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1 Abstract

Mendel’s first law dictates that alleles segregate randomly during meiosis and are dis-
tributed to offspring with equal frequency, requiring sperm to be functionally independent
of their genetic payload. Developing mammalian spermatids have been thought to accom-
plish this by freely sharing RNA from virtually all genes through cytoplasmic bridges,

equalizing allelic gene expression across different genotypes. Applying single cell RNA
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17 sequencing to developing spermatids, we identify a large class of mammalian genes whose
18 allelic expression ratio is informative of the haploid genotype, which we call genoinforma-
v tive markers (GIMs). 29% of spermatid-expressed genes in mice and 47% in non-human
2 primates are not uniformly shared, and instead show a confident allelic expression bias
2 of at least 2-fold towards the haploid genotype. This property of GIMs was significantly
2 conserved between individuals and between rodents and primates. Consistent with the
23 interpretation of specific RNA localization resulting in incomplete sharing through cyto-
2o plasmic bridges, we observe a strong depletion of GIM transcripts from chromatoid bodies,
s structures involved in shuttling RNA across cytoplasmic bridges, and an enrichment for
» 3 UTR motifs involved in RNA localization. If GIMs are translated and functional in the
o7 context of fertility, they would be able to violate Mendel’s first law, leading to selective
s sweeps through a population. Indeed, we show that GIMs are enriched for signatures of
2 positive selection, accounting for dozens of recent mouse, human, and primate selective
s sweeps. Intense selection at the sperm level risks evolutionary conflict between germline
s and somatic function, and GIMs show evidence of avoiding this conflict by exhibiting
» more testis-specific gene expression, paralogs, and isoforms than expression-matched con-
;3 trol genes. The widespread existence of GIMs suggests that selective forces acting at the

s level of individual mammalian sperm are much more frequent than commonly believed.

s 2 Author’s summary

s Mendel’s first law dictates that alleles are distributed to offspring with equal frequency,
w requiring sperm carrying different genetics to be functionally equivalent. Despite a small
;s number of known exceptions to this, it is widely believed that sharing of gene products
3 through cytoplasmic bridges erases virtually all differences between haploid sperm. Here,
w0 we show that a large class of mammalian genes are not completely shared across these
s bridges, therefore causing sperm phenotype to correspond partly to haploid genotype. We

» term these genes “genoinformative markers” (GIMs) and show that their identity tends
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13 to be conserved from rodents to primates. Because some GIMs can link sperm genotype
« to function, they can be thought of as selfish genetic elements which lead to natural se-
s lection between sperm rather than between organisms, a violation of Mendel’s first law.
s We find evidence of this biased inheritance, showing that GIMs are strongly enriched for
ar selective sweeps that spread alleles through mouse and human populations. For genes
s expressed both in sperm and in somatic tissues, this can cause a conflict because opti-
s mizing gene function for sperm may be detrimental to its other functions. We show that
so there is evolutionary pressure to avoid this conflict, as GIMs are strongly enriched for
s1 testis-specific gene expression, testis-specific paralogs, and testis-specific isoforms. There-
52 fore, GIMs and sperm-level natural selection may provide an elegant explanation for the
53 peculiarity of testis gene expression patterns, which are an extreme outlier relative to all

s« other tissues.

s 3 Introduction

s In diploid organisms, Mendel’s First Law dictates equal transmission of alleles to the next
s»  generation, with strong selective pressure maintaining this 50:50 ratio (Crow 1979). In
ss mammalian spermatogenesis, a long stage of haploid development raises the possibility
so of allele-biased gene expression and extensive functional variation between mature sperm
o (Immler 2008). This could be deleterious, for example for important gene products en-
s1 coded on the X chromosome that would be missing from Y-bearing sperm. However,
&2 haploid sperm precursors are equipped with a mechanism for sharing of gene products:
63 cytoplasmic bridges connecting neighboring cells (Braun et al. 1989). Therefore, mature
s« mammalian sperm are thought to be functionally diploid with very rare exceptions.

65 Most examples of transmission ratio distortion (TRD), i.e. known exceptions to
ss Mendelian inheritance, are attributable to factors other than sperm heterogeneity. How-
o7 ever, a handful of sperm functional differences linked to genotype have been reported.

¢ 'The mouse ¢ haplotype, a selfish genetic element transmitted at a rate of up to 99% from
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s heterozygotes, is the best understood case. The mechanism for its TRD is post-meiotic
70 expression and a lack of sharing of ¢ complex responder gene products across cytoplas-
7 mic bridges, resulting in differential motility (Véron et al. 2009). Likewise, Spaml gene
72 products have been shown to be retained in haploid spermatids, underlying TRD in mice
73 carrying certain Robertsonian translocations (Zheng, Deng, and P. Martin-DeLeon 2001).
72 In a mouse model for Niemann-Pick disease, heterozygous knockouts of Smpdi have
75 sperm with functional differences in mitochondrial membrane potential associated with
6 their genotype (Butler et al. 2007). Recently, TLR7/8 inhibitors have been reported to
77 differentially affect sperm with the X or Y chromosome (Umehara, Tsujita, and Shimada
s 2019). Nevertheless, it is widely assumed that most gene products are shared between
72 mammalian gametes, erasing any allelic expression bias.

80 If, however, sperm functional variation were linked to genotype more often than com-
s monly believed, it might provide an elegant explanation for some peculiar evolutionary
&2 phenomena. Testes and spermatids in particular are extreme evolutionary outliers, hav-
g3 ing far more unique tissue-specific expression patterns, tissue-specific paralogs, alternative
s« isoforms, and selective sweeps compared to other tissues (Kleene 2005). Sexual selection
ss and intragenomic conflict is often invoked to explain this bias, but haploid selection on
s genes with transmission ratio distortion could easily have contributed (Joseph and Kirk-
& patrick 2004). For example, alleles with beneficial effects in mature sperm might have
s deleterious effects in somatic cells, which could drive avoidance of this conflict by evolving
g0 sperm-specific paralogs or isoforms. Widespread transmission ratio distortion would be
o difficult to observe directly due to rapid fixation of beneficial alleles and depletion of dele-
a1 terious ones, but might leave traces over evolutionary timescales, altering the properties
o of testis-expressed genes.

