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ABSTRACT.	Cancer	somatic	mutations	have	been	identified	as	a	source	of	
antigens	that	can	be	targeted	by	cancer	immunotherapy.	In	this	work,	expanding	
on	previous	studies,	we	analyse	the	immunogenic	properties	of	mutations	that	
are	known	to	drive	resistance	to	cancer	targeted-therapies.	We	survey	a	large	
dataset	of	mutations	that	confer	resistance	to	different	drugs	and	occur	in	
numerous	genes	and	tumour	types.	We	show	that	a	significant	number	of	these	
mutations	are	predicted	in	silico	to	have	immunogenic	potential	across	a	large	
proportion	of	the	human	population.	Two	of	these	mutations	had	previously	
been	experimentally	validated	and	it	was	confirmed	that	some	of	their	
associated	neopeptides	elicit	T-cell	responses	in	vitro.	The	identification	of	
potent	cancer-specific	antigens	can	be	instrumental	for	developing	more	
effective	immunotherapies.	Resistance	mutations,	several	of	which	are	known	to	
recur	in	different	patients,	could	be	of	particular	interest	in	the	context	of	off-
the-shelf	precision	immunotherapies	such	as	therapeutic	cancer	vaccines.	
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INTRODUCTION.	
	
Cancer	cells	express	a	typically	aberrant	protein	repertoire	compared	to	that	of	
normal	cells.	These	aberrations,	whether	functional	(drivers)	or	non-functional	
(passengers),	have	the	potential	to	generate	peptide	antigens	that	are	not	(or	are	
only	partially)	subjected	to	central	or	peripheral	tolerance.	As	such,	when	
presented	by	human	leukocyte	antigen	(HLA)	complexes	on	the	surface	of	cancer	
cells,	these	antigens	might	lead	to	recognition	by	cytotoxic	T-cells	and,	
eventually,	to	immuno-mediated	tumor	clearance1,2.	Tumors,	however,	can	
develop	sophisticated	escape	mechanisms3	and	immune	evasion	is	now	
recognised	as	one	of	the	hallmarks	of	cancer4.		
	
Cancer	immunotherapies	seek	to	restore	the	ability	of	the	host’s	immune	system	
to	recognise	tumor	antigens	and	attack	the	cells	that	express	them5.	Checkpoint	
blockade	therapies	(CBTs),	in	particular,	act	by	inhibiting	immune-checkpoint	
receptors	and	thus	reinvigorating	the	cytolytic	activity	of	the	patient’s	T-cell	
repertoire6.	As	mentioned	above,	cancer	cells	that	present	an	aberrant	
peptidome	are	most	likely	to	be	targeted	by	T-cells.	Despite	remarkable	
successes,	CBTs	are	to	date	approved	for	treatment	in	a	limited	number	of	solid	
malignancies,	with	only	a	fraction	of	patients	responding7.	As	great	efforts	are	
being	made	toward	improving	the	scope	and	efficacy	of	CBTs8,	there	is	growing	
interest	for	the	identification	of	patient’s	specific,	highly	immunogenic	antigens	
that	could	be	used	for	more	targeted	treatments9,	possibly	in	combination	with	
CBTs.	These	include	therapeutic	cancer	vaccines10-12	that	can	be	produced	ex	vivo	
and	delivered	to	the	patient	in	the	form	of	peptides,	peptide-encoding	RNA/DNA	
molecules	or	using	peptide-loaded	autologous	dendritic	cells	or	viruses13.	
Identification	of	tumor	antigens	that	can	serve	for	these	purposes	is	thus	a	
priority14,15.		
	
Historically,	peptides	belonging	to	a	normal	cell	proteome	but	preferentially	or	
almost	exclusively	expressed	in	cancer	cells	(‘tumour-associated	antigens’	or	
TAAs)	were	the	first	to	be	targeted	for	the	clinic11,16,17	along	with	oncoviral	
antigens	(encoded	by	oncogenic	viruses)18.	Although	the	clinical	development	of	
vaccination	strategies	against	TAAs	continues,	they	are	now	generally	regarded	
as	less-than-ideal	and	often	weak	effectors,	primarily	because	of	incomplete	
tumour	specificity	and	partial	central	tolerance	13,19.	Increasingly,	researchers	
are	focusing	their	attention	on	cancer-specific	peptides	such	as	those	associated	
with	passenger	mutations10,20-26,	somatic	gene	fusions27,	aberrantly	expressed	
tumor	transcripts28	and	tumor-specific	alternatively	spliced	isoforms29	and	post-
translational	modifications30,31.	
	
In	this	study,	building	on	previous	works32-34,	we	present	a	comprehensive	in	
silico	survey	of	the	antigenic	potential	of	peptides	associated	with	cancer	drug	
resistance	mutations.	Resistance	mutations	emerge	in	the	context	of	targeted	
therapies,	which	are	aimed	at	tumors	that	depend	for	their	growth	on	specific	
oncogenes35.	This	addiction	makes	such	tumours	vulnerable,	at	least	in	principle,	
to	drugs	that	inhibit	the	relevant	protein(s).	Targeted	therapies	are	available	for	
an	increasing	number	of	haematological	and	solid	malignancies	(e.g.,36-38)	but	a	
significant	fraction	of	patients	either	don’t	respond	to	treatment	or	eventually	
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relapse.	Intrinsic	(germline	or	somatic)	and	acquired	(somatic)	resistance	is	
mediated	by	a	range	of	different	molecular	mechanisms39.	Among	them	is	the	
pre-existence	(possibly,	if	somatic,	at	very	low	allele	frequencies)	or	the	
acquisition	following	treatment	of	protein-modifying	mutations	on	the	targeted	
oncogenes	or	on	other	genes	in	the	same	or	alternative	pathways40,41.		
	
Resistance	mutations	possess	a	number	of	properties	that	are	appealing	in	the	
context	of	precision	immunotherapy:	they	are	tumor-specific,	thus	generating	
neoantigens	that	are	less	likely	to	be	subjected	to	central	or	peripheral	tolerance	
or	to	elicit	an	autoimmune	response42;	because	they	drive	resistance,	they	are	
expected	to	be	expressed	in	therapy-resistant	clones;	they	are	usually	found	on	
oncogenes,	hence	making	therapy-escape	by	the	tumor	through	gene	down-
regulation	harder;	and,	finally,	several	of	them	are	known	to	recur	in	different	
patients	(i.e.,	they	are	not	patient-specific)	making	them	potential	targets	for	
developing	off-the-shelf	rather	than	fully-personalised	and	potentially	highly	
expensive	precision	therapies	43.	Here,	we	report	on	226	resistance	mutations	
(source:	COSMIC)	that	pertain	to	numerous	genes,	tumor	types	and	drugs	and	we	
study	their	immunogenicity	in	relation	to	a	set	of	1,261	individuals	from	the	
1000	Genomes	project	encompassing	a	landscape	of	195	HLA-A,	-B	and	-C	class	I	
allotypes.	We	show	that	several	of	these	mutations	generate	neopeptides	that	
are	predicted	in	silico	to	have	immunogenic	potential	across	a	significant	fraction	
of	individuals	in	our	dataset.	In	the	context	of	previous	publications	that	showed	
how	neopeptides	from	two	resistance	mutations	(E255K	in	BCR-ABL132	and	
T790M33,34	in	EGFR)	could	elicit	T-cell	responses	in	vitro,	our	results	support	the	
idea	that	drug	resistance	mutations	might	be	an	important	(and	potentially	
expanding)	source	of	tumor	antigens	for	precision	immunotherapies.	In	
particular,	this	opens	up	the	possibility	of	tracking	the	development	of	resistance	
mutations	(for	example,	in	circulating	tumour	DNA),	whilst	patients	are	treated	
on	a	particular	drug,	and	using	an	off-the-shelf	vaccine	targeting	the	relevant	
neoantigen	to	prolong	the	period	of	clinical	benefit.	
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METHODS	
	
