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Abstract   

  

The  value  of  high-throughput  germline  genetic  testing  is  increasingly  recognized  in  clinical  cancer               

care.  Disease-associated  germline  variants  in  cancer  patients  are  important  for  risk  management  and               

surveillance,  surgical  decisions,  and  can  also  have  major  implications  for  treatment  strategies  since               

many  are  in  DNA  repair  genes.  With  the  increasing  availability  of  high-throughput  DNA               

sequencing  in  cancer  clinics  and  research,  there  is  thus  a  need  to  provide  clinically  oriented                 

sequencing  reports  for  germline  variants  and  their  potential  therapeutic  relevance  on  a  per-patient               

basis.  To  meet  this  need  we  have  developed  the  Cancer  Predisposition  Sequencing  Reporter               

(CPSR),  an  open-source  computational  workflow  that  generates  a  structured  report  of  germline              

variants  identified  in  known  cancer  predisposition  genes,  highlighting  markers  of  therapeutic,             

prognostic,  and  diagnostic  relevance.  A  fully  automated  variant  classification  procedure  based  on              

more  than  30  refined  ACMG  criteria  represents  an  integral  part  of  the  workflow.  Importantly,  the  set                  

of  cancer  predisposition  genes  profiled  in  the  report  can  be  flexibly  chosen  from  more  than  40                  

virtual  gene  panels  established  by  scientific  experts,  enabling  customization  of  the  report  for               

different  screening  purposes  and  clinical  contexts.  The  report  can  be  configured  to  also  list                

actionable  secondary  variant  findings  as  recommended  by  ACMG,  as  well  as  the  status  of  low-risk                 

variants  from  genome-wide  association  studies  in  cancer.  CPSR  demonstrates  superior  sensitivity             

and  comparable  specificity  for  the  detection  of  pathogenic  variants  when  compared  to  existing               

algorithms.  Technically,  the  tool  is  implemented  in  Python/R,  and  is  freely  available  through  Docker                

technology.  Source  code,  documentation,  example  reports,  and  installation  instructions  are            

accessible   via   the   project   GitHub   page:    https://github.com/sigven/cpsr .   
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1     Introduction   

A  considerable  fraction  of  human  cancers  is  rooted  in  rare  pathogenic  germline  mutations  in  cancer                 

predisposition  genes 1 .  Screening  of  cancer  patients  for  predisposing  germline  alterations  may  yield             

valuable  decision  support  for  risk-reducing  interventions  and  surveillance,  and  has  also  proven  its               

significance   for   the   application   of   platinum-based   chemotherapy   and   targeted   drugs    2,3 .     

High-throughput  screening  for  a  broad  collection  of  cancer  predisposition  genes  is  currently              

feasible  due  to  technological  advances  in  genome-wide  DNA  sequencing.  The  accuracy  of  variant               

detection  algorithms  has  improved  substantially,  producing  consistent  and  highly  accurate  results,             

particularly  for  single  point  mutations   4 .  On  the  other  hand,  the  ability  to  interpret  variant  findings  in                   

terms  of  clinical  significance  and  actionability  still  represents  a  major  challenge.  To  our  knowledge,                

no  freely  available  bioinformatics  tool  aims  to  transform  raw  germline  variant  sets  to  structured  and                 

interactive  reports  for  clinical  interpretation  on  a  per-patient  basis.  Efforts  in  this  area  have  focused                 

primarily  on  the  implementation  of  algorithms  for  variant  pathogenicity  classification,  which  lies  at               

the  core  of  clinical  variant  interpretation.  Multiple  tools  and  algorithms  for  variant  classification               

according  to  published  guidelines  by  the  American  College  of  Medical  Genetics  and  Genomics               

(ACMG)  have  been  developed,  the  most  relevant  ones  in  the  field  of  cancer  being  CharGer ,                 

SherLoc,  and  PathoMAN 5–7 .  The  comprehensive  classification  procedure  outlined  in  Invitae’s            

SherLoc  framework  is  however  not  available  as  open-source  software,  and  t he  limited  web-based               

service  offered  by  PathoMAN  is  inconvenient  for  integration  in  high-throughput  analysis             

environments.  Furthermore,  given  the  sensitive  nature  of  DNA  sequencing  data  from  cancer              

patients,  which  is  under  strict  regulations  in  most  countries,  it  is  frequently  a  necessity  to  choose                 

stand-alone  workflows  over  public  web-based  interpretation  solutions.  Also,  neither  of  the             

above-mentioned  tools  and  algorithms  provide  structured  genome  reports  on  a  case-by-case  basis,              

and  where  the  report  content  can  be  customized  according  to  the  cancer  condition  in  question.                 