03 TRD enabled by retention of haploid gene products in spermatids would require
u specific RNA localization rather than free diffusion across cytoplasmic bridges. Recent

s methodological advances in RNA detection have revealed widespread asymmetric mRNA
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o distributions in a wide variety of cell types, including up to 70% of mRNAs during D.
o melangogaster development (Lécuyer et al. 2007; Buxbaum, Haimovich, and Singer 2015).
% We therefore hypothesized that many endogenous mRNAs would be transcribed in
o haploid spermatids and incompletely shared across cytoplasmic bridges, resulting in al-
100 lelic expression bias correlating to the sperm genotype (Fig. 1A). Since mature sperm are
w transcriptionally and translationally silent, allelic biases in mature sperm protein corre-
02 lated with the haploid genotype would have to correspond to mRNA expression biases
103 at the haploid spermatid stage. We therefore performed single cell RNA sequencing in
s spermatids (Fig. 1B) from hybrid mice and cynomolgus macaques, quantifying allele-
s specific biases in expression. We found surprisingly widespread chromosome-scale biases
s in single cells allowing confident identification of genes with strong allelic expression links
w7 to the genotype, which we term genoinformative markers (GIMs). We show evidence
ws for subcellular localization patterns that help explain their lack of sharing across cyto-
o plasmic bridges, as well as evolutionary consequences consistent with sperm-level natural

1o selection.

nw 4 Results

2 4.1 Many genes have allelic expression bias reflecting the hap-

13 loid genotype in spermatids

s We first set out to identify cases of incomplete sharing of RNA across cytoplasmic bridges
us  in haploid spermatids (Fig. 1A). This would result in shared information (i.e. correlation)
us between the allelic expression of a gene and the haploid genotype of the cell, which we
uz call genoinformative expression. Most single cell RNAseq experiments are poorly suited
us  to quantifying allele-specific expression because they do not sequence samples from fully
o phased individuals, they only sequence a short tag from each RNA molecule (which may

120 not contain a heterozygous site), and they do so with relatively low capture efficiency. To


https://doi.org/10.1101/846253

bioRxiv preprint doi: https://doi.org/10.1101/846253; this version posted November 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

121 maximize the accuracy of our allele-specific quantification, we used an F1 hybrid (therefore
122 fully phased) of distantly-related inbred mouse models, C57BL/6 and PWK/PhJ, having
123 over 20 million heterozygous SNPs, compared to roughly 3 million in a human genome
e (Fig. 1B). We digested testis tissue to isolate single cells from their cytoplasmic bridges,
125 enriched for haploid cells by flow cytometry, and performed full-length single cell RNA
s sequencing using a slightly modified SmartSeq2 protocol optimized for sensitive RNA
7 capture (Methods).

128 Of 144 cells obtained from a single male mouse having successful RNA amplification,
129 126 passed filters as likely singlets with substantial read counts. Principal Components
10 Analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE) revealed a
11 mixture of three cell types expressing marker genes for spermatids, spermatocytes, and
132 spermatogonia, respectively (Fig. S1A-C). Focusing on the 95 haploid spermatids, we
133 used diffusion mapping (Angerer et al. 2016) to define a pseudotime space covering their
134 differentiation process. The pseudotime ranges from early round spermatids up until the
135 point that the number of genes expressed decreases rapidly at the elongation stage, when
13 transcription arrests (Fig 1C, Fig. S1D). Late spermatid markers such as PRM3 increase
137 in expression over this pseudotime, while spermatocyte markers such as SYCPS3 decrease
s (Fig. 1C).

139 10,991 genes passed filters for calculation of genoinformative expression, including hav-
1o ing at least one heterozygous site and having comparable mean expression of each allele
1 (see Methods). We first focused on autosomes rather than sex chromosomes, because
12 we could use the two alleles as an internal control, yielding an easily quantifiable allelic
13 expression ratio within each cell. Visualizing allelic expression in individual haploid cells,
s we observed strong biases across large stretches of chromosomes, but no consistent bias
s in diploid controls (Fig. 2A, S2A). Across all haploid autosomes, there was a significant
us correlation of allelic ratios between neighboring genes that gradually decreased with chro-

