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ABSTRACT 28 

An increasing number of field studies have shown that the phenotype of an 29 

individual plant depends not only on its genotype but also on those of 30 

neighboring plants; however, this fact is not taken into consideration in 31 

genome-wide association studies (GWAS). Based on the Ising model of 32 

ferromagnetism, we incorporated neighbor genotypic identity into a 33 

regression model, named “Neighbor GWAS”. Our simulations showed that 34 

the effective range of neighbor effects could be estimated using an observed 35 

phenotype from when the proportion of phenotypic variation explained 36 

(PVE) by neighbor effects peaked. The spatial scale of the first nearest 37 

neighbors gave the maximum power to detect the causal variants 38 

responsible for neighbor effects, unless their effective range was too broad. 39 

However, if the effective range of the neighbor effects was broad and minor 40 

allele frequencies were low, there was collinearity between the self and 41 

neighbor effects. To suppress the false positive detection of neighbor effects, 42 

the fixed effect and variance components involved in the neighbor effects 43 

should be tested in comparison with a standard GWAS model. We applied 44 
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neighbor GWAS to field herbivory data from 199 accessions of Arabidopsis 45 

thaliana and found that neighbor effects explained 8% more of the PVE of 46 

the observed damage than standard GWAS. The neighbor GWAS method 47 

provides a novel tool that could facilitate the analysis of complex traits in 48 

spatially structured environments and is available as an R package at CRAN 49 

(https://cran.rproject.org/package=rNeighborGWAS). 50 

 51 

 52 

INTRODUCTION 53 

Plants are immobile and thus cannot escape their neighbors. In natural and 54 

agricultural systems, individual phenotypes depend not only on the plants’ 55 

own genotype but also on the genotypes of other neighboring plants 56 

(Tahvanainen and Root 1972; Barbosa et al. 2009; Underwood et al. 2014). 57 

This phenomenon has been termed neighbor effects or associational effects 58 

in plant ecology (Barbosa et al. 2009; Underwood et al. 2014; Sato 2018). 59 

Such neighbor effects were initially reported as a form of interspecific 60 

interaction among different plant species (Tahvanainen and Root 1972), but 61 

many studies have illustrated that neighbor effects occur among different 62 

genotypes within a plant species with respect to: (i) herbivory (Schuman et 63 

al. 2015; Sato 2018; Ida et al. 2018), (ii) pathogen infections (Mundt 2002; 64 

Zeller et al. 2012), and (iii) pollinator visitations (Underwood et al. 2020). 65 

Although neighbor effects are of considerable interest in plant science 66 
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(Dicke and Baldwin 2010; Erb 2018) and agriculture (Zeller et al. 2012; 67 

Dahlin et al. 2018), they are often not considered in quantitative genetic 68 

analyses of field-grown plants. 69 

Complex mechanisms underlie neighbor effects through direct 70 

competition (Weiner 1990), herbivore and pollinator movement (Bergvall et 71 

al. 2006; Verschut et al. 2016; Underwood et al. 2020), and volatile 72 

communication among plants (Schuman et al. 2015; Dahlin et al. 2018). For 73 

example, lipoxygenase (LOX) genes govern jasmonate-mediated volatile 74 

emissions in wild tobacco (Nicotiana attenuata) that induce defenses of 75 

neighboring plants (Schuman et al. 2015). Even if direct plant–plant 76 

communications are absent, herbivores can mediate indirect interactions 77 

between plant genotypes (Sato and Kudoh 2017; Ida et al. 2018). For 78 

example, the GLABRA1 gene is known to determine hairy or glabrous 79 

phenotypes in Arabidopsis plants (Hauser et al. 2001), and the flightless leaf 80 

beetle (Phaedon brassicae) is known to prefer glabrous plants to hairy ones 81 

(Sato et al. 2017). Consequently, hairy plants escape herbivory when 82 

surrounded by glabrous plants (Sato and Kudoh 2017). Yet, there are few 83 

hypothesis-free approaches currently available for the identification of the 84 

key genetic variants responsible for plant neighborhood effects. 85 

Genome-wide association studies (GWAS) have been increasingly 86 

adopted to resolve the genetic architecture of complex traits in the model 87 

plant, Arabidopsis thaliana (Atwell et al. 2010; Seren et al. 2017; Togninalli 88 
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et al. 2018), and crop species (Hamblin et al. 2011). The interactions of 89 

plants with herbivores (Brachi et al. 2015; Nallu et al. 2018), microbes 90 

(Horton et al. 2014; Wang et al. 2018), and other plant species (Frachon et al. 91 

2019) are examples of the complex traits that are investigated through the 92 

lens of GWAS. To distinguish causal variants from the genome structure, 93 

GWAS often employs a linear mixed model with kinship considered as a 94 

random effect (Kang et al. 2008; Korte and Farlow 2013). However, 95 

because of combinatorial explosion, it is generally impossible to test the full 96 

set of inter-genomic locus-by-locus interactions (Gondro et al. 2013); thus, 97 

some feasible and reasonable approach should be developed for the GWAS 98 

of neighbor effects. 99 

To incorporate neighbor effects into GWAS, we have focused on a 100 

theoretical model of neighbor effects in magnetic fields, known as the Ising 101 

model (Ising 1925; McCoy and Maillard 2012), which has been applied to 102 

forest gap dynamics (Kizaki and Katori 1999; Schlicht and Iwasa 2004) and 103 

community assembly (Azaele et al. 2010) in plant ecology. Using the Ising 104 

analogy, we compare individual plants to a magnet: the two alleles at each 105 

locus correspond to the north and south dipoles, and genome-wide multiple 106 

testing across all loci is analogous to a number of parallel two-dimensional 107 

layers. The Ising model has a clear advantage in its interpretability, such 108 

that: (i) the optimization problem for a population sum of trait values can be 109 

regarded as an inverse problem of a simple linear model, (ii) the sign of 110 
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neighbor effects determines the model’s trend with regard to the generation 111 

of a clustered or checkered spatial pattern of the two states, and (iii) the 112 

self-genotypic effect determines the general tendency to favor one allele 113 

over another (Fig. 1). 114 

In this study, we proposed a new methodology integrating GWAS 115 

and the Ising model, named “neighbor GWAS.” The method was applied to 116 

simulated phenotypes and actual data of field herbivory on A. thaliana. We 117 

addressed two specific questions: (i) what spatial and genetic factors 118 

influenced the power to detect causal variants? and (ii) were neighbor 119 

effects significant sources of leaf damage variation in field-grown A. 120 

thaliana? Based on the simulation and application, we determined the 121 

feasibility of our approach to detect neighbor effects in field-grown plants. 122 

 123 

MATERIALS & METHODS 124 

 125 

Neighbor GWAS 126 

Basic model. We analyzed neighbor effects in GWAS as an inverse problem 127 

of the two-dimensional Ising model, named “neighbor GWAS” hereafter 128 

(Fig. 1). We considered a situation where a plant accession has one of two 129 

alleles at each locus, and a number of accessions occupied a finite set of 130 

field sites, in a two-dimensional lattice. The allelic status at each locus was 131 

represented by 𝑥, and so the allelic status at each locus of the i-th focal plant 132 
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and the j-th neighboring plants was designated as 𝑥𝑖(𝑗) ∈{-1, +1}. Based on 133 

a two-dimensional Ising model, we defined a phenotype value for the i-th 134 

focal individual plant 𝑦𝑖  as: 135 

𝑦𝑖 = 𝛽1𝑥𝑖 + 𝛽2 ∑ 𝑥𝑖𝑥𝑗<𝑖,𝑗>  (1) 136 

where 𝛽1 and 𝛽2 denoted self-genotype and neighbor effects, respectively. If 137 

two neighboring plants shared the same allele at a given locus, the 138 

product 𝑥𝑖𝑥𝑗  turned into (-1) × (-1) = +1 or (+1) × (+1) = +1. If two 139 

neighbors had different alleles, the product 𝑥𝑖𝑥𝑗  became (-1) × (+1) = -1 or 140 

(+1) × (-1) = -1. Accordingly, the effects of neighbor genotypic identity on a 141 

particular phenotype depended on the coefficient 𝛽2 and the number of the 142 

two alleles in a neighborhood. If the numbers of identical and different 143 

alleles were the same near a focal plant, these neighbors offset the sum of 144 

the products between the focal plant i and all j neighbors ∑ 𝑥𝑖𝑥𝑗  <𝑖,𝑗> and 145 

exerted no effects on a phenotype. When we summed up the phenotype 146 

values for the total number of plants n and replaced it as 𝛦 = −𝛽2, 𝛨 =147 

−𝛽1 and 𝜖𝐼 = ∑𝑦𝑖, eq. 1 could be transformed into 𝜖𝐼 = −𝛦 ∑ 𝑥𝑖𝑥𝑗<𝑖,𝑗> −148 

𝛨∑𝑥𝑖, which defined the interaction energy of a two-dimensional 149 

ferromagnetic Ising model (McCoy and Maillard 2012). The neighbor 150 

effect 𝛽2 and self-genotype effect 𝛽1 were interpreted as the energy 151 

coefficient 𝛦 and external magnetic effects 𝛨, respectively. An individual 152 

plant represented a spin and the two allelic states of each locus 153 

corresponded to a north or south dipole. The positive or negative value 154 
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of ∑𝑥𝑖𝑥𝑗  indicated a ferromagnetism or paramagnetism, respectively. In this 155 

study, we did not consider the effects of allele dominance because this 156 

model was applied to inbred plants. However, heterozygotes could be 157 

processed if the neighbor covariate 𝑥𝑖𝑥𝑗  was weighted by an estimated 158 

degree of dominance in the self-genotypic effects on a phenotype. 159 

Association tests. For association mapping, we needed to 160 

determine 𝛽1 and 𝛽2 from the observed phenotypes and considered a 161 

confounding sample structure as advocated by previous GWAS (e.g., Kang 162 

et al. 2008; Korte and Farlow 2013). Extending the basic model (eq. 1), we 163 

described a linear mixed model at an individual level as: 164 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 +
𝛽2

