeletal structure by inhibiting actin polymerization. Microbes Infect 16:225–236. 596 597 14. Fontana MF, Banga S, Barry KC, Shen X, Tan Y, Luo Z-Q, Vance RE. 2011. Secreted bacterial 598 effectors that inhibit host protein synthesis are critical for induction of the innate immune 599 response to virulent Legionella pneumophila. Plos Pathog 7:e1001289. 600 601 15. Barry KC, Fontana MF, Portman JL, Dugan AS, Vance RE. 2013. IL-1 α signaling initiates the 602 inflammatory response to virulent Legionella pneumophila in vivo. J Immunol 190:6329 6339.

603 604 16. Moss SM, Taylor IR, Ruggero D, Gestwicki JE, okat K, Mukherjee S. 2019. A Legionella 605 pneumophila Kinase Phosphorylates the Hsp70 Chaperone Family to Inhibit Eukaryotic Protein 606 Synthesis. Cell Host Microbe 25:454 462.e6. 607 608 17. Belvi Y, Niggeweg R, Opitz B, Vogelsgesang M, Hippenstiel S, Wilm M, Aktories K. 2006. 609 Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A. Proc National 610 Acad Sci 103:16953 16958. 611 612 18. Belyi Y, Tabakova I, Stahl M, Aktories K. 2008. Lgt: a family of cytotoxic glucosyltransferases 613 produced by Legionella pneumophila. J Bacteriol 190:3026 3035. 614 615 19. Tzivelekidis T, Jank T, Pohl C, Schlosser A, Rospert S, Knudsen CR, Rodnina MV, Belvi Y, 616 Aktories K. 2011. Aminoacyl-tRNA-charged eukaryotic elongation factor 1A is the bona fide 617 substrate for Legionella pneumophila effector glucosyltransferases. Plos One 6:e29525. 618 619 20. Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J. 2012. Template-based protein 620 structure modeling using the RaptorX web server. Nat Protoc 7:1511 1522. 621 622 21. Nagai H, Cambronne ED, Kagan JC, Amor J, Kahn RA, Roy CR. 2005. A C-terminal 623 translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to 624 host cells. P Natl Acad Sci Usa 102:826 831. 625 22. Huang L, Boyd D, Amyot WM, Hempstead AD, Luo Z-Q, O'Connor TJ, Chen C, Machner 626 627 M, Montminy T, Isberg RR. 2011. The E Block motif is associated with Legionella pneumophila 628 translocated substrates. Cell Microbiol 13:227 245. 629 630 23. Söding J, Biegert A, Lupas AN. 2005. The HHpred interactive server for protein homology 631 detection and structure prediction. Nucleic Acids Res 33:W244 8. 632 633 24. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. 2015. The Phyre2 web portal for 634 protein modeling, prediction and analysis. Nat Protoc 10:845-858. 635 636 25. Yang J, Zhang Y. 2015. I-TASSER server: new development for protein structure and 637 function predictions. Nucleic Acids Res 43:W174–W181. 638 639 26. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. 2015. The I-TASSER Suite: protein structure 640 and function prediction. Nat Methods 12:7-8. 641

642 27. Roy A, Kucukural A, Zhang Y. 2010. I-TASSER: a unified platform for automated protein
643 structure and function prediction. Nat Protoc 5:725–738.

644

645 28. Holm L. 2019. Benchmarking Fold Detection by DaliLite v.5. Bioinform Oxf Engl. 1-2

646	
647	29. Kim DE, Chivian D, Malmström L, Baker D. 2005. Automated prediction of domain
648	boundaries in CASP6 targets using Ginzu and RosettaDOM. Proteins Struct Funct Bioinform
649	61:193–200.
650	
651	30. Belyi Y, Jank T, Aktories K. 2013. Cytotoxic glucosyltransferases of <i>Legionella pneumophila</i> .
652	Curr Top Microbiol 376:211 226.
653	•
654	31. Price CT, Al-Quadan T, Santic M, Rosenshine I, Kwaik Y. 2011. Host proteasomal
655	degradation generates amino acids essential for intracellular bacterial growth. Science 334:1553
656	1557.
657	
658	32. Belyi Y, Tartakovskaya D, Tais A, Fitzke E, Tzivelekidis T, Jank T, Rospert S, Aktories K.
659	2012. Elongation factor 1A is the target of growth inhibition in yeast caused by <i>Legionella</i>
660	<i>pneumophila</i> glucosyltransferase Lgt1. J Biol Chem 287:26029 26037.
661	provinceprint graceosyntalisterase Egen y bior chemi 2012002, 20001
662	33. Dever TE, Green R. 2012. The Elongation, Termination, and Recycling Phases of Translation
663	in Eukaryotes. Csh Perspect Biol 4:a013706.
664	
665	34. Belyi Y, Stahl M, Sovkova I, Kaden P, Luy B, Aktories K. 2009. Region of elongation factor
666	1A1 involved in substrate recognition by <i>Legionella pneumophila</i> glucosyltransferase Lgt1:
667	identification of Lgt1 as a retaining glucosyltransferase. J Biol Chem 284:20167 20174.
668	Reminedion of Egri us a remining statessyntatisterase. J bior chemi 201.2010/ 2017 1.
669	35. Rolando M, Buchrieser C. 2014. Legionella pneumophila type IV effectors hijack the
670	transcription and translation machinery of the host cell. Trends Cell Biol 24:771 778.
671	function and transmitter machinery of the nost cen. Trends cen bior 21.777770.
672	36. Shamovsky I, Ivannikov M, Kandel ES, Gershon D, Nudler E. 2006. RNA-mediated response
673	to heat shock in mammalian cells. Nature 440:556–560.
674	to near shock in manimulant cens. Parate 110.000 000.
675	37. Vera M, Pani B, Griffiths LA, Muchardt C, Abbott CM, Singer RH, Nudler E. 2014. The
676	translation elongation factor eEF1A1 couples transcription to translation during heat shock
677	response. Elife 3:e03164.
678	response. Ente 5.e05104.
679	38. Yan L, Cerny RL, Cirillo JD. 2004. Evidence that hsp90 is involved in the altered interactions
680	of Acanthamoeba castellanii variants with bacteria. Eukaryot Cell 3:567 578.
681	of Acunthumbeou custellunti variantis with bacteria. Eukaryot Celi 5.507 576.
682	39. Havey JC, Roy CR. 2015. Toxicity and SidJ-Mediated Suppression of Toxicity Require
	Distinct Regions in the SidE Family of <i>Legionella pneumophila</i> Effectors. Infect Immun 83:3506
683	
684 685	3514.
685 686	40 Wang V Shi M Eong H Zhu V Liu S Cao A Cao D 2018 Structural Insights into Non
686 687	40. Wang Y, Shi M, Feng H, Zhu Y, Liu S, Gao A, Gao P. 2018. Structural Insights into Non-
687 688	canonical Ubiquitination Catalyzed by SidE. Cell 173:1231-1243.e16.
688	

