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1 Abstract11

Mendel’s first law dictates that alleles segregate randomly during meiosis and are dis-12

tributed to offspring with equal frequency, requiring sperm to be functionally independent13

of their genetic payload. Developing mammalian spermatids have been thought to accom-14

plish this by freely sharing RNA from virtually all genes through cytoplasmic bridges,15

equalizing allelic gene expression across different genotypes. Applying single cell RNA16
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sequencing to developing spermatids, we identify a large class of mammalian genes whose17

allelic expression ratio is informative of the haploid genotype, which we call genoinforma-18

tive markers (GIMs). 29% of spermatid-expressed genes in mice and 47% in non-human19

primates are not uniformly shared, and instead show a confident allelic expression bias20

of at least 2-fold towards the haploid genotype. This property of GIMs was significantly21

conserved between individuals and between rodents and primates. Consistent with the22

interpretation of specific RNA localization resulting in incomplete sharing through cyto-23

plasmic bridges, we observe a strong depletion of GIM transcripts from chromatoid bodies,24

structures involved in shuttling RNA across cytoplasmic bridges, and an enrichment for25

3′ UTR motifs involved in RNA localization. If GIMs are translated and functional in the26

context of fertility, they would be able to violate Mendel’s first law, leading to selective27

sweeps through a population. Indeed, we show that GIMs are enriched for signatures of28

positive selection, accounting for dozens of recent mouse, human, and primate selective29

sweeps. Intense selection at the sperm level risks evolutionary conflict between germline30

and somatic function, and GIMs show evidence of avoiding this conflict by exhibiting31

more testis-specific gene expression, paralogs, and isoforms than expression-matched con-32

trol genes. The widespread existence of GIMs suggests that selective forces acting at the33

level of individual mammalian sperm are much more frequent than commonly believed.34

2 Author’s summary35

Mendel’s first law dictates that alleles are distributed to offspring with equal frequency,36

requiring sperm carrying different genetics to be functionally equivalent. Despite a small37

number of known exceptions to this, it is widely believed that sharing of gene products38

through cytoplasmic bridges erases virtually all differences between haploid sperm. Here,39

we show that a large class of mammalian genes are not completely shared across these40

bridges, therefore causing sperm phenotype to correspond partly to haploid genotype. We41

term these genes “genoinformative markers” (GIMs) and show that their identity tends42
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to be conserved from rodents to primates. Because some GIMs can link sperm genotype43

to function, they can be thought of as selfish genetic elements which lead to natural se-44

lection between sperm rather than between organisms, a violation of Mendel’s first law.45

We find evidence of this biased inheritance, showing that GIMs are strongly enriched for46

selective sweeps that spread alleles through mouse and human populations. For genes47

expressed both in sperm and in somatic tissues, this can cause a conflict because opti-48

mizing gene function for sperm may be detrimental to its other functions. We show that49

there is evolutionary pressure to avoid this conflict, as GIMs are strongly enriched for50

testis-specific gene expression, testis-specific paralogs, and testis-specific isoforms. There-51

fore, GIMs and sperm-level natural selection may provide an elegant explanation for the52

peculiarity of testis gene expression patterns, which are an extreme outlier relative to all53

other tissues.54

3 Introduction55

In diploid organisms, Mendel’s First Law dictates equal transmission of alleles to the next56

generation, with strong selective pressure maintaining this 50:50 ratio (Crow 1979). In57

mammalian spermatogenesis, a long stage of haploid development raises the possibility58

of allele-biased gene expression and extensive functional variation between mature sperm59

(Immler 2008). This could be deleterious, for example for important gene products en-60

coded on the X chromosome that would be missing from Y-bearing sperm. However,61

haploid sperm precursors are equipped with a mechanism for sharing of gene products:62

cytoplasmic bridges connecting neighboring cells (Braun et al. 1989). Therefore, mature63

mammalian sperm are thought to be functionally diploid with very rare exceptions.64

Most examples of transmission ratio distortion (TRD), i.e. known exceptions to65

Mendelian inheritance, are attributable to factors other than sperm heterogeneity. How-66

ever, a handful of sperm functional differences linked to genotype have been reported.67

The mouse t haplotype, a selfish genetic element transmitted at a rate of up to 99% from68
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heterozygotes, is the best understood case. The mechanism for its TRD is post-meiotic69

expression and a lack of sharing of t complex responder gene products across cytoplas-70

mic bridges, resulting in differential motility (Véron et al. 2009). Likewise, Spam1 gene71

products have been shown to be retained in haploid spermatids, underlying TRD in mice72

carrying certain Robertsonian translocations (Zheng, Deng, and P. Martin-DeLeon 2001).73

In a mouse model for Niemann-Pick disease, heterozygous knockouts of Smpd1 have74

sperm with functional differences in mitochondrial membrane potential associated with75

their genotype (Butler et al. 2007). Recently, TLR7/8 inhibitors have been reported to76

differentially affect sperm with the X or Y chromosome (Umehara, Tsujita, and Shimada77

2019). Nevertheless, it is widely assumed that most gene products are shared between78

mammalian gametes, erasing any allelic expression bias.79

If, however, sperm functional variation were linked to genotype more often than com-80

monly believed, it might provide an elegant explanation for some peculiar evolutionary81

phenomena. Testes and spermatids in particular are extreme evolutionary outliers, hav-82

ing far more unique tissue-specific expression patterns, tissue-specific paralogs, alternative83

isoforms, and selective sweeps compared to other tissues (Kleene 2005). Sexual selection84

and intragenomic conflict is often invoked to explain this bias, but haploid selection on85

genes with transmission ratio distortion could easily have contributed (Joseph and Kirk-86

patrick 2004). For example, alleles with beneficial effects in mature sperm might have87

deleterious effects in somatic cells, which could drive avoidance of this conflict by evolving88

sperm-specific paralogs or isoforms. Widespread transmission ratio distortion would be89

difficult to observe directly due to rapid fixation of beneficial alleles and depletion of dele-90

terious ones, but might leave traces over evolutionary timescales, altering the properties91

of testis-expressed genes.92

TRD enabled by retention of haploid gene products in spermatids would require93

specific RNA localization rather than free diffusion across cytoplasmic bridges. Recent94

methodological advances in RNA detection have revealed widespread asymmetric mRNA95
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distributions in a wide variety of cell types, including up to 70% of mRNAs during D.96

melangogaster development (Lécuyer et al. 2007; Buxbaum, Haimovich, and Singer 2015).97

We therefore hypothesized that many endogenous mRNAs would be transcribed in98

haploid spermatids and incompletely shared across cytoplasmic bridges, resulting in al-99

lelic expression bias correlating to the sperm genotype (Fig. 1A). Since mature sperm are100

transcriptionally and translationally silent, allelic biases in mature sperm protein corre-101

lated with the haploid genotype would have to correspond to mRNA expression biases102

at the haploid spermatid stage. We therefore performed single cell RNA sequencing in103

spermatids (Fig. 1B) from hybrid mice and cynomolgus macaques, quantifying allele-104

specific biases in expression. We found surprisingly widespread chromosome-scale biases105

in single cells allowing confident identification of genes with strong allelic expression links106

to the genotype, which we term genoinformative markers (GIMs). We show evidence107

for subcellular localization patterns that help explain their lack of sharing across cyto-108

plasmic bridges, as well as evolutionary consequences consistent with sperm-level natural109

selection.110

4 Results111

4.1 Many genes have allelic expression bias reflecting the hap-112

loid genotype in spermatids113

We first set out to identify cases of incomplete sharing of RNA across cytoplasmic bridges114

in haploid spermatids (Fig. 1A). This would result in shared information (i.e. correlation)115

between the allelic expression of a gene and the haploid genotype of the cell, which we116

call genoinformative expression. Most single cell RNAseq experiments are poorly suited117

to quantifying allele-specific expression because they do not sequence samples from fully118

phased individuals, they only sequence a short tag from each RNA molecule (which may119

not contain a heterozygous site), and they do so with relatively low capture efficiency. To120
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maximize the accuracy of our allele-specific quantification, we used an F1 hybrid (therefore121

fully phased) of distantly-related inbred mouse models, C57BL/6 and PWK/PhJ, having122

over 20 million heterozygous SNPs, compared to roughly 3 million in a human genome123

(Fig. 1B). We digested testis tissue to isolate single cells from their cytoplasmic bridges,124

enriched for haploid cells by flow cytometry, and performed full-length single cell RNA125

sequencing using a slightly modified SmartSeq2 protocol optimized for sensitive RNA126

capture (Methods).127

Of 144 cells obtained from a single male mouse having successful RNA amplification,128

126 passed filters as likely singlets with substantial read counts. Principal Components129

Analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE) revealed a130

mixture of three cell types expressing marker genes for spermatids, spermatocytes, and131

spermatogonia, respectively (Fig. S1A-C). Focusing on the 95 haploid spermatids, we132

used diffusion mapping (Angerer et al. 2016) to define a pseudotime space covering their133

differentiation process. The pseudotime ranges from early round spermatids up until the134

point that the number of genes expressed decreases rapidly at the elongation stage, when135

transcription arrests (Fig 1C, Fig. S1D). Late spermatid markers such as PRM3 increase136

in expression over this pseudotime, while spermatocyte markers such as SYCP3 decrease137

(Fig. 1C).138

10,991 genes passed filters for calculation of genoinformative expression, including hav-139

ing at least one heterozygous site and having comparable mean expression of each allele140