𝐿
∑ 𝑥𝑖𝑥𝑗

(𝑠)𝐿
<𝑖,𝑗> + 𝑢𝑖 + 𝑒𝑖  (2) 165 

where 𝛽0 indicated the intercept, and the term 𝛽1𝑥𝑖 represented fixed 166 

self-genotype effects as tested in standard GWAS; 𝛽2 was the coefficient of 167 

fixed neighbor effects. The neighbor covariate ∑ 𝑥𝑖𝑥𝑗
(𝑠)𝐿

<𝑖,𝑗>  indicated a sum 168 

of products for all combinations between the i-th focal plant and the j-th 169 

neighbor at the s-th spatial scale from the focal plant i, and was scaled by 170 

the number of neighboring plants, 𝐿. The number of neighboring 171 

plants 𝐿 was dependent on the spatial scale 𝑠 to be referred. Variance 172 

components due to the sample structure of self and neighbor effects were 173 

modeled by a random effect 𝑢𝑖 ∈ 𝒖 and 𝒖~Norm(𝟎, 𝜎1
2𝑲1 + 𝜎2

2𝑲2). The 174 

residual was expressed as 𝑒𝑖 ∈ 𝒆 and 𝒆~Norm(𝟎, 𝜎𝑒
2). 175 
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Variation partitioning. To estimate the proportion of phenotypic 176 

variation explained (PVE) by the self and neighbor effects, we utilized 177 

variance component parameters in linear mixed models. The n × n 178 

variance-covariance matrices represented the similarity in self-genotypes 179 

(i.e., kinship) and neighbor covariates among n individual plants as 𝑲1 =180 

1

𝑞−1
𝑿1

T𝑿1 and 𝑲2 =
1

𝑞−1
𝑿2

T𝑿2, where q indicated the number of markers. As 181 

we defined 𝑥𝑖(𝑗) ∈{+1, -1}, the elements of the kinship matrix 𝑲1 were 182 

scaled to represent the proportion of marker loci shared among n × n plants 183 

such that 𝑲1 = (
𝑘𝑖𝑗+1

2
); 𝜎1

2 and 𝜎2
2 indicated variance component parameters 184 

for the self and neighbor effects.  185 

The elements of n plants × q markers matrix 𝑿1 and 𝑿2 consisted of 186 

explanatory variables for the self and neighbor effects as 𝑿1 =187 

(𝑥𝑖) and 𝑿2 = (
∑ 𝑥𝑖𝑥𝑗

(𝑠)𝐿
<𝑖,𝑗>

𝐿
). The individual-level formula eq. 2 could also be 188 

converted into a conventional matrix form as:  189 

𝒚 = 𝑿𝜷 + 𝒁𝒖 + 𝒆 (3) 190 

where y was an n × 1 vector of the phenotypes; X was a matrix of fixed 191 

effects, including a unit vector, self-genotype 𝑥𝑖, neighbor 192 

covariate 
∑ 𝑥𝑖𝑥𝑗

(𝑠)𝐿
<𝑖,𝑗>

𝐿
, and other confounding covariates for n plants; β was a 193 

vector that represents the coefficients of the fixed effects; Z was a design 194 

matrix allocating individuals to a genotype, and became an identity matrix if 195 
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all plants were different accessions; u was the random effect with Var(u) 196 

= 𝜎1
2𝑲1 + 𝜎2

2𝑲2; and e was residual as Var(e) = 𝜎𝑒
2𝑰.  197 

Because our objective was to test for neighbor effects, we needed to 198 

avoid the detection of false positive neighbor effects. The self-genotype 199 

value 𝑥𝑖 and neighbor genotypic identity ∑ 𝑥𝑖𝑥𝑗
(𝑠)𝐿

<𝑖,𝑗>  would be colinear due 200 

to the minor allele frequency (MAF) and the spatial scale of s. When MAF 201 

is low, neighbors 𝑥𝑗
(𝑠)

 are unlikely to vary in space and most plants will 202 

have similar values for neighbor identity ∑ 𝑥𝑖𝑥𝑗
(𝑠)𝐿

<𝑖,𝑗> . Furthermore, if the 203 

neighbor effects range was broad enough to encompass an entire field 204 

(i.e., 𝑠 → ∞), the neighbor covariate and self-genotype 𝑥𝑖  would become 205 

colinear according to the equation: (∑ 𝑥𝑖𝑥𝑗
(𝑠)

)/𝐿𝐿
<𝑖,𝑗> = 𝑥𝑖(∑ 𝑥𝑗

(𝑠)𝐿
𝑗=1 )/𝐿 =206 

𝑥𝑖𝑥̅𝑗, where 𝑥̅𝑗  indicates a population-mean of neighbor genotypes and 207 

corresponds to a population-mean of self-genotype values 𝑥̅𝑖, if 𝑠 → ∞. The 208 

standard GWAS is a subset of the neighbor GWAS and these two models 209 

become equivalent at s = 0 and 𝜎2
2 = 0. When testing the self-genotype 210 

effect 𝛽1, we recommend that the neighbor effects and its variance 211 

component 𝜎2
2 should be excluded; otherwise, the standard GWAS fails to 212 

correct a sample structure because of the additional variance component 213 

at 𝜎2
2≠0. To obtain a conservative conclusion, the significance of 𝛽2 and 214 

𝜎2
2 should be compared using the standard GWAS model based on 215 

self-effects alone. 216 
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Given the potential collinearity between the self and neighbor 217 

effects, we defined different metrics for the proportion of phenotypic 218 

variation explained (PVE) based on self or neighbor effects. Using a 219 

single-random effect model, we calculated PVE for either the self or 220 

neighbor effects as follows: 221 

‘single’ PVEself = 𝜎1
2/(𝜎1

2 + 𝜎𝑒
2) when 𝑠 and 𝜎2

2 were set at 0, or  222 

‘single’ PVEnei = 𝜎2
2/(𝜎2

2 + 𝜎𝑒
2) when 𝜎1

2 was set at 0.  223 

Furthermore, we could partial out either of the two variance components 224 

using a two-random effect model and define PVE as:  225 

‘partial’ PVEself = 𝜎1
2/(𝜎1

2 + 𝜎2
2 + 𝜎𝑒

2) and  226 

‘partial’ PVEnei = 𝜎2
2/(𝜎1

2 + 𝜎2
2 + 𝜎𝑒

2).  227 

As the partial PVEself was equivalent to the single PVEself when s was set at 228 

0, the net contribution of neighbor effects at s ≠ 0 was given as 229 

‘net’ PVEnei = (partial PVEself + partial PVEnei) – single PVEself, 230 

which indicated the proportion of phenotypic variation that could be 231 

explained by neighbor effects, but not by the self-genotype effects. 232 

 233 

Simulation 234 

To examine the model performance, we applied the neighbor GWAS to 235 

simulated phenotypes. Phenotypes were simulated using a subset of the 236 

actual A. thaliana genotypes. To evaluate the performance of the simple 237 

linear model, we assumed a complex ecological form of neighbor effects 238 
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with multiple variance components controlled. The model performance was 239 

evaluated in terms of the causal variant detection and accuracy of estimates. 240 

All analyses were performed using R version 3.6.0 (R Core Team 2019). 241 

Genotype data. To consider a realistic genetic structure in the 242 

simulation, we used part of the A. thaliana RegMap panel (Horton et al. 243 

2012). The genotype data for 1,307 accessions were downloaded from the 244 

Joy Bergelson laboratory website 245 

(http://bergelson.uchicago.edu/?page_id=790 accessed on February 9, 2017). 246 

We extracted data for chromosomes 1 and 2 with MAF at >0.1, yielding a 247 

matrix of 1,307 plants with 65,226 single nucleotide polymorphisms (SNPs). 248 

Pairwise linkage disequilibrium (LD) among the loci was r2 = 0.003 249 

[0.00-0.06: median with upper and lower 95 percentiles]. Before generating 250 

a phenotype, genotype values at each locus were standardized to a mean of 251 

zero and a variance of 1. Subsequently, we randomly selected 1,296 252 

accessions (= 36 × 36 accessions) without any replacements for each 253 

iteration and placed them in a 36 × 72 checkered space, following the 254 

Arabidopsis experimental settings (see Fig. S1). 255 

Phenotype simulation. To address ecological issues specific to 256 

plant neighborhood effects, we considered two extensions, namely 257 

asymmetric neighbor effects and spatial scales. Previous studies have shown 258 

that plant–plant interactions between accessions are sometimes asymmetric 259 

under herbivory (e.g., Bergvall et al. 2006; Verschut et al. 2016; Sato and 260 
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Kudoh 2017) and height competition (Weiner 1990); where one focal 261 

genotype is influenced by neighboring genotypes, while another receives no 262 

neighbor effects. Such asymmetric neighbor effects can be tested by 263 

statistical interaction terms in a linear model (Bergvall et al. 2006; Sato and 264 