689	41. Dong Y, Mu Y, Xie Y, Zhang Y, Han Y, Zhou Y, Wang W, Liu Z, Wu M, Wang H, Pan M, Xu
690	N, Xu C-Q, Yang M, Fan S, Deng H, Tan T, Liu X, Liu L, Li J, Wang J, Fang X, Feng Y. 2018.
691	Structural basis of ubiquitin modification by the Legionella effector SdeA. Nature 557:674–678.
692	
693	42. Qiu J, Sheedlo MJ, Yu K, Tan Y, Nakayasu ES, Das C, Liu X, Luo Z-Q. 2016. Ubiquitination
694	independent of E1 and E2 enzymes by bacterial effectors. Nature 533:120 124.
695	
696	43. Sethi MK, Buettner FF, Ashikov A, Bakker H. 2013. Glycosyltransferases, Methods and
697	Protocols 307–320.
698	
699	44. Mishra AK, Krumbach K, Rittmann D, Batt SM, Lee O, De S, Frunzke J, Besra GS, Eggeling
700	L. 2012. Deletion of manC in <i>Corynebacterium glutamicum</i> results in a phospho-myo-inositol
701	mannoside- and lipoglycan-deficient mutant. Microbiology+ 158:1908–1917.
702	I of
703	45. Rodrigo-Unzueta A, Martínez MA, Comino N, Alzari PM, Chenal A, Guerin ME. 2016.
704	Molecular Basis of Membrane Association by the Phosphatidylinositol Mannosyltransferase
705	PimA Enzyme from Mycobacteria. J Biol Chem 291:13955–13963.
706	
707	46. Panda S, Saxena S, Guruprasad L. 2019. Homology modeling, docking and structure-based
708	virtual screening for new inhibitor identification of <i>Klebsiella pneumoniae</i> heptosyltransferase-III.
709	J Biomol Struct Dyn 1–16.
710	
711	47. Batt SM, Jabeen T, Mishra AK, Veerapen N, Krumbach K, Eggeling L, Besra GS, Fütterer K.
712	2010. Acceptor Substrate Discrimination in Phosphatidyl-myo-inositol Mannoside Synthesis
713	STRUCTURAL AND MUTATIONAL ANALYSIS OF MANNOSYLTRANSFERASE
714	CORYNEBACTERIUM GLUTAMICUM PimB'. J Biol Chem 285:37741–37752.
715	
716	48. Coates S, Gurney T, Sommers L, Yeh M, Hirschberg C. 1980. Subcellular localization of sugar
717	nucleotide synthetases. J Biol Chem 255:9225–9.
718	nucleonae synthetases. J bior chem 200.7220 7.
719	49. Kawakita M, Ishida N, Miura N, Sun-Wada G, Yoshioka S. 1998. Nucleotide sugar
720	transporters: elucidation of their molecular identity and its implication for future studies. J
721	Biochem 123:777–85.
722	biothem 120.777 00.
723	50. Berger K, Isberg R. 1993. Two distinct defects in intracellular growth complemented by a
724	single genetic locus in <i>Legionella pneumophila</i> . Mol Microbiol 7:7 19.
725	
726	51. Roy CR, Berger KH, Isberg RR. 1998. Legionella pneumophila DotA protein is required for
727	early phagosome trafficking decisions that occur within minutes of bacterial uptake. Mol
728	Microbiol 28:663–674.
729	
730	52. Feeley J, Gibson R, Gorman G, Langford N, Rasheed J, Mackel D, Baine W. 1979. Charcoal-
	52. I CORY J, GIOSON IN OOTMAN O, LANGIOU IV, RASHEEU J, MACKELD, DAME VV. 1779. CHAICOAF
731	yeast extract agar: primary isolation medium for <i>Legionella pneumophila</i> . J Clin Microbiol 10:437

732	441.
733	
734	53. Saito A, Rolfe R, Edelstein P, Finegold S. 1981. Comparison of liquid growth media for
735	Legionella pneumophila. J Clin Microbiol 14:623 627.
736	
737	54. Joiner K, Fuhrman S, Miettinen H, Kasper L, Mellman I. 1990. Toxoplasma gondii: fusion
738	competence of parasitophorous vacuoles in Fc receptor-transfected fibroblasts. Science 249:641–
739	646.
740	
741	55. Geisbrecht BV, Bouyain S, Pop M. 2006. An optimized system for expression and
742	purification of secreted bacterial proteins. Protein Expres Purif 46:23-32.
743	
744	56. Ingmundson A, Delprato A, Lambright DG, Roy CR. 2007. Legionella pneumophila proteins
745	that regulate Rab1 membrane cycling. Nature 450:365–369.
746	
747	57. Stapels D, Woehl JL, Milder FJ, Tromp AT, van Batenburg AA, de Graaf WC, Broll SC, White
748	NM, Rooijakkers S, Geisbrecht BV. 2018. Evidence for multiple modes of neutrophil serine
749	protease recognition by the EAP family of Staphylococcal innate immune evasion proteins.
750	Protein Sci 27:509–522.
751	

752 Tables

Name	Sequence $(5' \rightarrow 3')^a$
SusFSalI-F	att gtcgaca atgataaaaggaaaacttatgccc
SusFBglII-F	tgg agatct atgataaaaggaaaacttatgc
SusFPstI-R	gg ctgcag ttataaaataattggtcgag
SidIBamHI-F2	att ggatcc ttatgactaaaatatacttattaactgc
SidIBamHI-F	att ggatcc atgactaaaatatacttattaactgc
SidINotI-R	att gcggccgc tcaaaataccagtatcgattctttaag
SidICBamHI-F	att ggatcc atgaatttttatgattttgatgg
SidIC∆68NotI-R	att gcggccgc tcatatattctctaataaatgatc