(see Methods). We first focused on autosomes rather than sex chromosomes, because141

we could use the two alleles as an internal control, yielding an easily quantifiable allelic142

expression ratio within each cell. Visualizing allelic expression in individual haploid cells,143

we observed strong biases across large stretches of chromosomes, but no consistent bias144

in diploid controls (Fig. 2A, S2A). Across all haploid autosomes, there was a significant145

correlation of allelic ratios between neighboring genes that gradually decreased with chro-146

mosomal distance, and this correlation was completely absent in diploid controls (Fig.147
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Figure 1: Single cell sequencing of haploid spermatids for assessing allelic bias. A) Models for allelic expression bias
informative of the haploid genotype (genoinformative expression). The null hypothesis predicts complete sharing between
spermatids, erasing any systematic allelic expression differences in mature sperm (top). Selfish genetic elements like the
mouse t haplotype have virtually no sharing and lead to dramatic allelic differences in mature sperm (center), but incomplete
sharing of transcripts would also lead to genoinformative expression (bottom). DNA is represented as straight lines with
color representing an allele, and RNA is represented as wavy lines. Sperm color represents the degree of functional links
to the allelic genotype. B) Experimental setup for single cell RNAseq. We crossed distantly related inbred mouse strains,
digested single cells from the testis and enriched for haploid spermatids, and performed full-length RNA-seq and allele-
specific quantification. C) Pseudotime analysis shows haploid spermatids covered a range from the early round stage (low
expression of protamines) to the late elongating phase (very low expression of SYCP3 )
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Supplemental figure 1. Single cell RNAseq of haploid spermatids identifies chromosome-scale correlations in allelic bias.
A) t-Distributed Stochastic Neighbor Embedding (tSNE) dimensionality reduction for single testis cells enriched for hap-
loid cells. Expression levels in transcripts per million (TPM) are visualized for markers of haploid spermatids (Prm3 ),
spermatocytes (Sycp3 ), and spermatogonia (Zbtb16 ). B) Cell type annotations based on the above marker genes. C)
Principal component analysis confirming the tSNE result, showing that all haploid spermatids were strongly distinct from
diploid cells. D) Left: first two dimensions of diffusion map of haploid spermatids showing the first dimension captured
the developmental stage well. Right: Number of genes detected per cell against the first diffusion map dimension (diffusion
map pseudotime), showing a decline in those at the latest developmental stage. E) Illustration of chromosome-length allelic
expression correlation. For one gene on chromosome 1, Dnah7a (located at the red line), pairwise correlation of allelic
expression ratio was calculated for every gene. Plotted is a loess-smoothed average across each chromosome. Only on
chromosome 1 near the Dnah7a locus is there a substantial average correlation. F) Summary of chromosome-length allelic
expression correlations. For each gene, pairwise correlations of allelic expression ratios with all genes on the same chromo-
some were calculated. The mean correlation in haploid cells or diploid cells across all genes is plotted as a loess-smoothed
average. A substantial mean correlation exists for nearby genes in haploid but not diploid cells, and decreases gradually
across tens of megabases.
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S1E-F). We reasoned that this effect could be explained by a combination of correla-148

tion caused by widespread genoinformative expression and degradation of this correlation149

with distance by recombination. Therefore, we designed a Bayesian probability framework150

based on an extension of a Hidden Markov Model to infer the haploid genotype of each151

cell including recombination breakpoints jointly with genoinformativity. Genoinformative152

expression was modeled as emissions based on the underlying genotype and propensity of153

an RNA to be shared across cytoplasmic bridges. Intuitively, this model shares informa-154

tion between genes across an entire chromosome for each cell, which means that even weak155

and noisy genoinformative expression signals in individual genes can aggregate to yield156

robust signals across large stretches of a chromosome. The model output a probability of157

genotypes for each cell, and a genoinformativity score for each gene representing the esti-158

mated fraction of transcripts retained from its haploid gene expression. Visual inspection159

confirmed that our inferred genotypes matched the observed expression biases well (Fig.160

2A, Fig. S2A). If the inferred genotypes are accurate, the distribution of recombination161

breakpoints should follow the known recombination density in the mouse genome. Indeed,162

we saw a significant correlation of inferred recombination density to the published map163

(Cox et al. 2009) with good agreement at a resolution of 10 to 20 megabases (Fig 2B,164

S2B-C).165

Examining for individual genes the concordance between allelic expression and haploid166

genotype across cells, we observed a wide range of genoinformativity (Fig. 2C): Many167

genes, like Sycp3, had no association between their allelic expression ratio and the inferred168

genotype, consistent with our null hypothesis of complete sharing across cytoplasmic169

bridges erasing allelic expression differences; some, such as Fer1l5, had virtually complete170

concordance with their inferred genotype, suggesting minimal sharing across cytoplasmic171

bridges; a larger set of genes had clear but intermediate genoinformativity, exemplified by172

Ccdc28a, suggesting partial sharing through cytoplasmic bridges. To determine thresholds173

for confident genoinformativity, we ran our Bayesian algorithm on shuffled data to create174
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an empirical background expectation under the null hypothesis of no genoinformative175

expression (Fig. S2D-E). Thresholds of parameters for both the posterior distribution176

of the genoinformativity score and the strength of haplotype inference were selected to177

achieve an empirical False Discovery Rate of 10%. For convenience, genes that met178

the criteria for confident genoinformative expression were called genoinformative markers179

(GIMs), regardless of their effect size. Of the 10,991 genes for which we could estimate180

genoinformativity, 4,354 (39.6%) were confident GIMs and 3,317 (30.2%) were confidently181

not GIMs (see Methods; Fig. 2D, inset). We were unable to make a confident call for the182

remaining 3,320 (30.2%) due to marginal signal for genoinformativity. Of the confident183

genoinformative set, a wide range of effect sizes was seen, but 3,159 (28.8%) had at least a184

2-fold average allelic expression ratio in favor of the allele matching the haploid genotype185

(Fig. 2D).186

We were surprised that as many as a third of genes were classified as strong GIMs, so187

we sought to confirm our assumption that this corresponded to incomplete sharing across188

cytoplasmic bridges. The chromatoid body is a membraneless organelle (a phase-separated189

condensate) in germ cells that has been shown to shuttle RNA across cytoplasmic bridges190

to facilitate sharing (Fig. 2E inset; Ventelä, Toppari, and Parvinen 2003). We found191

that a published set of genes enriched in the chromatoid body (Meikar et al. 2014) had192

far lower genoinformativity scores than other genes (Fig. 2E), and that there were fewer193

GIMs enriched in the chromatoid body than expression-matched controls (Fig. S5C). This194

confirms that GIMs have different subcellular localization of their RNAs from non-GIMs.195

4.2 GIMs have specific subcellular localization resulting in in-196

complete sharing across cytoplasmic bridges197

To identify what mechanisms might be responsible for the differential localization of GIMs,198

we compared GIMs to non-GIM controls that were matched for expression across spermio-199

genesis as closely as possible (Fig. S5A, Table S3-4, Methods). Most eukaryotic mRNA200
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Figure 2: A large fraction of mouse genes exhibit genoinformative expression. A) Visualization of allelic bias in the first two
chromosomes of two representative haploid cells. Each expressed gene is represented as a vertical line with color representing
its allelic ratio (red for more maternal allele, blue for more paternal). Below each chromosome is the genotype inferred by
our Bayesian method. B) Correlations between inferred recombination densities and a published mouse recombination map
(Cox et al. 2009) or a control with recombination densities shuffled between all bins. As bin sizes decrease below about
20 megabases, the variance in our inferred rates increases, causing a degradation of our signal to noise ratio. C) Example
genes illustrating differing levels of genoinformative expression (right) with their models of sharing (left). Sycp3 exhibits no
association with the haploid genotype, Ccdc28a exhibits a strong but incomplete association between the inferred genotype
and the expressed allele, and Fer1l5 exhibits a near-perfect correlation with the inferred genotype. D) GIM classification of
all genes. Histogram shows the log2 of the expression ratio between the concordant allele (i.e. matching the genotype) over
the discordant allele on average across cells. Inset: the total number of genes classified in each category of genoinformative
expression. E) Genes with mRNAs enriched in the chromatoid body have significantly lower genoinformativity scores.
Genoinformativity scores range from zero to one and represent the estimated fraction of transcripts originating from a cell’s
haploid transcription. Inset: depiction of the chromatoid body’s role in shuttling mRNAs across cytoplasmic bridges in
haploid spermatids. F) A model for how allelic skew (e.g. due to eQTLs) interacts with genoinformative expression. Only
genes with both allelic skew and genoinformative expression (not shared) have their mean expression level correlated to
the haploid genotype. G) Example genes matching the categories in (F). Only Rabl2 has a significant mean expression
difference (p = 1.5× 10−5, Wilcoxon test). H) Summary of expression differences (log2 ratio of genotype concordant with
skew to discordant) in all genes in each of the four combinations listed. Only with both allelic skew and GIMs is there an
expression difference between cells of differing genotypes.
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Supplemental figure 2. Joint inference of genotype and genoinformativity. A) Visualization of allelic bias in the first four
chromosomes of randomly selected haploid cells and randomly selected diploid cells. Each expressed gene is represented as
a vertical line with color representing its allelic ratio (red for more maternal allele, blue for more paternal). Below each
chromosome is the genotype automatically inferred by our Bayesian method. B) Correlations between inferred recombi-
nation densities and two published mouse recombination maps (Cox et al. 2009; Liu et al. 2014) or corresponding controls
with recombination densities shuffled between all bins. C) Recombination densities across each chromosome (calculated
over a 20Mb window) implied by the Bayesian recombination frequencies or for each of the two published recombination
maps. D) Inferred genotype and genoinformativity for real haploid data and two shuffle types: one permuting both gene
and cell labels (complete shuffle) and one permuting only cell labels. Each point is a gene/cell pair, with genotype estimate
(x-axis) being a property of the specific gene in a specific cell, and 5% lower bound of genoinformativity (y-axis) being
a property of the gene (constant across cells). Three representative chromosomes are plotted (5, 10, and 15). Real data
more often have confident genotype estimates and high genoinformativity (upper left and upper right of graph). The cell
label shuffle is quite conservative because the genotype structure is maintained, and only the genoinformative expression
is randomized. E) Summary of the data from (D) illustrating thresholds for calling confident GIMs (dashed lines). Each
point is a gene, with poor haplotypes defined as those with less than 95% probability of a genotype. 5% lower bound of
posterior genoinformativity probability is plotted on x-axis.
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localization is dictated by RNA-binding proteins via sequence motifs in 3′ UTRs (An-201

dreassi and Riccio 2009), so we performed an enrichment analysis for known motifs of202

RNA-binding proteins that are expressed in spermatids. We identified 26 motifs signif-203

icantly enriched in GIMs relative to controls, and zero significantly depleted in GIMs204

(Table S5).205

Similarly, a gene ontology enrichment analysis identified strong enrichment for GIMs206

for specific protein localizations, especially membrane associations and axoneme or other207

tail localizations (Table S6). To further refine this result, we performed an enrichment208

analysis with a comprehensive localization database (Binder et al. 2014). This revealed a209

strong enrichment for genes with annotated localization in neurons, including both den-210

drites and axons (Table S7), probably reflecting the fact that subcellular RNA localization211

has been best studied in neurons but is governed by principles applicable across cell types212

(Ryder and Lerit 2018). Together, these data suggest a mechanism for genoinformativity213

whereby RNA-binding proteins bring some mRNAs to specific subcellular locations distal214

from chromatoid bodies, thus partially avoiding sharing across cytoplasmic bridges.215