Kudoh 2017). Several studies have also shown that the strength of neighbor 265 

effects depends on spatial scales (Hambäck et al. 2014), and that the scale of 266 

neighbors to be analyzed relies on the dispersal ability of the causative 267 

organisms (see Hambäck et al. 2009; Sato and Kudoh 2015; Verschut et al. 268 

2016; Ida et al. 2018 for insect and mammal herbivores; Rieux et al. 2014 269 

for pathogen dispersal) or the size of the competing plants (Weiner 1990). 270 

We assumed the distance decay at the s-th sites from a focal individual i 271 

with the decay coefficient α as 𝑤(𝑠, 𝛼) = e−𝛼(𝑠−1), since such an 272 

exponential distance decay has been widely adopted in empirical studies 273 

(Devaux et al. 2007; Carrasco et al. 2010; Rieux et al. 2014; Ida et al. 2018). 274 

Therefore, we assumed a more complex model for simulated phenotypes 275 

than the model for neighbor GWAS as follows: 276 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 +
𝛽2

𝐿
∑ 𝑤(𝑠, 𝛼)𝑥𝑖𝑥𝑗

(𝑠)𝐿
<𝑖,𝑗> + 𝛽12

𝑥𝑖

𝐿
∑ 𝑤(𝑠, 𝛼)𝑥𝑖𝑥𝑗

(𝑠)𝐿
<𝑖,𝑗> +277 

𝑢𝑖 + 𝑒𝑖 (4) 278 

where 𝛽12 was the coefficient for asymmetry in neighbor effects. By 279 

incorporating an asymmetry coefficient, the model (eq. 4) can deal with 280 

cases where neighbor effects are one-sided or occur irrespective of a focal 281 

genotype (Fig. 2). Total variance components resulting from three 282 
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background effects (i.e., the self, neighbor, and self-by-neighbor effects) 283 

were defined as 𝑢𝑖 ∈ 𝒖 and 𝒖~Norm(𝟎, 𝜎1
2𝑲1 + 𝜎2

2𝑲2 + 𝜎12
2 𝑲12). The 284 

three variance component parameters 𝜎1
2, 𝜎2

2, and 𝜎12
2 , determined the 285 

relative importance of the self-genotype, neighbor, and asymmetric neighbor 286 

effects in 𝑢𝑖. Given the elements of n plants × q marker explanatory matrix 287 

with 𝑿12 = (
𝑥𝑖

𝐿
∑ 𝑤(𝑠, 𝛼)𝑥𝑖𝑥𝑗

(𝑠)𝐿
<𝑖,𝑗> ), the similarity in asymmetric neighbor 288 

effects was calculated as 𝑲12 =
1

𝑞−1
𝑿12

𝑇 𝑿12. To control phenotypic 289 

variations, we further partitioned the proportion of phenotypic variation into 290 

those explained by the major-effect genes and variance components PVEβ + 291 

PVEu, major-effect genes alone PVEβ, and residual error PVEe, where PVEβ 292 

+ PVEu + PVEe = 1. The optimize function in R was used to adjust the 293 

simulated phenotypes to the given amounts of PVE. 294 

Parameter setting. Ten phenotypes were simulated with varying 295 

combination of the following parameters, including the distance decay 296 

coefficient α, the proportion of phenotypic variation explained by the 297 

major-effect genes PVEβ, the proportion of phenotypic variation explained 298 

by major-effect genes and variance components PVEβ + PVEu, and the 299 

relative contributions of self, symmetric neighbor, and asymmetric neighbor 300 

effects, i.e., PVEself:PVEnei:PVEs×n. We run the simulation with different 301 

combinations, including α = 0.01, 1.0, or 3.0; PVEself:PVEnei:PVEs×n = 8:1:1, 302 

5:4:1, or 1:8:1; and PVEβ and PVEβ + PVEu = 0.1 and 0.4, 0.3 and 0.4, 0.3 303 

and 0.8, or 0.6 and 0.8. The maximum reference scale was fixed at s = 3. 304 
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The line of simulations was repeated for 10, 50, or 300 causal SNPs to 305 

examine cases of oligogenic and polygenic control of a trait. The non-zero 306 

coefficients for the causal SNPs were randomly sampled from -1 or 1 digit 307 

and then assigned, as some causal SNPs were responsible for both the self 308 

and neighbor effects. Of the total number of causal SNPs, 15% had self, 309 

neighbor, and asymmetric neighbor effects (i.e., 𝛽1 ≠ 0 and 𝛽2 ≠310 

0 and 𝛽12 ≠ 0); another 15% had both the self and neighbor effects, but no 311 

asymmetry in the neighbor effects (𝛽1 ≠ 0 and 𝛽2 ≠ 0 and 𝛽12 = 0); 312 

another 35% had self-genotypic effects only (𝛽1 ≠ 0); and the remaining 313 

35% had neighbor effects alone (𝛽2 ≠ 0). Given its biological significance, 314 

we assumed that some loci having neighbor signals, possessed asymmetric 315 

interactions between the neighbors (𝛽2 ≠ 0 and 𝛽12 ≠ 0), while the others 316 

had symmetric interactions (𝛽2 ≠ 0 and 𝛽12 = 0). Therefore, the number of 317 

causal SNPs in 𝛽12 was smaller than that in the main neighbor effects 𝛽2. 318 

According to this assumption, the variance component 𝜎12
2  was also assumed 319 

to be smaller than 𝜎2
2. To examine extreme conditions and strong asymmetry 320 

in neighbor effects, we additionally analyzed the cases with 321 

PVEself:PVEnei:PVEs×n = 1:0:0, 0:1:0, or 1:1:8. 322 

Summary statistics. The simulated phenotypes were fitted by eq. 2 323 

to test the significance of coefficients 𝛽1 and 𝛽2, and to estimate single or 324 

partial PVEself and PVEnei. To deal with potential collinearity between 325 

 𝑥𝑖  and neighbor genotypic identity ∑ 𝑥𝑖𝑥𝑗
(𝑠)𝐿

<𝑖,𝑗> , we performed likelihood 326 
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ratio tests between the self-genotype effect model and the model with both 327 

self and neighbor effects, which resulted in conservative tests of 328 

significance for 𝛽2 and 𝜎2
2. The simulated phenotype values were 329 

standardized to have a mean of zero and a variance of 1, where true 𝛽 was 330 

expected to match the estimated coefficients 𝛽̂ when multiplied by the 331 

standard deviation of non-standardized phenotype values. The likelihood 332 

ratio was calculated as the difference in deviance, i.e., -2 × log-likelihood, 333 

which is asymptotically χ2 distributed with one degree of freedom. The 334 

variance components, 𝜎1
2 and 𝜎2

2, were estimated using a linear mixed model 335 

without any fixed effects. To solve the mixed model with the two random 336 

effects, we used the average information restricted maximum likelihood 337 

(AI-REML) algorithm implemented in the lmm.aireml function in the 338 

gaston package of R (Perdry and Dandine-Roulland 2018). Subsequently, 339 

we replaced the two variance parameters 𝜎1
2 and 𝜎2

2 in eq. 2 with their 340 

estimates 𝜎̂1
2 and 𝜎̂2

2 from the AI-REML, and performed association tests by 341 

solving a linear mixed model with a fast approximation, using eigenvalue 342 

decomposition (implemented in the lmm.diago function: Perdry and 343 

Dandine-Roulland 2018). The model likelihood was computed using the 344 

lmm.diago.profile.likelihood function. We evaluated the self and neighbor 345 

effects for association mapping based on the forward selection of the two 346 

fixed effects, 𝛽1 and 𝛽2, as described below: 347 

1. Computed the null likelihood with 𝜎1
2 ≠ 0 and 𝜎2

2 = 0 in eq. 2 348 
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2. Tested the self-effect, 𝛽1, by comparing with the null likelihood  349 