1z mosomal distance, and this correlation was completely absent in diploid controls (Fig.
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Figure 1: Single cell sequencing of haploid spermatids for assessing allelic bias. A) Models for allelic expression bias
informative of the haploid genotype (genoinformative expression). The null hypothesis predicts complete sharing between
spermatids, erasing any systematic allelic expression differences in mature sperm (top). Selfish genetic elements like the
mouse t haplotype have virtually no sharing and lead to dramatic allelic differences in mature sperm (center), but incomplete
sharing of transcripts would also lead to genoinformative expression (bottom). DNA is represented as straight lines with
color representing an allele, and RNA is represented as wavy lines. Sperm color represents the degree of functional links
to the allelic genotype. B) Experimental setup for single cell RNAseq. We crossed distantly related inbred mouse strains,
digested single cells from the testis and enriched for haploid spermatids, and performed full-length RNA-seq and allele-
specific quantification. C) Pseudotime analysis shows haploid spermatids covered a range from the early round stage (low
expression of protamines) to the late elongating phase (very low expression of SYCP3)
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Supplemental figure 1. Single cell RNAseq of haploid spermatids identifies chromosome-scale correlations in allelic bias.
A) t-Distributed Stochastic Neighbor Embedding (tSNE) dimensionality reduction for single testis cells enriched for hap-
loid cells. Expression levels in transcripts per million (TPM) are visualized for markers of haploid spermatids (Prms3),
spermatocytes (Sycp3), and spermatogonia (Zbtb16). B) Cell type annotations based on the above marker genes. C)
Principal component analysis confirming the tSNE result, showing that all haploid spermatids were strongly distinct from
diploid cells. D) Left: first two dimensions of diffusion map of haploid spermatids showing the first dimension captured
the developmental stage well. Right: Number of genes detected per cell against the first diffusion map dimension (diffusion
map pseudotime), showing a decline in those at the latest developmental stage. E) Illustration of chromosome-length allelic
expression correlation. For one gene on chromosome 1, Dnah7a (located at the red line), pairwise correlation of allelic
expression ratio was calculated for every gene. Plotted is a loess-smoothed average across each chromosome. Only on
chromosome 1 near the Dnah7a locus is there a substantial average correlation. F) Summary of chromosome-length allelic
expression correlations. For each gene, pairwise correlations of allelic expression ratios with all genes on the same chromo-
some were calculated. The mean correlation in haploid cells or diploid cells across all genes is plotted as a loess-smoothed
average. A substantial mean correlation exists for nearby genes in haploid but not diploid cells, and decreases gradually
across tens of megabases.
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us S1E-F). We reasoned that this effect could be explained by a combination of correla-
1o tion caused by widespread genoinformative expression and degradation of this correlation
5o with distance by recombination. Therefore, we designed a Bayesian probability framework
151 based on an extension of a Hidden Markov Model to infer the haploid genotype of each
152 cell including recombination breakpoints jointly with genoinformativity. Genoinformative
153 expression was modeled as emissions based on the underlying genotype and propensity of
152 an RNA to be shared across cytoplasmic bridges. Intuitively, this model shares informa-
155 tion between genes across an entire chromosome for each cell, which means that even weak
155 and noisy genoinformative expression signals in individual genes can aggregate to yield
157 robust signals across large stretches of a chromosome. The model output a probability of
153 genotypes for each cell, and a genoinformativity score for each gene representing the esti-
150 mated fraction of transcripts retained from its haploid gene expression. Visual inspection
10 confirmed that our inferred genotypes matched the observed expression biases well (Fig.
o 2A, Fig. S2A). If the inferred genotypes are accurate, the distribution of recombination
12 breakpoints should follow the known recombination density in the mouse genome. Indeed,
1,3 we saw a significant correlation of inferred recombination density to the published map
6e  (Cox et al. 2009) with good agreement at a resolution of 10 to 20 megabases (Fig 2B,
165 52B-C).

166 Examining for individual genes the concordance between allelic expression and haploid
167 genotype across cells, we observed a wide range of genoinformativity (Fig. 2C): Many
s genes, like Sycp3, had no association between their allelic expression ratio and the inferred
160 genotype, consistent with our null hypothesis of complete sharing across cytoplasmic
o bridges erasing allelic expression differences; some, such as Feril5, had virtually complete
i concordance with their inferred genotype, suggesting minimal sharing across cytoplasmic
12 bridges; a larger set of genes had clear but intermediate genoinformativity, exemplified by
s Cedc28a, suggesting partial sharing through cytoplasmic bridges. To determine thresholds

s for confident genoinformativity, we ran our Bayesian algorithm on shuffled data to create
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s an empirical background expectation under the null hypothesis of no genoinformative
s expression (Fig. S2D-E). Thresholds of parameters for both the posterior distribution
17 of the genoinformativity score and the strength of haplotype inference were selected to
s achieve an empirical False Discovery Rate of 10%. For convenience, genes that met
179 the criteria for confident genoinformative expression were called genoinformative markers
w0 (GIMs), regardless of their effect size. Of the 10,991 genes for which we could estimate
11 genoinformativity, 4,354 (39.6%) were confident GIMs and 3,317 (30.2%) were confidently
12 not GIMs (see Methods; Fig. 2D, inset). We were unable to make a confident call for the
153 remaining 3,320 (30.2%) due to marginal signal for genoinformativity. Of the confident
15 genoinformative set, a wide range of effect sizes was seen, but 3,159 (28.8%) had at least a
15 2-fold average allelic expression ratio in favor of the allele matching the haploid genotype
s (Fig. 2D).

187 We were surprised that as many as a third of genes were classified as strong GIMs, so
188 we sought to confirm our assumption that this corresponded to incomplete sharing across
150 cytoplasmic bridges. The chromatoid body is a membraneless organelle (a phase-separated
10 condensate) in germ cells that has been shown to shuttle RNA across cytoplasmic bridges
01 to facilitate sharing (Fig. 2E inset; Venteld, Toppari, and Parvinen 2003). We found
12 that a published set of genes enriched in the chromatoid body (Meikar et al. 2014) had
103 far lower genoinformativity scores than other genes (Fig. 2E), and that there were fewer
s GIMs enriched in the chromatoid body than expression-matched controls (Fig. S5C). This
105 confirms that GIMs have different subcellular localization of their RNAs from non-GIMs.

w 4.2 GIMs have specific subcellular localization resulting in in-

107 complete sharing across cytoplasmic bridges

108 To identify what mechanisms might be responsible for the differential localization of GIMs,
19 we compared GIMs to non-GIM controls that were matched for expression across spermio-

200 genesis as closely as possible (Fig. S5A, Table S3-4, Methods). Most eukaryotic mRNA