Mutation	datasets.	We	download	from	Marty	et	al	44	the	following	datasets:	
passenger	mutations	(1,000	in	total),	recurrent	mutations	(1,000),	germline	
SNPs	(1,000),	random	mutations	(3,000).	In	Marty	et	al.,	recurrent	and	
passenger	mutations	are	derived	from	TCGA	data45.	In	particular,	recurrent	
mutations	are	defined	as	those	found	within	a	list	of	200	tumour-associated	
genes46	and	observed	in	at	least	3	TCGA	samples.	All	TCGA	mutations	not	
occurring	in	the	list	of	tumour-associated	genes	are	considered	as	passengers.	
Germline	SNPs	are	common	germline	variants	that	are	sampled	from	the	Exome	
Variant	Server	(1,000	in	total).	Finally,	random	mutations	are	generated	
randomly	in	human	proteins	from	Ensembl	(release	89;	GRCh37;	3,000	in	total).	
From	the	initial	list	of	1,000	recurrent	mutations,	we	extract	those	that	are	
observed	in	at	least	30	TCGA	patients	and	we	label	them	as	driver	mutations	(32	
in	total).	As	explained	in	the	next	section,	in	the	process	of	generating	the	
mutation-associated	neopeptides	from	each	of	these	datasets,	we	have	to	discard	
a	certain	number	of	mutations.	The	final	count	for	each	set	is	as	follows:	961	
passengers,	999	recurrent	(32	of	which	constitute	our	drivers	list),	970	germline	
SNPs	and	2,758	random	mutations.	These	final	lists	of	mutations	are	reported	in	
Supplementary	Table	1	together	with	their	PMHBR	score	(see	below).		
Our	resistance	mutations	are	extracted	from	the	CosmicResistanceMutations.tsv	
file	that	we	downloaded	from	the	COSMIC	website	(COSMIC	version	86).	From	
this	initial	list,	we	manually	remove	a	few	entries	(COSM5855836,	
COSM1731743,	COSM5855814,	COSM3534174,	COSM763)	that	appear	to	be	
duplicates	of	other	entries	(COSM5855837,	COSM1731742,	COSM5855815,	
COSM3534173,	COSM125370,	respectively),	those	for	which	information	about	
the	exact	amino	acid	substitution	is	not	provided	in	COSMIC	and	non-missense	
mutations.	Overall,	we	obtain	226	resistance	mutations	(Supplementary	Table	
1).	Note	that	4	of	them	also	appear	in	our	list	of	driver	mutations	(NRAS	Q61R	
and	Q61K,	PIK3CA	E545K,	BRAF	V600E).	Genes,	tissues,	tumor	subtypes	and	
drugs	to	which	these	mutations	are	associated	are	reported	in	Supplementary	
Table	2.	In	COSMIC,	each	mutation	is	listed	as	many	times	as	the	number	of	
patients	in	which	it	has	been	reported	in	the	scientific	literature.	Although	this	
can	provide	us	with	valuable	information	on	the	prevalence	of	a	mutation	in	
patients	that	have	been	treated	with	a	specific	drug	and	for	a	specific	tumor	type,	
comparisons	across	different	tumor	types,	genes	and	drugs	are	more	
complicated.	Indeed,	the	number	of	cases	reported	can	be	influenced	by	several	
factors,	including	a	tumor’s	incidence	or	the	time	that	has	passed	since	a	drug’s	
approval.	For	example	the	EGFR	C797S	mutation,	a	mutation	of	particular	
clinical	relevance	conferring	resistance	to	the	lung	carcinoma	third-generation	
EGFR	inhibitor	Osimertinib47,	is	currently	reported	in	COSMIC	to	have	occurred	
in	11	patients.	This	is	much	less,	for	example,	than	the	487	records	for	the	
T790M	mutation.	Osimertinib,	however,	is	a	relatively	recent	drug	(FDA-
approved	in	2015)	when	compared	to	some	of	the	drugs	T790M	confers	
resistance	to	(e.g.	Gefitinib,	FDA-approved	in	2003).	Here,	notwithstanding	these	
limitations,	we	make	use	of	the	number	of	occurrences	in	COSMIC	to	obtain	at	
least	a	rough	separation	between	rare	and	more	frequent	resistance	mutations,	
with	the	latter	being	the	ones	that	are	more	likely	to	be	relevant	in	the	context	of	
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off-the-shelf	cancer	vaccine	development.	In	particular,	we	define	the	
“resistance>1”	dataset	as	a	subset	of	all	resistance	mutations	reported	in	COSMIC	
to	occur	in	more	than	one	patient	(114	in	total,	Supplementary	Table	1).	Yet	
another	set	of	resistance	mutations	we	use	is	“resistance-no-BCR-ABL1”,	which	
contains	only	COSMIC	resistance	mutations	not	found	in	BCR-ABL1	(124	in	total,	
Supplementary	Table	1).	Note	that	although	patients	reported	to	have	multiple	
resistance	mutations	might	carry	compound	mutations	that	could	be	generating	
multiple-mutant	neopeptides,	this	type	of	information	is	generally	not	available	
from	COSMIC	(zygosity	is	also	for	the	most	part	unknown);	as	a	consequence,	we	
consider	all	resistance	mutations	as	being	“isolated”	mutations.		
	
	
Generation	of	mutation-associated	peptides.	In	order	to	calculate	the	HLA-
presentation	likelihood	for	the	peptides	generated	by	the	above	sets	of	
mutations,	we	need	to	map	each	mutation	to	a	protein	sequence.	Here,	we	use	
human	protein	sequences	from	EnsEMBL	as	found	in	the	
Homo_sapiens.GRCh37.pep.all.fa.gz	file	(downloaded	from	EnsEMBL	and,	
hereafter,	referred	to	as	“EnsEMBL	protein	file”).	For	resistance	mutations,	we	
obtain	from	the	CosmicResistanceMutations.tsv	table	the	EnsEMBL	transcript	
ids,	all	of	which	have	a	corresponding	protein	entry	in	the	EnsEMBL	protein	file.	
For	all	other	sets	of	mutations,	we	first	extract	the	gene	id	from	table	S3	of44;	
then,	we	generate	(Jan	2018)	from	the	UCSC	Genome	Table	Browser	the	mapping	
between	gene	ids	(HGNC	symbols)	and	canonical	EnsEMBL	transcripts	and,	
additionally,	from	the	EnsEMBL	BioMart	the	mapping	between	gene	ids	and	non-
canonical	EnsEMBL	transcripts.	Finally,	given	a	mutation	and	its	associated	gene	
id,	we	try	to	map	the	mutation	to	the	EnsEMBL	canonical	transcript	sequence	for	
that	gene	id.	If	we	are	not	successful,	we	try	to	map	the	mutation	to	a	non-
canonical	transcript	sequence	for	the	same	gene	id.	If	even	in	this	second	case	we	
cannot	find	any	appropriate	mapping,	we	discard	the	mutation.	For	mutations	
that	we	can	map	to	a	transcript	we	can	then	find	the	corresponding	protein	
sequence	in	the	EnsEMBL	protein	file.	According	to	this	protocol,	occasionally,	
two	different	mutations	found	in	the	same	gene	may	end	up	being	mapped	to	
two	different	EnsEMBL	transcripts	and	hence	protein	sequences.	We	only	
consider	missense	mutations	(single	amino	acid	substitutions);	we	do	not	
consider	indels.	As	mentioned	in	the	previous	section,	the	final	list	of	mutations	
that	we	utilise	from	each	of	the	above	datasets	following	mapping	to	EnsEMBL	
transcripts	is	reported	in	Supplementary	Table	1.	The	EnsEMBL	transcripts	used	
for	genes	in	these	datasets	are	shown	in	Supplementary	Table	3.	
	