Summing  up,  although  the  generation  of  informative  variant  interpretation  reports  constitutes  an              
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essential  output  of  high-throughput  cancer  sequencing  workflows,  there  is  currently  a  shortage  of               

flexible   solutions   for   this   in   the   open-source   software   landscape.   

Here,  we  present  a  flexible  bioinformatics  tool  that  generates  personal  genome  reports  in  the                

context  of  cancer  predisposition  and  inherited  cancer  syndromes.  Cancer  Predisposition  Sequencing             

Reporter  (CPSR)  can  be  easily  integrated  with  standard  variant  calling  output  from  both               

whole-genome,  exome  or  targeted  gene  panel  sequencing,  and  produces  structured  and  interactive              

variant   reports   that   highlight   findings   with   clinical   implications.     

  

2     Construction   and   Content   

CPSR  is  implemented  as  a  stand-alone  bioinformatics  workflow  in  Python  and  R.  By  design,  it  is                  

therefore  well  suited  for  integration  with  workflows  for  high-throughput  sequencing,  as  opposed  to               

purely  web-based  solutions.   Technically,  CPSR  builds  upon  our  previously  developed  framework             

for  the  analysis  of  somatic  mutations  in  tumor  genomes,  the  Personal  Cancer  Genome  Reporter                

(PCGR) 8 .  To  facilitate  reproducibility  and  ease  of  use,  the  tool  can  be  installed  either  as  a                  

Dockerized  application  or  through  a  Conda  package,  the  latter  probably  being  the  preferred  choice                

in  high-performance  computing  environments.  In  addition  to  the  actual  software  and  configuration              

files,  users  need  to  download  a  dedicated  data  bundle,  which  contains  the  underlying  databases  that                 

CPSR  is  using  for  functional  variant  annotation  and  as  a  basis  for  classification  and  reporting.  CPSR                  

supports  both  of  the  recent  assembly  versions  of  the  human  genome  (i.e.   grch37  and   grch38 ).                 

Installation  instructions  and  other  information  regarding  configuration,  versions  of  software  and             

underlying  databases,  and  input/output  files,  are  available  from  the  project  GitHub  page              

( https://github.com/sigven/cpsr ),  and  also  through  the  CPSR  documentation  website         

(https://cpsr.readthedocs.io ).   

The  input  to  CPSR  is  a  single  file  with  DNA  variants  (SNVs/InDels)  detected  from  germline                 

variant  calling,  encoded  in  the  standard  single-sample  VCF  format.  CPSR  automatically  detects  the               
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genotype  (homozygous/heterozygous)  of  input  variants  if  these  are  formatted  according  to  the              

correct  standard  in  the  VCF  file.  The  workflow  proceeds  with  four  major  steps,  which  are  described                  

in   detail   below   (schematically   illustrated   in   Figure   1).   

  

Selection   of   targets   for   reporting   -   virtual   cancer   predisposition   gene   panels   

In  order  to  serve  a  wide  range  of  clinical  cases,  CPSR  can  produce  variant  reports  that  are  dedicated                    

towards  predisposition  genes  for  specific  tumor  types  or  cancer  syndromes.  In  the  initial  step  of  the                  

workflow,  we  exploit  virtual  gene  panels  as  available  from  the  Genomics  England  PanelApp,  a                

crowdsourcing  initiative  in  which  scientific  experts  are  evaluating  risk  genes  for  more  than  40                

different  hereditary  cancer  conditions  on  a  continuous  basis 9 . Technically,  variants  in  the  input  VCF               

file  are  filtered  against  the  gene  panel  of  choice  (encoded  as  a  BED  file)  to  ensure  that  variants                    

analyzed  are  restricted  to  the  panel  genes  only.  When  selecting  a  panel  from  PanelApp  for  analysis                  

in  CPSR,  the  user  may  also  restrict  the  analysis  to  genes  with  a  high  level  of  disease  association                    

only   (i.e.   diagnostic-grade   or   “GREEN”   genes   according   to   PanelApp   nomenclature).   