3. Computed the self-likelihood with 𝜎̂1
2, 𝜎̂2

2, and 𝛽1 using eq. 2 350 

4. Tested the neighbor effects, 𝛽2, by comparing with the self-likelihood 351 

We also calculated PVE using the mixed model (eq. 3) without 𝛽1 and 𝛽2 as 352 

follows: 353 

1. Calculated single PVEself or single PVEnei by setting either 𝜎1
2 or 𝜎2

2 at 0. 354 

2. Tested the single PVEself or single PVEnei using the likelihood ratio 355 

between the null and one-random effect model 356 

3. Calculated the partial PVEself and partial PVEnei by 357 

estimating 𝜎1
2 and 𝜎2

2 simultaneously 358 

4. Tested the partial PVEself and partial PVEnei using the likelihood ratio 359 

between the two- and one-random effect model 360 

We inspected the model performance based on causal variant 361 

detection, PVE estimates, and effect size estimates. The true or false 362 

positive rates between the causal and non-causal SNPs were evaluated using 363 

ROC curves and area under the ROC curves (AUC) (Gage et al. 2018). An 364 

AUC of 0.5 would indicate that the GWAS has no power to detect true 365 

signals, while an AUC of 1.0 would indicate that all the top signals 366 

predicted by the GWAS agree with the true signals. In addition, the 367 

sensitivity to detect self or neighbor signals (i.e., either 𝛽1 ≠ 0 or 𝛽2 ≠ 0) 368 

was evaluated using the true positive rate of the ROC curves at a stringent 369 

specificity level, where the false positive rate = 0.05. The roc function in the 370 
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pROC package (Robin et al. 2011) was used to calculate the ROC and AUC 371 

from -log10(p-value). Factors affecting the AUC or sensitivity were tested by 372 

analysis-of-variance (ANOVA) for the self or neighbor effects (AUCself or 373 

AUCnei; self or neighbor sensitivity). The AUC and PVE were calculated 374 

from s = 1 (the first nearest neighbors) to s = 3 (up to the third nearest 375 

neighbors) cases. The AUC was also calculated using standard linear models 376 

without any random effects, to examine whether the linear mixed models 377 

were superior to the linear models. We also tested the neighbor GWAS 378 

model incorporating the neighbor phenotype 𝑦𝑗
(𝑠)

 instead of 𝑥𝑗
(𝑠)

. The 379 

accuracy of the total PVE estimates was defined as PVE accuracy = 380 

(estimated total PVE – true total PVE) / true total PVE. The accuracy of the 381 

effect size estimates was evaluated using mean absolute errors (MAE) 382 

between the true and estimated 𝛽1 or 𝛽2 for the self and neighbor effects 383 

(MAEself and MAEnei). Factors affecting the accuracy of PVE and effect size 384 

estimates were also tested using ANOVA. Misclassifications between self 385 

and neighbor fixed effects were further evaluated by comparing p-value 386 

scores between zero and non-zero coefficients. If -log10(p-value) scores of 387 

zero 𝛽 are the same or larger than non-zero 𝛽, it infers a risk of 388 

misspecification of the true signals. 389 

 390 

Arabidopsis herbivory data 391 

We applied the neighbor GWAS to field data of Arabidopsis herbivory. The 392 
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procedure for this field experiment followed that of our previous experiment 393 

(Sato et al. 2019). We selected 199 worldwide accessions from 2029 394 

accessions sequenced by the RegMap (Horton et al. 2012) and 1001 395 

Genomes project (Alonso-Blanco et al. 2016). Of the 199 accessions, most 396 

were overlapped with a previous GWAS of biotic interactions (Horton et al. 397 

2014) and half were included by a GWAS of glucosinolates (Chan et al. 398 

2010). Eight replicates of each of the 199 accessions were first prepared in a 399 

laboratory and then transferred to the outdoor garden at the Center for 400 

Ecological Research, Kyoto University, Japan (Otsu, Japan: 35°06′N, 401 

134°56′E, alt. ca. 200 m: Fig. S1). Seeds were sown on Jiffy-seven pots 402 

(33-mm diameter) and stratified at a temperature of 4 ℃ for a week. 403 

Seedlings were cultivated for 1.5 months under a short-day condition (8 h 404 

light: 16 h dark, 20 ℃). Plants were then separately potted in plastic pots (6 405 

cm in diameter) filled with mixed soil of agricultural compost (Metro-mix 406 

350, SunGro Co., USA) and perlite at a 3:1 ratio. Potted plants were set in 407 

plastic trays (10 × 40 cells) in a checkered pattern (Fig. S1). In the field 408 

setting, a set of 199 accessions and an additional Col-0 accession were 409 

randomly assigned to each block without replacement (Fig. S1). Eight 410 

replicates of these blocks were set >2 m apart from each other (Fig. S1). 411 

Potted plants were exposed to the field environment for 3 wk in June 2017. 412 

At the end of the experiment, the percentage of foliage eaten was scored as: 413 

0 for no visible damage, 1 for ≤10%, 2 for >10% and ≤ 25%, 3 for > 25% 414 
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and ≤ 50%, 4 for >50% and ≤ 75%, and 5 for >75%. All plants were scored 415 

by a single person to avoid observer bias. The most predominant herbivore 416 

in this field trial was the diamond back moth (Plutella xylostella), followed 417 

by the small white butterfly (Pieris rapae). We also recorded the initial plant 418 

size and the presence of inflorescence to incorporate them as covariates. 419 

Initial plant size was evaluated by the length of the largest rosette leaf (mm) 420 

at the beginning of the field experiment and the presence of inflorescence 421 

was recorded 2 wk after transplanting. 422 

We estimated the variance components and performed the 423 

association tests for the leaf damage score with the neighbor covariate at s = 424 

1 and 2. These two scales corresponded to L = 4 (the nearest four neighbors) 425 

and L = 12 (up to the second nearest neighbors), respectively, in the 426 

Arabidopsis dataset. The variation partitioning and association tests were 427 

performed using the gaston package, as mentioned above. To determine the 428 

significance of the variance component parameters, we compared the 429 

likelihood between mixed models with one or two random effects. For the 430 

genotype data, we used an imputed SNP matrix of the 2029 accessions 431 

studied by the RegMap (Horton et al. 2012) and 1001 Genomes project 432 

(Alonso-Blanco et al. 2016). Missing genotypes were imputed using 433 

BEAGLE (Browning and Browning 2009), as described by Togninalli et al. 434 

(2018) and updated on the AraGWAS Catalog 435 

(https://aragwas.1001genomes.org). Of the 10,709,466 SNPs from the full 436 
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imputed matrix, we used 1,242,128 SNPs with MAF at > 0.05 and LD of 437 

adjacent SNPs at r2 <0.8. We considered the initial plant size, presence of 438 

inflorescence, experimental blocks, and the edge or center within a block as 439 

fixed covariates; these factors explained 12.5% of the leaf damage variation 440 

(1.2% by initial plant size, Wald test, Z = 3.53, p-value<0.001; 2.4% by the 441 

presence of inflorescence, Z = -5.69, p-value<10-8; 8.3% by the 442 

experimental blocks, likelihood ratio test, χ2 = 152.8, df = 7, p-value<10-28; 443 

0.5% by the edge or center, Z = 3.11, p-value = 0.002). After the association 444 

mapping, we searched candidate genes within ~10 kb around the target 445 

SNPs, based on the Araport11 gene model with the latest annotation of The 446 

Arabidopsis Information Resource (TAIR) (accessed on 7 September 2019). 447 

Gene-set enrichment analysis was performed using the Gowinda algorithm 448 

that enables unbiased analysis of the GWAS results (Kofler and Schlotterer 449 

2012). We tested the SNPs with the top 0.1% -log10(p-value) scores, with the 450 

option “--gene-definition undownstream10000,” “--min-genes 20,” and 451 

“--mode gene.” The GO.db package (Carlson et al. 2018) and the latest 452 

TAIR AGI code annotation were used to build input files. The R source 453 

codes, accession list, and phenotype data are available at the GitHub 454 

repository (https://github.com/naganolab/NeighborGWAS). 455 

 456 

R package, “rNeighborGWAS” 457 

To increase the availability of the new method, we have developed the 458 
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neighbor GWAS into an R package, which is referred to as 459 

“rNeighborGWAS”. In addition to the genotype and phenotype data, the 460 

package requires a spatial map indicating the positions of individuals across 461 

a space. In this package, we generalized the discrete space example into a 462 

continuous two-dimensional space, allowing it to handle any spatial 463 

distribution along the x- and y-axes. Based on the three input files, the 464 

rNeighborGWAS package estimates the effective range of neighbor effects 465 

by calculating partial PVEnei and performs association mapping of the 466 

neighbor effects using the linear mixed models described earlier. Details and 467 

usage are described in the help files and vignette of the rNeighborGWAS 468 

package available via CRAN at 469 

https://cran.r-project.org/package=rNeighborGWAS. 470 

To assess its implementation, we performed standard GWAS using 471 

GEMMA version 0.98 (Zhou and Stephens 2012) and the rNeighborGWAS. 472 

The test phenotype data were the leaf damage scores for the 199 accessions 473 

described previously and their flowering times under long-day conditions 474 

(“FT16” phenotype collected by Atwell et al. 2010 and Alonso-Blanco et al. 475 

2016). The flowering time phenotype was downloaded from the AraPheno 476 

database (https://arapheno.1001genomes.org/: Seren et al. 2017). The full 477 

imputed genotype data were compiled for 1057 accessions, whose 478 

genotypes and flowering time phenotype were both available. The cut-off 479 

value of the MAF was set at 5%, yielding 1,814,755 SNPs for the 1057 480 
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accessions. The same kinship matrix defined by 𝑲1 above was prepared as 481 

an input file. We calculated p-values using likelihood ratio tests in the 482 

GEMMA program, because the rNeighborGWAS adopted likelihood ratio 483 

tests. 484 

 485 

RESULTS 486 

 487 

Simulation 488 

We conducted simulations to test the capability of the neighbor GWAS to 489 

estimate PVE and marker-effects. As expected by the model and data 490 

structure, collinearity was detected between the self-genotypic 491 

variable 𝑥𝑖  and the neighbor variable ∑𝑥𝑖𝑥𝑗/𝐿 in the simulated genotypes 492 

(Fig. S2). The level of collinearity varied from a slight correlation to 493 

complete collinearity as the MAF became smaller, from 0.5 to 0.1 (Fig. S2). 494 

The collinearity was also more severe as the scale of s was increased. For 495 

example, even at s = 2, we could cut off the MAF at >0.4 to keep |r| below 496 

0.6 for all SNPs. The element-wise correlation between 𝑲1 and 𝑲2 indicated 497 

that at least 60% of the variation was overlapping between the two 498 

genome-wide variance-covariance matrices in the partial genotype data used 499 

for this simulation (R2 = 0.62 at s = 1; R2 = 0.79 at s = 2; R2 = 0.84 at s = 3). 500 