753 **Table 1.** Oligonucleotide primers used in this study

SidINNotI-R attgcggccgctcatctgaaacttttatcgtgctc

SidIPstI-R att**ctgcag**tcaaaataccagtatcgattc

^a-restriction endonuclease cleavage sites are shown in bold

755

756 Figure Legends

757 Figure 1. SusF and SidI interact directly with nanomolar affinity. (A) Lysates from HEK 293 758 cells stably expressing 3FLAG-SusF were incubated with glutathione beads coated with either 759 GST or GST-SidI followed by Coomassie staining for total protein and Western blotting for SusF 760 (α-FLAG). Arrowheads indicate GST and GST-SidI proteins. (B) Lysates from E. coli 761 overexpressing either GST or GST-SidI were incubated with Ni-NTA beads coated with His-SusF 762 followed by SDS-PAGE and Coomassie staining for proteins retained on the beads. Left panel: 763 whole cell lysates from uninduced and induced cultures of E. coli expressing GST and GST-SidI 764 proteins; Right panel: proteins retained on Ni-NTA beads (see Materials and Methods). (C) 765 Chromatograms resulting from analytical scale gel-filtration separation of either SusF alone 766 (green trace) or SusF bound to SidI (red trace). A chromatogram of known size standards is 767 provided for reference (blue trace). (D) Binding of His-SidI to immobilized SusF was assessed by 768 SPR. The reference corrected sensorgram from a single-cycle experiment is shown in black, while 769 the outcome of fitting to a two-state binding model is shown in red. The interaction is described 770 by an apparent K_D of 3.1 nM, consisting of two individual steps where $k_{on,1} = 2.7 \times 10^4 \text{ M}^{-1} \text{s}^{-1}$ and 771 $k_{off,1} = 5.1 \times 10^{-4} \text{ s}^{-1}$ and $k_{on,2} = 2.3 \times 10^{-3} \text{ s}^{-1}$ and $k_{off,2} = 4.5 \times 10^{-4} \text{ s}^{-1}$, respectively.

772

773 Figure 2. SusF modulates SidI-mediated translation inhibition in vitro. Translation of luciferase 774 mRNA was quantified using a rabbit reticulocyte lysate kit. Translation of luciferase in the 775 presence of (A) 4 ng His6-SidI or 20 ng SusF; (B) His6-SidI alone or 4 ng (37 fmol) His6-SidI and an 776 equimolar amount of SusF (37 fmol); (C) His-SidI alone or His-SidI and SusF were added to in 777 vitro translation reactions at the indicated times (-30 indicates pre-incubation of His-SidI and 778 SusF for 30 min prior to translation reaction); (D) Quantification of *In vitro* translation of Luc 779 mRNA in the presence of His6-SidI alone or His6-SidI and SusF at increasing molar ratios (1:1, 2:1 780 and 5:1 molar ratios of SusF:His-SidI). Data are representative of at least two independent 781 experiments and shown as mean \pm s.d. of samples in triplicates. Asterisks denote statistical 782 significance by *t*-test (**P*<0.05, ***P*<0.01; n.s., not significant).

783

784 Figure 3. SusF does not impair interaction between SidI and eEF1A. (A) GST-SusF or GST alone 785 were immobilized on magnetic glutathione agarose beads followed by incubation with 100 μ g 786 purified His-SidI alone or that had been preincubated with lysates from HEK 293T cells as 787 indicated (Lysates). Proteins were separated by SDS-PAGE and visualized by Coomassie staining or Western blot as indicated. (B) Lysates from E. coli expressing GST-SidI or GST alone were 788 789 incubated with magnetic glutathione agarose beads and lysates from HEK 293T followed by 10, 790 to 1000 µg of purified recombinant SusF (shown as increasing amounts in supernatants from 791 beads). Proteins remaining on the beads were separated by SDS-PAGE and visualized by 792 Coomassie stain or Western blot as indicated. GST-SidI (~130 kDa) and SusF (~27 kDa) are 793 indicated with arrowheads. Data are representative of at least two independent experiments.

794

795	Figure 4. SusF and eEF1A interact with distinct regions of SidI. (A) Schematic representation of
796	SidI truncation proteins. (B) Lysates from <i>E. coli</i> expressing GST-SidI constructs were incubated
797	with glutathione agarose beads followed by washing and incubation with lysates from HEK 293
798	cells stably expressing 3FLAG-SusF as indicated. Proteins were separated by SDS-PAGE and
799	visualized by Coomassie stain (GST-SidI) or Western blot. Arrowheads indicate fusion proteins.
800	Data are representative of three independent experiments.
801	
802	Figure 5. SusF is not required for Dot/Icm translocation of SidI into host cells. (A) Western blot
803	showing production of CyaA-RalF (~76 kDa) and CyaA-SidIRP (~150 kDa) by the indicated L.
804	pneumophila strains. (B) Quantification of cAMP extracted from CHO FcyRII cells infected with
805	the indicated <i>L. pneumophila</i> strains. Asterisks denote statistical significance by <i>t</i> -test (** <i>P</i> <0.01).
806	Data are representative of two independent experiments (n.s., not significant).
807	
808	Figure 6. Full-length SidI is required for translation inhibition. Translation of luciferase mRNA
809	quantified using a rabbit reticulocyte lysate kit. (A) Translation of luciferase mRNA in the
810	presence of (A) 4 ng His-SidI, His-SidIN, His-SidIC, or His-SidICA68 or (B) 4 ng of His-SidI alone
811	or increasing amounts of His-SidIcaes (4 ng, 50 ng, 100 ng). Asterisks denote statistical significance
812	by <i>t</i> -test (** P <0.01). Data are representative of at least two independent experiments.
813	

814	Figure 7. SidI possesses glycosyltransferase activity. (A) Quantification of GDP liberated from
815	GDP-mannose in the presence or absence of 5 µg purified His ₆ -SidI. (B) Quantification of UDP
816	liberated from UDP-glucose in the presence or absence of 5 μ g purified His-SidI. Quantification
817	of free GDP from GDP-mannose in the presence or absence of (C) 5 μ g His ₆ -SidI full-length or
818	truncated proteins, (D) 5 μ g His-SidI and/or molar equivalent of SusF, or (E) increasing molar
819	amount of SusF (1:1, 2:1, or 5:1 molar ratio of SusF:His-SidI). Asterisks denote statistical
820	significance by <i>t</i> -test (** P <0.01 and * P <0.05). Data are representative of at least two independent
821	experiments.

822

823 Supplemental Information

824 Supplemental Figure Legends

Figure S1. Co-elution of SusF and SidI by gel filtration chromatography. A sample of
recombinant SidI bound to SusF was separated by analytical scale gel filtration chromatography
as presented in Figure 1C. Ten μl of each column fraction were analyzed by SDS-PAGE followed
by Coomassie staining to assess the protein content within each fraction. Fractions corresponding
to the peak of approximately 150 kDa apparent molecular weight in the sample of SidI bound to
SusT (Fig. 1C, red trace) contained both proteins, consistent with formation of a 1:1 complex
between these two molecules.

832

Figure S2. Binding of His₆-SidI to immobilized SusF was assessed by SPR. The reference corrected sensorgram from a single-cycle experiment is shown in black, while the outcome of fitting to a Langmuir binding model is shown in red. Using this model, the interaction is described by an apparent K_D of 0.89 nM where $k_{on} = 2.2 \times 10^5$ M⁻¹s⁻¹ and $k_{off} = 1.9 \times 10^{-4}$ s⁻¹, respectively.