In  addition  to  predefined  panels  from  PanelApp,  the  user  can  choose  to  screen  variants                

within  a  comprehensive  exploratory  panel  intended  for  research  use  (i.e.  a  “superpanel”),  containing               

cancer  predisposition  genes  gathered  from  multiple  sources.  The  superpanel  includes  a  total  of  335                

protein-coding  genes,  containing  all  genes  from  PanelApp  panels  available  in  CPSR,  genes  curated               

in  the  Cancer  Gene  Census  (COSMIC),  those  profiled  in  TCGA’s  PanCancer  analysis  of  germline                

variants,  and  other  user-contributed  genes  deemed  relevant  for  cancer  predisposition.  Importantly,             

users  may  also  flexibly  define  their  own  virtual  screening  panel  from  the  set  of  genes  in  the                   

exploratory   superpanel.   

Information  on  dominant  versus  recessive  inheritance  patterns  for  the  various  inherited             

cancer  syndromes  is  largely  harvested  from  the  Genomics  England  PanelApp,  with  some  additions               

from  two  other  large-scale  sequencing  studies  of  cancer  genes 1,10 .  Information  related  to  the               
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mechanism  of  disease  (loss-of-function  vs.  gain-of-function)  per  gene  has  been  collected  from  the               

study  by  Maxwell  et  al.   10 .  Disease-related  gene  properties  are  exploited  during  automated  variant                

classification  according  to  ACMG  criteria  (section   Automated  variant  pathogenicity  classification            

outlined   below).   

  

Functional   variant   annotation   

The  second  step  of  the  workflow  utilizes  two  open-source  tools,  Variant  Effect  Predictor  (VEP)  and                 

vcfanno ,   to   provide   comprehensive   functional   annotations   of   all   input   variants    11,12 .     

Gene  variant  consequences  are  determined  by  VEP,  using  GENCODE  as  the  gene  and               

transcript  reference  model.  Cross-references  to  RefSeq  transcripts  are  provided  in  the  output              

whenever  this  is  available  through  Ensembl’s  transcript  database.  Although  a  single  variant              

frequently  affects  multiple  transcripts  in  a  given  gene,  CPSR  reports  a  single  main  consequence  per                 

variant,  using  VEP’s  internal  ranking  routine  to  pick  the  most  important  transcript-specific              

consequence,  a  ranking  that  can  be  configured  by  the  user.  Notably,  variants  with  a  putative                 

loss-of-function  consequence  (i.e.  stopgain,  frameshift  and  splice  site  disruption),  which  are  of              

major  importance  when  it  comes  to  pathogenic  germline  variants  in  cancer,  are  subject  to  careful                 

evaluation  and  filtering  through  the  LOFTEE  plugin  in  VEP.  Specifically,  LOFTEE  assigns              

confidence  to  a  loss-of-function  variant  based  on  multiple  features,  such  as  transcript  location,               

ancestral  allele  state,  and  intron  size  and  donor  site  nature  (for  splice  site  mutations).  The  relative                  

location   of   variants   with   respect   to   intron-exon   borders   are   also   derived   from   VEP’s   output.   

Through  the  use  of   vcfanno ,  the  second  workflow  step  will  also  annotate  the  input  variants                 

with  data  from  multiple  open-access  variant  datasets  of  relevance  for  cancer  predisposition  and               

functional  variant  effect  (Figure  1).  These  datasets  include  information  related  to  pre-classified              

variants  in  ClinVar  (phenotypes,  review  status  etc.),  population-specific  allele  frequencies            

(gnomAD,  non-cancer  subset),  known  mutational  hotspots  in  cancer  (cancerhotspots.org),           
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precomputed   insilico  deleteriousness  predictions  of  missense  and  splice  site  variants  (dbNSFP  and              

dbSCSNV),  low-risk  risk  alleles  identified  from  genome-wide  association  studies  of  cancer             

phenotypes  (GWAS  catalog),  and  importantly,  germline  biomarkers  of  relevance  for  prognosis,             

diagnosis  or  therapeutic  regimens  retrieved  from  the  Clinical  Interpretations  of  Variants  in  Cancer               

resource  (CIViC) 13–19 .  Through  annotations  from  CIViC,  we  can  effectively  show  which  germline              

variants  in  the  query  that,  according  to  published  evidence  from  clinical  trials  or  case  reports,  are                  

likely  to  have  therapeutic  implications.  A  prominent  example  relates  to  cases  with  increased               

sensitivity  to  poly(ADP-ribose)  polymerase  (PARP)  inhibitors  elicited  by  pathogenic  variants  in             

BRCA1/2   genes    20 .   