10
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Figure 2: A large fraction of mouse genes exhibit genoinformative expression. A) Visualization of allelic bias in the first two
chromosomes of two representative haploid cells. Each expressed gene is represented as a vertical line with color representing
its allelic ratio (red for more maternal allele, blue for more paternal). Below each chromosome is the genotype inferred by
our Bayesian method. B) Correlations between inferred recombination densities and a published mouse recombination map
(Cox et al. 2009) or a control with recombination densities shuffled between all bins. As bin sizes decrease below about
20 megabases, the variance in our inferred rates increases, causing a degradation of our signal to noise ratio. C) Example
genes illustrating differing levels of genoinformative expression (right) with their models of sharing (left). Sycp3 exhibits no
association with the haploid genotype, Ccdc28a exhibits a strong but incomplete association between the inferred genotype
and the expressed allele, and Fer1l5 exhibits a near-perfect correlation with the inferred genotype. D) GIM classification of
all genes. Histogram shows the log2 of the expression ratio between the concordant allele (i.e. matching the genotype) over
the discordant allele on average across cells. Inset: the total number of genes classified in each category of genoinformative
expression. E) Genes with mRNAs enriched in the chromatoid body have significantly lower genoinformativity scores.
Genoinformativity scores range from zero to one and represent the estimated fraction of transcripts originating from a cell’s
haploid transcription. Inset: depiction of the chromatoid body’s role in shuttling mRNAs across cytoplasmic bridges in
haploid spermatids. F) A model for how allelic skew (e.g. due to eQTLs) interacts with genoinformative expression. Only
genes with both allelic skew and genoinformative expression (not shared) have their mean expression level correlated to
the haploid genotype. G) Example genes matching the categories in (F). Only Rabl2 has a significant mean expression
difference (p = 1.5 x 1075, Wilcoxon test). H) Summary of expression differences (log2 ratio of genotype concordant with
skew to discordant) in all genes in each of the four combinations listed. Only with both allelic skew and GIMs is there an
expression difference between cells of differing genotypes.
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Supplemental figure 2. Joint inference of genotype and genoinformativity. A) Visualization of allelic bias in the first four
chromosomes of randomly selected haploid cells and randomly selected diploid cells. Each expressed gene is represented as
a vertical line with color representing its allelic ratio (red for more maternal allele, blue for more paternal). Below each
chromosome is the genotype automatically inferred by our Bayesian method. B) Correlations between inferred recombi-
nation densities and two published mouse recombination maps (Cox et al. 2009; Liu et al. 2014) or corresponding controls
with recombination densities shuffled between all bins. C) Recombination densities across each chromosome (calculated
over a 20Mb window) implied by the Bayesian recombination frequencies or for each of the two published recombination
maps. D) Inferred genotype and genoinformativity for real haploid data and two shuffle types: one permuting both gene
and cell labels (complete shuffle) and one permuting only cell labels. Each point is a gene/cell pair, with genotype estimate
(x-axis) being a property of the specific gene in a specific cell, and 5% lower bound of genoinformativity (y-axis) being
a property of the gene (constant across cells). Three representative chromosomes are plotted (5, 10, and 15). Real data
more often have confident genotype estimates and high genoinformativity (upper left and upper right of graph). The cell
label shuffle is quite conservative because the genotype structure is maintained, and only the genoinformative expression
is randomized. E) Summary of the data from (D) illustrating thresholds for calling confident GIMs (dashed lines). Each
point is a gene, with poor haplotypes defined as those with less than 95% probability of a genotype. 5% lower bound of
posterior genoinformativity probability is plotted on x-axis.
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21 localization is dictated by RNA-binding proteins via sequence motifs in 3" UTRs (An-
200 dreassi and Riccio 2009), so we performed an enrichment analysis for known motifs of
203 RNA-binding proteins that are expressed in spermatids. We identified 26 motifs signif-
204 icantly enriched in GIMs relative to controls, and zero significantly depleted in GIMs
205 (Table S5).

206 Similarly, a gene ontology enrichment analysis identified strong enrichment for GIMs
207 for specific protein localizations, especially membrane associations and axoneme or other
208 tail localizations (Table S6). To further refine this result, we performed an enrichment
200 analysis with a comprehensive localization database (Binder et al. 2014). This revealed a
210 strong enrichment for genes with annotated localization in neurons, including both den-
2u drites and axons (Table S7), probably reflecting the fact that subcellular RNA localization
212 has been best studied in neurons but is governed by principles applicable across cell types
23 (Ryder and Lerit 2018). Together, these data suggest a mechanism for genoinformativity
24 whereby RNA-binding proteins bring some mRNAs to specific subcellular locations distal
215 from chromatoid bodies, thus partially avoiding sharing across cytoplasmic bridges.

216 As independent confirmation of our incomplete sharing model for GIMs, we sought
217 to use the much larger set of RNAseq reads that did not overlap a heterozygous site but
218 could be used for estimating overall expression levels. GIMs have allelic expression biases
20 based on the haploid genotype, but because 50% of cells have each genotype, GIMs do
20 not necessarily have a mean allelic expression bias when averaging across many cells (here
21 called allelic skew). However, many genes have a mean allelic skew for other reasons, for
2> example due to expression quantitative trait loci (eQTLs) wherein a genetic variant has
23 differential effects on the expression of a gene. The incomplete sharing model predicts that
24 genes may have different expression levels in spermatids with the paternal versus maternal
»s  genotype, but only when they have both an allelic skew and genoinformative expression
»s (Fig. 2F). To illustrate this point, Sycpd (Non-GIM, no allelic skew), Ccdc28a (GIM,
27 1o allelic skew), and Genl1ll (Non-GIM, 2.7-fold allelic skew) all have no difference in
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»s mean total expression from the maternal and paternal genotype cells (Fig. 2G). However,
29 Rabl2, which has a 3.0-fold allelic skew and genoinformativity score of 0.45 has a significant
20 difference in expression between the two spermatid genotypes (p = 1.2 x 1075, t test).
2 Across all genes, we observe that the expression level of GIMs with allelic skew is linked
22 to the haploid genotype in the expected direction, but not for non-GIMs and not for
23 genes without overall allelic skew (Fig. 2H). Therefore both allele-informative and non-
24 allele-informative RN Aseq reads support the identity of GIMs and the incomplete sharing

235 model.

s 4.3 Sex chromosome genes also exhibit genoinformative expres-

237 SiOIl

28 Although our Bayesian method for inferring genotype and genoinformativity cannot be
239 applied to sex chromosomes due to the lack of allelic expression data, genoinformative
20 expression of sex chromosome genes would provide an elegant explanation for models
21 of sex ratio distortion in mice (Cocquet et al. 2012; Eep, Pji, and Ellis Email n.d.).
22 We therefore developed a separate method to identify sex chromosome GIMs based on
23 variation in expression levels rather than in allelic ratios. We started by reasoning that
2 X chromosome GIMs should have correlated expression and be anticorrelated with Y
25 GIMs. Because expression levels in any given spermatid can be strongly influenced by
us  developmental stage, we first corrected for the position in the diffusion map pseudotime.
27 Clustering genes by pairwise correlation after correction, we identified two distinct clusters
2 that corresponded overwhelmingly to the X and Y chromosome, respectively (Fig. S3A).
29 In contrast, performing the same analysis on autosomal controls yielded no similar clusters
20 (Fig. S3B). We selected putative GIMs from these distinct clusters that displayed strong
21 correlation signals (see methods), resulting in 63 X GIMs and 84 Y GIMs (Table S2).
2 Spermatids tend to have high or low mean levels of X GIMs, but not intermediate levels

3 (Fig. S3C). Therefore, sex chromosomes appear to be no exception to the prevalence of
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4 genoinformative expression, at least on a quantitative level.