As independent confirmation of our incomplete sharing model for GIMs, we sought216

to use the much larger set of RNAseq reads that did not overlap a heterozygous site but217

could be used for estimating overall expression levels. GIMs have allelic expression biases218

based on the haploid genotype, but because 50% of cells have each genotype, GIMs do219

not necessarily have a mean allelic expression bias when averaging across many cells (here220

called allelic skew). However, many genes have a mean allelic skew for other reasons, for221

example due to expression quantitative trait loci (eQTLs) wherein a genetic variant has222

differential effects on the expression of a gene. The incomplete sharing model predicts that223

genes may have different expression levels in spermatids with the paternal versus maternal224

genotype, but only when they have both an allelic skew and genoinformative expression225

(Fig. 2F). To illustrate this point, Sycp3 (Non-GIM, no allelic skew), Ccdc28a (GIM,226

no allelic skew), and Gcn1l1 (Non-GIM, 2.7-fold allelic skew) all have no difference in227
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mean total expression from the maternal and paternal genotype cells (Fig. 2G). However,228

Rabl2, which has a 3.0-fold allelic skew and genoinformativity score of 0.45 has a significant229

difference in expression between the two spermatid genotypes (p = 1.2 × 10−5, t test).230

Across all genes, we observe that the expression level of GIMs with allelic skew is linked231

to the haploid genotype in the expected direction, but not for non-GIMs and not for232

genes without overall allelic skew (Fig. 2H). Therefore both allele-informative and non-233

allele-informative RNAseq reads support the identity of GIMs and the incomplete sharing234

model.235

4.3 Sex chromosome genes also exhibit genoinformative expres-236

sion237

Although our Bayesian method for inferring genotype and genoinformativity cannot be238

applied to sex chromosomes due to the lack of allelic expression data, genoinformative239

expression of sex chromosome genes would provide an elegant explanation for models240

of sex ratio distortion in mice (Cocquet et al. 2012; Eep, Pji, and Ellis Email n.d.).241

We therefore developed a separate method to identify sex chromosome GIMs based on242

variation in expression levels rather than in allelic ratios. We started by reasoning that243

X chromosome GIMs should have correlated expression and be anticorrelated with Y244

GIMs. Because expression levels in any given spermatid can be strongly influenced by245

developmental stage, we first corrected for the position in the diffusion map pseudotime.246

Clustering genes by pairwise correlation after correction, we identified two distinct clusters247

that corresponded overwhelmingly to the X and Y chromosome, respectively (Fig. S3A).248

In contrast, performing the same analysis on autosomal controls yielded no similar clusters249

(Fig. S3B). We selected putative GIMs from these distinct clusters that displayed strong250

correlation signals (see methods), resulting in 63 X GIMs and 84 Y GIMs (Table S2).251

Spermatids tend to have high or low mean levels of X GIMs, but not intermediate levels252

(Fig. S3C). Therefore, sex chromosomes appear to be no exception to the prevalence of253
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genoinformative expression, at least on a quantitative level.254

4.4 Genoinformativity is conserved between individuals and across255

species256

So far, we have only considered mice with one genetic background, so we next asked257

whether the phenomenon of widespread genoinformative expression extends to other258

mammals. We dissociated testes from two outbred cynomolgus primates (Macaca fas-259

cicularis), isolated haploid spermatids and performed single cell RNAseq. Cynomolgus260

monkeys have the advantage of being highly heterozygous, with ∼13 million heterozy-261

gous SNPs per individual, compared to ∼3 million for humans. Because our method for262

inferring genotypes relies on sharing information across entire chromosomes, we required263

fully phased chromosomes to quantify genoinformative expression. We therefore combined264

two phasing methods: a dense, short-range phasing using linked read sequencing, and a265

sparse, long-range phasing using whole genome sequencing of single haploid spermatids266

(Fig. 3A). Combining the two sources of information led to densely phased chromosomes267

for each individual, resulting in 11,654,918 and 10,131,178 phased sites in Cynomolgus 1268

and 2, respectively (Fig. S4A).269

We were able to quantify allelic expression of a smaller number of genes for cynomolgus270

spermatids than for mice (7,590 and 4,557 for the two cynomolgus compared to 10,991271

in mice), mostly due a smaller number of heterozygous sites. Nevertheless, we observed272

comparable quality of our genotype inference, including significant correlation of inferred273

recombination rates between individuals, an expression skew in GIMs with allelic expres-274

sion skew, and substantial differences between real and shuffled data (Fig. S4B-E). Again275

using an empirical false discovery rate of 10% in each individual, we classified 50.3% and276

52.3% of spermatid-expressed genes as confident GIMs, respectively (Fig. 3B). The effect277

sizes were comparable to those seen in mice, with 44.6% and 43.3% of spermatid-expressed278

genes having at least a 2-fold average expression difference between alleles in favor of the279
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Supplemental figure 3. Sex chromosome GIMs. A) Heatmap of pairwise correlations of sex chromosome genes. Correcting
for developmental stage (fitting the expression to the diffusion pseudotime position), the residuals of the log expression
levels are correlated between all pairs of sex chromosome genes. Two anticorrelated clusters appear, one principally on the
X chromosome (black lines above the heatmap), one principally on the Y chromosome (red lines above the heatmap). B)
Heatmap of pairwise correlations as in (A), but for autosomal control chromosomes with similar numbers of spermatid-
expressed genes (chromosomes 14 and 18). No similar broad clusters appear. C) Cells have bimodal expression of putative
X chromosome GIMs. For each cell, the mean residual log expression across putative X GIMs and Y GIMs is plotted, with
density contours. Density plots on the margins show the kernel density of the mean residual for X GIMs (top) and for Y
GIMs (right). Most cells have either a high or a low average expression of X chromosome GIMs, but not intermediate. Cells
that have high X GIM expression tend to have lower expression of Y GIMs, and vice versa.
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haploid genotype. In total, 47.3% of genes that could be quantified met this threshold in280

either of the two individuals.281

Because the two individuals have different heterozygous sites, only 2,366 genes had282

quantified genoinformativity in both. Among these genes, those that were classified as283

a confident GIM in one individual had far higher genoinformativity scores in the other284

individual, and those classified as a confident non-GIM had far lower genoinformativity285

scores in the other individual (p < 2.2 × 10−16; Fig. 3C). This suggests that within a286

species, the property of genoinformativity is highly consistent. To look across far larger287

evolutionary timescales, we compared cynomolgus genes to their orthologs in mouse with288

a genoinformativity score in each (n = 2,838). Confident GIMs in cynomolgus had higher289

genoinformativity in mouse than confident non-GIMs (p < 2.2 × 10−16; Fig. 3C), al-290

though the relationship was weaker than within a single species. This suggests that the291

features that confer incomplete sharing across cytoplasmic bridges evolve slowly, so that292

the identities of GIMs tend to be maintained across evolutionary timescales.293

4.5 GIMs show signs of sperm-level natural selection and evo-294

lutionary conflict295

The substantial fraction of genes having genoinformative expression at the RNA level is296

surprising, but it does not necessarily imply functional differences in sperm. For example,297

proteins could be shared across cytoplasmic bridges, nullifying any allelic differences at298

the RNA level. In contrast, if GIMs lead to functional differences in sperm linked to their299

genotype, sperm-level natural selection could result in increased evolutionary forces (both300

purifying and positive selection) acting on GIMs compared to other genes. Given that the301

identities of GIMs have been maintained across an appreciable evolutionary distance, we302

reasoned that functional differences in GIMs would lead to detectable signatures in the303

genome even if they rarely arise. Selective sweeps entail a beneficial allele experiencing304

positive selection and rapidly reaching fixation in a population, which leaves a signal that305
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Figure 3: GIMs are conserved between individuals and across species. A) Fully phased chromosomes were generated
directly from outbred cynomolgus individuals by computationally merging phasing maps from two experimental techniques:
short-range phasing from 10x Genomics linked read sequencing, and long-range phasing from whole genome sequencing of
several single haploid spermatids. B) Genoinformative expression classification of all genes as in Fig. 2D, for each of two
cynomolgus individuals. Histogram shows the log2 of the expression ratio between the concordant allele and the discordant
allele on average, where the concordant allele matches the inferred genotype. Inset: the total number of genes classified in
each category of genoinformative expression. C) Conservation of genoinformativity. Genes are categorized based on their
genoinformativity classification in Cynomolgus 1 (x axis), and genoinformativity is plotted for these genes in Cynomolgus
2 (left) or orthologs in mouse (right). Genoinformativity scores range from zero to one and reflect the degree of shared
information with genotype.
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Supplemental figure 4. Cynomolgus primate genotype and genoinformativity inference. A) Single cell DNA sequencing
data is displayed as phasing blocks called by the 10x Chromium pipeline for chromosome 1. Blocks are assigned to parental
chromosomes based on the single cell sequencing data using the algorithm described in the methods section. The resulting
patterns show 1-2 recombinations per cell with very few discordant (incorrectly assigned) blocks. B) Spearman correlation
between recombination densities inferred for the two individuals. Shuffled data showed lower correlations at low to moderate
bin sizes. C) Summary of expression differences (log2 ratio of genotype concordant with skew to discordant) in all genes in
each of the four combinations listed. Only with both allelic skew and GIMs is there an expression difference between cells of
differing genotypes, matching the results in mouse. D) Inferred genotype and genoinformativity for real haploid data and
two shuffle types: one permuting both gene and cell labels (complete shuffle) and one permuting only cell labels. Each point
is a gene/cell pair, with genotype estimate (x-axis) being a property of the specific gene in a specific cell, and 5% lower
bound of genoinformativity (y-axis) being a property of the gene (constant across cells). Three representative chromosomes
are plotted (5, 10, and 15). Real data more often have confident genotype estimates and high genoinformativity (upper left
and upper right of graph). The cell label shuffle is quite conservative because the genotype structure is maintained, and
only the genoinformative expression is randomized. E) Summary of the data from (D) illustrating thresholds for calling
confident GIMs (dashed lines). Each point is a gene, with poor haplotypes defined as those with less than 95% probability
of a genotype. 5% lower bound of posterior genoinformativity probability is plotted on x-axis.
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can be detected by a variety of statistical tests over patterns of variation in the genome.306

We cross-referenced a set of selective sweeps in wild mouse populations (Staubach et307

al. 2012) with GIMs and non-GIM controls, either randomly selected from spermatid-308

expressed genes or matched for expression patterns across spermiogenesis. The GIMs309

were found in significantly more selective sweep regions than expected by chance (p =310

3× 10−25) corresponding to an excess of 47± 4.6 selective sweeps putatively attributable311

to genoinformativity (Fig 4A, left). Although we do not know of studies of selective312

sweeps in cynomolgus, we took advantage of abundant predictions of selective sweeps in313

humans by examining orthologs of cynomolgus GIMs and non-GIMs. Using a set of human314

selective sweeps (Refoyo-Mart́ınez et al. 2019), we find a significant enrichment of GIMs315