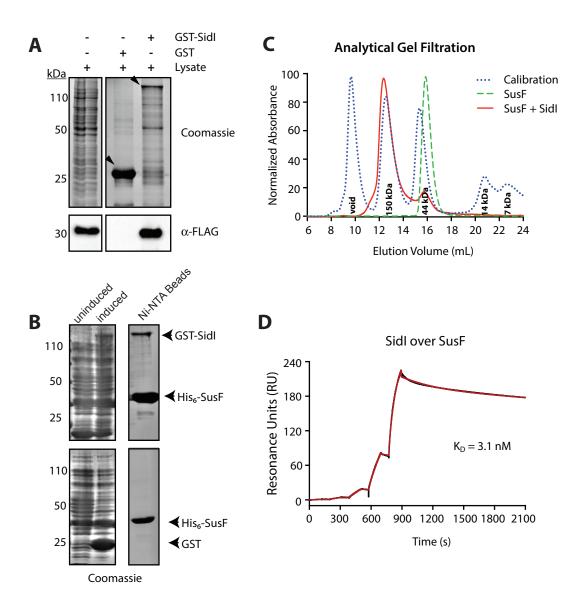
838

Figure S3. eEF1A interacts with the SidI-SusF complex. Lysates from *E. coli* expressing GST-SidI
or GST alone were incubated with magnetic glutathione agarose beads and washed followed by
addition of 10, 25, 50, 100, 200, 400, 800 or 1000 µg of purified recombinant SusF (shown as
increasing amounts in supernatants from beads). Beads were subsequently incubated with lysates
from HEK 293T cells. Proteins remaining on the beads were separated by SDS-PAGE and
visualized by Coomassie stain or Western blot

845

Figure S4. Molecular model of SidI. Ribbon cartoons of SidI modeled using the RaptorX
webserver. Putative SidI domains are shown in red (residues 1-268), magenta (residues 269-874)
and cyan (residues 874-942).

849


Figure S5. Interaction between eEF1A and SidI truncations in the absence of SusF. Lysates from *E. coli* expressing GST-SidI constructs were incubated with glutathione agarose beads followed
by washing and incubation with lysates from HEK 293 cells. Proteins were separated by SDS-

PAGE and visualized by Coomassie staining (GST-SidI) or Western blotting (eEF1A). Data arerepresentative of two independent experiments.

855

Figure S6. SidI is modeled as a glycosyltransferase with a GT-B fold. The model of the putative
glycosyltransferase domain is presented in magenta ribbons superimposed to that of PimB (PDB:
3OKA) represented as salmon ribbons, which was identified by DALI as the most similar
structure in the PDB. The structure of PimB was solved in the presence of GDP (salmon spheres).

860

Figure 1

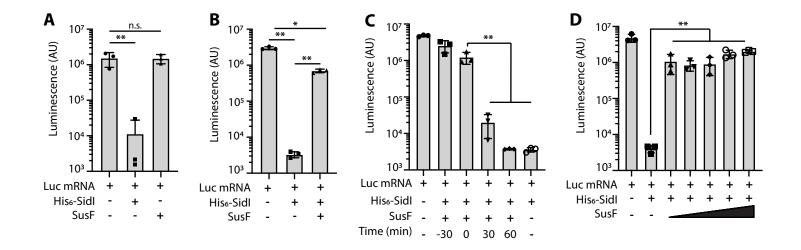
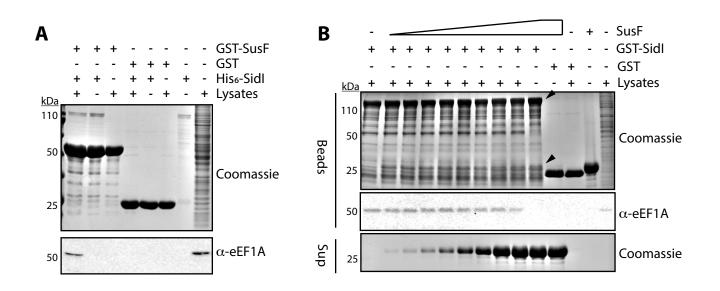