A set of phenotypes were then simulated from the real genotype 501 

data following a complex model (eq. 4), and then fitted using a simplified 502 
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model (eq. 2). The accuracy of the total PVE estimation was the most 503 

significantly affected by the spatial scales of s (Table 1). The total PVE was 504 

explained relatively well by the single PVEself that represented the additive 505 

polygenic effects of the self-genotypes (Fig. 3). Inclusion of partial PVEnei 506 

accounted for the rest of the true total PVE, which was considered the net 507 

contribution of neighbor effects to phenotypic variation. The net PVEnei was 508 

largest when the effective range of the neighbor effects was narrow (i.e., 509 

strong distance decay at 𝛼 = 3) and the contribution of the partial PVEnei 510 

was much larger than that of PVEself (Fig. 3). However, the sum of the single 511 

PVEself (= partial PVEself at s = 0) and the partial PVEnei did not match the 512 

true total PVE (Fig. 3), as expected by the collinearity between the self and 513 

neighbor effects (Fig. S2). Due to such collinearity, the single PVEself or 514 

single PVEnei mostly overrepresented the actual amounts of PVEself or 515 

PVEnei, respectively (Fig. S3). The overrepresentation of the single PVEself 516 

and single PVEnei was observed when either the self or neighbor effects 517 

were absent in the simulation (Fig. S4). These results indicate that (i) single 518 

PVEnei should not be used, (ii) partial PVEnei suffered from its collinearity 519 

with the single PVEself, and (iii) net PVEnei provides a conservative estimate 520 

for the genome-wide contribution of neighbor effects to phenotypic 521 

variation. 522 

Although the partial PVEnei could not be used to quantify the net 523 

contribution of the neighbor effects, this metric inferred spatial scales at 524 
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which neighbor effects remained effective. If the distance decay was weak 525 

(small value of decay coefficient α) and the effective range of the neighbor 526 

effects was broad, partial PVEnei increased linearly as the reference spatial 527 

scale was broadened (Fig. 3). On the other hand, if the distance decay was 528 

strong (large value of decay coefficient α) and the effective scale of the 529 

neighbor effects was narrow, partial PVEnei decreased as the reference 530 

spatial scale was broadened or saturated at the scale of the first nearest 531 

neighbors (Fig. 3). Considering the spatial dependency of the partial PVEnei, 532 

we could estimate the effective spatial scales by ΔPVEnei = partial PVEnei,s+1 533 

– partial PVEnei,s and by the scale that resulted in the maximum ΔPVEnei as s 534 

= arg max ΔPVEnei (Fig. S5). 535 

The spatial scale that yielded the maximum AUC for neighbor 536 

effects, coincided with the patterns of the partial PVEnei across the range of s. 537 

If the distance decay was weak (α = 0.01) and the effective range of the 538 

neighbor effects was broad, the AUCnei increased linearly as the reference 539 

spatial scale was broadened (Fig. 4). If the distance decay was strong (large 540 

value of decay coefficient α) and the effective scale of the neighbor effects 541 

was narrow, the AUCnei did not increase even when the reference spatial 542 

scale was broadened (Fig. 4). Thus, the first nearest scale was enough to 543 

detect neighbor signals, unless the distance decay was very weak. 544 

In terms of the AUC, we also found that the number of causal SNPs, 545 

the amount of PVE by neighbor effects (controlled by the total PVE = PVEβ 546 
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+ PVEu; and ratio of PVEself:PVEnei), and the distance decay coefficient α 547 

were significant factors affecting the power to detect neighbor signals (Table 548 

1). The power to detect self-genotype effects depended on the number of 549 

causal SNPs and PVEβ but was not significantly influenced by the distance 550 

decay coefficient of the neighbor effects (Table 1). The power to detect 551 

self-genotype signals changed from strong (AUCself>0.9) to weak 552 

(AUCself<0.6), depending on the number of causal SNPs, the PVE by the 553 

major-effect genes, and as the relative contribution from the PVEself 554 

increased (Fig. S6). Compared to the self-genotype effects, it was relatively 555 

difficult to detect neighbor effects (Fig. 4; Fig. S6), ranging from strong 556 

(AUCnei>0.9) to little (AUCnei near to 0.5) power. When the number of 557 

causal SNPs = 10, the power to detect neighbor signals decreased from high 558 

(AUCnei>0.9) to moderate (AUCnei>0.7) with the decreasing PVEβ and the 559 

distance decay coefficient (Fig. 4; Fig. S6). There was almost no power to 560 

detect neighbor signals (AUCnei near to 0.5) when the number of causal 561 

SNPs = 50 and PVEnei had low contributions (Fig. S6). The result of the 562 

simulations indicated that strong neighbor effects were detectable when a 563 

target trait was governed by several major genes and the range of neighbor 564 

effects was spatially limited. Additionally, linear mixed models 565 

outperformed standard linear models as there were 8.8% and 1.4% increases 566 

in their power to detect self and neighbor signals, respectively (AUCself, 567 

paired t-test, mean of the difference = 0.088, p-value<10-16; AUCnei, mean of 568 
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the difference = 0.014, p-value<10-16). When the neighbor 569 

phenotype 𝑦𝑗
(𝑠)

 was incorporated instead of the genotype 𝑥𝑗
(𝑠)

, the power to 570 

detect neighbor effects was very weak, such that the AUCnei decreased to 571 

almost 0.5. 572 

To examine misclassifications between the self and neighbor 573 

signals, we compared the sensitivity, effect size estimates, and p-value 574 

scores among causal SNPs having non-zero coefficients of the 575 

true 𝛽1 and 𝛽2. The sensitivity to detect the self and neighbor effects was 576 

largely affected by the number of causal SNPs, the amount of PVE by the 577 

major-effect genes PVEβ, and the relative contribution of the self and 578 

neighbor effects (controlled by PVEself:PVEnei) (Table 1; Fig. S7). The mean 579 

absolute errors of the self-effect estimates for 𝛽̂1 largely depended on the 580 

number of causal SNPs and the relative contribution of the variance 581 

components, while those of the neighbor effect estimates for 𝛽̂2 were 582 

dependent on the relative contribution of the variance components and the 583 

spatial scales to be referred (Table 1; Fig. S8). Given that the self and 584 

neighbor signals were sufficiently detected when the number of causal SNPs 585 

was 50 (Fig. S6), p-values under this condition were compared between the 586 

causal and non-causal SNPs. We observed that strong self-signals (𝛽1 ≠ 0) 587 

were unlikely to be detected as neighbor effects (Fig. 5). Causal SNPs 588 

responsible for both the self and neighbor effects (𝛽1 ≠ 0 and 𝛽2 ≠ 0) were 589 

better detected than the non-causal SNPs (𝛽1 = 0 and 𝛽2 = 0). The 590 
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sensitivity to detect neighbor effects was large when the true contribution of 591 

the neighbor effects was as large as PVEself:PVEnei = 1:8, but decreased 592 

when the contribution of the self-effects was as large as PVEself:PVEnei = 8:1 593 

(Fig. S7). In contrast, if the contribution of the neighbor effects was 594 

relatively large (PVEself:PVEnei = 1:8), the SNPs responsible for the 595 

neighbor effects alone (𝛽1 = 0 and 𝛽2 ≠ 0), could also be detected as 596 

self-effects (Fig. 5). As expected by the level of collinearity (Fig. S2), the 597 

false positive detection of the self -effects was more likely when the 598 

distance decay coefficient was small, and the effective range of the neighbor 599 

effects was broad (Fig. 5). This coincided with the strength of the 600 

collinearity (Fig. S2), as the false positive detection of self-effects and false 601 

negative detection of neighbor effects are more likely if the MAF was small 602 

(Fig. S9). Consistent with the false positive detection, the sensitivity to 603 

detect self -effects remained large, even when the contribution of the 604 

neighbor effects was far larger (Fig. S7). Strong self-effects (p-value < 10-5 605 

for 𝛽̂1) and slight neighbor effects (p-value < 0.05 for 𝛽̂2 at s = 1 and α = 3) 606 

remained when asymmetric neighbor effects were strong (𝛽1 ≠ 0 and 𝛽2 ≠607 

0 and 𝛽12 ≠ 0 and PVEself:PVEnei:PVEsxn = 1:1:8; Fig. S10). These results 608 

indicate that (i) the collinearity may lead to the false positive detection of 609 

self-effects, yet is unlikely to result in the false positive detection of 610 

neighbor effects, and that (ii) smaller MAFs are more likely to cause the 611 

false positive detection of self-effects and decrease the power to detect true 612 
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neighbor effects. 613 