  

Automated   variant   pathogenicity   classification     

The  occurrence  of  rare  variants  that  have  not  yet  received  any  classification  or  interpretation  (i.e.  in                  

ClinVar)  is  a  common  scenario  in  germline  sequencing  of  cancer  patients.  To  guide  the                

interpretation  of  these  variants,  CPSR  provides  an  automated  pathogenicity  classification  in  which              

the  collection  of  variant  annotations  in  step  two  (i.e.  consequence  type,  predicted  functional  effect,                

and  population  frequencies),  along  with  information  on  disease  mechanism  and  mode  of  inheritance               

per  cancer  predisposition  gene  is  exploited.  Specifically,  CPSR  conducts  a  standard  five-level              

(Benign/Likely  Benign  (B/LB),  VUS,  Likely  Pathogenic/Pathogenic  (P/LP))  variant  pathogenicity           

classification 21 ,  serving  similar  functionality  to  the  open-source  tools  offered  by  CharGer  and              

PathoMAN.     

  The  classification  procedure  employed  by  CPSR  is  built  largely  upon  the  foundations              

established  by  the  SherLoc  algorithm,  which  made  substantial  refinements  to  the  original  ACMG               

guidelines  for  variant  classification 7 .  In  general,  each  ACMG  criterion  specifies  particular  properties              

of  variants,  such  as  population  allele  frequency  and  predicted  functional  effect,  that  supports  a                

pathogenic  or  benign  variant  nature.  Furthermore,  in  the  approach  proposed  by  SherLoc,  each               
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ACMG  criterion  is  weighted  with  positive  or  negative  point  scores  that  reflect  their  relative  strength                 

of  importance  with  respect  to  classification.  For  all  criteria  that  match  with  a  given  variant,  scores                  

are  ultimately  aggregated  to  obtain  a  single  variant  pathogenicity  score.  Notably,  the  specific               

combinations  of  software  (e.g.  VEP  and  LOFTEE)  and  annotation  databases  (e.g.  GENCODE,              

gnomAD)  used  in  CPSR,  as  well  as  the  customization  of  the  criteria  towards  the  disease  phenotype                  

(e.g.  using  cancer  mutation  hotspots  to  highlight  important  amino  acids),  are  in  effect  providing  a                 

unique,  cancer-dedicated  variant  classification  procedure.  The  details  of  each  ACMG  evidence             

criterion  implemented  in  CPSR,  as  well  as  their  associated  point  scores,  can  be  found  in                 

Supplementary   Table   1.     

Thresholds  for  converting  variant  pathogenicity  scores  to  five-level  classifications  were            

calibrated  through  a  comparison  with  existing  ClinVar  classifications  (November  2020  release).  In              

our  calibration,  we  considered  ClinVar  variants  in  cancer  predisposition  genes  (superpanel  set,  n  =                

335),  limited  to  those  with  a  review  status  of  minimum  two  stars,  the  latter  to  minimize  the  impact                    

of  low-confident  variant  interpretations.  The  relationship  between  ClinVar  classification  status  and             

variant  pathogenicity  scores  calculated  by  CPSR  is  illustrated  in  Figure  2,  and  thresholds  that  were                 

set  ensured  high  concordance  (agreement  on  93.2%  of  all  P/LP  classified  variants  in  ClinVar,  95.5%                 

for   VUS   variants,   and   96.4%   for   B/LB   variants).     