(p ≤ .013) corresponding to 9.4± 4.2 sweeps putatively attributable to genoinformativity316

(Fig 4A, right). We corroborated this enrichment for GIMs in a wide variety of tests for317

selective sweeps in humans and primates on multiple timescales (Fig. S5B). Examining318

an even larger set of tests for natural selection using 1000 genomes project data (Pybus319

et al. 2014), we found significant enrichments in a majority of tests (Fig. S5D). Together,320

this indicates that GIMs are associated with an increased rate of positive selection over321

evolutionary time.322

Sperm-level natural selection poses an evolutionary conundrum: due to its highly323

specialized function, what is good for the sperm is not necessarily good for the organism.324

In other words, selection for a beneficial allele in sperm may decrease overall fitness if325

the allele is deleterious in a somatic cell context (Fig. 4B). Over evolutionary time,326

this conflict might make genoinformative expression deleterious for genes with somatic327

functions, but not for genes uniquely expressed in male reproductive tissue. Supporting328

this hypothesis, we see that GIMs are more likely to be testis-specific in both mouse329

(p < 10−22) and human (p = 0.006; Fig. 4C). When it arises, the evolutionary conflict330

caused by sperm-level selection will cause evolutionary pressure for separating functions331

for the gene in germ and somatic cells. Examples of this evolutionary pattern include gene332

20

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 18, 2019. ; https://doi.org/10.1101/846253doi: bioRxiv preprint 

https://doi.org/10.1101/846253


duplication followed by subfunctionalization (Fig. 4B), and testis-specific gene isoforms.333

As predicted, GIMs are significantly enriched in paralog families that are predominantly334

testis-expressed in both mouse (p ≤ 6.7×10−12; Fig. 4D, left) and human (p ≤ 0.0007; Fig.335

4D, right). Human GIMs are also enriched testis-specific isoforms (p ≤ 1.9× 10−14; Fig.336

4E, right), and although we are not aware of similar quality isoform-level mouse datasets,337

mouse GIMs are significantly more likely to have testis-specific exons (p ≤ 3.7 × 10−9;338

Fig. 4E, left).339

Each of these lines of evidence implies that GIMs with these properties are enriched for340

causing functional differences in sperm, which would require incomplete sharing of proteins341

across cytoplasmic bridges. In the mouse t haplotype, this occurs in part by translating342

a protein late in spermiogenesis, as cytoplasmic bridges start to break down (Véron et343

al. 2009). We therefore predicted that GIMs enriched for causing functional differences344

in sperm would also be enriched in late translation of their proteins compared to other345

GIMs. Examining a polysome profiling dataset across mouse spermatogenesis (Iguchi,346

Tobias, and Hecht 2006), mouse GIMs that were functional candidates based on selective347

sweeps, testis-specific expression, or testis-specific paralogs, were indeed enriched for late348

translation (p = 0.045, 1.4 × 10−12, 0.00045, Fisher’s exact test; Fig. 4F). However, we349

did not see enrichment in late translation for GIMs that had testis-specific exons. These350

results suggest that late translation of GIMs is one mechanism by which they may lead to351

sperm-level functional differences, causing a higher rate of selective sweeps and avoidance352

of evolutionary conflict.353

5 Discussion354

Here we have shown that a large fraction of spermatid-expressed genes are not completely355

shared between haploid spermatids, resulting in allelic expression that is linked to the356

haploid genotype, which we call genoinformative expression. Our model for the mechanism357

for this genoinformative expression is subcellular localization of RNAs, occurring through358
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Figure 4: GIMs are associated with sperm-level natural selection and evolutionary conflict. A) GIMs are enriched in
selective sweep regions in mouse (Staubach et al. 2012) and human (Refoyo-Mart́ınez et al. 2019). Human GIMs were
inferred from cynomolgus orthologs. GIMs were compared to control sets (orange bars), either selected from all spermatid-
expressed confident non-GIMs, or confident non-GIMs matched to GIMs by their spermatid expression trajectory. B) Model
for evolutionary conflict between sperm-level and organism-level natural selection. The gene has one allele with beneficial
effect in somatic cells but detrimental effect in sperm (G) and one allele with the reverse pattern (g), resulting in positive
selection for g at the sperm level, but negative selection at the organism level. A resolution to conflict can be achieved by
duplication into two genes, G1/g1 expressed in somatic cells and G2/g2 expressed in sperm. Selection will then favor the
G1 and g2 alleles, with no detrimental effects at either level. C) GIMs are enriched for testis-specific expression in mice
and human, defined as 10-fold higher expression than any other tissue. GIMs were only compared to non-GIMs matched
for spermatid expression trajectory, because testis-specific expression is by definition dependent on spermatid expression
level. D) GIMs represent a higher number of paralog families than non-GIMs in mice and humans. Controls as in (A). E)
GIMs are enriched in testis-specific isoforms in humans and testis-specific exons in mice. Controls as in (A). F) GIMs that
are functional candidates are enriched for specific late translation. The GIMs are taken from the blue bars in panel A, C,
D, and E, respectively. GIMs in each functional category are compared with GIMs not in that category, and the proportion
with specific late translation was calculated. The log2 of the ratio of these proportions is plotted.
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Supplemental figure 5. GIM functional characterization. A) Illustration of expression-matched control selection for repre-
sentative GIMs. Thick black lines represent log2 of the loess fit of the expression (in TPM) of GIMs across the spermatid
differentiation diffusion pseudotime. Colored lines represent the same loess fit for the 20 genes selected as controls for this
gene based on their expression pattern and dropout rate. B) The number of positive selection (selective sweep) candidates
from several publications (Schrider and Kern 2016; Ferrer-Admetlla et al. 2014; Cheng, Racimo, and Nielsen 2019; Munch
et al. 2016) overlapping GIMs or several types of controls. Error bars represent the mean ± standard deviation over the 20
control sets of mock GIMs. GIMs are enriched for selective sweeps in all cases (p < 0.0276, p < 1.01×10−6, p < 9.65×10−6,
p < 8.60×10−6, respectively). C) The fraction of genes overlapping the genes annotated as enriched in the chromatoid body
(Meikar et al. 2014) overlapping with each gene category. Bars represent mean ± standard deviation over the 20 control
sets of mock GIMs. D) Enrichment for GIMs in positive selection candidates based on raw scores for positive selection
calculated based on 1000 genomes project data. The background expectation was calculated using the expression-matched
non-GIM control set, and error bars represent the mean ± twice the standard deviation of these controls.
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RNA-binding protein motifs in the 3′ UTRs or other mechanisms, resulting in depletion359

of GIMs from the chromatoid body (which facilitates sharing across cytopasmic bridges).360

GIMs are substantially conserved across populations and evolutionary timescales, so we361

predict these mechansisms are conserved as well.362

In light of this finding, a number of cases of sperm-level functional differences in363

the literature can be putatively attributed to GIMs (Conway et al. 1994; P. A. Martin-364

DeLeon et al. 2005; Butler et al. 2007; Véron et al. 2009; Cocquet et al. 2012; Alavioon365

et al. 2017; Nadeau 2017; Umehara, Tsujita, and Shimada 2019). Despite the growing366

number of examples of sperm-mediated transmission ratio distortion, it has been widely367

assumed these are isolated cases and that mammalian sperm are functionally diploid as368

a rule. The fact that GIMs were so common (over a third of spermatid-expressed genes)369

surprised us, and suggests that many more cases of sperm-level functional heterogeneity370

based on genotype will be found.371

Mendel’s first law dictates that alleles of genes are inherited with equal probability,372

requiring sperm to be functionally equivalent regardless of their haploid genotype. We373

believe that remains the case for the majority of genes in mammals at any given time,374

since transmission ratio distortion has not been commonly observed. However, we show375

that over evolutionary timescales, GIMs are associated with an increased rate of selective376

sweeps, suggesting selection at the level of sperm based on functional differences linked377

to alleles. At first glance, reconciling the sperm-level selection with the predominance of378

Mendel’s first law seems difficult, but there are several reasons to believe they are com-379

patible: 1) We find evidence for only tens to hundreds of selective sweeps across deep380

timescales and across thousands of GIMs, suggesting that they are relatively rare; 2) Se-381

lective sweeps happen quickly on an evolutionary timescale, erasing standing variation382

and making transmission ratio distortion a rare phenomenon at any one time; 3) Because383

most GIMs lead to only modest allelic differences (2-4 fold), sperm with these differences384

may be functionally equivalent or will lead to modest transmission ratio distortion, as is385
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observed for example in mouse Yq deletions or Slx knockdowns (Conway et al. 1994; Coc-386

quet et al. 2012), which is challenging to quantify in most mammals; and 4) Avoidance of387

evolutionary conflict by evolving sperm-specific expression removes cases of balancing se-388

lection, which might have resulted in observable transmission ratio distortion on standing389

variation.390

While genoinformative expression is widespread at the RNA level, we do not have391

direct evidence for how common it is at the protein level. One reason to believe there392

are substantially fewer protein-level GIMs than RNA-level GIMs is that proteins can393

be shared across cytoplasmic bridges. This is consistent with the fact that GIMs that394

are preferentially translated late in spermiogenesis, when there is little to no time to395

be shared across cytoplasmic bridges, are enriched in evidence for selection or avoidance396

of evolutionary conflict. Even extremely late-expressed GIMs may not always lead to397

functional differences in sperm, because epididymal exosomes deliver proteins from diploid398

cells to sperm after they cease transcription and translation, potentially masking allelic399

differences in mature sperm. Another mechanism for masking the functional consequences400

of GIMs may be the abundant post-translational regulation of mature sperm, for example401

during capacitation, which might create larger cell-to-cell variation among sperm than402

GIMs.403

Nevertheless, the ability of GIMs to lead to sperm-level natural selection may have404

profound evolutionary consequences. We have shown strong enrichments of GIMs for405

testis-specific expression, testis-specific paralogs, and testis-specific isoforms or exon us-406

age. There are two forces that could give rise to these results: first, evolutionary con-407

flict arises repeatedly in GIMs, which provides an evolutionary advantage to evolve dis-408

tinct sperm-level function; second, that evolutionary conflict provides pressure to decrease409

genoinformativity (i.e. increase sharing across cytoplasmic bridges), so that the remaining410