» 4.4 Genoinformativity is conserved between individuals and across

256 species

7 S0 far, we have only considered mice with one genetic background, so we next asked
s whether the phenomenon of widespread genoinformative expression extends to other
20 mammals. We dissociated testes from two outbred cynomolgus primates (Macaca fas-
20 cicularis), isolated haploid spermatids and performed single cell RNAseq. Cynomolgus
21 monkeys have the advantage of being highly heterozygous, with ~13 million heterozy-
%2 gous SNPs per individual, compared to ~3 million for humans. Because our method for
%3 inferring genotypes relies on sharing information across entire chromosomes, we required
24 fully phased chromosomes to quantify genoinformative expression. We therefore combined
s two phasing methods: a dense, short-range phasing using linked read sequencing, and a
%6 sparse, long-range phasing using whole genome sequencing of single haploid spermatids
27 (Fig. 3A). Combining the two sources of information led to densely phased chromosomes
xs for each individual, resulting in 11,654,918 and 10,131,178 phased sites in Cynomolgus 1
20 and 2, respectively (Fig. S4A).

270 We were able to quantify allelic expression of a smaller number of genes for cynomolgus
o spermatids than for mice (7,590 and 4,557 for the two cynomolgus compared to 10,991
22 in mice), mostly due a smaller number of heterozygous sites. Nevertheless, we observed
;3 comparable quality of our genotype inference, including significant correlation of inferred
72 recombination rates between individuals, an expression skew in GIMs with allelic expres-
s sion skew, and substantial differences between real and shuffled data (Fig. S4B-E). Again
o6 using an empirical false discovery rate of 10% in each individual, we classified 50.3% and
xr - 52.3% of spermatid-expressed genes as confident GIMs, respectively (Fig. 3B). The effect
s sizes were comparable to those seen in mice, with 44.6% and 43.3% of spermatid-expressed

29 genes having at least a 2-fold average expression difference between alleles in favor of the
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Supplemental figure 3. Sex chromosome GIMs. A) Heatmap of pairwise correlations of sex chromosome genes. Correcting
for developmental stage (fitting the expression to the diffusion pseudotime position), the residuals of the log expression
levels are correlated between all pairs of sex chromosome genes. Two anticorrelated clusters appear, one principally on the
X chromosome (black lines above the heatmap), one principally on the Y chromosome (red lines above the heatmap). B)
Heatmap of pairwise correlations as in (A), but for autosomal control chromosomes with similar numbers of spermatid-
expressed genes (chromosomes 14 and 18). No similar broad clusters appear. C) Cells have bimodal expression of putative
X chromosome GIMs. For each cell, the mean residual log expression across putative X GIMs and Y GIMs is plotted, with
density contours. Density plots on the margins show the kernel density of the mean residual for X GIMs (top) and for Y
GIMs (right). Most cells have either a high or a low average expression of X chromosome GIMs, but not intermediate. Cells
that have high X GIM expression tend to have lower expression of Y GIMs, and vice versa.
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0 haploid genotype. In total, 47.3% of genes that could be quantified met this threshold in
261 either of the two individuals.

282 Because the two individuals have different heterozygous sites, only 2,366 genes had
283 quantified genoinformativity in both. Among these genes, those that were classified as
284 a confident GIM in one individual had far higher genoinformativity scores in the other
265 individual, and those classified as a confident non-GIM had far lower genoinformativity
2 scores in the other individual (p < 2.2 x 10719, Fig. 3C). This suggests that within a
287 species, the property of genoinformativity is highly consistent. To look across far larger
288 evolutionary timescales, we compared cynomolgus genes to their orthologs in mouse with
20 a genoinformativity score in each (n = 2,838). Confident GIMs in cynomolgus had higher
200 genoinformativity in mouse than confident non-GIMs (p < 2.2 x 10716; Fig. 3C), al-
21 though the relationship was weaker than within a single species. This suggests that the
22 features that confer incomplete sharing across cytoplasmic bridges evolve slowly, so that

203 the identities of GIMs tend to be maintained across evolutionary timescales.

x» 4.5  GIMs show signs of sperm-level natural selection and evo-

205 lutionary conflict

206 The substantial fraction of genes having genoinformative expression at the RNA level is
207 surprising, but it does not necessarily imply functional differences in sperm. For example,
208 proteins could be shared across cytoplasmic bridges, nullifying any allelic differences at
200 the RNA level. In contrast, if GIMs lead to functional differences in sperm linked to their
w0  genotype, sperm-level natural selection could result in increased evolutionary forces (both
;1 purifying and positive selection) acting on GIMs compared to other genes. Given that the
52 identities of GIMs have been maintained across an appreciable evolutionary distance, we
33 reasoned that functional differences in GIMs would lead to detectable signatures in the
54 genome even if they rarely arise. Selective sweeps entail a beneficial allele experiencing

s positive selection and rapidly reaching fixation in a population, which leaves a signal that
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Figure 3: GIMs are conserved between individuals and across species. A) Fully phased chromosomes were generated
directly from outbred cynomolgus individuals by computationally merging phasing maps from two experimental techniques:
short-range phasing from 10x Genomics linked read sequencing, and long-range phasing from whole genome sequencing of
several single haploid spermatids. B) Genoinformative expression classification of all genes as in Fig. 2D, for each of two
cynomolgus individuals. Histogram shows the log2 of the expression ratio between the concordant allele and the discordant
allele on average, where the concordant allele matches the inferred genotype. Inset: the total number of genes classified in
each category of genoinformative expression. C) Conservation of genoinformativity. Genes are categorized based on their
genoinformativity classification in Cynomolgus 1 (x axis), and genoinformativity is plotted for these genes in Cynomolgus