For	each	mutation	part	of	the	datasets	in	Supplementary	Table	1,	we	use	an	in-
house	Python	script	to	generate	all	possible	peptides	of	length	8	to	11	that	span	
the	mutation.	For	mutations	that	don’t	fall	within	the	first	10	or	last	10	positions	
of	a	transcript	this	means	generating	a	total	38	peptides	(or	correspondingly	less	
otherwise).	A	wild-type	peptide	associated	to	a	specific	mutant	peptide	is	
identical	to	the	mutant	peptide	except	for	the	fact	that	the	mutated	amino	acid	is	
reverted	to	the	wild	type	one.		
	
List	of	individuals	with	known	HLA	allotype	combinations.	We	obtain	a	list	
of	individuals	with	their	associated	HLA	class	I	allotypes	from	
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ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20140725_hla_ge
notypes/20140702_hla_diversity.txt.	This	dataset	includes	1,267	unique	
individuals	from	the	1000	Genomes	Project,	covering	14	populations	and	4	
major	ancestral	groups48.	Each	individual	is	annotated	with	their	6	HLA	class	I	
allotypes.	However,	in	several	cases	each	of	the	6	allotypes	is	represented	by	
multiple	entries.	These	typing	ambiguities	reflect	allotypes	that	do	not	differ	on	
exons	2	and	3	of	the	HLA	gene,	that	is,	the	exons	carrying	the	antigen	recognition	
sites.	In	these	cases,	we	consider	only	the	first	reported	entry	for	each	allotype.	
We	exclude	individuals	that	have	allotypes	that	are	not	well	defined	at	the	four	
digit	level	or	that	are	not	present	in	the	NetMHCpan-4.0	library	of	HLA	allotypes	
(NetMHCpan-4.0	is	the	method	that	we	use	for	predicting	HLA-presentation,	see	
below),	these	are:	HLA-A03:03N,	HLA-B44,	HLA-C15,	HLA-C14XX.	HLA-C0140	
and	those	labelled		“0000”.	The	complete	list	of	1,261	individuals	and	associated	
allotype	combinations	that	we	use	is	given	in	Supplementary	Table	4.	In	the	
following,	we	refer	to	this	as	the	1000G	dataset	and	use	it	to	represent	the	type	
and	frequency	of	HLA	class	I	combinations	that	we	expect	to	find	in	individuals	
within	the	general	population.		
	
	
HLA-presentation	scores.	All	HLA-presentation	scores	that	we	describe	in	the	
following	are	defined	starting	from	eluted	ligand	likelihood	percentile	ranks	of	
peptides	with	respect	to	HLA	allotypes;	these	rank	scores	are	obtained	from	the	
NetMHCpan-4.0	prediction	method49.	
	
Best	rank	(BR)	HLA-presentation	score	of	a	mutation.	Each	missense	mutation	is	
associated	to	a	set	of	(maximum	38)	peptides	(see	Generation	of	mutation-
associated	peptides	above).	For	each	peptide	in	this	set,	we	use	the	program	
NetMHCpan-4.049	to	calculate	the	eluted	ligand	likelihood	percentile	rank	and	
the	interaction	core	peptide	(Icore)	with	respect	to	all	HLA	allotypes	observed	
in	the	1000G	dataset	(see	above).	The	elution	rank	takes	values	in	the	range	from	
0	to	100,	with	lower	values	representing	higher	presentation	likelihoods.	The	
Icore	is	the	part	of	the	original	peptide	predicted	by	NetMHCpan-4.0	to	be	
located	in	the	HLA	binding	site,	thus	the	peptide	most	likely	to	interact	with	
the	T-cells.	In	some	of	the	cases	in	which	the	Icore	is	shorter	than	the	original	
peptide,	it	may	not	span	the	mutation	at	all	and	may	thus	be	equivalent	to	a	
wild-type	peptide.	We	define	the	presentation	score	of	a	mutation	with	respect	
to	a	specific	HLA	allotype	as	the	minimum	elution	rank	among	all	associated	
peptides	(this	is	the	same	the	“Best	Rank”	score	used	in44)	excluding	those	with	a	
wild-type	Icore.	We	call	this	presentation	score	BR.		
	
Population-wide	Median	Harmonic-mean	Best	Rank	(PMHBR)	score	of	a	mutation.	
In	Marty	et	al.44,	the	authors	define	a	patient-specific	presentation	score	for	a	
mutation	by	using	a	harmonic	mean	to	combine	the	six	best	rank	scores	of	the	
patient’s	6	HLA	allotypes	(Patient	Harmonic-mean	Best	Rank	or	PHBR).	
Unfortunately,	COSMIC	does	not	contain	information	about	the	HLA	allotype	
combinations	of	the	patients	that	develop	specific	resistance	mutations.	As	a	
consequence,	in	order	to	provide	an	equal-ground	comparison	between	all	
groups	of	mutations,	we	alternatively	define	a	score	that	is	representative	of	the	
presentation	properties	of	a	mutation	across	the	whole	population.	We	calculate	
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our	Population-wide	Median	Harmonic-mean	Best	Rank	(PMHBR)	for	a	mutation	
m	as:	
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where	the	internal	summation	is	taken	over	all	6	HLA	allotypes	of	a	given	
individual	(2	each	for	HLA-A,-B	and	-C)	and	the	median	is	taken	over	the	1,261	
individuals	from	the	1000	Genomes	Project	for	which	we	could	obtain	complete	
HLA	class	I	annotation	(Supplementary	Table	4).	
	
Lower	PMHBR	scores	correspond	to	higher	likelihoods	for	the	mutation	to	be	
presented	across	the	population.	As	remarked	in	Marty	et	al.44,	the	properties	of	
the	harmonic	average	imply	that	the	lowest	BRi	has	the	biggest	impact	on	the	
value	of	PMHBR	(although	all	6	terms	in	the	summation	can	contribute).	Because	
of	this	and	the	fact	that	HLA-C	proteins	are	generally	expressed	at	lower	levels	
with	respect	to	HLA-A	and	HLA-B50,	in	the	supplementary	materials	we	also	
report	analyses	in	which	the	two	HLA-C	allotypes	are	omitted	from	the	
calculation	of	the	harmonic	average	in	(1).	
	
	
Individual’s	best	rank.	We	additionally	define	an	individual’s	best	rank	(IBR)	for	a	
mutation	m	as	the	minimum	BR	of	the	mutation	when	considering	all	the	HLA	
allotypes	of	the	individual,	that	is:	
	

𝐼𝐵𝑅 𝑚 = 𝑚𝑖𝑛!"#!$!#%&!!! !"#$  𝐵𝑅          (2)	
	
The	IBR	is	useful	for	calculating	the	percentage	of	individuals	in	which	a	
mutation	is	likely	to	be	immunogenic	according	to	a	pre-defined	threshold.	For	
example,	we	can	calculate	the	percentage	of	individuals	for	which	IBR(m)<0.5	or,	
alternatively,	<2.0	(see	Results).	
	