GIMs preferentially have more sperm-specific expression. It is impossible to distinguish411

between these models with the data here, but it is likely that both forces contribute.412
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More comprehensive catalogs of GIMs across species may be necessary to identify which413

is predominant.414

This provokes a profound question: why, from an evolutionary perspective, do GIMs415

exist at all? For sex chromosome genes, such as Akap4 (an X-chromosome gene required416

for sperm motility), it is clear that some degree of sharing is required for sperm function417

and specific mechanisms have evolved to facilitate sharing (Morales et al. 2002). However,418

it is not clear that genes need to be shared equally or that absolute functional equivalence419

is achieved; in some cases, a 2-fold or 4-fold difference in allelic expression may not have420

strong enough functional effects to exert evolutionary pressure to fully share transcripts.421

Also, sex chromosome genes are a special case that are hemizygous in males, so there may422

be even less pressure to share equally for autosomes. For genes or isoforms that are sperm423

specific, there could in fact be a benefit to sperm-level selection: an intensification of424

both purifying and positive selection by adding a selective layer on top of organism-level425

selection. In these cases, there would be no evolutionary conflict between the two selective426

layers, so some GIMs could become ”selfish elements” whose interests are aligned with427

the organism: improving sperm function, which in turn increases the number of offspring.428

The testis-expressed genome has long been a puzzling outlier, including by far the most429

tissue-specific gene expression, the most tissue-specific paralogs, and the most rapidly430

evolving genes. The widespread presence of GIMs raises the possibility that sperm-level431

selection and resulting evolutionary conflicts are common enough to provide an elegant432

explanation for these phenomena. If functional and molecular heterogeneity of sperm433

can be understood in enough detail, it is even possible that it could be exploited to434

isolate and eliminate sperm carrying severe Mendelian disease genes, reducing the risk435

of disease transmission across generations, as has been previously suggested (e.g. Butler436

et al. 2007). Given the rarity of GIM-related selective sweeps, it may be technically437

challenging to identify and leverage this expanded source of sperm heterogeneity. However,438

the surprisingly widespread existence of GIMs raises the possibility that a wide variety of439
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severe diseases could be prevented by means of sperm selection.440

6 Methods441

6.1 Spermatid isolation and cell sorting442

Testes were reduced to a single-cell suspension (breaking apart the intracellular bridges443

between germ cells in the process), using the two-step digestion protocol of Gaysinskaya444

et al. 2014. Digestions were performed in 6 ml for mouse, with one whole testis as starting445

material (tunica albuginea removed); and in 30 ml for non-human primate, with 600mg446

of diced testis tissue as starting material. First, to disperse the seminiferous tubules,447

testis tissue was incubated in digestion solution 1: Hanks’ Balanced Salt solution (HBSS,448

Sigma Aldrich), 1 mg/ml collagenase Type I (Worthington Biochemical), and 6 U/ml449

DNAse I (Sigma Aldrich). Incubation was at 37°C for 10 min with horizontal agitation.450

Tubules were then allowed to settle and the supernatant (containing somatic cells) was451

discarded. Digestion solution 2 was then added to reduce the tubules to a single-cell452

suspension: HBSS, 1 mg/ml collagenase, 6 U/ml DNAse, and 0.05% trypsin (Gibco, 2.5%453

stock solution). Incubation was for 25 min at 37°C with horizontal agitation; tubules were454

pipetted every 5 minutes, and an additional 0.025% trypsin was added halfway through455

the incubation. Successful digestion was confirmed by examining the cell suspension under456

a light microscope. Digestion was quenched with Newborn Calf Serum (Gibco).457

After digestion, the single-cell suspension was filtered through a 100 µm cell strainer458

and centrifuged for 10 minutes at 500g. The supernatant was discarded, and the cell pellet459

was gently resuspended at 1-2×106 cells/ml in PBS + 5 mg/ml BSA. Hoechst 33342 was460

added at 10 µg/ml and cells were incubated for 30 minutes at 37°C. Propidium iodide461

(PI) was added at 1 µg/ml during the last 5 minutes of incubation. Samples were filtered462

through a 40 µm mesh immediately before sorting.463

Single live spermatids were then sorted into 96-well plates as described below, using a464
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BD FACS Aria, a Beckman Coulter MoFlo Astrios, or a SONY Synergy SY3200 instru-465

ment. Our gating strategy was as follows: Selected for 1n cells (spermatids and sperm)466

based on Hoechst 33342 fluorescence intensity (with 355 nm excitation and a 448/59 nm467

bandpass emission filter) (Gaysinskaya et al. 2014); Selected for PI-negative cells to get a468

live population (PI was measured with 561 nm excitation and a 614/20 nm bandpass emis-469

sion filter)); Enriched for round spermatids by selecting cells with high forward scatter470

(Bastos et al. 2005)471

6.2 Cynomolgus primates472

Adult male cynomolgus monkeys (Macaca fascicularis) were used for the non-human pri-473

mate studies conducted at the University of Kentucky. Monkeys were singly housed in474

climate-controlled conditions with 12-hour light/dark cycles. Monkeys were provided wa-475

ter ad libitum and fed Teklad Global 20% Protein Primate Diet. Spermatid isolation and476

sorting was preformed at the University of Kentucky with two male monkeys. Monkeys477

were euthanized, testes were promptly removed and placed in Hanks’ Balanced Salt Solu-478

tion (HBSS) on ice, prior to proceeding to tissue digestion and subsequent preparation of479

a single cell suspension for cell sorting. All animal care, procedures, and experiments were480

based on approved institutional protocols from the University of Kentucky Institutional481

Animal Care and Use Committee IACUC (protocol #2015-2294).482

6.3 Single-cell RNA sequencing483

Single cells meant for RNA processing were sorted into 96-well full-skirted Eppendorf484

plates that were pre-chilled at 4°C and were prefilled with 10µL of lysis buffer consisting485

of TCL buffer (Qiagen) supplemented with 1% beta-mercaptoethanol. Sorted plates with486

single-cell lysates were subsequently sealed, vortexed, spun down at 300g at 4°C for 1487

minute, immediately placed on dry ice to flash-freeze the lysates, and then moved to -80°C488

for storage. The Smart-Seq2 protocol was performed on single sorted cells as previously489
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described (1-3), with some modifications described below.490

Reverse transcription Single-cells lysates were thawed on ice for 2 minutes, then491

centrifuged at 3,000rpm at 4°C for 1 minute. 20µL of Agencourt RNAClean XP SPRI492

beads (Beckman-Coulter) was added to lysates, mixed slowly, to not introduce bub-493

bles and subsequently incubated at room temperature for 10 minutes. The 96-well494

plate was then placed onto a magnet (DynaMag-96 Side Skirted Magnet, Life Tech-495

nologies) for 5 minutes while covered. The supernatant was removed, and the SPRI496

beads were washed three times with 100µL of freshly prepared 80% ethanol, careful to497

avoid loss of beads during the washes. Upon completely removing ethanol after the last498

wash, SPRI beads were left to dry at room temperature for up to 10 minutes. Beads499

were resuspended in using 4µL of the following Elution Mix: 0.1µL 10µM RT primer500

(5′AAGCAGTGGTATCAACGCAGAGTACTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN-501

3′, IDT), 1µL 10 mM dNTP (Life Technologies), 0.1µL Recombinant RNase-Inhibitor (40502

U/µL, Clontech), and 2.8µL nuclease-free water. The plates were sealed and then spun503

down briefly, 5 seconds max to get up to 150rpm. The samples were denatured at 72°C504

for 3 minutes and placed immediately on ice afterwards. 7µL of the Reverse Transcription505

Mix was subsequently added in every well, consisting of: 2µL 5x RT buffer (Thermo Fisher506

Scientific), 2µL 5 M Betaine (Sigma-Aldrich), 0.09µL 1M MgCl2 (Sigma-Aldrich), 0.1µL507

100µM TSO (5′- AAGCAGTGGTATCAACGCAGAGTACATrGrG+G-3′, Exiqon), 0.25508

µL Recombinant RNase-Inhibitor (40 U/µL, Clontech), 0.1µL Maxima H Minus Reverse509

Transcriptase (200U/µL, Thermo Fisher Scientific), and 2.46µL nuclease-free water. Ev-510

ery well was mixed with the resuspended beads. Reverse transcription was carried out by511

incubating the plate at 50°C for 90 minutes, followed by heat inactivation at 85°C for 5512

minutes.513

PCR amplification and cDNA purification 14µL of PCR Mix was added in each514

well: 0.05µL 100µM PCR primer (5′- AAGCAGTGGTATCAACGCAGAGT-3′, IDT),515
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12.5µL 2x KAPA HiFi HotStart ReadyMix (KAPA Biosystems), 1.45µL nuclease-free516

water. The reaction was carried out with an initial incubation at 98°C for 3 minutes,517

followed by 22 cycles at (98°C for 15 seconds, 67°C for 20 seconds, and 72°C for 6 minutes)518

and a final extension at 72°C for 5 minutes. PCR products were purified by mixing them519

with 20µL (0.8X) of Agencourt AMPureXP SPRI beads (Beckman-Coulter), followed by520

a 5 minutes incubation period at room temperature. The plate was then placed onto a521

magnet for 6 minutes prior to removing the supernatant. SPRI beads were washed twice522

with 100µL of freshly prepared 70% ethanol, carefully to avoid loss of beads during the523

washes. Upon removing all residual ethanol traces, SPRI beads were left to dry at room524

temperature for up to 10 minutes. The beads were then resuspended in 20µL of TE buffer525

(Teknova) and incubated at room temperature for 5 minutes. The plate was placed on526

the magnet for 5 minutes prior to transferring the supernatant containing the amplified527

cDNA to a new 96-well plate. This cDNA SPRI clean-up procedure was repeated a second528

time to remove all residual primer dimers and resuspended in a final volume of 15µL of529

TE buffer. The concentration of amplified cDNA was measured using the Qubit dsDNA530

High Sensitivity Assay Kit (Life 7 Technologies/Thermo Fisher Scientific). The cDNA531

size distribution of few selected wells was assessed on a High-Sensitivity Bioanalyzer Chip532

(Agilent). Expected single cell cDNA quantification was around 0.5-2 ng/µL with size533

distribution sharply peaking around 2kb.534

Library preparation Library preparation was carried out using the Nextera XT DNA535

Sample Kit (Illumina) with indexing adapters that allow 96 single cell libraries to be536

simultaneously sequenced. For each library, the amplified cDNA was normalized to a537

0.12-0.20ng/µL concentration range. The tagmentation reaction consisted of mixing 1.25538

µL of normalized cDNA with 2.5 µL of Tagmentation DNA Buffer and 1.25 µL of Amplicon539