Figure 2

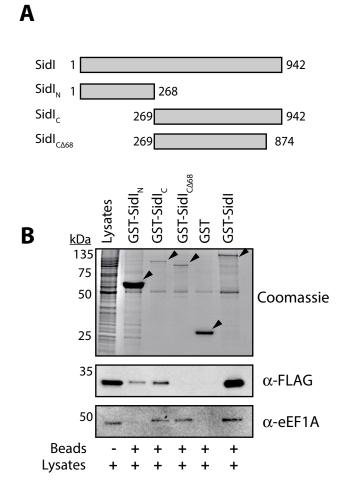


Figure 4

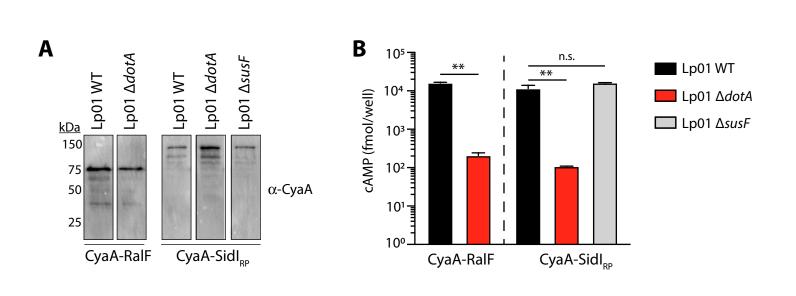


Figure 5

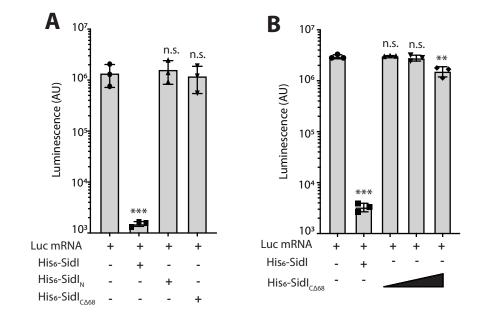
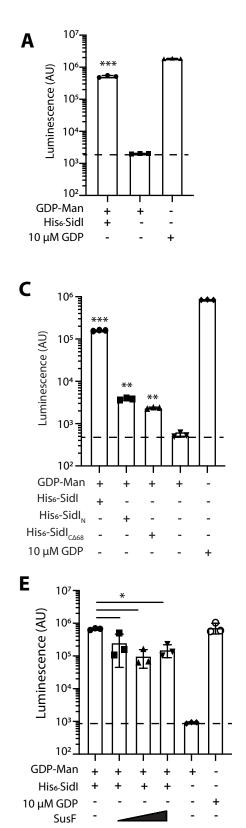
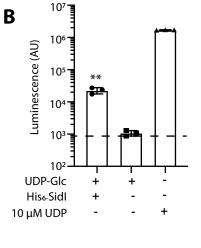
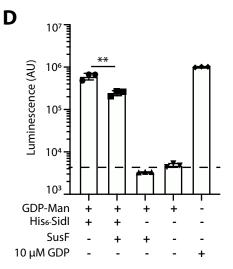
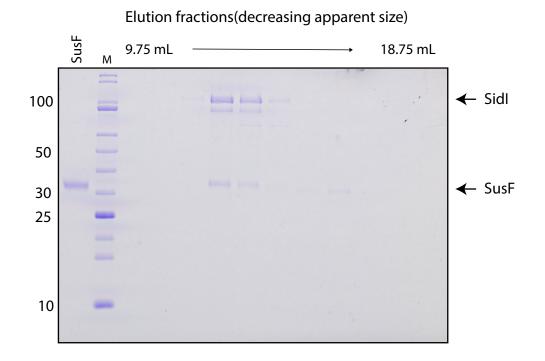





Figure 6


Figure 7

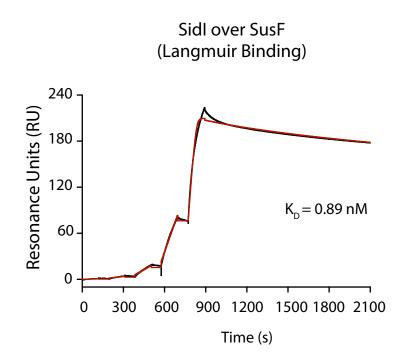


Figure S2

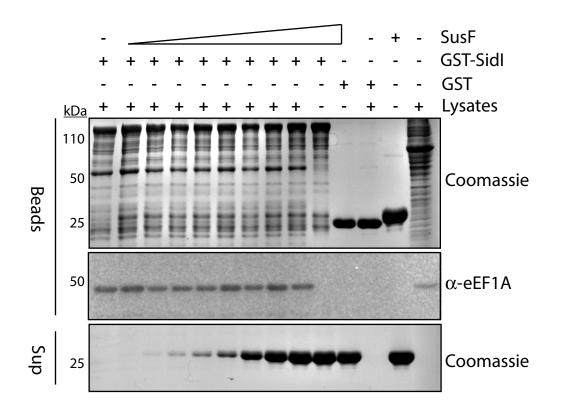
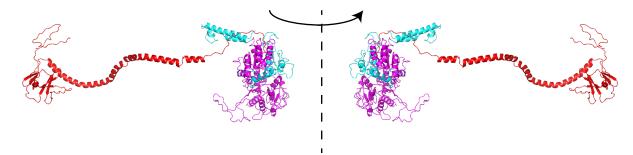



Figure S3

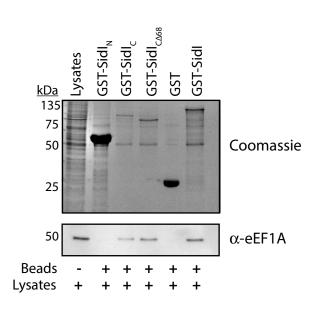
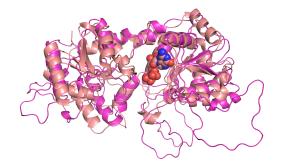



Figure S5

Figure S6

861 Supplemental Tables

862

864

863 Table S1. Proteins with homology to SidI (HHPred).

No.	PDB		Prob	E-value	P-value	Score	SS	Cols	Query HMM	Template	e HMM
1	30KP_A	GDP-mannose-dependent a	99.8	8.2E-20	1.7E-24	181.2	33.6	338	376-868	22-376	(394)
2	4N9W_A	GDP-mannose-dependent a	99.8	3.7E-19	7.5E-24	175.7	36.7	342	370-868	17-364	(390)
3	5D01_B	N-acetyl-alpha-D-glucos	99.8	2.3E-19	4.7E-24	175.8	34.1	347	370-868	15-372	(379)
4	6D9T_A	Glycosyl transferase (E	99.8	1.3E-18	2.6E-23	173.7	33.4	348	370-868	30-387	(400)
5	2JJM_J	GLYCOSYL TRANSFERASE, G	99.8	1.1E-18	2.3E-23	174.8	32.9	346	372-868	27-382	(394)
6	3C48_A	Predicted glycosyltrans	99.8	3.6E-18	7.2E-23	172.6	35.2	352	370-868	40-422	(438)
7	3FRO_B	GlgA glycogen synthase	99.8	5.5E-18	1.1E-22	169.0	34.6	347	370-868	16-427	(439)
8	2R60_A	Glycosyl transferase, g	99.8	1.1E-17	2.3E-22	172.5	37.8	351	370-868	31-456	(499)
9	30Y2_B	Glycosyltransferase B73	99.7	1.3E-18	2.6E-23	176.1	28.3	339	376-868	17-387	(413)
10	6EJI_B	WlaC protein; Glycosylt	99.7	2E-17	4.1E-22	162.9	33.8	333	373-868	15-354	(373)
11	6GNE_A	Probable starch synthas	99.7	8.5E-18	1.7E-22	176.0	31.4	352	369-868	23-494	(508)
12	2QZS_A	PROTEIN; glycosyl-trans	99.7	1.6E-17	3.2E-22	171.3	28.9	347	371-869	16-474	(485)
13	2X6Q_A	TREHALOSE-SYNTHASE TRET	99.7	7.6E-17	1.5E-21	161.9	31.8	386	328-868	8-411	(416)
14	4XYW_A	O-antigen biosynthesis	99.7	1.4E-16	2.8E-21	155.5	31.5	315	376-868	17-336	(338)
15	4XSO_A	Glycosyltransferase (E.	99.7	4.4E-17	8.9E-22	162.6	28.5	291	429-868	81-381	(388)
16	1RZV_A	Glycogen synthase 1 (E.	99.7	2.3E-16	4.6E-21	162.3	33.7	344	371-868	16-472	(485)
17	1V4V_B	UDP-N-Acetylglucosamine	99.7	5.1E-17	1E-21	160.9	25.2	341	370-869	13-366	(376)
18	2IW1_A	LIPOPOLYSACCHARIDE CORE	99.7	4.5E-16	9.2E-21	150.8	31.0	344	372-868	14-368	(374)
19	5ENZ_A	UDP-GlcNAc 2-epimerase	99.6	1.3E-16	2.6E-21	159.1	26.6	344	367-869	6-366	(385)
20	1XV5_A	DNA alpha-glucosyltrans	99.6	8.9E-17	1.8E-21	163.7	25.6	348	370-868	13-399	(401)
21	2X0D_B	WSAF; GT4 FAMILY, TRANS	99.6	9E-16	1.8E-20	155.5	31.7	335	369-868	60-413	(413)
22	5N7Z_A	Lipopolysaccharide 1,6-	99.6	1.5E-15	3.1E-20	147.4	31.5	339	372-868	14-357	(359)
23	5E9T_C	Glycosyltransferase Gtf	99.6	1E-15	2E-20	163.6	32.1	312	388-868	169-497	(503)
24	1VGV_D	UDP-N-acetylglucosamine	99.6	1.9E-16	3.8E-21	156.8	24.3	340	367-868	5-369	(384)
25	3T7D_A	Putative glycosyltransf	99.6	5.8E-16	1.2E-20	169.6	30.2	297	430-868	136-471	(497)
26	4FKZ_B	UDP-N-acetylglucosamine	99.6	2.8E-16	5.7E-21	157.8	24.4	334	377-869	18-368	(388)
27	5DLD_A	UDP-N-Acetylglucosamine	99.6	4.3E-16	8.6E-21	158.4	25.6	338	369-868	16-378	(413)
28	3VUE_A	Granule-bound starch sy	99.6	3.1E-15	6.2E-20	162.0	32.3	350	372-868	26-508	(536)
29	5UOF_B	Alpha,alpha-trehalose-p	99.6	3.9E-16	7.9E-21	167.1	24.3	281	443-868	131-461	(481)