 614 

Arabidopsis herbivory data 615 

To estimate PVEself and PVEnei, we applied a linear mixed model (eq. 3) to 616 

the leaf damage score data for the field-grown A. thaliana. The leaf damage 617 

variation was significantly explained by the single PVEself that represented 618 

additive genetic variation (single PVEself = 0.173, 𝜒1
2 = 10.1, p-value = 619 

0.005). Variation partitioning showed a significant contribution of neighbor 620 

effects to the phenotypic variation in the leaf damage at the nearest scale 621 

(partial PVEnei = 0.214, 𝜒1
2 = 7.23, p-value = 0.004 at s = 1: Fig. S11). The 622 

proportion of phenotypic variation explained by the neighbor effects did not 623 

increase when the neighbor scale was referred up to the nearest and second 624 

nearest individuals (partial PVEnei = 0.14, 𝜒1
2 = 1.41, p-value = 0.166 at s = 625 

2: Fig. S11); therefore, the effective scale of the neighbor effects was 626 

estimated at s = 1 and variation partitioning was stopped at s = 2. These 627 

results indicated that the effective scale of the neighbor effects on the leaf 628 

damage was narrow (s = 1) and the net PVEnei at s = 1 explained an 629 

additional 8% of the PVE compared to the additive genetic variation 630 

attributable to the single PVEself (Fig. 6a). The genotype data had moderate 631 

to strong element-wise correlation between 𝑲1 and 𝑲2 in these analyses (r = 632 

0.60 and 0.78 at s = 1 and 2 among 199 accessions with eight replicates). 633 

We additionally incorporated the neighbor phenotype 𝑦𝑗
(𝑠)

 instead of the 634 
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neighbor genotype 𝑥𝑗
(𝑠)

 in eq. 2, but the partial PVEnei did not increase 635 

(partial PVEnei = 0.066 and 0.068 at s = 1 and 2, respectively). 636 

The standard GWAS of the self-genotype effects on the leaf 637 

damage detected the SNPs with the second and third largest -log10(p-values) 638 

scores, on the first chromosome (chr1), though they were not above the 639 

threshold for Bonferroni correction (Fig. 6b; Table S2). The second SNP at 640 

chr1-21694386 was located within ~10 kb of the three loci encoding a 641 

disease resistance protein (CC-NBS-LRR class) family. The third SNP at 642 

chr1-23149476 was located within ~10 kb of the AT1G62540 locus that 643 

encodes a flavin-monooxygenase glucosinolate S-oxygenase 2 (FMO 644 

GS-OX2). No GOs were significantly enriched for the self-effects on 645 

herbivory (false discovery rate > 0.08). A QQ-plot did not exhibit an 646 

inflation of p-values for the self-genotype effects (Fig. S12). 647 

Regarding the neighbor effects on leaf damage, we found 648 

non-significant but weak peaks on the second and third chromosomes (Fig. 649 

6c; Table S2). The second chromosomal region had higher association 650 

scores than those predicted by the QQ-plot (Fig. S12). A locus encoding 651 

FAD-binding Berberine family protein (AT2G34810 named BBE16), which 652 

is known to be up-regulated by methyl jasmonate (Devoto et al. 2005), was 653 

located within the ~10 kb window near SNPs with the top eleven 654 

-log10(p-values) scores on the second chromosome. Three transposable 655 

elements and a pseudogene of lysyl-tRNA synthetase 1 were located near 656 
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the most significant SNP on the third chromosome. No GOs were 657 

significantly enriched for the self-effects on herbivory (false discovery rate 658 

> 0.9). We additionally tested the asymmetric neighbor effects of 𝛽12 in the 659 

real dataset on field herbivory, but the top 0.1% of the SNPs for the 660 

neighbor effects for 𝛽2, did not overlap with those of the asymmetric 661 

neighbor effects 𝛽12 (Table S2). 662 

Based on the estimated coefficients 𝛽̂1 and 𝛽̂2, we ran a post hoc 663 

simulation to infer a spatial arrangement that minimizes a population sum of 664 

the leaf damage ∑𝑦𝑖 = 𝛽1∑𝑥𝑖 + 𝛽2 ∑ 𝑥𝑖𝑥𝑗<𝑖,𝑗> . The constant intercept 𝛽0, 665 

the variance component 𝑢𝑖, and residual 𝑒𝑖 were not considered because they 666 

were not involved in the deterministic dynamics of the model. Figure 7 667 

shows three representatives and a neutral expectation. For example, a 668 

mixture of a dimorphism was expected to decrease the total leaf damage for 669 

an SNP at chr2-14679190 near the BBE16 locus (𝛽̂2 > 0: Fig. 7a). On the 670 

other hand, a clustered distribution of a dimorphism was expected to 671 

decrease the total damage for an SNP at chr2-9422409 near the AT2G22170 672 

locus encoding a lipase/lipooxygenase PLAT/LH2 family protein (𝛽̂1 ≈673 

0, 𝛽̂2 < 0: Fig. 7b). Furthermore, a near monomorphism was expected to 674 

decrease the leaf damage for an SNP at chr5-19121831 near the AT5G47075 675 

and AT5G47077 loci encoding low-molecular cysteine-rich proteins, LCR20 676 

and LCR6 (𝛽̂1 > 0, 𝛽̂2 < 0: Fig. 7c). If the self and neighbor coefficients 677 

had no effects, we would observe a random distribution and no mitigation of 678 
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damage i.e., ∑𝑦𝑖 ≈ 0 (Fig. 7d). These post hoc simulations suggested a 679 

potential application for neighbor GWAS for the optimization of the spatial 680 

arrangements in field cultivation. 681 

 682 

Comparing self p-values between the neighbor GWAS and GEMMA 683 

To ascertain whether the self-genotype effects in the neighbor GWAS agree 684 

with those of a standard GWAS, we compared the p-value scores between 685 

the rNeighborGWAS package and the commonly used GEMMA program 686 

(Fig. S13). For the leaf damage score, the neighbor GWAS yielded almost 687 

the same -log10(p-values) scores for the self-effects as the GEMMA program 688 

(r = 0.9999 among all the 1,242,128 SNPs). The standard GWAS, using the 689 

flowering time phenotype, also yielded the consistent -log10(p-values) scores 690 

between the neighbor GWAS and GEMMA (r = 0.9999 among all the 691 

1,814,755 SNPs: Fig. S13). Both the flowering time GWAS using the 692 

neighbor GWAS and GEMMA found two significant SNPs above the 693 

genome-wide Bonferroni threshold on chromosome 5 (chr5-18590741 and 694 

chr5-18590743, MAF = 0.49 and 0.49, -log10(p-value) = 7.797 and 7.797 for 695 

the neighbor GWAS; chr5-18590741 and chr5-18590743, MAF = 0.49 and 696 

0.49, -log10(p-value) = 7.798 and 7.798 for GEMMA), which were located 697 

within the Delay of Germination 1 (DOG1) locus, that was reported 698 

previously by Alonso-Blanco et al. (2016). Another significant SNP was 699 

observed at the top of chromosome 4 (chr4-317979, MAF = 0.12, 700 
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-log10(p-value) = 7.787 and 7.933 for the neighbor GWAS and GEMMA), 701 

which was previously identified as a quantitative trait loci underlying 702 

flowering time in long-day conditions (Aranzana et al. 2005). 703 

 704 

 705 

DISCUSSION 706 

 707 

Spatial and genetic factors underlying simulated phenotypes 708 

Benchmark tests using simulated phenotypes revealed that appropriate 709 

spatial scales could be estimated using the partial PVEnei of the observed 710 

phenotypes. When the scale of the neighbor effects was narrow or moderate 711 

(α = 1.0 or 3.0), the scale of the first nearest neighbors would be optimum 712 

for increasing the AUC to detect neighbor signals. In terms of the neighbor 713 

effects in the context of plant defense, mobile animals (e.g., mammalian 714 

browsers and flying insects) often select a cluster of plant individuals (e.g., 715 