Tagment enzyme Mix. The 5 µL reaction was mixed well, spun at 3,000 rpm for 3 minutes,540

incubated at 55°C for 10 minutes and then immediately placed on ice upon completing this541

incubation step. The reaction was quenched with 1.25 µL of Neutralize Tagment Buffer542
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and incubated at room temperature for 10 minutes. The libraries were amplified by adding543

3.75 µL of Nextera PCR Master Mix, 2.5 µL of mixed indices (Nextera XT Index Kit). The544

PCR was carried out at an initial incubation at 72°C for 3 minutes, 95°C for 30 seconds,545

followed by 12 cycles of (95°C for 10 seconds, 55°C for 30 seconds, 72°C for 1 minute),546

and a final extension at 72°C for 5 minutes. Following PCR amplification, 2.5 µL of each547

library were pooled together in a 2.0 mL Eppendorf tube. The pool was mixed with 216548

µL (0.9X ratio for 2.5 µl of 96 cells pooled together) of Agencourt AMPureXP SPRI beads549

(Beckman-Coulter) and incubated at room temperature for 5 minutes. The pool was then550

placed on a magnet (DynaMag-2, Life Technologies) and incubated for 5 minutes. The551

supernatant was removed and the SPRI beads were washed twice with 1 mL of freshly552

prepared 70% ethanol. Upon removing all residual ethanol traces, the SPRI beads were553

left to dry at room temperature for 10 minutes. The beads were resuspended in 100 µL of554

TE buffer and incubated at room temperature for 5 minutes. The tube was then placed555

back on the magnet for 3 minutes prior to transferring the supernatant to a new 1.5 mL556

Eppendorf tube. This SPRI clean-up procedure of the library was repeated a second time557

to remove all residual primer dimers, using the same approach and the final resuspension558

was done in 30 µL of TE buffer. The concentration of the pooled libraries was measured559

using the Qubit dsDNA High Sensitivity Assay Kit (Life Technologies/Thermo Fisher560

Scientific), and the library size distribution measured on a High-Sensitivity Bioanalyzer561

Chip (Agilent). Expected concentration of the pooled libraries was 30-50 ng/µL with size562

distribution of 300-700 bp.563

6.4 Single-cell DNA sequencing564

Single haploid cells meant for DNA processing were sorted into 96-well full-skirted Ep-565

pendorf plates either in (1) 5 µL of Cell Extraction Buffer (4.8 µL of Extraction Enzyme566

Dilution Buffer, 0.2 µL Cell Extraction enzyme, New England BioLabs) and processed567

using the PicoPlex kit, or (2) 5µL of Cell Lysis Reaction Mix (4.9 µL of Cell Lysis Buffer,568
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0.1 µL Cell Lysis enzyme, Yikon Genomics). Sorted plates with single-cell lysates were569

subsequently sealed, vortexed, spun down at 300g at 4°C for 1 minute, immediately placed570

on dry ice to flash-freeze the lysates, and then moved to -80°C for storage. All single-cells571

plates were thawed on ice for 2 minutes, then centrifuged at 3,000 rpm at 4°C for 1 minute572

prior to processing.573

PicoPlex Amplification For PicoPlex amplification, the plates were incubated at 75°C574

for 10 minutes, followed by 95°C for 4 minutes and held at 22°C until ready for the next575

steps. The pre-amplification Master Mix, consisting of 4.8 µL of Pre-Amp Buffer and 0.2576

µL of Pre-Amp Enzyme Mix was added to each cell, the reaction was mixed well, spun577

at 3,000 rpm for 1 minute. The PCR was carried out at an initial incubation at 95°C578

for 2 minutes, followed by 12 cycles of (95°C for 15 seconds, 15°C for 50 seconds, 25°C579

for 40 seconds, 35°C for 30 seconds, 65°C for 40 seconds, 75°C for 40 seconds), and a580

hold at 4°C. Following the pre-amplification reaction, each well was mixed well with the581

Amplification Master mix, consisting of 25µL of Amplification Buffer, 34.2 µL of nuclease-582

free water and 0.8 µL of Amplification Enzyme Mix. The reactions were mixed well, spun583

at 3,000 rpm for 1 minute and incubated at 95°C for 2 minutes, followed by 16 cycles584

of (95°C for 15 seconds, 65°C for 1 minute, 75°C for 1 minute) and a hold at 4°C. The585

concentration of each cell was measured using the Qubit dsDNA High Sensitivity Assay586

Kit (Life Technologies/Thermo Fisher Scientific). Expected concentration of the single587

cell lysates was 20-50 ng/µL with size distribution of 300-1000 bp.588

MALBAC Amplification For MALBAC amplification, the plates were incubated at589

50°C for 50 minutes, followed by 80°C for 10 minutes and held at 4°C until ready for the590

next steps. The pre-amplification Reaction Mix, consisting of 29 µL of Pre-Amp Buffer591

and 1 µL of Pre-Amp Enzyme Mix was added to each cell, the reaction was mixed well,592

spun at 3,000 rpm for 1 minute. The PCR was carried out at an initial incubation at593

94°C for 3 minutes, followed by 8 cycles of (20°C for 40 seconds, 30°C for 40 seconds,594
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40°C for 30 seconds, 50°C for 30 seconds, 60°C for 30 seconds, 70°C for 4 minutes, 95°C595

for 20 seconds, 58°C for 10 seconds), and a hold at 4°C. Following the pre-amplification596

reaction, each well was mixed well with the Amplification Reaction mix, consisting of 29.2597

µL of Amp Buffer and 0.8 µLamp Enzyme Mix. The reactions were mixed well, spun at598

3,000 rpm for 1 minute and incubated at 94°C for 30 seconds, followed by 21 cycles of599

(94°C for 20 seconds, 58°C for 30 seconds, 72°C for 3 minutes) and a hold at 4°C. The600

concentration of each cell was measured using the Qubit dsDNA High Sensitivity Assay601

Kit (Life Technologies/Thermo Fisher Scientific). Expected concentration of the single602

cell lysates was 20-60 ng/µL with size distribution of 300-2000 bp.603

6.5 Haplotype Phasing604

6.5.1 Mouse605

We downloaded the combined VCF of laboratory mouse strains from The Mouse Genome606

project (Keane et al. 2011) and defined maternal and paternal haplotypes utilizing SNPs607

unique to either C57BL/6J or PWK/PHJ, respectively. For all analyses, we disregarded608

indels and only considered SNPs. This resulted in a total of 20,986,995 heterozygous609

SNPs, which overlapped 28,497 expressed genes in mouse round spermatids.610

10X Chromium Alignment and Haplotype Calling We created maternal and pa-611

ternal haplotypes of the two non-human primates using a combination of 10X Chromium612

linked read sequencing on diploid cells and sparse single cell DNA sequencing on haploid613

spermatid cells. We aligned the 10X Chromium reads to the Macaca fascicularis genome614

Macaca fascicularis MacFac 5.0 from Ensembl, herein referred to as Ensembl-MF5-G,615

by first creating a custom reference using the longranger mkref command , and then run-616

ning longranger using this reference and default parameters to generate 10X Chromium617

alignment data.618

For Cynomolgus 1, the instrument generated 1,850,208 Gel Beads in Emulsion (GEMs)619
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and the software mapped 819,440,960 reads for 37.2x average coverage across the genome.620

This resulted in 361,465 haplotype blocks with N50 length of 1.6 MB. Each block contained621

an average of 36 SNPs for a total of 12,758,999 heterozygous SNPs. Cynomolgus 2 10x622

Chromium data featured 1,889,596 GEMs that led to 812,899,614 reads mapping at an623

average coverage of 37.4X. It had 318,516 blocks with N50 length of 1.8 MB and an624

average of 40 heterozygous SNPs per block, for a total of 12,744,826 heterozygous SNPs.625

Mature Sperm scWGS Alignment and Processing We genotyped the haploid626

sperm scWGS samples using a custom pipeline. First, the paired-end reads were aligned627

to Ensembl-MF5 using BWA v0.7.5 (Li and Durbin 2009) using the mem option with628

default parameters. The resulting bam files were sorted using samtools v1.4.1 sort (Li,629

Handsaker, et al. 2009) and duplicates were removed using sambamba v0.6.6 (Tarasov630

et al. 2015). samtools mpileup with a bed file of the 10X Chromium identified variant631

positions calculated the allelic depths per heterozygous site. We then filtered the file to632

only include allelic depths of variant alleles. For Cynomolgus 1, this resulted in an average633

of 1.2M heterozygous sites per spermatid sample, for a total overlap of 3.3M sites across634

the 17 spermatid samples. With the 8 spermatid samples for Cynomolgus 2, we covered635

3.5M total sites with an average 1.2M sites per sample at roughly 1X coverage.636

Creating Chromosome-Length Haplotype Blocks The final step involved stitching637

the the haplotype blocks generated by 10X Chromium sequencing into chromosome-length638

haplotypes using the haploid cell haplotypes as a guide. In the case of no recombination,639

the stitching is trivial and requires only a single sperm sample. Due to recombination, we640

used multiple sperm single cell WGS samples, and utilized a dynamic programming frame-641

work tuned to minimizing the number of recombination events to assign the chromium642

blocks to maternal and paternal haplotypes.643
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6.6 Allele-specific Expression Quantification644

StringTie Transcriptome Assembly Due to unavailability of a publicly available645

testes transcriptome of Cynomolgus, we created a custom cynomolgus transcriptome us-646

ing single cell RNA-seq samples of round spermatid and elongating spermatid cells from647

the two individuals. First, we aligned the samples to Ensembl-MF5-G using STAR v2.5.3648

with default parameters, and merged and sorted the bams using samtools. This resulted649

in 3.7 billion total reads aligned across the corpus of 480 samples. We fed the merged650

bam into StringTie v1.3.3 with default options except for -p 39 to indicate a large number651

of available threads. We compared the StringTie generated transcriptome to MacFas 5.0,652

a Ensembl-generated transcriptome of Macaca fascicularis using Cufflinks v.2.2.1 gffcom-653

pare, and created a dictionary to map the StringTie annotation ids back to known gene654

symbols.655

RNA-Seq Processing and Alignment To reduce allelic bias in read mapping, we656

used bcftools consensus to generate masked genomes, in which all bases in heterozygous657

positions were modified to the IUPAC character N in the reference genomes. We used658

STAR v2.5.3 to align the round and elongating spermatid single cell RNAseq reads, but659

created custom STAR genomes with either Ensembl GRCm38 or the previously described660

StringTie-generated transcriptomes. We utilized STAR options –outFilterMultimapNmax661