000								
896 897	30 3DZC_B UDP-N-acetylglucosamine						41-396 (
	31 6GNF_A Glycogen synthase (E.C.				345	369-868	35-536 (
898	32 3S28_H Sucrose synthase 1 (E.C	99.6 3.6E-15 7.3E-20	176.5	32.3	341	382-868	320-766 ((816)
899	33 6GNG_A Granule-bound starch sy	99.6 5.7E-15 1.2E-19	165.6	32.2	347	368-868	52-556 ((612)
900	34 30T5_B UDP-N-acetylglucosamine	99.6 1.1E-15 2.2E-20	154.9	23.3	333	378-869	43-393 ((403)
901	35 4HWG_A UDP-N-acetylglucosamine	99.6 7.2E-16 1.5E-20	155.2	21.7	342	369-869	16-375 ((385)
902	36 4X7R_B TarM; Glycosyltransfera	99.6 7.7E-15 1.6E-19	162.3	31.8	283	429-869	204-492 ((493)
903	37 5LQD_D Alpha,alpha-trehalose-p	99.6 4.7E-15 9.6E-20	159.7	29.0	287	443-868	146-462 ((465)
904	38 4HLN_A Starch synthase I (E.C.	99.6 1.1E-14 2.2E-19	163.4	33.0	343	369-868	138-622 ((633)
905	39 4PQG_A Glycosyltransferase Gtf	99.6 4.5E-15 9.1E-20	160.2	28.8	285	427-868	203-505 ((511)
906	40 5JIO_A Alpha,alpha-trehalose-p	99.5 5.3E-15 1.1E-19	156.1	25.3	307	443-868	136-474 ((487)
907	41 4L22_A Phosphorylase (E.C.2.4.	99.5 2.8E-15 5.8E-20	176.9	25.4	298	442-868	269-754 ((758)
908	42 5HVO_C trehalose-6-phosphate p	99.5 4.5E-15 9E-20	160.5	24.7	285	443-868	141-474 ((479)
909	43 3S2U_A UDP-N-acetylglucosamine	99.5 3.4E-14 7E-19	138.8	27.3	316	372-868	13-355 ((365)
910	44 4W6Q_A Glcosyltransferase C; G	99.5 4.2E-14 8.4E-19	139.3	27.5	276	417-868	38-330 ((333)
911	45 4NES_A UDP-N-acetylglucosamine	99.5 3.5E-15 7.2E-20	147.7	20.0	332	367-868	5-361 ((374)
912	46 4RBN_B Sucrose synthase:Glycos	99.5 7.8E-14 1.6E-18	165.4	31.1	299	430-868	378-754 ((794)
913	47 4AMG_A SNOGD; TRANSFERASE, POL	99.5 3.9E-14 7.9E-19	140.7	23.7	322	372-869	33-400 ((400)
914	48 3RHZ_B Nucleotide sugar synthe	99.5 9.8E-14 2E-18	136.6	26.1	279	414-868	44-334 ((339)
915	49 3IA7_A CalG4; Glycosysltransfe	99.5 3.1E-14 6.3E-19	139.0	22.3	343	372-869	15-398 ((402)
916	50 5W8X_A Lipid-A-disaccharide sy	99.5 8.6E-14 1.7E-18	137.4	25.3	324	370-868	15-377 ((382)
917	51 2P6P_B Glycosyl transferase; C	99.4 2.5E-13 5E-18	134.3	27.3	319	372-868	11-378 ((384)
918	52 2IUY_A GLYCOSYLTRANSFERASE; GL	99.4 1.5E-13 3.1E-18	136.3	25.7	296	370-868	28-332 ((342)
919	53 5VAF_B Accessory Sec system pr	99.4 6.3E-14 1.3E-18	152.9	24.9	282	429-869	214-520 ((533)
920	54 5V0T_B Alpha,alpha-trehalose-p	99.4 7.6E-14 1.5E-18	152.3	25.2	303	429-868	116-465 ((494)
921	55 1UQT_B ALPHA, ALPHA-TREHALOSE-	99.4 1.1E-13 2.3E-18	150.2	26.2	300	430-868	111-451 ((482)
922	56 4RIF_B Glycosyl transferase ho	99.4 3.8E-14 7.8E-19	140.7	20.1	321	370-868	9-373 ((379)
923	57 5DXF_A trehalose-6-phosphate p	99.4 2.9E-13 5.8E-18	150.5	29.1	313	430-868	185-523 ((534)
924	58 1F0K_A E. COLI MURG (E.C. 2.4.	99.4 1.8E-12 3.6E-17	127.8	30.3	311	370-868	15-354 ((364)
925	59 3TSA_A NDP-rhamnosyltransferas	99.4 2.1E-13 4.3E-18	134.2	23.5	320	372-868	12-387 ((391)
926	60 5HVL B trehalose-6-phosphate p	99.4 2.4E-13 4.8E-18	146.1	25.8	286	443-868	134-467 (
927	61 6INF A UDP-glycosyltransferase				332	373-867	24-454 (. ,
928	62 3RSC_B CalG2; TDP, enediyne, S					372-868	31-412 (
929	63 3NB0 C Glycogen [starch] synth					429-868	164-630 (
930	64 5I45_A Glycosyl transferases g						27-209 (
931	65 5ZFK A UDP-glucose:tetrahydrob					372-868	21-348 (
<u> </u>	55 SZIK_A OFF-grucose.tetranydPOD	JJ. 4 J.UL-IJ I.JE-1/	12/./	20.2	رير	572-000	21-340 (())+)