Bergvall et al. 2006; Hambäck et al. 2009; Sato and Kudoh 2015; Verschut 716 

et al. 2016). In this case, the neighbor effects could not be observed among 717 

individual plants within a cluster (Sato and Kudoh 2015). The exponential 718 

distance decay at α = 0.01 represented situations in which the effective 719 

range of the neighbor effects was too broad to be detected; only in such 720 

situations should more than the nearest neighbors be referred to, to gain the 721 

power to detect neighbor effects. We also considered the asymmetric 722 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 15, 2020. ; https://doi.org/10.1101/845735doi: bioRxiv preprint 

https://doi.org/10.1101/845735
http://creativecommons.org/licenses/by/4.0/


p. 34 

neighbor effects where the neighbor genotype similarity had significant 723 

effects on one genotype, but not on another genotype. In this situation, 724 

strong self-effects could be observed when the symmetric neighbor effects 725 

were weakened. This additional result suggests that asymmetric neighbor 726 

effects should be tested if strong self-effects and weak symmetric neighbor 727 

effects are both detected at a single locus. 728 

 Neighbor effects are more likely to contribute to phenotypic 729 

variation when its effective range becomes narrow due to a strong distance 730 

decay (𝛼 = 3), as suggested by the net PVEnei. However, the total 731 

phenotypic variation was explained relatively well by the single PVEself that 732 

represented additive polygenic effects. Previous studies showed that genetic 733 

interactions could lead to an overrepresentation of narrow-sense heritability 734 

in GWAS (e.g., Zuk et al. 2012; Young and Durbin 2014). This occurs 735 

because the SNP heritability is represented by the genetic similarity between 736 

individuals, and thereby covariance of the kinship matrix helps to fit the 737 

phenotypic variance attributable to gene-by-gene interactions (Young and 738 

Durbin 2014; Schrauf et al. 2020). This problem is also observed in the 739 

neighbor GWAS that models pairwise interactions at a focal locus among 740 

neighboring individuals. Given the difficulty in distinguishing the kinship 741 

and genetic interactions, we conclude that the non-independence of the self 742 

and neighbor effects is an intrinsic feature of the neighbor GWAS, and that 743 

the difference of the PVE between a standard and neighbor GWAS i.e., net 744 
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PVEnei should be used as a conservative estimate of PVEnei. 745 

 746 

Neighbor GWAS of the field herbivory on Arabidopsis 747 

Our genetic analysis of the neighbor effects is of ecological interest, as the 748 

question of how host plant genotypes shape variations in plant–herbivore 749 

interactions, is a long-standing question in population ecology (e.g., Karban 750 

1992; Underwood and Rausher 2000; Utsumi et al. 2011). Despite the low 751 

PVE and several confounding factors under field conditions, the present 752 

study illustrated the significant contribution of neighbor genotypic identity, 753 

to the spatial variation of the herbivory on A. thaliana. Although the 754 

additional fraction explained by the neighbor effects was 8%, this amount 755 

was plausible in the GWAS of complex traits. For example, the variance 756 

components of epistasis explained 10-14% PVE on average for 46 traits in 757 

yeast (Young and Durbin 2014). Even when heritability is high, the 758 

significant variants have often explained a small fraction of PVE, which is 759 

known as the missing heritability problem in plants and animals (Brachi et 760 

al. 2011; López-Cortegano and Caballero 2019). 761 

Regarding the self-genotype effects, we detected GS-OX2 near the 762 

third top-scoring SNP on the first chromosome. GS-OX2 catalyzes the 763 

conversion of methylthioalkyl to methylsulfinylalkyl glucosinolates (Li et al. 764 

2008) and is up-regulated in response to feeding by the larvae of the large 765 

white butterfly (Pieris brassicae) (Geiselhardt et al. 2013). On the other 766 
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hand, the second top-scoring SNP of the neighbor effects was located near 767 

the BBE16 locus, responsive to methyl jasmonate, a volatile organic 768 

chemical that is emitted from damaged tissue and elicits the defense 769 

responses of other plants (Reymond and Farmer 1998; van Poecke 2007). 770 

However, because none of the associations were significant above a 771 

genome-wide Bonferroni threshold, they should be interpreted cautiously. 772 

Nearby genes should only be considered candidates, and further work is 773 

necessary to confirm that they exert any neighbor effects on herbivory. 774 

 775 

Potential limitation 776 

Despite many improvements, it is more difficult for GWAS to 777 

capture rare causal variants than common ones (Lee et al. 2014; Auer and 778 

Littre 2015; Bomba et al. 2018). This problem is more severe in neighbor 779 

GWAS, because smaller MAFs result in stronger collinearity between the 780 

self-genotype effects 𝑥𝑖  and the neighbor genotypic identity ∑ 𝑥𝑖𝑥𝑗
(𝑠)𝐿

<𝑖,𝑗> . 781 

Our simulations showed that the rare variants responsible for the neighbor 782 

effects might be misclassified as self-effects, though the opposite was not 783 

found, i.e., the misclassification of self-signals into neighbor effects could 784 

be suppressed. In GWAS, genotype data usually contains minor alleles and 785 

possess kinship structures to some extent, making collinearity unavoidable. 786 

To anticipate false positive detection of neighbor effects, the significance of 787 

variance components and marker effects involving neighbor effects should 788 
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always be compared using the standard GWAS model.  789 

The present neighbor GWAS focused on single-locus effects and 790 

did not incorporate locus-by-locus interactions. Although it is challenging to 791 

integrate all the association tests for epistasis into GWAS (Gondro et al. 792 

2013; Young and Durbin 2014), it is possible that multiple combinations 793 

among different variants govern neighbor effects. For example, neighbor 794 

effects on insect herbivory may occur due to the joint action of 795 

volatile-mediated signaling and the accumulation of secondary metabolites 796 

(Dicke and Baldwin 2010; Erb 2018). The linear mixed model could be 797 

extended as exemplified by the asymmetric neighbor effects; however, we 798 

need to reconcile multiple criteria including the collinearity of explanatory 799 

variables, inflation of p-values, and computational costs. Further 800 

customization is warranted when analyzing more complex forms of 801 

neighbor effects. 802 

 803 

 804 

Conclusion 805 

Based on the newly proposed methodology, we suggest that neighbor effects 806 

are an overlooked source of phenotypic variation in field-grown plants. 807 

GWAS have often been applied to crop plants (Jannink et al. 2010; Hamblin 808 

et al. 2011), where genotypes are known, and individuals are evenly 809 

transplanted in space. Considering this outlook for agriculture, we provided 810 
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an example of neighbor GWAS across a lattice space in this study. However, 811 

wild plant populations sometimes exhibit more complex spatial patterns 812 

than those expected by the Ising model (e.g., Kizaki and Katori 1999; 813 

Schlicht and Iwasa 2004). In the rNeighborGWAS package, we allowed 814 

neighbor GWAS for a continuous two-dimensional space. While its 815 

application has now been limited to experimental populations, neighbor 816 

GWAS has the potential for compatibility with the emerging discipline of 817 

landscape genomics (Bragg et al. 2015). In this context, the additional R 818 

package could help future studies to test self and neighbor effects using a 819 

wide variety of plant species. 820 

Neighbor GWAS may also have the potential to help determine 821 

optimal spatial arrangements for plant cultivation, as suggested by the post 822 

hoc simulation. Genome-wide polymorphism data are useful not only for 823 

identifying causal variants in GWAS, but also for predicting the breeding 824 

values of crop plants for genomic selection (e.g., Jannink et al. 2010; 825 

Hamblin et al. 2011; Yamamoto et al. 2017). Given that the neighbor GWAS 826 

consists of a marker-based regression, this methodology could also be 827 

expanded as a genomic selection tool to help predict population-level 828 

phenotypes in spatially structured environments. 829 
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Tables and Figures 1097 

 1098 

Table 1. Factors affecting variance estimation and causal variant detection 1099 

in the simulated phenotypes. The accuracy of the proportion of the 1100 

phenotypic variation explained (PVE) was defined as the PVE accuracy = 1101 

(estimated total PVE – true total PVE) / true total PVE. The power was 1102 

represented by the area under the ROC curve (AUC). The sensitivity to 1103 

detect self or neighbor effects was evaluated using the true positive rate of 1104 

the ROC curve, when the false positive rate = 0.05. The accuracy of the 1105 

effect size estimates were evaluated using the mean absolute errors (MAE) 1106 

between the true and estimated fixed effects. ANOVA tables show the 1107 

degree of freedom (df), sum of squares (SS), F-statistics, and p-values. 1108 

Explanatory factors are the number of causal SNPs, proportion of 1109 

phenotypic variation explained (PVE) by major-effect genes (PVEβ), total 1110 

PVE by major-effect genes and variance components (PVEβ + PVEu), 1111 

relative contribution of self, symmetric, and asymmetric neighbor effects 1112 

(PVEself:PVEnei:PVEsxn), and distance decay coefficient 𝛼. For the neighbor 1113 

effects, the difference of the reference spatial scales (s = 1 - 3) was also 1114 

considered an explanatory variable. NA means not available. 1115 

Response Factors df SS F p-value 

PVE accuracy No. of causal SNPs 1 0.00 0.0 0.954 

 PVEβ 1 0.01 0.6 0.439 

 PVEβ + PVEu 1 0.02 0.61 0.433 

 PVEself:PVEnei:PVEsxn 2 0.25 4.95 0.007 

 α 1 0.96 38.46 6.1e-10 

 s 1 8.49 341.0 < 2.2e-16 

 Residuals 4312 107.34 NA NA 

AUCself No. of causal SNPs 1 13.12 2998.6 < 2e-16 

 PVEβ 1 0.77 176.6 < 2e-16 

 PVEβ + PVEu 1 0.02 4.04 0.045 

 PVEself:PVEnei:PVEsxn 2 8.08 923.54 < 2e-16 

 α 1 0.01 2.19 0.139 
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 Residuals 1073 4.69 NA NA 