2 (left) or orthologs in mouse (right). Genoinformativity scores range from zero to one and reflect the degree of shared
information with genotype.
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Supplemental figure 4. Cynomolgus primate genotype and genoinformativity inference. A) Single cell DNA sequencing
data is displayed as phasing blocks called by the 10x Chromium pipeline for chromosome 1. Blocks are assigned to parental
chromosomes based on the single cell sequencing data using the algorithm described in the methods section. The resulting
patterns show 1-2 recombinations per cell with very few discordant (incorrectly assigned) blocks. B) Spearman correlation
between recombination densities inferred for the two individuals. Shuffied data showed lower correlations at low to moderate
bin sizes. C) Summary of expression differences (log2 ratio of genotype concordant with skew to discordant) in all genes in
each of the four combinations listed. Only with both allelic skew and GIMs is there an expression difference between cells of
differing genotypes, matching the results in mouse. D) Inferred genotype and genoinformativity for real haploid data and
two shuffle types: one permuting both gene and cell labels (complete shuffle) and one permuting only cell labels. Each point
is a gene/cell pair, with genotype estimate (x-axis) being a property of the specific gene in a specific cell, and 5% lower
bound of genoinformativity (y-axis) being a property of the gene (constant across cells). Three representative chromosomes
are plotted (5, 10, and 15). Real data more often have confident genotype estimates and high genoinformativity (upper left
and upper right of graph). The cell label shuffle is quite conservative because the genotype structure is maintained, and
only the genoinformative expression is randomized. E) Summary of the data from (D) illustrating thresholds for calling
confident GIMs (dashed lines). Each point is a gene, with poor haplotypes defined as those with less than 95% probability
of a genotype. 5% lower bound of posterior genoinformativity probability is plotted on x-axis.
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26 can be detected by a variety of statistical tests over patterns of variation in the genome.
27 We cross-referenced a set of selective sweeps in wild mouse populations (Staubach et
28 al. 2012) with GIMs and non-GIM controls, either randomly selected from spermatid-
200 expressed genes or matched for expression patterns across spermiogenesis. The GIMs
20 were found in significantly more selective sweep regions than expected by chance (p =
s 3 x 107%) corresponding to an excess of 47 + 4.6 selective sweeps putatively attributable
32 to genoinformativity (Fig 4A, left). Although we do not know of studies of selective
a3 sweeps in cynomolgus, we took advantage of abundant predictions of selective sweeps in
s humans by examining orthologs of cynomolgus GIMs and non-GIMs. Using a set of human
a5 selective sweeps (Refoyo-Martinez et al. 2019), we find a significant enrichment of GIMs
us  (p < .013) corresponding to 9.4 + 4.2 sweeps putatively attributable to genoinformativity
a7 (Fig 4A, right). We corroborated this enrichment for GIMs in a wide variety of tests for
us  selective sweeps in humans and primates on multiple timescales (Fig. S5B). Examining
30 an even larger set of tests for natural selection using 1000 genomes project data (Pybus
20 et al. 2014), we found significant enrichments in a majority of tests (Fig. S5D). Together,
;1 this indicates that GIMs are associated with an increased rate of positive selection over
w2 evolutionary time.

323 Sperm-level natural selection poses an evolutionary conundrum: due to its highly
24 specialized function, what is good for the sperm is not necessarily good for the organism.
»s In other words, selection for a beneficial allele in sperm may decrease overall fitness if
»s the allele is deleterious in a somatic cell context (Fig. 4B). Over evolutionary time,
w27 this conflict might make genoinformative expression deleterious for genes with somatic
»s functions, but not for genes uniquely expressed in male reproductive tissue. Supporting
»e this hypothesis, we see that GIMs are more likely to be testis-specific in both mouse
5 (p < 107*) and human (p = 0.006; Fig. 4C). When it arises, the evolutionary conflict
;1 caused by sperm-level selection will cause evolutionary pressure for separating functions

;2 for the gene in germ and somatic cells. Examples of this evolutionary pattern include gene
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s duplication followed by subfunctionalization (Fig. 4B), and testis-specific gene isoforms.
14 As predicted, GIMs are significantly enriched in paralog families that are predominantly
335 testis-expressed in both mouse (p < 6.7x1071%; Fig. 4D, left) and human (p < 0.0007; Fig.
s 4D, right). Human GIMs are also enriched testis-specific isoforms (p < 1.9 x 107!4; Fig.
s 4E, right), and although we are not aware of similar quality isoform-level mouse datasets,
5 mouse GIMs are significantly more likely to have testis-specific exons (p < 3.7 x 107;
1 Fig. 4E, left).

340 Each of these lines of evidence implies that GIMs with these properties are enriched for
s causing functional differences in sperm, which would require incomplete sharing of proteins
w2 across cytoplasmic bridges. In the mouse t haplotype, this occurs in part by translating
13 a protein late in spermiogenesis, as cytoplasmic bridges start to break down (Véron et
1 al. 2009). We therefore predicted that GIMs enriched for causing functional differences
us in sperm would also be enriched in late translation of their proteins compared to other
1s GIMs. Examining a polysome profiling dataset across mouse spermatogenesis (Iguchi,
17 Tobias, and Hecht 2006), mouse GIMs that were functional candidates based on selective
us  Sweeps, testis-specific expression, or testis-specific paralogs, were indeed enriched for late
uo translation (p = 0.045, 1.4 x 10712, 0.00045, Fisher’s exact test; Fig. 4F). However, we
;0 did not see enrichment in late translation for GIMs that had testis-specific exons. These
31 results suggest that late translation of GIMs is one mechanism by which they may lead to
;2 sperm-level functional differences, causing a higher rate of selective sweeps and avoidance

33 of evolutionary conflict.