932	66 2HY7_A Crystal Structure of Gu	99.4 3.9E-13 8E-18	137.4 24	.7 258	429-867	103-373 (4	06)
933	67 2XCI_C 3-DEOXY-D-MANNO-2-OCTUL		138.5 25	.6 312	376-868	53-374 (3	74)
934	68 5ZLR_A NeuC protein; NeuC, UDP	99.4 5.2E-13 1.1E-17	132.2 24	.0 315	376-868	18-364 (3	80)
935	69 30TI_B CalG3; Calicheamicin, T	99.3 6.1E-13 1.2E-17	131.7 21	.7 323	370-868	29-396 (3	98)
936	70 5DU2_A CalS8; glycosyltransfer	99.3 1.1E-12 2.3E-17	129.9 23	.1 322	372-868	37-415 (4	19)
937	71 1L5W_A MALTODEXTRIN PHOSPHORYL	99.3 2.1E-13 4.2E-18	162.7 21	.2 346	429-868	277-791 (7	96)
938	72 4FZR_A SsfS6; Structural Genom	99.3 4.4E-13 8.9E-18	132.7 19	.6 319	372-866	26-397 (3	98)
939	73 30TG_A CalG1; Calicheamicin, T	99.3 3.3E-12 6.6E-17	129.3 24	.4 324	370-868	29-407 (4	12)
940	74 4QLB_D Probable glycogen [star	99.3 2.6E-12 5.4E-17	150.1 26	.4 297	429-868	178-632 (6	74)
941	75 3HBJ_A Flavonoid 3-0-glucosylt	99.3 1.8E-11 3.6E-16	124.1 28	.6 328	378-868	30-452 (4	54)
942	76 2IYA_B OLEANDOMYCIN GLYCOSYLTR	99.2 7.4E-12 1.5E-16	122.5 23	.6 322	371-868	22-420 (4	24)
943	77 4X1T_A Monogalactosyldiacylgly	99.2 3.8E-11 7.7E-16	120.7 27	.5 324	372-868	17-384 (4	08)
944	78 2ACV_B triterpene UDP-glucosyl	99.2 3.7E-11 7.5E-16	122.1 27	.2 337	372-868	20-461 (4	63)
945	79 2YJN_A GLYCOSYLTRANSFERASE, DT	99.2 2.5E-12 5.1E-17	129.2 18	.4 323	372-869	31-435 (4	41)
946	80 2VSY_B XCC0866; TRANSFERASE, G	99.2 1.9E-11 3.9E-16	135.3 26	.9 326	371-868	217-556 (5	68)
947	81 3QHP_A Type 1 capsular polysac	99.2 6.1E-12 1.2E-16	110.8 17	.6 163	586-863	1-166 (1	66)
948	82 3WAD_B Glycosyltransferase; GL	99.2 1.6E-11 3.2E-16	121.0 20	.8 316	371-868	10-413 (4	19)
949	83 4ZHT_B Bifunctional UDP-N-acet	99.2 2.4E-11 4.9E-16	124.2 22	.7 268	429-868	92-374 (4	11)
950	84 2C4M_A GLYCOGEN PHOSPHORYLASE	99.1 2.4E-11 4.9E-16	145.7 25	.8 301	442-868	287-785 (7	96)
951	85 5DJS_B Tetratricopeptide TPR_2	99.1 1.1E-10 2.2E-15	128.0 26	.9 330	370-868	173-512 (5	29)
952	86 2GJ4_A Glycogen phosphorylase,	99.1 2.6E-10 5.3E-15	137.7 30	.3 295	442-868	318-813 (8	24)
953	87 5GL5_B Sterol 3-beta-glucosylt	99.1 2.6E-10 5.3E-15	117.1 25	.5 358	373-868	51-459 (4	98)
954	88 5E9T_D Glycosyltransferase Gtf	99.0 6.5E-11 1.3E-15	129.3 21	.3 230	475-869	215-446 (4	47)
955	89 2BFW_A GLGA GLYCOGEN SYNTHASE	99.0 1.1E-10 2.2E-15	106.4 18	.7 161	585-856	34-200 (2	00)
956	90 4LDP_B NDP-forosamyltransferas	99.0 9.3E-11 1.9E-15	118.1 19	.7 323	372-868	27-440 (4	55)
957	91 3Q3E_A HMW1C-like glycosyltran	99.0 2.3E-10 4.7E-15	132.2 24	.2 279	425-868	330-624 (6	31)
958	92 4BQE_B ALPHA-GLUCAN PHOSPHORYL	99.0 5.5E-10 1.1E-14	136.0 28	.0 315	442-868	364-865 (8	74)
959	93 1YGP_A YEAST GLYCOGEN PHOSPHOR	99.0 5.2E-10 1.1E-14	136.0 27	.6 304	439-868	354-872 (8	79)
960	94 3H4T_A Glycosyltransferase Gtf	98.9 2.7E-10 5.5E-15	112.9 17	.6 320	373-868	12-381 (4	04)
961	95 4REL_A UDP-glucose:anthocyanid	98.9 3.2E-09 6.4E-14	108.3 24	.5 332	378-868	21-443 (4	46)
962	96 4BFC_A 3-DEOXY-D-MANNO-OCTULOS	98.8 9E-10 1.8E-14	105.4 18	.2 180	586-869	40-232 (2	35)
963	97 2F9F_A first mannosyl transfer	98.8 9.1E-10 1.8E-14	100.5 17	.2 157	582-849	18-175 (1	77)
964	98 5V2J_A UDP-glycosyltransferase	98.8 4.5E-09 9.1E-14	106.2 23	.7 330	376-868	20-446 (4	49)
965	99 5LR8_A Hv_Pho1 (E.C.2.4.1.1);	98.8 2.8E-09 5.6E-14	130.9 25	.4 241	494-868	527-917 (9	38)
966	100 6FJ3_A Parathyroid hormone/par	98.8 1.5E-09 3.1E-14	121.6 20	.9 174	585-868	353-532 (6	02)
967	101 4M83_A Oleandomycin glycosyltr	98.8 2.1E-08 4.3E-13	103.3 25	.6 318	378-868	24-398 (4	15)