AUCnei No. of causal SNPs 1 25.82 2225.1 < 2.2e-16 

 PVEβ 1 2.30 198.1 < 2.2e-16 

 PVEβ + PVEu 1 0.03 2.24 0.135 

 PVEself:PVEnei:PVEsxn 2 20.97 903.48 < 2.2e-16 

 α 1 0.96 83.00 < 2.2e-16 

 s 1 0.079 6.83 0.0090 

 Residuals 3232 37.50 NA NA 

Self sensitivity No. of causal SNPs 1 74.204 1317.15 < 2.2e-16 

 PVEβ 1 2.236 39.69 4.0e-10 

 PVEβ + PVEu 1 0.06 1.06 0.30 

 PVEself:PVEnei:PVEsxn 2 11.955 106.10 < 2.2e-16 

 α 1 0.089 1.57 0.21 

 Residuals 1073 60.449 NA NA 

Neighbor sensitivity No. of causal SNPs 1 98.052 1153.56 < 2.2e-16 

 PVEβ 1 4.649 54.70 2.0e-13 

 PVEβ + PVEu 1 0.016 0.19 0.67 

 PVEself:PVEnei:PVEsxn 2 23.196 136.45 < 2.2e-16 

 α 1 1.852 21.79 3.0e-06 

 s 1 0.096 1.13 0.29 

 Residuals 3232 274.72 NA NA 

MAEself No. of causal SNPs 1 105.32 323.44 < 2e-16 

 PVEβ 1 1.80 5.54 0.02 

 PVEβ + PVEu 1 0.14 0.44 0.51 

 PVEself:PVEnei:PVEsxn 2 36.11 55.45 < 2e-16 

 α 1 0.73 2.23 0.14 

 Residuals 1073 349.41 NA NA 

MAEnei No. of causal SNPs 1 2.73 15.06 1.0e-04 

 PVEβ 1 16.89 93.17 < 2.2e-16 

 PVEβ + PVEu 1 3.51 19.34 1.0e-05 

 PVEself:PVEnei:PVEsxn 2 80.22 221.25 < 2.2e-16 

 α 1 0.39 2.15 0.14 

 s 1 45.87 253.01 < 2.2e-16 

  Residuals 3232 585.91 NA NA 

 1116 

  1117 
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Figure 1. Relationship between the neighbor GWAS and Ising model. 1118 

Upper panels show the spatial arrangements expected by a 2-D Ising model 1119 

∑𝑦𝑖 = 𝛽1∑𝑥𝑖 + 𝛽2 ∑ 𝑥𝑖𝑥𝑗<𝑖,𝑗> . (a) If 𝛽2>0, mixed patterns give the 1120 

argument of the minimum for a population sum of phenotype values ∑𝑦𝑖. 1121 

(b) If 𝛽2<0, clustered patterns give the argument of the minimum for ∑𝑦𝑖. 1122 

(c) In addition, 𝛽1 determines the overall patterns favoring -1 or +1 states. 1123 

The figures show outcomes from a random 100 × 100 lattice after 1000 1124 

iterations of simulated annealing. Conversely, the neighbor GWAS was 1125 

implemented as an inverse problem of the 2-D Ising model, where 1126 

genotypes and its spatial arrangement, 𝑥𝑖  and 𝑥𝑖𝑥𝑗, were given while the 1127 

coefficients 𝛽1 and 𝛽2 were to be estimated from the observed phenotypes 𝑦𝑖. 1128 

In addition, the variance component due to self and neighbor effects was 1129 

considered a random effect in a linear mixed model, such that 𝑢𝑖 ∈1130 

𝒖 and 𝒖~Norm(𝟎, 𝜎1
2𝑲1 + 𝜎2

2𝑲2). Once 𝛽1 and 𝛽2 were determined, we 1131 

could simulate a genotype distribution that maximizes or minimizes ∑𝑦𝑖. 1132 
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Figure 2. Numerical examples of the symmetric (a) and asymmetric (b, c) 1134 

neighbor effects. The intercept, distance decay, random effects, and residual 1135 

errors are neglected, to simplify this scheme. (a) Symmetric neighbor effects 1136 

represent how neighbor genotype similarity (or dissimilarity) affects the trait 1137 

value of a focal individual yi regardless of its own genotype. (b) Asymmetric 1138 

neighbor effects can represent a case in which one genotype experiences 1139 

neighbor effects while the other does not (b) and a case in which the 1140 

direction of the neighbor effects depends on the genotypes of a focal 1141 

individual (c). The case (b) was considered in our simulation as it has been 1142 

empirically reported (e.g., Bergvall et al. 2006; Verschut et al. 2016; Sato & 1143 

Kudoh 2017). 1144 

 1145 
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Figure 3. Spatial scale dependence of PVE estimates in simulated 1147 

phenotypes. The broad, intermediate, and narrow effective range of 1148 

neighbor effects are represented by weak (α = 0.01), moderate (α = 1), and 1149 

strong (α = 3) distance decay coefficients, respectively. Partial PVE (left) 1150 

and the accuracy of the total PVE estimation (right) are shown along the 1151 

spatial scale from the first nearest (s = 1) to the third nearest (s = 3) 1152 

neighbors, with distinct relative contributions of the self and neighbor 1153 

effects to a phenotype (PVEself:PVEnei = 1:8 or 8:1). Boxplots show center 1154 

line: median, box limits: upper and lower quartiles, whiskers: 1.5 × 1155 

interquartile range, and points: outliers. In the left panels, red boxes indicate 1156 

partial PVEself at s = 0 (corresponded to single PVEself), while blue boxes 1157 

indicate partial PVEnei at s ≠ 0. In the right panels, horizontal dashed lines 1158 

indicate a perfect match between the estimated and true total PVE. 1159 

 1160 
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Figure 4. Spatial scale dependence of the power to detect causal SNPs in 1162 

simulated phenotypes. The broad, intermediate, and narrow effective range 1163 

of neighbor effects are represented by weak (α = 0.01), moderate (α = 1), 1164 

and strong (α = 3) distance decay coefficients, respectively. Receiver 1165 

operating characteristic (ROC) curves (right) and the area under the ROC 1166 

curve (AUC) (left) are shown alongside the spatial scales from the first 1167 

nearest (s = 1) to the third nearest (s = 3) neighbors, with the distinct relative 1168 

contributions of the self and neighbor effects to a phenotype (PVEself:PVEnei 1169 

= 1:8 or 8:1). Red boxes and curves indicate self-effects, while blue boxes 1170 

indicate neighbor effects. The thickness of the blue curves indicates 1171 

reference spatial scales as follows:  s = 1 (thick), 2 (medium), or 3 (thin). 1172 

The horizontal dashed lines in the left panels indicates that the AUC = 0.5, 1173 

i.e., no detection of causal variants. The ROC curves in the right panels are 1174 

depicted based on ten iterations with 50 causal SNPs. 1175 
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 1178 

Figure 5. Signals of the self and neighbor effects when either the self or 1179 

neighbor effects were for 50 causal SNPs. The score of -log10(p-value) is 1180 

averaged within each iteration and is shown for the non-causal SNPs (𝛽1 =1181 

𝛽2 = 0), SNPs responsible for self-effects alone (𝛽1 ≠ 0 and 𝛽2 = 0), SNPs 1182 

responsible for neighbor effects alone (𝛽1 = 0 and 𝛽2 ≠ 0), and SNPs 1183 

responsible for both self and neighbor effects (𝛽1 ≠ 0 and 𝛽2 ≠ 0). Red and 1184 

blue boxes show -log10(p-value) distributions among the iterations for the 1185 

self and neighbor effects, respectively. 1186 
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 1189 

Figure 6. Pilot GWAS of leaf damage scores on field-grown Arabidopsis 1190 

thaliana. (a) Proportion of phenotypic variation explained (PVE) by the 1191 

self-genotype (red) or neighbor effects (blue). The PVEself was represented 1192 

by the single PVEself that represented additive genetic variance, while the 1193 

net contribution of the neighbor effects was evaluated using the net PVEnei = 1194 

total PVE – single PVEself. Asterisks highlight a significant fraction with 1195 

stepwise likelihood ratio tests, from simpler to complex models: **p-value < 1196 

0.01: ***p-value < 0.001. (b, c) Manhattan plots for the self or neighbor 1197 

effects. The first to fifth chromosomes are differently colored, where lighter 1198 

plots indicate smaller MAF. Horizontal dashed lines indicate the threshold 1199 

after Bonferroni correction at p-value < 0.05. The red vertical line in panel 1200 

(a) indicates an SNP position near the GS-OX2 locus, while the three circles 1201 

highlighted by a black outline in panel (b) indicates the variants subject to 1202 

the post hoc simulation (Fig. 7). Results of the self and neighbor effects are 1203 

shown at s = 0 (i.e., standard GWAS) and s = 1, respectively. 1204 
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 1206 

Figure 7. Post hoc simulations exemplifying a spatial arrangement of the 1207 

two alleles expected by the estimated self and neighbor effects, 𝛽̂1 and 𝛽̂2, 1208 

on the leaf damage score of Arabidopsis thaliana. The population sum of 1209 

the leaf damage ∑𝑦𝑖 = 𝛽1∑𝑥𝑖 + 𝛽2 ∑ 𝑥𝑖𝑥𝑗<𝑖,𝑗>  was minimized using 1000 1210 

iterations of simulated annealing from a random distribution of two alleles 1211 

in a 10 × 40 space. 1212 
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