	
Comparison	between	mutant	and	wild-type	peptide	HLA-presentation	scores.	Given	
an	individual	with	their	associated	HLA	allotypes	and	a	mutation,	we	compare	
the	individual’s	HLA-presentation	scores	of	mutant	vs	wild-type	peptides	in	the	
following	ways.	We	first	calculate	the	minimum	eluted	ligand	likelihood	
percentile	rank	score	across	all	of	the	patient’s	HLA	types	for	each	pair	of	mutant	
and	corresponding	wild-type	peptide	(mutant	and	wild-type	peptide	MinRank,	
respectively;	note	that	the	MinRank	is	a	property	of	a	single	peptide	rather	than	
of	a	mutation	like	the	previously	defined	BR).	We	then	do	one	of	two	things:	(i)	
we	ask	that	at	least	one	pair	exists	such	that	the	MinRank	of	the	mutant	peptide	
is	lower	than	a	given	threshold	and	the	MinRank	of	the	wild-type	peptide	is	
higher	than	the	same	or	different	(higher)	threshold	or	(ii)	we	ask	that	at	least	
one	pair	exists	such	that	the	MinRank	of	the	mutant	peptide	is	lower	than	a	given	
threshold	and,	additionally,	lower	than	the	one	of	the	wild-type	peptide.	In	both	
cases,	we	use	thresholds	of	0.5	or	2.0.	Indeed,	NetMHCpan-4.0	eluted	ligand	
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likelihood	percentile	rank	score	values	below	0.5	are	usually	said	to	indicate	high	
presentation	likelihood,	values	between	0.5	and	to	2.0	to	indicate	low	
presentation	likelihood	and	values	>2.0	to	indicate	that	a	peptide	is	not	likely	to	
be	presented.	We	perform	similar	calculations	for	the	analysis	of	the	
immunogenic	potential	of	individual	peptides	in	the	general	population.	
	
Statistical	analysis	and	plots.	Throughout	this	study,	statistical	analysis	is	
performed	and	plots	are	drawn	using	GraphPad	Prism	version	8.1.1	for	OS	X,	
GraphPad	Software,	La	Jolla	California	USA,	www.graphpad.com.	In	particular,	to	
calculate	multiple	comparison-adjusted	p-values	we	perform	Kruskal-Wallis	
tests	and	Dunn’s	post	hoc	tests.	
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RESULTS	
	
	
In	order	to	be	immunogenic,	protein	peptides	need	to	possess	two	fundamental	
properties:	they	have	to	be	presentable	by	HLA	class	I	complexes	and	they	have	
to	be	able	to	escape	central	and	peripheral	tolerance.	We	start	by	comparing	
predicted	HLA	class	I	presentation	scores	of	resistance-mutation	associated	
neopeptides	to	those	of	neopeptides	of	different	origin	across	the	general	
population	(PMHBR	scores,	see	Experimental	Procedures)	(Figure	1	and	
Supplementary	Figure	1	for	a	violin	plot	of	the	same	data).	We	can	see	that	
passenger,	germline	SNP	and	random	mutations	all	feature	similar	PMHBR	score	
distributions.	The	distribution	of	PMHBR	scores	for	driver	mutations	is	instead	
shifted	toward	higher	values,	indicating	a	lower	likelihood	of	the	associated	
neopeptides	to	be	HLA-presented	in	the	general	population.	Although	the	
difference	between	the	distributions	for	passenger	and	driver	mutations	is	not	
significant	the	trend	is	in	line	with	the	observation	made	by	Marty	et	al.	that	
recurrent	oncogenic mutations have universally poor HLA class I 
presentation44.	If	we	now	look	at	resistance	mutations,	we	see	that	their	PMHBR	
scores	are	generally	significantly	lower	than	the	ones	of	both	passenger	and	
driver	mutations.	Resistance	mutation-associated	neopeptides	are	hence	
predicted	more	likely	to	be	HLA-presented	across	the	general	population	than	
neopeptides	generated	by	other	types	of	mutations.	Similar	trends	are	observed	
when	discarding	resistance	mutations	reported	in	only	one	patient	(the	ones	less	
relevant	for	off-the-shelf	therapies)	(Supplementary	Figure	2)	or	when	
considering	only	HLA-A	and	HLA-B	allotypes	for	computing	the	PMHBR	score	
(Supplementary	Figures	3	and	4).	When	excluding	from	the	resistance	set	those	
mutations	that	occur	in	the	BCR-ABL1	gene	(constituting	about	half	of	the	whole)	
differences	appear	less	significant	suggesting	that	BCR-ABL1	mutations	are	on	
average	particularly	immunogenic	(Supplementary	Figure	2	and	4).	At	the	same	
time,	when	plotting	PMHBR	scores	for	each	resistance	gene	separately,	we	see	
that	additional	genes	contribute	to	the	overall	immunogenic	profile	of	resistance	
mutations	(e.g.,	ALK,	MET,	SMO	etc.)	(Supplementary	Figure	5).		
	
In	Figure	2,	as	examples,	we	show	the	BR	score-based	HLA	profile	(see	
Experimental	Procedures)	of	two	resistance	mutations	of	particular	clinical	
relevance.	The	EGFR	C797S	mutation	represents	a	major	challenge	for	treatment	
of	osimertinib-resistant	tumors	in	non-small	cell	lung	cancer47.	T315I,	until	
approval	of	the	third-generation	inhibitor	ponatinib51,	was	the	most	common	
mutation	associated	with	resistance	to	BCR-ABL1 inhibitors52,53.	From	these	
profiles,	we	see	that	both	mutations	are	predicted	to	generate	neopeptides	that	
produce	low	BR	scores	(that	is,	are	predicted	to	have	high	presentation	
likelihood)	for	a	wide	range	of	common	HLA	allotypes.	This	is	markedly	different	
to	what	we	observe	for	most	(though	not	all)	of	the	common	driver	mutations	
(see,	as	examples,	the	BR	score-based	HLA	profiles	of	the	two	most	common	
somatic	mutations	in	TCGA,	Supplementary	Figure	6).		
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Figure	1.	Distribution	of	PMHBR	scores	for	different	sets	of	mutations.	Lower	
PMHBR	values	correspond	to	a	higher	likelihood	of	being	presented	by	HLA	class	
I	complexes.	The	dotted	horizontal	line	is	a	guide	for	the	eye	and	corresponds	to	
the	value	of	the	median	of	the	distribution	for	passenger	mutations.	Note	that	for	
clarity	the	y-axis	is	cut	at	10,	thus	excluding	some	of	the	distributions’	outliers.	
Asterisks	indicate	significance	of	pair-wise	differences	between	PMHBR	score	
distributions	calculated	using	a	Kruskal-Wallis	test	followed	by	Dunn’s	post	hoc	
test.	p-values	are	adjusted	for	multiple	testing	(all	vs	all).	For	clarity,	on	the	plot	
we	report	p-values	for	only	some	of	the	comparisons.	(***)	stands	for	p-
value<0.001	and	(****)	stands	for	p-value<0.0001;	(ns)	stands	for	“not	
significant”.	The	lower	and	higher	edges	of	each	Tukey	box	represent	the	25%	
and	75%	percentile	value,	respectively.	The	horizontal	line	inside	each	box	
represents	the	median	value.		
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Figure	 2.	 BR	 score-based	 HLA	 profiles	 of	 two	 highly	 clinically	 relevant	 cancer	
resistance	 mutations:	 A)	 C797S	 in	 EGFR	 and	 B)	 T315I	 in	 BCR-ABL1.	 Blue	 bars	
(primary	y-axis)	represent	the	BR	scores	of	the	mutation	with	respect	to	the	HLA	
allotypes	 reported	 on	 the	 x-axis.	 Red	 bars	 (secondary	 y-axis)	 represent	 the		
frequency	of	each	HLA	allotype	 in	 the	1000G	dataset.	For	clarity,	we	report	BR	
scores	for	only	the	HLA-A,	-B	and	-C	allotypes	that	have	frequency	>1%.	The	two	
dotted	lines	mark	elution	rank	value	limits	for	strong	likelihood	of	presentation	
(SB,	 i.e	 score	 <	 0.5)	 and	 weaker	 likelihood	 of	 presentation	 (WB,	 i.e.	
0.5<=score<2.0).	For	the	sake	of	readability,	we	cut	the	primary	y-axis	to	a	value	
of	2.0.	Note	that	blue	bars	that	reach	up	to	a	value	of	2.0	often	correspond	to	BR	
values	>2.0	and	are	hence	cases	for	which	no-peptide	generated	by	the	mutation	
is	predicted	likely	to	be	presented	by	that	specific	HLA	allotype.	
	