Finally,  we  compared  the  sensitivity  and  specificity  of  our  classification  algorithm  with  the               

two  algorithms  provided  through  CharGer  (i.e.  custom  and  ACMG-based).  Here,  we  used  an               

established  benchmark  set  from  the   Pediatric  Cancer  Germline  Project  (PCGP)  in  which  manual               

variant  classifications  defined  by  a  panel  of  clinical  geneticists  constitute  the  gold  standard               

(Supplementary  Materials).  For  P/LP  variants  (n  =  105),  classification  with  CPSR  achieved  a               

sensitivity  of  74.3%,  which  is  higher  than  what  was  obtained  with  either  of  CharGer’s  two                 

algorithms  (72.4%  for  the  custom  and  56.2%  for  the  ACMG-based,  respectively).  Of  all               

panel-determined  non-pathogenic  variants  (n  =  683),  CPSR  classified  16  variants  as  pathogenic,              
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translating  to  a  specificity  of  97.7%,  an  intermediate  of  the  rates  produced  by  CharGer’s  algorithms                 

(98.1%   for   the   ACMG-based   and   97.3%   for   the   custom,   respectively).   

  

Variant   report   generation   

The  final  step  of  the  workflow  exploits  the  R  Markdown  framework  to  display  all  variant  findings                  

in  a  structured  and  interactive  variant  report 22 .  Of  note  is  that  additional  output  formats  are  also                  

available  to  the  user,  i.e.  annotated  VCF,  JSON,  and  TSV  (tab-separated  values).  The  TSV  output                 

can  be  utilized  to  collect  results  from  multiple  cases  that  have  been  analyzed  with  CPSR,  which                  

represents  a  common  scenario  in  large  research  studies.  An  example  HTML  report  can  be                

downloaded   for   exploration   here:    https://doi.org/10.5281/zenodo.4050913 .   

The  interactive  HTML  report  is  organized  into  four  main  sections:   Settings ,  Summary  of               

Findings ,  Germline  SNVs/InDels ,   and  Documentation.  Settings  indicate  report  and  analysis            

configurations,  as  well  as  information  regarding  the  virtual  screening  panel,  while  the              

Documentation   section  lists  all  versions  of  underlying  databases  and  third-party  software.  These  two               

sections  thus  serve  to  ensure  reproducibility  and  transparency  of  the  complete  analysis  workflow.               

Summary  of  findings  provides  the  user  with  overall  statistics  with  respect  to  classifications  of                

variants  found  for  the  given  case,  both  for  variants  already  existing  in  ClinVar,  and  for  novel                  

variants   without   records   in   ClinVar.     

The  main  content  of  the  report  is  contained  within  the  section  named   Germline  SNVs/InDels ,                

where  details  of  all  variants  are  structured  in  interactive  tables,  and  where  the  user  can  explore  and                   

filter  variant  data  for  various  types  of  annotations,  e.g.  population  frequency,  consequence  type,  or                

existing  phenotype  associations.  For  variants  of  uncertain  significance  (VUS),  which  frequently             

make  up  the  largest  group  of  variants,  the  report  importantly  enables  the  use  of  the  CPSR                  

pathogenicity  score  to  prioritise  potential  borderline  cases.  A  dedicated  biomarker  section  lists  input               

variants  that  can  have  therapeutic  implications  or  otherwise  influence  prognosis  or  diagnosis,  and               
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also  allows  the  user  to  investigate  the  supporting  literature  and  evidence  for  such  associations.                

Finally,  the  user  can  opt  to  list  secondary  pathogenic  variants,  as  recommended  by  ACMG 23 ,  and                 

also  a  potential  overlap  of  input  variants  with  low-to-moderate  risk  alleles  found  for  cancer                

phenotypes   in   genome-wide   association   studies   (GWAS).   

  

3     Discussion   

Knowledge  on  pathogenic  variants  in  cancer-predisposing  genes,  and  their  relationships  to  systemic              

therapy  choices,  is  emerging  and  evolving  on  a  continuous  basis.  The  quality  and  contents  of  the                  

report  produced  with  CPSR  will  thus  advance  accordingly,  as  underlying  databases  are  updated.  In                

particular,  information  regarding  the  mode  of  inheritance  and  the  mechanism  of  action  is  currently                

not  well  established  for  a  significant  number  of  inherited  cancers.  Filling  this  gap  is  likely  to                  

improve   variant   classification   in   a   number   of   genes.     