1 to eliminate multi-mapping reads, –alignSJBoverhangMin 4 to force large overlap be-662

tween RNA-seq reads and the genome, and –outSAMattributes NH HI NM nM MD XS663

attributes, and removed duplicated reads using sambamba. featureCounts (Liao, Smyth,664

and Shi 2014) was used to generate gene transcripts per million (TPM) values with op-665

tions -s 0 for unstranded reads, -p for paired end reads, and -B to require both ends of666

the read to be mapped.667

Generating Allele-specific Counts To quantify allele specific expression of genes,668

we first assigned each heterozygous SNP to a gene using the snpEff Cingolani et al. 2012669
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annotate tool using custom snpEff databases. Then, after splitting the aligned RNA-670

seq bams into chromosome-specific BAMs, we generated the allele counts for each gene671

and spermatid sample combination. To avoid double-counting of reads that overlapped672

multiple sites, each read was only counted once in favor of either allele, and if a read673

matched variants on both alleles, we tagged it as a discordant read and did not utilize it674

for further analysis. For mouse, we average 145 allele-specific reads per gene per sample675

across 11,542 phaseable genes in 95 spermatid samples.676

We performed an additional step to quantify allele specific counts in the non-human677

primate samples. Due to limited coverage across the length of an entire gene, StringTie678

often splits a single Ensembl gene annotation into multiple gene annotations. As such,679

we summed reads from separate StringTie genes overlapping known annotations. The680

resulting allele counts files for the monkeys are a combination of known genes annotated681

by Ensembl and novel genes identified by StringTie only. For Cynomolgus 1, in 187682

spermatid samples, we average 122 reads per gene per sample for 8956 phased genes. For683

Cynomolgus 2, in 185 spermatid samples, we average 131 reads per gene per sample in684

8216 genes.685

6.7 Haplotype and Genoinformativity Inference686

To study haploid-biased gene expression, we require knowledge of the underlying haplo-687

type. We reasoned that if there was true haploid biased expression, it would be possible688

to infer the haplotype from the allele specific expression data. As such, we derived a689

model to perform both haplotype and genoinformativity inference simulataneously. Here,690

we first describe a model for transcript sharing across a syncytium and then extend it to691

a probability model for observing allele specific reads from round spermatids in a single692

cell RNA-seq assay.693
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Model of Genoinformative Transcripts We begin by describing a simple model694

for the number of transcripts of a single gene g in a single cell c. The total number of695

transcripts T in the haploid cell is the combination of external transcripts E and retained696

transcripts R.697

T = E +R (1)

Here, external transcripts indicates transcripts that were not transcribed by the hap-698

loid cell, but rather were transported into the cell through the cytoplasmic bridge. Re-699

tained transcripts are the transcripts that were transcribed by the cell and not shared700

through the cytoplasmic bridge.701

We can also write down the total transcripts T as the combination of transcripts from702

the maternal allele of the gene M or the paternal allele of the gene P .703

T = M + P (2)

Note that we can marginalize the maternal and paternal transcripts in terms of external704

and retained transcripts.705

M = EM +RM

P = EP +RP

T = EM + EP +RM +RP

Before deriving a model for genoinformativity, we introduce two last definitions in the706

form of ratios. The ratio of EM to E, or the skew of transcripts towards the maternal707

allele S, and the ratio of R to T , or the genoinformativity of the transcript.708
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S =
EM
E

(3)

G =
R

T
(4)

Assuming no eQTL effects, genome imprinting, technical bias, or other mechanisms709

for differential allelic expression, this allelic skew S is 0.5, i.e. the number of haploid cells710

that contain maternal and paternal genotype are equal and the number of transcripts711

transferring into the cell is equal from either allele.712

Haploid Cell with Maternal Allele Given the previous system and definitions, we713

now derive the empirical genoinformativity for a single haploid cell. Consider the case714

of a cell c having the maternal allele for the gene or haplotype HM . Then, we further715

deconvolve the total transcripts by the transcripts from the maternal allele M and the716

transcripts from the paternal allele P . Note that this classification is only relevant for717

autosomes, where it is possible to have transcripts from either chromosome in the haploid718

cell.719

M |HM = EM |HM +RM |HM

= EM +RM |HM

(5)

P |HM = EP |HM +RP |HM

= EP

(6)

Since the cell has a maternal allele only for the gene of interest, there are no retained720

reads from the paternal allele. Finally, let’s express the total transcripts T in terms of721

the maternal and paternal transcripts.722
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T |HM = EM + EP +RM

= E +RM

(7)

Given equation 3, 4, and 7, we can restate equation 5 as723

M |HM = ES +RM = (T −RM)S +RM

= TS + (1− S)RM

= TS + (1− S)TG

= (S + (1− S)G)T

(8)

We can derive similar equations for P |HM , M |HP and P |HP .724

P |HM = ((1− S)− (1− S)G)T

M |HP = (S − SG)T

P |HP = ((1− S) + SG)T

(9)

Probability Model for Allele-Specific Reads We now focus our attention on devel-725

oping a model for observing allele-specific reads using single cell RNA-Seq from haploid726

round spermatids. We derive a probability model for observing counts of alleles from the727

maternal allele CM and paternal allele CP for N individuals and G genes. Given param-728

eters θ, each cell i and gene j is independent of each other and the collective probability729

can be written as:730

P (D|θ) =
N∏
i

G∏
j

P (CM
ij , C

P
ij |θ) (10)

For simplicity, we will write the set of counts CM
ij and CP

ij as Dij where applicable.731

The main reason we are able to treat each set of counts independently is because we732

marginalize the probability over the haplotype Hij of cell i at gene j.733

39

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 18, 2019. ; https://doi.org/10.1101/846253doi: bioRxiv preprint 

https://doi.org/10.1101/846253


P (Dij|Hij, θ) = P (Dij|Hij = HM , θ)P (Hij = HM |θ)

+P (Dij|Hij = HP , θ)P (Hij = HP |θ)
(11)

Using the above formulation, it is possible to split the inference goal into two separate734

sub-tasks: haplotype inference and genoinformativity inference.735

Haplotype Inference We use a Markov chain across a single chromosome to estimate736

the haplotype given a recombination rate r.737

P (Hij|θ) = P (Hij|Hij−1)P (Hij−1|θ) (12)

where738

P (Hij|Hij−1) =

(1− r) Hij = Hij−1

r Hij 6= Hij−1

(13)

We set the initial probability of each cell’s haplotype to be equal at 0.5.739

Genoinformativity Inference Given the haplotype Hij of cell i at gene j, the counts740

of the maternal and paternal allele follows from the generative model described above.741

Due to overdispersion in RNA-seq data, we model the counts using a beta-binomial dis-742

tribution, which is specified by shape parameters α and β. In fitting the model, we only743

fit the shape parameter β and reparameterize α in terms of skew S and genoinformativity744

G. More explicitly, we can model the system as745

αj
αj + βj

=

Sj +Gj(1− Sj) Hij = HM

Sj −Gj(Sj) Hij = HP

(14)
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P (Dij|Hij, θ)P (θ) = P (Dij|Hij, Sj, Gj, βj)P (βj)P (Gj)P (Sj) (15)

P (Dij|Hij, Sj, Gj, βj) = Beta-Binomial(αj, βj, Dij) (16)

In addition to overdispersion, single cell RNA-seq data also contains high amount of746

allelic dropout and amplification of a single molecule. To alleviate the impact of allelic747

dropout on estimates of genoinformativity, we introduce a Zero-and-N-inflated Beta Bino-748

mial distribution parameterized by an additional variable ζj which defines the probability749

of allelic dropout for the gene.750

P (CM
ij , C

P
ij |Hij, Sj, Gj, βj, ζj) =


ζjαj

αj+βj
+ (1− ζj)Beta-Binomial(αj, βj, Dij) CM

ij = 0

ζjβj
αj+βj

+ (1− ζj)Beta-Binomial(αj, βj, Dij) CP
ij = 0

Beta-Binomial(αj, βj, Dij) otherwise

(17)

6.7.1 Implementation751

Haplotype Inference Unfortunately due to inherent noise in the system and the cost752

of sampling the aforementioned Markov chain, we do not compute the Markov chain for753

each gene independently. Instead, we bin the genes into buckets B and perform a similar754

inference task with each bucket k. Each bucket on average contained 10 genes in our fits.755

P (Hik|θ) = P (Hik|Hik−1)P (Hik−1|θ) (18)

We also used a fixed recombination rate r for each cell and each chromosome with the756

assumption that a cell would have on average 0.5 recombination events per chromosome.757
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Genoinformativity Inference Instead of learning the parameter Sj for each gene, we758

use a empirical estimate of Sj derived from dividing the number of HM reads for a gene j759

by the total number of reads for that gene across all cells. We also tested using the mean760

of the empirical Sij derived from each cell separately, and did not notice large differences761

in the model fits.762

Priors

P (Hij) =

0.5 Hij = HM

0.5 Hij = HP

(19)

P (Gj) = Uniform(0, 1) (20)

P (βj) = Uniform(3, 30) (21)

P (ζj) = Uniform(0.005, 1) (22)

Two-stage Fitting For computational efficiency, we split the inference task into two763

stages. In the first stage, we fit both the haplotype and genoinformativity inference steps764

for highly expressed genes (TPM > 20). Then, in the second stage, we only performed765

genoinformativity inference using fixed haplotype probabilities. We used the mean pos-766

terior of the haplotypes from the first stage, and interpolated the probability for genes767

that were unique to the second stage. There was 99% correlation between the posterior768

mean of the genoinformativity values, indicating low variance in the posterior haplotype769

distributions and high confidence in haplotype inference.770

Samplers We used PyMC3 (Salvatier, Wiecki, and Fonnesbeck 2016) as the frame-771

work for sampling the model. For the haplotype sampling, we used a Categorical Gibbs772
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Metropolis sampler. All the other parameters were sampled using the No U-turn Sampler773

(NUTS) with a target accept probability of 0.8. We sampled the model for 5000 steps with774

two separate chains and used the last 500 steps for estimating the posterior distribution775

across the 2 chains.776

6.7.2 Sex chromosome GIMs777

Mouse gene-level transcripts per million (TPM) values were collected for all genes in all778

spermatids using all RNAseq reads, not only allele-informative reads. For each gene, a779

loess regression was used to fit its log2 expression across the diffusion pseudotime with a780

pseudocount of 1 TPM, using the R loess function with a gaussian function family and781