As	we	mentioned	in	the	Introduction,	one	of	the	most	appealing	characteristics	
of	resistance	mutation-associated	neopeptides	is	that	they	recur	in	different	
patients.	It	is	thus	interesting	to	know	in	how	many	potential	patients	a	mutation	
can	generate	neopeptides	likely	to	be	presented	by	HLA	class	I	complexes.	In	

A	

B	

EG
FR
	C
79
7S
	

AB
L1
	T
31
5I
	

HL
A-
A*

02
:0
1

HL
A-
A*

24
:0
2

HL
A-
A*

03
:0
1

HL
A-
A*

11
:0
1

HL
A-
A*

01
:0
1

HL
A-
A*

31
:0
1

HL
A-
A*

30
:0
1

HL
A-
A*

33
:0
3

HL
A-
A*

23
:0
1

HL
A-
A*

68
:0
1

HL
A-
A*

29
:0
2

HL
A-
A*

26
:0
1

HL
A-
A*

30
:0
2

HL
A-
A*

02
:0
6

HL
A-
A*

02
:0
7

HL
A-
A*

68
:0
2

HL
A-
A*

32
:0
1

HL
A-
A*

74
:0
1

HL
A-
A*

36
:0
1

HL
A-
A*

02
:0
2

HL
A-
A*

02
:0
3

HL
A-
B*

07
:0
2

HL
A-
B*

40
:0
1

HL
A-
B*

35
:0
1

HL
A-
B*

51
:0
1

HL
A-
B*

44
:0
3

HL
A-
B*

44
:0
2

HL
A-
B*

15
:0
1

HL
A-
B*

08
:0
1

HL
A-
B*

53
:0
1

HL
A-
B*

46
:0
1

HL
A-
B*

58
:0
1

HL
A-
B*

18
:0
1

HL
A-
B*

13
:0
2

HL
A-
B*

52
:0
1

HL
A-
B*

40
:0
2

HL
A-
B*

57
:0
1

HL
A-
B*

14
:0
2

HL
A-
B*

27
:0
5

HL
A-
B*

42
:0
1

HL
A-
B*

13
:0
1

HL
A-
B*

15
:0
3

HL
A-
B*

45
:0
1

HL
A-
B*

39
:0
1

HL
A-
B*

15
:1
0

HL
A-
B*

54
:0
1

HL
A-
B*

49
:0
1

HL
A-
B*

48
:0
1

HL
A-
B*

35
:0
3

HL
A-
C*

04
:0
1

HL
A-
C*

07
:0
2

HL
A-
C*

03
:0
4

HL
A-
C*

01
:0
2

HL
A-
C*

06
:0
2

HL
A-
C*

07
:0
1

HL
A-
C*

03
:0
3

HL
A-
C*

05
:0
1

HL
A-
C*

16
:0
1

HL
A-
C*

08
:0
1

HL
A-
C*

12
:0
3

HL
A-
C*

08
:0
2

HL
A-
C*

17
:0
1

HL
A-
C*

15
:0
2

HL
A-
C*

02
:0
2

HL
A-
C*

14
:0
2

HL
A-
C*

03
:0
2

HL
A-
C*

12
:0
2

HL
A-
C*

07
:0
4

HL
A-
C*

08
:0
4

HL
A-
C*

02
:1
00.0

1.0

1.5

SB

WB

0.0

0.5

1.0

BR

HLA	allele	frequency
HL

A-
A*

02
:0
1

HL
A-
A*

24
:0
2

HL
A-
A*

03
:0
1

HL
A-
A*

11
:0
1

HL
A-
A*

01
:0
1

HL
A-
A*

31
:0
1

HL
A-
A*

30
:0
1

HL
A-
A*

33
:0
3

HL
A-
A*

23
:0
1

HL
A-
A*

68
:0
1

HL
A-
A*

29
:0
2

HL
A-
A*

26
:0
1

HL
A-
A*

30
:0
2

HL
A-
A*

02
:0
6

HL
A-
A*

02
:0
7

HL
A-
A*

68
:0
2

HL
A-
A*

32
:0
1

HL
A-
A*

74
:0
1

HL
A-
A*

36
:0
1

HL
A-
A*

02
:0
2

HL
A-
A*

02
:0
3

HL
A-
B*

07
:0
2

HL
A-
B*

40
:0
1

HL
A-
B*

35
:0
1

HL
A-
B*

51
:0
1

HL
A-
B*

44
:0
3

HL
A-
B*

44
:0
2

HL
A-
B*

15
:0
1

HL
A-
B*

08
:0
1

HL
A-
B*

53
:0
1

HL
A-
B*

46
:0
1

HL
A-
B*

58
:0
1

HL
A-
B*

18
:0
1

HL
A-
B*

13
:0
2

HL
A-
B*

52
:0
1

HL
A-
B*

40
:0
2

HL
A-
B*

57
:0
1

HL
A-
B*

14
:0
2

HL
A-
B*

27
:0
5

HL
A-
B*

42
:0
1

HL
A-
B*

13
:0
1

HL
A-
B*

15
:0
3

HL
A-
B*

45
:0
1

HL
A-
B*

39
:0
1

HL
A-
B*

15
:1
0

HL
A-
B*

54
:0
1

HL
A-
B*

49
:0
1

HL
A-
B*

48
:0
1

HL
A-
B*

35
:0
3

HL
A-
C*

04
:0
1

HL
A-
C*

07
:0
2

HL
A-
C*

03
:0
4

HL
A-
C*

01
:0
2

HL
A-
C*

06
:0
2

HL
A-
C*

07
:0
1

HL
A-
C*

03
:0
3

HL
A-
C*

05
:0
1

HL
A-
C*

16
:0
1

HL
A-
C*

08
:0
1

HL
A-
C*

12
:0
3

HL
A-
C*

08
:0
2

HL
A-
C*

17
:0
1

HL
A-
C*

15
:0
2

HL
A-
C*

02
:0
2

HL
A-
C*

14
:0
2

HL
A-
C*

03
:0
2

HL
A-
C*

12
:0
2

HL
A-
C*

07
:0
4

HL
A-
C*

08
:0
4

HL
A-
C*

02
:1
00.0

1.0

1.5

SB

WB

0.0

0.5

1.0

BR
HLA	allele	frequency

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 17, 2019. ; https://doi.org/10.1101/845784doi: bioRxiv preprint 