The  automated  variant  classification  procedure  implemented  in  CPSR  demonstrated           

improved  sensitivity  over  existing  algorithms  provided  with  CharGer.  One  should  however  note  that               

simple  comparisons  of  classification  algorithms  must  be  interpreted  cautiously,  primarily  due  to  the               

fact  that  algorithms  for  variant  classification  are  frequently  configurable  through  a  multitude  of               

parameters.  It  should  also  be  emphasized  that  automated  procedures  are  intended  primarily  to  guide                

the   classification,   and   where   borderline   cases   either   way   should   be   manually   reviewed.     

We  acknowledge  that  additional  datasets  and  analyses  can  add  useful  extra  dimensions  to  the                

cancer  predisposition  report.  A  future  version  of  CPSR  should  accept  germline  DNA  copy  number                

variants  as  an  additional  input  type.  Important  pharma-  and  radiogenomic  risk  variants  may  further                

be   incorporated   during   reporting,   as   well   as   a   framework   for   calculation   of   polygenic   risk   scores    24 .   

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 25, 2020. ; https://doi.org/10.1101/846089doi: bioRxiv preprint 

https://paperpile.com/c/CdYdLn/NxJ0
https://paperpile.com/c/CdYdLn/y6S0
https://doi.org/10.1101/846089
http://creativecommons.org/licenses/by-nc-nd/4.0/


4     Conclusion   

Evidence-based  personal  cancer  treatment  based  on  genetic  testing  is  an  important  goal  in  oncology.                

CPSR   provides   a   documented   tool   to   reach   this   goal.     
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Figures   

  
Figure  1:  CPSR  workflow  with  key  databases  and  underlying  software,  illustrating  how  the  query                

variant  set  from  germline  variant  calling  (formatted  as  VCF)  is  subject  to   four  main  steps  for                  

predisposition  interpretation.   Locus  filtering  against  a  selected  cancer  predisposition  gene  panel             

from  the  Genomics  England  PanelApp,  where  colors  indicate  confidence  of  association  to              

phenotype,  from  diagnostic-grade  in  green  to  low-level  confidence  genes  in  red  ( step   1 ).  Annotation                

through  VEP  and   vcfanno  with  functional  variant  annotations:  variant  consequences  by  VEP,              

mutation  hotspots  from  cancerhotspots.org,   in  silico  deleteriousness  predictions  from  dbNSFP,            

loss-of-function  predictions  through  VEP’s  LOFTEE  plugin,  population  allele  frequencies  from            

gnomAD,  germline  biomarkers  from  CIViC,  and  low-risk  alleles  from  NHGRI-EBI  GWAS  Catalog              

( step   2 ).  Pathogenicity  classification  of  novel  variants  according  to  a  cancer-dedicated             

implementation  of  refined  ACMG  criteria  ( step  3 ).  Aggregation  and  structuring  of  the  results  in  a                 

tiered  cancer  predisposition  report  ( step   4 ).  Abbreviations:  VEP  =  Variant  Effect  Predictor;              

LOFTEE  =  Loss-Of-Function  Transcript  Effect  Estimator;  VCF  =  Variant  Call  Format;  dbNSFP  =               

database  of  non-synonymous  functional  predictions;  CIViC  =  Clinical  Interpretations  of  Variants  in              

Cancer,  ACMG  =  American  College  of  Medical  Genetics  and  Genomics;  gnomAD  =  Genome               

Aggregation  Database;  WGS  =  Whole-Genome  Sequencing;  WES  =  Whole-Exome  Sequencing;  TS             
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=   Targeted   Sequencing   

  

  
  

Figure  2:   Calibration  of  CPSR  pathogenicity  score  thresholds  against  ClinVar  variants  with  a               

known  classification  (minimum  two  review  stars).  The  complete  distribution  was  calculated  for              

variants  in  cancer  predisposition  genes  (n  =  335)  and  was  used  to  determine  suitable  CPSR                 

thresholds  for  P/LP/VUS/LB/B  classifications,  as  indicated  with  the  vertical  dashed  lines             

(Pathogenic:  [5,  ],  Likely  Pathogenic:  [2.5,  4.5],  VUS:  [-1,  2.0],  Likely  Benign:  [-4.5,  -1.5],  Benign:                 

[,   -5])   
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