= 9 Discussion

15 Here we have shown that a large fraction of spermatid-expressed genes are not completely
36 shared between haploid spermatids, resulting in allelic expression that is linked to the
557 haploid genotype, which we call genoinformative expression. Our model for the mechanism

38 for this genoinformative expression is subcellular localization of RNAs, occurring through
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Figure 4: GIMs are associated with sperm-level natural selection and evolutionary conflict. A) GIMs are enriched in
selective sweep regions in mouse (Staubach et al. 2012) and human (Refoyo-Martinez et al. 2019). Human GIMs were
inferred from cynomolgus orthologs. GIMs were compared to control sets (orange bars), either selected from all spermatid-
expressed confident non-GIMs, or confident non-GIMs matched to GIMs by their spermatid expression trajectory. B) Model
for evolutionary conflict between sperm-level and organism-level natural selection. The gene has one allele with beneficial
effect in somatic cells but detrimental effect in sperm (G) and one allele with the reverse pattern (g), resulting in positive
selection for g at the sperm level, but negative selection at the organism level. A resolution to conflict can be achieved by
duplication into two genes, G1/g1 expressed in somatic cells and Ga2/g2 expressed in sperm. Selection will then favor the
G1 and g2 alleles, with no detrimental effects at either level. C) GIMs are enriched for testis-specific expression in mice
and human, defined as 10-fold higher expression than any other tissue. GIMs were only compared to non-GIMs matched
for spermatid expression trajectory, because testis-specific expression is by definition dependent on spermatid expression
level. D) GIMs represent a higher number of paralog families than non-GIMs in mice and humans. Controls as in (A). E)
GIMs are enriched in testis-specific isoforms in humans and testis-specific exons in mice. Controls as in (A). F) GIMs that
are functional candidates are enriched for specific late translation. The GIMs are taken from the blue bars in panel A, C,
D, and E, respectively. GIMs in each functional category are compared with GIMs not in that category, and the proportion
with specific late translation was calculated. The log2 of the ratio of these proportions is plotted.
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Supplemental figure 5. GIM functional characterization. A) Illustration of expression-matched control selection for repre-
sentative GIMs. Thick black lines represent log2 of the loess fit of the expression (in TPM) of GIMs across the spermatid
differentiation diffusion pseudotime. Colored lines represent the same loess fit for the 20 genes selected as controls for this
gene based on their expression pattern and dropout rate. B) The number of positive selection (selective sweep) candidates
from several publications (Schrider and Kern 2016; Ferrer-Admetlla et al. 2014; Cheng, Racimo, and Nielsen 2019; Munch
et al. 2016) overlapping GIMs or several types of controls. Error bars represent the mean + standard deviation over the 20
control sets of mock GIMs. GIMs are enriched for selective sweeps in all cases (p < 0.0276, p < 1.01x 1076, p < 9.65x 1076,
p < 8.60x 1076, respectively). C) The fraction of genes overlapping the genes annotated as enriched in the chromatoid body
(Meikar et al. 2014) overlapping with each gene category. Bars represent mean + standard deviation over the 20 control
sets of mock GIMs. D) Enrichment for GIMs in positive selection candidates based on raw scores for positive selection
calculated based on 1000 genomes project data. The background expectation was calculated using the expression-matched
non-GIM control set, and error bars represent the mean + twice the standard deviation of these controls.
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30 RNA-binding protein motifs in the 3’ UTRs or other mechanisms, resulting in depletion
30 of GIMs from the chromatoid body (which facilitates sharing across cytopasmic bridges).
i1 GIMs are substantially conserved across populations and evolutionary timescales, so we
2 predict these mechansisms are conserved as well.

363 In light of this finding, a number of cases of sperm-level functional differences in
1« the literature can be putatively attributed to GIMs (Conway et al. 1994; P. A. Martin-
s Delieon et al. 2005; Butler et al. 2007; Véron et al. 2009; Cocquet et al. 2012; Alavioon
w6 et al. 2017; Nadeau 2017; Umehara, Tsujita, and Shimada 2019). Despite the growing
7 number of examples of sperm-mediated transmission ratio distortion, it has been widely
s assumed these are isolated cases and that mammalian sperm are functionally diploid as
10 a rule. The fact that GIMs were so common (over a third of spermatid-expressed genes)
s surprised us, and suggests that many more cases of sperm-level functional heterogeneity
sn based on genotype will be found.

372 Mendel’s first law dictates that alleles of genes are inherited with equal probability,
w3 requiring sperm to be functionally equivalent regardless of their haploid genotype. We
s believe that remains the case for the majority of genes in mammals at any given time,
w5 since transmission ratio distortion has not been commonly observed. However, we show
s that over evolutionary timescales, GIMs are associated with an increased rate of selective
s sweeps, suggesting selection at the level of sperm based on functional differences linked
ss to alleles. At first glance, reconciling the sperm-level selection with the predominance of
;9 Mendel’s first law seems difficult, but there are several reasons to believe they are com-
1 patible: 1) We find evidence for only tens to hundreds of selective sweeps across deep
31 timescales and across thousands of GIMs, suggesting that they are relatively rare; 2) Se-
;2 lective sweeps happen quickly on an evolutionary timescale, erasing standing variation
3:  and making transmission ratio distortion a rare phenomenon at any one time; 3) Because
3« most GIMs lead to only modest allelic differences (2-4 fold), sperm with these differences

;s may be functionally equivalent or will lead to modest transmission ratio distortion, as is
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15 observed for example in mouse Yq deletions or Slx knockdowns (Conway et al. 1994; Coc-
w7 quet et al. 2012), which is challenging to quantify in most mammals; and 4) Avoidance of
;s evolutionary conflict by evolving sperm-specific expression removes cases of balancing se-
o lection, which might have resulted in observable transmission ratio distortion on standing
30 variation.

301 While genoinformative expression is widespread at the RNA level, we do not have
32 direct evidence for how common it is at the protein level. One reason to believe there
33 are substantially fewer protein-level GIMs than RNA-level GIMs is that proteins can
s« be shared across cytoplasmic bridges. This is consistent with the fact that GIMs that
w5 are preferentially translated late in spermiogenesis, when there is little to no time to
36 be shared across cytoplasmic bridges, are enriched in evidence for selection or avoidance
37 of evolutionary conflict. Even extremely late-expressed GIMs may not always lead to
ws functional differences in sperm, because epididymal exosomes deliver proteins from diploid
w9 cells to sperm after they cease transcription and translation, potentially masking allelic
w0 differences in mature sperm. Another mechanism for masking the functional consequences
w1 of GIMs may be the abundant post-translational regulation of mature sperm, for example
w2 during capacitation, which might create larger cell-to-cell variation among sperm than
w3 GIMs.