968	102 1IIR_A glycosyltransferase Gtf	98.7 2.8E-09 5.7E-14	105.8	16.5 313	373-868	12-398 (415)
969	103 1RRV A GLYCOSYLTRANSFERASE GTF	98.7 1.5E-08 3.1E-13		20.7 316		12-400 (416)
970	– 104 6IJ7_A Rhamnosyltransferase pr	98.6 1.4E-07 2.8E-12	95.8	26.8 281	429-868	102-433 (435)
971	105 6BK0_A UDP-glycosyltransferase	98.6 1.4E-07 2.8E-12	96.1	25.7 323	378-868	32-465 (467)
972	106 2VCH_A HYDROQUINONE GLUCOSYLTR	98.3 7.9E-06 1.6E-10	84.3	28.7 340	373-868	18-467 (480)
973	107 3HBM_A UDP-sugar hydrolase; ud	98.2 4.3E-07 8.7E-12	89.2	17.0 254	377-777	23-281 (282)
974	108 2PQ6_A UDP-glucuronosyl/UDP-gl	98.0 1.6E-05 3.2E-10	81.4	22.3 333	378-868	25-477 (482)
975	109 2C1X_A UDP-GLUCOSE FLAVONOID 3	97.6 0.00018 3.7E-09	74.3	21.4 284	429-868	95-450 (456)
976	110 5WQC_A Orexin receptor type 2,	97.1 0.00055 1.1E-08	76.6	18.4 169	585-863	291-464 (560)
977	111 206L_B UDP-glucuronosyltransfe	96.5 0.0036 7.2E-08	56.3	12.4 144	584-850	19-168 (170)
978	112 3L7I_A Teichoic acid biosynthe	96.4 0.0077 1.6E-07	70.8	16.8 350	355-833	317-725 (729)
979	113 5U09_A Cannabinoid receptor 1,	96.0 0.044 8.8E-07	61.4	18.2 177	585-870	243-424 (508)
980	114 5ZIC_A Alpha-1,6-mannosylglyco	95.9 0.014 2.8E-07	69.0	13.7 157	585-873	226-407 (523)
981	115 1PSW_A ADP-HEPTOSE LPS HEPTOSY	95.3 0.13 2.6E-06	52.7	14.8 166	585-831	179-348 (348)
982	116 5GVV_A Glycosyl transferase fa	95.3 0.023 4.6E-07	62.2	9.9 111	606-778	289-401 (406)
983	117 2GT1_A Lipopolysaccharide hept	94.9 0.16 3.3E-06	51.5	13.4 145	585-831	177-325 (326)
984	118 3TOV_B Glycosyl transferase fa	94.4 0.24 4.8E-06	50.6	12.3 113	585-760	184-299 (349)
985	119 GJTD_A C-glycosyltransferase;	92.6 1.7 3.5E-05	46.2	14.0 166	585-868	273-476 (483)
986	120 5NLM_B indoxyl UDP-glucosyltra	90.1 8.9 0.00018	40.9	15.2 167	585-868	273-474 (478)
987	121 6MGB_A Capsular polysaccharide	87.7 4.1 8.4E-05	43.9	10.4 102	584-746	153-262 (326)
988	122 5IJO_T Nuclear pore complex pr	85.2 31 0.00064	41.9	16.5 192	129-377	322-515 (522)
989	123 6HLP_A Substance-P receptor,Su	84.5 21 0.00043	40.1	13.9 177	585-870	256-437 (520)
990	124 6MGC_A Capsule polysaccharide	83.7 5.7 0.00012	43.7	8.9 101	585-746	147-255 (361)
991	125 1JIX_A DNA BETA-GLUCOSYLTRANSF	76.1 8.9 0.00018	43.9	6.9 108	696-855	229-345 (351)
992	126 6MGD_A Capsular polysaccharide	66.3 30 0.00061	37.7	7.9 99	585-746	151-259 (332)
993	127 4RAP_I Glycosyltransferase Tib	57.6 2.3E+02 0.0047	31.7	12.8 169	585-828	215-389 (406)
994	128 5IJO_G Nuclear pore complex pr	57.6 1.2E+02 0.0024	37.8	11.3 178	121-308	241-431 (599)
995	129 5FA1_A Cell division protein Z	56.1 57 0.0012	37.3	8.0 91	585-746	219-316 (410)
996	130 2JZC_A UDP-N-acetylglucosamine	53.1 2.4E+02 0.0049	30.3	11.5 120	568-748	10-160 (224)
997	131 4UXV_A SEPTATION RING FORMATIO	50.5 5.5E+02 0.011	29.9	14.6 150	138-328	361-515 (545)
998	132 2KS6_A UDP-N-acetylglucosamine		30.6	9.6 108	582-750	1-139 (201)
999	133 5XEI_A Chromosome partition pr	43.5 7.5E+02 0.015	28.8	21.8 316	136-481	161-482 (540)
1000	134 5ZIB_A Alpha-1,6-mannosylglyco	42.1 54 0.0011	40.7	5.1 49	697-748	374-423 (626)
1001	135 4P5E_B 2'-deoxynucleoside 5'-p	36.7 3.1E+02 0.0063	25.7	8.2 80	625-746	1-99 (152)
1002	136 5NPS_A UDP-N-acetylglucosamine	35.2 1.7E+02 0.0034	37.3	7.7 105	590-749	519-625 (718)
1003	137 6QAI_B deoxyribosyltransferase	34.6 5.5E+02 0.011	24.5	10.1 83	624-746	3-99 (156)

1004	138 3EHD_A uncharacterized conserv	33.2 4.8E+02	0.0097	24.8	9.0	82	624-746	2-102 ((162)
1005	139 4UX3_A STRUCTURAL MAINTENANCE	32.9 1.2E+03	0.025	28.0	22.5	328	128-482	140-492 ((543)
1006	140 6EK8_A YaxB; pathogens, pore f	25.7 8.4E+02	0.017	27.8	10.6	107	138-244	147-255 ((344)
1007	141 6CFZ_H Ask1, Dad3, Dad2, Duo1,	25.4 1.3E+02	0.0027	26.3	3.4	35	273-308	8-42 ((56)
1008	142 5AX7_A Pyruvyl transferase 1;	23.8 1.3E+03	0.026	25.1	18.0	227	414-746	68-300 ((348)
1009	143 3U4Q_B ATP-dependent helicase/	22.8 1.9E+03	0.039	27.8	13.8	205	215-429	383-615 ((1166)
1010	144 3ILW_A DNA gyrase subunit A (E	21.2 1E+03	0.02	28.1	10.4	155	232-392	298-463 ((470)
1011	145 5J0J_A designed protein 2L6HC3	21.0 7.8E+02	0.016	22.7	7.2	68	139-217	9-76 ((79)
1012	146 2KE4_A Cdc42-interacting prote	20.2 9.1E+02	0.018	22.6	8.0	79	147-225	13-91 ((98)
1013									