https://doi.org/10.1101/845784
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure	3,	for	every	resistance	mutation	recorded	in	at	least	5	patients	in	COSMIC	
(61	mutations	in	total,	values	for	all	226	mutations	are	in	Supplementary	Table	
5),	we	calculate	the	percentage	of	individuals	in	our	1000G	dataset	that	are	
expected	to	HLA-present	at	least	one	of	the	mutation-associated	neopeptides	
when	using	an	IBR	score	threshold	of	<0.5	(see	also	Supplementary	Figure	7	for	
the	same	plot	but	considering	only	HLA-A	and	HLA-B	allotypes	for	calculating	
the	IBR	score).	We	first	notice	that	our	results	are	in	line	with	previous	studies	
that	showed	that	several	BCR-ABL1	mutations32	(and	T790M	in	EGFR33,34)	are	
likely	to	be	HLA-presented	(Supplementary	Figure	8),	although	those	studies	
considered	a	much	smaller	set	of	HLA	allotypes.	Second	and	more	importantly,	
we	show	that	several	other	resistance	mutations	occurring	in	different	tumour	
tissues	(Figure	3)	and	in	several	other	genes	(Supplementary	Figure	9)	are	also	
predicted	as	likely	to	be	HLA-presented	across	the	population.	In	general,	we	can	
see	that	39	of	61	mutations	in	Figure	3	generate	neopeptides	that	are	predicted	
to	be	HLA-presented	by	at	least	50%	of	individuals	in	our	1000G	dataset.	These	
39	mutations	occur	in	6	different	tumor	tissues	and	across	12	different	genes.	
When	considering	a	more	relaxed	threshold	for	HLA-presentation	(IBR<2.0)	all	
but	one	of	these	mutations	are	predicted	as	“presentable”	by	at	least	half	of	
individuals	in	the	1000G	dataset	(Supplementary	Figure	10).	As	an	example,	
neopeptides	associated	with	the	osimertinib	resistance	mutation	C797S	in	EGFR	
and	to	T315I	in	BCR-ABL1	are	predicted	as	“presentable”	in	99%	and	83%	of	
individuals,	respectively	(for	a	patient-BR	threshold	<0.5).	Interestingly,	the	two	
mutations	that	have	been	previously	validated	as	able	to	elicit	T-cell	responses	in	
healthy	donors	and	patients	alike	(E255K	in	BCR-ABL1	and	T790M	in	EGFR)	are	
not	among	our	top-ranked	ones	(21st	and	29th,	respectively).	
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Figure	 3.	 Estimates	 for	 the	 percentage	 of	 individuals	 in	 the	 general	 population	
predicted	 to	 HLA-present	 resistance	 mutation-associated	 neopeptides.	 For	 each	
mutation,	 the	 histogram	 illustrates	 the	 percentage	 of	 individuals	 in	 the	 1000G	
dataset	with	an	IBR<0.5	(the	IBR	score	is	defined	in	Experimental	Procedures).	
Mutations	 on	 the	 x-axis	 are	 ordered	 according	 to	 decreasing	 percentages	 of	
individuals.	 For	 clarity,	 we	 plot	 only	mutations	 that	 have	 been	 observed	 in	 at	
least	 5	 patients	 (according	 to	 COSMIC).	 Colours	 indicate	 the	 different	 tumour	
tissues	in	which	the	resistance	mutations	have	been	observed;	“haema&lymph”	
stands	 for	 haematopoietic	 and	 lymphoid	 tissue.	 Asterisks	mark	mutations	 that	
have	been	shown	to	elicit	T-cell	responses	in	previous	works32-34.	
	
	
We	next	 investigate	 the	possibility	 that	 resistance	mutation	neopeptides,	while	
likely	 to	 be	HLA-presented,	may	 be	 subjected	 to	 tolerance,	 in	which	 case	 they	
would	not	be	immunogenic.	Under	normal	circumstances,	tolerance	ensures	that	
there	 are	 no	 T-cells	 that	 can	 recognise	 germline	 wild	 type	 peptides,	 thus	
preventing	 auto-immune	 responses54.	 Since	 neopeptides	 are	 generated	 by	
somatic	 mutations,	 they	 are	 very	 likely	 to	 differ	 from	 any	 germline	 wild	 type	
peptide.	 At	 the	 same	 time,	 neopeptides	 originating	 from	 missense	 mutations,	
such	 as	 those	 that	 we	 analyse	 here,	 differ	 from	 wild	 type	 peptides	 only	 by	 a	
single	amino	acid	substitution.	Given	that	T-cell	binding	properties	allow	for	at	
least	 some	 promiscuity	 in	 peptide	 binding	 affinity55,	 missense	 mutation-
associated	neopeptides	might	 still	 be	 subjected	 to	 some	degree	 of	 tolerance.	A	
common	way	to	identify	neopeptides	that	are	more	likely	to	be	immunogenic	is	
to	select	 for	those	that	have	wild	type	counterparts	with	 low	HLA-presentation	
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likelihood56.	The	 rationale	 is	 that	 if	 a	wild	 type	peptide	 is	poorly	presented,	T-
cells	that	bind	to	it	and	hence	possibly	to	very	similar	peptides	are	less	likely	to	
have	 been	 negatively	 selected.	 It	 is	 important	 to	 stress,	 however,	 that	 even	 a	
neopeptide	 for	 which	 the	 wild	 type	 counterpart	 is	 HLA-presented	 may	 be	
immunogenic	if	the	mutation	it	carries	make	it	eligible	to	binding	by	a	different	
T-cell	 pool	 with	 respect	 to	 the	 wild	 type.	 In	 Figure	 4,	 we	 compare	 the	
presentation	likelihood	of	resistance	mutation-associated	neopeptides	with	that	
of	their	wild	type	counterparts	(only	mutations	recorded	in	at	least	5	patients	in	
COSMIC;	values	for	all	mutations	are	in	Supplementary	Table	5).	In	particular,	we	
report	the	percentage	of	 individuals	 in	the	1000G	dataset	 in	which	at	 least	one	
mutant	peptide	is	predicted	highly	likely	to	be	presented	(<0.5%	rank)	while	the	
corresponding	 wild	 type	 peptide	 is	 not	 highly	 likely	 to	 be	 presented	 (>0.5%	
rank).	We	can	see	that	for	13	mutations	the	percentage	of	individuals	is	at	least	
50%	(see	Supplementary	Figure	11	for	HLA-A	and	HLA-B	only).	Again,	mutations	
previously	shown	to	be	immunogenic	do	not	exhibit	the	highest	rankings	in	this	
plot	 (BCR-ABL1	 E255K	 is	 11th	 and	 EGFR	 T790M	 is	 44th).	 In	 Supplementary	
Figures	 12-15,	 we	 show	 the	 same	 analysis	 when	 using	 alternative	 criteria	 for	
evaluating	 the	 difference	 between	 mutant	 and	 wild	 type	 peptides.	 Finally,	 in	
Supplementary	Figures	16	and	17,	we	show	the	resistance	mutations-associated	
neopeptides	(length	8	to	11)	that	we	estimate	to	have	the	highest	percentage	of	
individuals	 more	 likely	 to	 present	 them	 (%rank<0.5	 or	 %rank<2.0)	 than	 to	
present	 their	 wild	 type	 counterparts	 (%rank>0.5	 or	 %rank>2.0	 respectively).	
With	respect	to	the	previously	validated	neopeptides	associated	with	the	E255K	
BCR-ABL1	and	T790M	EGFR	resistance	mutations	we	observe	the	following.	We	
predict	the	BCR-ABL1-associated	neopeptide	KVYEGVWKK	to	be	highly	likely	to	
be	 HLA-presented	 by	 the	 HLA-A*03:01	 allotype,	 or	 the	 allotype	 for	 which	
immunogenicity	 has	 been	 validated	 (%rank=0.005),	 and	 almost	 100-fold	more	
likely	 to	 be	 presented	 than	 its	 wild	 type	 counterpart	 EVYEGVWKK	
(%rank=0.33).	However,	since	the	wild	type	peptide	is	also	predicted	as	likely	to	
be	presented	(%rank<0.5),	KVYEGVWKK	does	not	fare	high	in	our	plots	that	use	
a	 fixed	 threshold	 for	 both	 mutant	 and	 wild	 type	 peptides	 while	 it	 scores	
definitely	better	when	 considering	 a	<0.5%	rank	 threshold	 for	 the	mutant	 and	
simply	 asking	 that	 the	 wild	 type	 has	 higher	 ranking	 than	 the	 mutant	 peptide	
(Supplementary	Figure	18).	 In	contrast,	we	don’t	predict	the	T790M-associated	
mutant	 peptides	 that	 have	 been	 previously	 validated	 as	 immunogenic	
(MQLMPFGCLL,	LIMQLMPFGCL,	IMQLMPFGC)	to	be	likely	to	be	presented	by	the	
experimentally	 validated	 HLA-A*02:01	 allotype	 (%ranks=2.12,	 16.0	 with	 core	
peptide	LIMQLMPFL	and	5.74,	respectively).	We	do	however	observe	a	separate,	
not	 previously	 tested	 T790M-associated	 neopeptide	 (LTSTVQLIM)	 as	 one	 that	
has	 high	 immunogenic	 potential	 across	 the	 population	 (third	 from	 top	 in	
Supplementary	Figure	17).	
	