0.75 span. The residuals from this fit were then used to calculate pairwise Spearman782

correlations between all sex chromosome genes. Pairwise correlations were hierarchically783

clustered using the complete linkage method, with the results visualized in heatmaps. A784

cutoff height of 6 was empirically found to split the data into three clusters: a distinct X785

cluster, an anti-correlated distinct Y cluster, and a mixed X and Y cluster with no strong786

correlation patterns. Genes in the first two clusters were considered potential GIMs. We787

calculated the mean pairwise Spearman correlation between pairs of potential GIMs, with788

the sign reversed for genes in opposite clusters. Genes with a mean pairwise correlation789

of greater than 0.05 (roughly the median value over potential GIMs) were selected as790

putative sex chromosome GIMs.791

6.8 GIM classification792

To classify each gene as a “Confident GIM”, “Confident Non-GIM”, or “Remaining Gene”,793

we fit the Bayesian model to shuffled data, and compared the posterior distributions for794

Hik, Gj, and βj between real and shuffled data. We utilized two main shuffling methods:795

complete shuffle and cell-label shuffle for each chromosome independently. The complete796

shuffle shuffled the allele counts randomly across the population of cells and genes. For the797
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cell-label shuffle, the allele counts were randomized across the cells, but the distribution798

of counts in a gene remained the same. We trained our Bayesian HMM using the same799

default parameters and priors as the real data, and compared the model fits. Since βj can800

capture both the variance of single cell rna-seq as well as the variance in genoinformativity,801

we created a new measure γj as an alternative measure of genoinformativity that combines802

both posterior mean estimates of Gj and βj.803

αj =
Gj(βj)

1−Gj

γj = CDF of Beta(αj, βj) == 0.05

To reflect the confidence of the haplotype fits Hik across all n samples, we also created804

an aggregated measure, fraction of poor haplotypes ζj =
∑N

i=1

∑K
k=1 I[(Hik<0.95)|Hik>0.05)

NK
,805

which reflected the proportion of haplotypes that a posterior mean haplotype probability806

less than 0.95 for either the maternal or paternal haplotypes.807

We performed a grid search across thresholds for highest posterior density (hpd) eval-808

uated at 5% and 95% for genoinformativity Gj and γjandζj, which controlled the eFDR809

at 10% for confident and non-confident gims compared to the shuffled control. For a810

particular gene, the thresholds for a ”Confident GIM” are: hpd 5% of genoinformativity811

> 0.025, hpd 95% of genoinformativity > 0.2, γj > 0.025, fraction of poor haplotypes812

< 0.4 For ”Confident Non-GIMs” are restricted to hpd 95% of genoinformativity < 0.2 .813

Genes that fall outside these bounds were considered ”Remaining Genes”.814

6.9 GIM characterization815

Expression-matched control selection The expression trajectory across spermiogen-816

esis was first tabulated for each gene by cross-referencing the log2 of the TPM expression817

level (with a pseudocount of 1 and complete dropout considered a zero) against the diffu-818
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sion map pseudotime value for each cell (i.e. the first dimension of the map). To reduce819

noise at the single cell level, a smoothed loess fit was used as the expression trajectory820

(fit using default parameters for the R loess function).821

Next, all confident non-GIMs expressed in spermatids were considered as controls for822

all GIMs. Pools of controls were first reduced for each GIM based on two hard filters:823

first, all genes were equally distributed into 5 bins based on their dropout rates; second,824

the slope of a linear fit to the expression trajectory was required to differ by no more than825

0.2. This helped to control for any confounders resulting in oversampling, as well as large826

expression changes in a small number of cells, generally in the extreme early or late part827

of the trajectory.828

For each GIM, all non-GIMs remaining in its pool were ranked by their mean squared829

difference in log2 expression level, and the top 20 were selected as mock GIM controls,830

whose ranks were then scrambled. This resulted in 20 control sets of mock GIMs having831

similar dropout rates, slope of expression trajectory, and low difference in expression832

trajectory. For analyses limited to protein coding genes, control selection was performed833

again with both the GIMs and the control pools limited to protein coding genes.834

For the cynomolgus samples, the expression trajectories were averaged across the two835

individuals. Where stringtie genes overlapped with Ensembl annotations, the aggregated836

expression for the Ensembl annotation was used for both GIMs and controls. A gene837

was considered a GIM if it was called as a confident GIM in either individual, and was838

considered as a non-GIM if it was called as a confident non-GIM in either indivdual. The839

rare genes having conflicting calls in each individual were excluded from these analyses.840

Human GIMs and non-GIMs were inferred from homologous cynomolgus annotations with841

homology defined as having the same Ensembl gene symbol (i.e. standard gene name).842

For spermatid-expressed non-GIM controls, control sets were selected from all confi-843

dent non-GIMs randomly, without filtering for dropout bin or expression trajectory fit.844
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Gene Ontology Mouse gene ontology annotations were downloaded from Ensembl845

Biomart with the Ensembl Genes 93 / GRCm38.p6 annotation dataset. The mean and846

standard deviation of number of GIMs expected with each annotation was calculated847

based on the 20 control sets. Nominal probabilities were then calculated using the normal848

distribution, and multiple testing was corrected using the Benjamini-Hochberg method to849

result in false discovery rates. GO terms were considered significant if they had at least850

20 GIMs, an FDR ≤ 0.001 and a moderated log2 enrichment (using a pseudocount of 5)851

of at least 0.5.852

For COMPARTMENTS comparisons, fewer controls had at least one annotation than853

GIMs, which could artificially inflate significance for individual categories. Therefore,854

we performed an additional normalization for the expected number of GIMs with an855

annotation. The number of controls in a set having a GO annotation was converted856

to a fraction out of those have any annotation, and then multiplied by the number of857

GIMs to yield the total number expected with each annotation specifically. Otherwise858

the enrichment analysis was the same as for the GO analysis above.859

3′ UTR motifs Only protein-coding genes were considered. The 3′ UTR annotations860

of GIMs and their controls were taken from the highest expressed Ensembl transcript in861

spermatids. UTRs annotated as less than 7 nucleotides in length were discarded. All 20862

sets of control UTRs were combined into a single background set, allowing duplicates.863

AME, a tool from the MEME suite, was run with default parameters using a motif864

database comprised of the CISBP-RNA and Ray2013 mouse and human sets provided865

by MEME. The enrichment search was performed using GIMs as foreground and the866

combined control set as background, with foreground and background switched for the867

depletion analysis.868

For candidate RNA-binding proteins, only those with a maximum TPM of 10 at any869

point in the loess-smoothed expression trajectory were considered. Enrichments were con-870

sidered significant at an E-value cutoff of 0.01. Motifs having the same IUPAC consensus871
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were merged into a single result.872

Selective sweeps Candidates for mouse selective sweeps were taken from Staubach et873

al. 2012. Sweep regions in any population were considered. All candidate genes within874

600kb of each other were collapsed into a single region. For GIMs or each control set,875

the number of regions having at least one overlapping gene was counted. For a p-value of876

this difference, the mean and standard deviation of the control sets was used to generate877

a one-sample t-test.878

Candidates for human selective sweeps were taken from Refoyo-Mart́ınez et al. 2019;879

Schrider and Kern 2016; Ferrer-Admetlla et al. 2014; Cheng, Racimo, and Nielsen 2019;880

Munch et al. 2016, with selective sweep regions as in each paper. In cases in which881

the paper predicted selective sweep regions but did not annotate associated genes, all882

genes overlapping the regions were considered selective sweep candidates. Otherwise this883

analysis was as in the mouse.884

Direct testing for human selective sweeps was performed using statistics from Pybus et885

al. 2014 based on analysis of the 1000 genomes project data. To help control for differences886

in gene length, the median score overlapping the 3′ UTR was used to represent the gene.887

The “best” score for each gene was taken across each population, where “best” signifies888

the raw score most in favor of a selective sweep for that score. Selective sweep candidates889

were defined as any where the score was at least 3 standard deviations beyond the mean890

in this direction. The number of GIM sweep candidates was compared to background891

expectation of the mean and standard deviation among the 20 control sets.892

Testis-specific paralogs Paralog and tissue-specificity data were taken from Guschan-893

ski, Warnefors, and Kaessmann 2017. Testis-specific paralogs were defined as those with894

a “Tissue specificity” (as defined by the paper) of at least 0.90.895
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Alternative splicing Mouse alternative splicing was taken from events in VastDB with896

quality greater than zero and testis specific was defined as a difference in PSI of at least897

50 between testis and the median PSI across all other tissues.898

Human isoform expression was taken from the GTEX consortium (file GTEx Analysis 2016-01-15 v7 RSEMv1.2.22 transcript tpm.medians.tsv.gz).899

Since individual isoform estimates can be unstable, we considred subsets of isoforms that900

are expressed higher in testis. Each transcript was ranked by the difference between testis901

isoform usage (i.e. ratio of transcript TPM to gene TPM in that tissue) to the median902

tissue isoform usage across other tissues. The maximum of the cumulative sum of excess903

isoform usage in testis was counted as the testis specificity (testis isoform usage minus904

other tissue isoform usage). A cutoff of 0.5 was considered testis-specific (equivalent to905

50 PSI).906

Late translation Translation data was taken from Iguchi, Tobias, and Hecht 2006907

(GSE4711 on GEO). Translation efficiencies were calculated as the median across repli-908

cates of the fold change from polysome to RNP samples. Genes were defined as having909

specific late translation if they were in the bottom quartile of this score at day 22 (which910

is depleted for late spermiogenesis), and the top quartile with respect to fold-change in-911

crease in translation efficiency between day 22 and adult mice. For each of the functional912

readouts of GIMs (e.g. selective sweeps), we compared the fraction of GIMs in that cat-913

egory that were specifically late translated to those that were not in that category (i.e.914

not functional candidates by that measure).915
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Veron2009 Nathalie Véron et al. “Retention of gene products in syncytial spermatids1107

promotes non-Mendelian inheritance as revealed by the t complex responder.” In:1108

Genes & development 23.23 (Dec. 2009), pp. 2705–10. issn: 1549-5477. doi: 10.1109

1101/gad.553009. url: http://www.ncbi.nlm.nih.gov/pubmed/19952105%1110

20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2788329.1111

Zheng2001 Y. Zheng, X. Deng, and P.A. Martin-DeLeon. “Lack of Sharing of Spam11112

(Ph-20) among Mouse Spermatids and Transmission Ratio Distortion1”. In: Biology1113

of Reproduction 64.6 (June 2001), pp. 1730–1738. issn: 0006-3363. doi: 10.1095/1114

biolreprod64.6.1730. url: https://academic.oup.com/biolreprod/article-1115

lookup/doi/10.1095/biolreprod64.6.1730.1116

56

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 18, 2019. ; https://doi.org/10.1101/846253doi: bioRxiv preprint 

https://doi.org/10.1101/846253


Gj Dij

βj

ζj Sj

Hij

Hij−1

r

Genes j = 1, . . . ,m

Cells i = 1, . . . , n

Figure 5: Graphical model for Bayesian method
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