The	complete	list	of	resistance	mutations	that	we	analyse	here	along	with	
estimates	of	the	percentage	of	individuals	in	the	1000G	dataset	that	are	likely	to	
present	their	associated	neopeptides	and,	separately,	that	are	more	likely	to	
present	their	associated	neopeptides	than	their	wild	type	counterparts	can	be	
found	in	Supplementary	Table	5.	The	list	of	resistance	mutation-associated	
neopeptides	likely	to	be	presented	by	at	least	1%	of	individuals	or,	separately,	
more	likely	to	presented	than	their	wild	type	counterparts	by	at	least	1%	of	
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individuals	can	instead	be	found	in	Supplementary	Table	6	(peptides	associated	
to	resistance	mutations	observed	in	at	least	5	patients,	COSMIC).	
	
	
	
	
	
	
	

	
	
Figure	4.	Population-wide	comparison	of	HLA	class	I	presentation	likelihood	
between	resistance	mutation-associated	mutant	peptides	and	their	corresponding	
wild	type	peptides.	For	each	mutation,	the	histogram	illustrates	the	estimated	
percentage	of	individuals	for	which	there	exists	at	least	one	mutant	peptide-wild	
type	peptide	pair	such	that	minimum	eluted	ligand	likelihood	percentile	rank	
score	across	all	of	the	individual’s	HLA	allotypes	is	<0.5	for	the	mutant	peptide	
and	>=0.5	for	the	wild	type	peptide.	Mutations	on	the	x-axis	are	ordered	
according	to	decreasing	percentages	of	individuals.	We	plot	only	mutations	that	
have	been	observed	in	at	least	5	patients	(according	to	COSMIC).	Colours	
indicate	the	different	tumour	tissues	in	which	the	resistance	mutations	have	
been	observed;	“haema&lymph”	stands	for	haematopoietic	and	lymphoid	tissue.	
Asterisks	mark	mutations	that	have	been	shown	to	elicit	T-cell	responses	in	
previous	works32-34.	
	
	
	 	

D
83
5Y
_F
LT
3

C4
81
S_
BT
K

D
84
2V

_P
D
G
FR
A

C7
97
S_
EG

FR
D
12
46
N
_M

ET
E2
55
V_

BC
R-
AB

L1
N
82
2Y
_K

IT
D
27
6G

_B
CR

-A
BL
1

G
12
69
A_

AL
K

H
39
6R

_B
CR

-A
BL
1

E2
55
K_

BC
R-
AB

L1
D
83
5H

_F
LT
3

C1
25
S_
M
AP

2K
2

G
25
0E
_B

CR
-A
BL
1

W
53
5L
_S
M
O

F3
17
L_
BC

R-
AB

L1
L3
87
M
_B

CR
-A
BL
1

T3
15
I_
BC

R-
AB

L1
F3
59
V_

BC
R-
AB

L1
E3
55
G
_B

CR
-A
BL
1

V2
99
L_
BC

R-
AB

L1
D
47
3G

_S
M
O

A8
29
P_

KI
T

D
82
0Y
_K

IT
D
53
8G

_E
SR
1

F3
59
I_
BC

R-
AB

L1
Y5
37
N
_E
SR
1

F6
91
L_
FL
T3

G
12
02
R_

AL
K

L2
98
V_

BC
R-
AB

L1
Y2
53
H
_B

CR
-A
BL
1

M
24
4V

_B
CR

-A
BL
1

V3
79
I_
BC

R-
AB

L1
D
82
0G

_K
IT

D
81
6H

_K
IT

F3
11
I_
BC

R-
AB

L1
Y5
37
S_
ES
R1

F3
11
L_
BC

R-
AB

L1
Y3
53
H
_B

CR
-A
BL
1

F4
86
S_
BC

R-
AB

L1
L1
19
6M

_A
LK

L3
84
M
_B

CR
-A
BL
1

M
35
1T
_B

CR
-A
BL
1

T7
90
M
_E
G
FR

T8
78
A_

AR
C8

09
G
_K

IT
N
82
2K

_K
IT

Q
61
K_

N
RA

S
Q
61
R_

N
RA

S
Q
25
2H

_B
CR

-A
BL
1

Y1
24
8H

_M
ET

L2
48
V_

BC
R-
AB

L1
F3
59
C_

BC
R-
AB

L1
D
82
0E
_K

IT
E4
59
G
_B

CR
-A
BL
1

E4
59
K_

BC
R-
AB

L1
T6
70
I_
KI
T

V6
54
A_

KI
T

Y2
53
F_
BC

R-
AB

L1
Y5
37
C_

ES
R1

Y8
23
D
_K

IT

0

25

50

75

100

%
	o
f	i
nd

iv
id
ua
ls

soO

prostate

breast
lung skin
haema&lymph

*

*

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 17, 2019. ; https://doi.org/10.1101/845784doi: bioRxiv preprint 

https://doi.org/10.1101/845784
http://creativecommons.org/licenses/by-nc-nd/4.0/


DISCUSSION	AND	CONCLUSIONS	
	
Cancer	immunotherapies	seek	to	invigorate	a	patient’s	immune	response	against	
the	tumor5.	This	response	is	typically	mediated	by	tumor	antigens	that	originate	
from	the	cancer	cells’	aberrant	proteome.	Cancer	drug	resistance	mutations	are	
one	class	of	somatic	aberrations	that	generate	tumor-specific,	potentially	
immunogenic	antigens.	Previous	studies	showed	that	two	resistance	mutations,	
E255K	in	BCR-ABL1	and	T790M	in	EGFR,	are	indeed	immunogenic32-34;	
additionally,	Cai	et	al.32	suggested	that	this	property	may	be	shared	by	a	larger	
number	of	BCR-ABL1	resistance	mutations.	These	previous	studies	were	based	
on	presentability	by	a	small	number	of	class	I	HLA	allotypes	(5	HLA-A	and	3	
HLA-B	allotypes	in32	and	only	HLA-A*02:01	in33,34).	We	asked	whether	these	
immunogenic	properties	could	be	shared	by	a	larger	number	of	cancer	drug	
resistance	mutations	and	when	considering	individuals	featuring	a	much	larger	
number	of	class	I	HLA	allotypes.	Using	in	silico	predictions,	for	the	first	time,	we	
present	a	general	survey	of	the	immunogenicity	of	226	missense	resistance	
mutations	associated	with	several	genes	(19),	tissues	(9)	and	tumor	subtypes	
(27).	We	show	that	many	of	these	mutations	generate	neopeptides	that	are	
predicted	to	be	HLA-presented	by	a	large	proportion	of	the	general	population.	
Additionally,	for	several	resistance	mutations	and	in	a	significant	percentage	of	
patients,	these	potential	neoantigens	are	predicted	more	likely	to	be	HLA-
presented	than	their	wild	type	counterparts,	and	are	therefore	less	likely	to	fall	
under	central	or	peripheral	tolerance.	We	also	note	that	while	we	have	
considered	only	missense	mutations,	which	constitute	the	vast	majority	of	drug	
resistance	mutations	currently	annotated	in	COSMIC,	insertions	and	deletions	
are	also	known	to	confer	resistance	to	some	drugs.	HLA-presented	neopeptides	
generated	by	this	type	of	somatic	alterations	would	be	more	likely	to	be	
immunogenic	as	they	will	generally	differ	substantially	from	any	wild	type	
protein	peptide57.		
	
Our	study	comes	with	a	number	of	limitations.	The	most	obvious	is	that	our	
results	are	based	on	computational	predictions.	Although	the	most	recent	breed	
of	prediction	methods	(such	as	the	NetMHCpan-4.0	program	that	we	use	here)	
integrate	peptides’	HLA-elution	mass	spectrometry	data	they	are	still	likely	to	
over-predict	the	number	of	presented	peptides58,59.	Also,	higher	presentation	
likelihood	with	respect	to	the	corresponding	wild	type	peptide	is	likely	to	be	a	
limited	proxy	for	a	mutant	peptide’s	immunogenicity	(i.e.,	recognition	by	T-cells).	
Despite	these	important	caveats,	as	mentioned	above,	computational	predictions	
have	been	used	previously	to	identify	potentially	immunogenic	neopeptides	
from	the	BCR-ABL1	E255K	and	EGFR	T790M	resistance	mutations,	which	were	
later	proved	effective	in	priming	naïve	T-cells32-34;	two	of	these	studies	showed,	
additionally,	that	mature	T-cells	recognising	these	peptides	could	pre-exist	in	
patients32,33.		Further,	methods	that	predict	HLA-presentation	have	been	widely	
adopted	and	instrumental	to	studies	that	showed	neoantigen	load	correlation	
with	CBT	response60,	immune-evasion	by	neoantigen	elimination61-63	and	
investigated	personalised	cancer	vaccines	against	melanoma	and	glioblastoma	in	
small	clinical	trials21-24.	In	fact,	several	studies	have	shown	that	lists	of	predicted	
neoantigens	are	indeed	enriched	in	neopeptides	capable	of	stimulating	T-cell	
responses	both	in	vitro	and	in	vivo20-24.	Another	potential	concern	is	the	fact	that	
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some	of	the	proteins	that	develop	resistance	mutations	to	current	targeted	
therapies	are	membrane-inserted.	Membrane	proteins	are	generally	believed	to	
undergo	degradation	in	lysosomes64	rather	than	via	the	ubiquitin-proteasome	
pathway,	which	leads	to	HLA	presentation	of	protein	peptides.	There	is	
compelling	evidence,	however,	that	nevertheless	membrane	protein	peptides	are	
presented	by	HLA	class	I	complexes65.	Finally,	although	we	show	that	many	
resistance	mutations	generate	neopeptides	that	are	predicted	to	be	HLA-
presented	in	most	individuals,	we	have	not	ruled	out	the	possibility	that	
resistance	mutations	may	be	under	negative	selection	in	patients.	In	other	
words,	they	might	occur	only	or	primarily	in	those	patients	in	which	the	
associated	neopeptides	are	not	likely	to	be	presented.	Although	negative	
selection	has	been	reported	for	driver	mutations44,	it	would	seem	less	probable	
for	resistance	mutations	which	typically	appear	later	during	cancer	evolution	or	
when	immune-evasion	by	the	tumor	is	likely	to	have	already	occurred.	One	
previous	study,	however,	reported	a	negative	correlation	between	response	to	
antigens	derived	from	the	EGFR	T790M	mutation	and	the	occurrence	of	the	
mutation	in	non-small	cell	lung	cancer	patients	treated	with	tyrosine	kinase	
inhibitors33.	Unfortunately,	since	COSMIC	does	not	provide	us	with	information	
about	the	HLA	allotypes	of	the	patients	in	which	the	different	resistance	
mutations	occur,	we	are	not	able	to	test	this	hypothesis	directly.	If	resistance	
mutations	were	under	negative	selection,	however,	it	would	be	reasonable	to	
expect	a	correlation	between	their	observed	frequency	in	patients	and	their	
PMHBR	score	(where	higher	PMHBR	scores	correspond	to	a	lower	likelihood	of	
being	presented	in	the	general	population).	To	reduce	the	impact	of	possible	
confounding	factors,	we	consider	mutations	occurring	on	the	same	gene	and	
associated	with	the	same	drug	(see	also	Experimental	Procedures).	We	take	as	
an	example	the	set	of	imatinib-associated	BCR-ABL1	resistance	mutations,	which	
are	the	most	numerous	for	a	single	drug-gene	pair	in	COSMIC	(84	total,	
Supplementary	Table	7).	In	this	case,	we	see	no	correlation	between	number	of	
patients	in	which	the	different	mutations	occur	and	their	PMHBR	score	
(Supplementary	Figure	19,	differences	between	groups	are	not	significant,	
Kruskal	Wallis	test).	As	an	example,	T315I	or	the	most	common	imatinib-
associated	BCR-ABL1	mutation	in	COSMIC	(reported	in	222	patients)	
corresponds	to	a	PMHBR	of	0.53	compared	to	a	median	of	0.83	for	all	imatinib-
BCR-ABL1	mutations.	This	appears	to	support	the	idea	that	at	least	some	of	these	
mutations	might	occur	in	patients	in	which	they	are	presented	and	potentially	
immunogenic;	however,	a	definitive	answer	will	only	come	from	experimental	
testing	of	the	T-cell	repertoire	in	patients	carrying	these	mutations.	
	
In	conclusion,	expanding	on	previous	studies,	we	have	presented	data	that	
suggests	that	resistance	mutation-associated	neoantigens	could	be	particularly	
interesting	targets	for	precision	immunotherapies	such	as	cancer	vaccines66.		
Most	recent	work	in	the	field	has	focused	on	tumor	neoantigens	associated	with	
protein-modifying	passenger	mutations21-24.	However,	vaccines	derived	from	
passenger	mutations,	which	are	private,	would	represent	fully	personalised	
treatments	with	potentially	high	development	costs	and	scale-up	issues	for	
translation	into	the	clinic43.	In	contrast,	recurrent	neoantigens	such	as	those	
potentially	derived	from	resistance	mutations	could	serve	as	a	basis	for	
developing	off-the-shelf	vaccines,	which	could	be	used	in	combination	with	
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targeted	therapies,	as	well	as	with	other	types	of	immunotherapies	such	as	CBTs.	
We	believe	that	the	recent	advances	in	cancer	immunotherapy	and	the	ever-
increasing	number	of	available	targeted	therapies	provide	an	unprecedented	
background	on	which	to	test	this	hypothesis.		
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