404 Nevertheless, the ability of GIMs to lead to sperm-level natural selection may have
ws profound evolutionary consequences. We have shown strong enrichments of GIMs for
ws testis-specific expression, testis-specific paralogs, and testis-specific isoforms or exon us-
w7 age. There are two forces that could give rise to these results: first, evolutionary con-
ws flict arises repeatedly in GIMs, which provides an evolutionary advantage to evolve dis-
w0 tinct sperm-level function; second, that evolutionary conflict provides pressure to decrease
a0 genoinformativity (i.e. increase sharing across cytoplasmic bridges), so that the remaining
a1 GIMs preferentially have more sperm-specific expression. It is impossible to distinguish

a2 between these models with the data here, but it is likely that both forces contribute.
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a3 More comprehensive catalogs of GIMs across species may be necessary to identify which
aa 18 predominant.

a15 This provokes a profound question: why, from an evolutionary perspective, do GIMs
ne exist at all? For sex chromosome genes, such as Akap4 (an X-chromosome gene required
sz for sperm motility), it is clear that some degree of sharing is required for sperm function
s and specific mechanisms have evolved to facilitate sharing (Morales et al. 2002). However,
a0 it is not clear that genes need to be shared equally or that absolute functional equivalence
20 is achieved; in some cases, a 2-fold or 4-fold difference in allelic expression may not have
w21 strong enough functional effects to exert evolutionary pressure to fully share transcripts.
w22 Also, sex chromosome genes are a special case that are hemizygous in males, so there may
23 be even less pressure to share equally for autosomes. For genes or isoforms that are sperm
w2a  specific, there could in fact be a benefit to sperm-level selection: an intensification of
w5 both purifying and positive selection by adding a selective layer on top of organism-level
w6 selection. In these cases, there would be no evolutionary conflict between the two selective
w27 layers, so some GIMs could become ”selfish elements” whose interests are aligned with
w28 the organism: improving sperm function, which in turn increases the number of offspring.
429 The testis-expressed genome has long been a puzzling outlier, including by far the most
im0 tissue-specific gene expression, the most tissue-specific paralogs, and the most rapidly
i1 evolving genes. The widespread presence of GIMs raises the possibility that sperm-level
s selection and resulting evolutionary conflicts are common enough to provide an elegant
a3 explanation for these phenomena. If functional and molecular heterogeneity of sperm
s can be understood in enough detail, it is even possible that it could be exploited to
i35 isolate and eliminate sperm carrying severe Mendelian disease genes, reducing the risk
16 of disease transmission across generations, as has been previously suggested (e.g. Butler
s et al. 2007). Given the rarity of GIM-related selective sweeps, it may be technically
ss  challenging to identify and leverage this expanded source of sperm heterogeneity. However,

130 the surprisingly widespread existence of GIMs raises the possibility that a wide variety of
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mo  severe diseases could be prevented by means of sperm selection.

« 6 Methods

« 6.1 Spermatid isolation and cell sorting

u3  Testes were reduced to a single-cell suspension (breaking apart the intracellular bridges
ma  between germ cells in the process), using the two-step digestion protocol of Gaysinskaya
ws et al. 2014. Digestions were performed in 6 ml for mouse, with one whole testis as starting
15 material (tunica albuginea removed); and in 30 ml for non-human primate, with 600mg
w7 of diced testis tissue as starting material. First, to disperse the seminiferous tubules,
us  testis tissue was incubated in digestion solution 1: Hanks’ Balanced Salt solution (HBSS,
mo Sigma Aldrich), 1 mg/ml collagenase Type I (Worthington Biochemical), and 6 U/ml
0 DNAse I (Sigma Aldrich). Incubation was at 37°C for 10 min with horizontal agitation.
ss1 Tubules were then allowed to settle and the supernatant (containing somatic cells) was
s2  discarded. Digestion solution 2 was then added to reduce the tubules to a single-cell
53 suspension: HBSS, 1 mg/ml collagenase, 6 U/ml DNAse, and 0.05% trypsin (Gibco, 2.5%
ss¢ stock solution). Incubation was for 25 min at 37°C with horizontal agitation; tubules were
w5 pipetted every 5 minutes, and an additional 0.025% trypsin was added halfway through
ss6 the incubation. Successful digestion was confirmed by examining the cell suspension under
w57 a light microscope. Digestion was quenched with Newborn Calf Serum (Gibco).

458 After digestion, the single-cell suspension was filtered through a 100 pm cell strainer
0 and centrifuged for 10 minutes at 500g. The supernatant was discarded, and the cell pellet
wo was gently resuspended at 1-2x10° cells/ml in PBS + 5 mg/ml BSA. Hoechst 33342 was
w1 added at 10 pg/ml and cells were incubated for 30 minutes at 37°C. Propidium iodide
w2 (PI) was added at 1 pg/ml during the last 5 minutes of incubation. Samples were filtered
w3 through a 40 pm mesh immediately before sorting.

a64 Single live spermatids were then sorted into 96-well plates as described below, using a
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s BD FACS Aria, a Beckman Coulter MoFlo Astrios, or a SONY Synergy SY3200 instru-
w6 ment. Our gating strategy was as follows: Selected for 1n cells (spermatids and sperm)
w7 based on Hoechst 33342 fluorescence intensity (with 355 nm excitation and a 448/59 nm
w8 bandpass emission filter) (Gaysinskaya et al. 2014); Selected for PI-negative cells to get a
w0 live population (PI was measured with 561 nm excitation and a 614/20 nm bandpass emis-

w0 sion filter)); Enriched for round spermatids by selecting cells with high forward scatter

m  (Bastos et al. 2005)

@ 6.2 Cynomolgus primates

w3 Adult male cynomolgus monkeys (Macaca fascicularis) were used for the non-human pri-
a2 mate studies conducted at the University of Kentucky. Monkeys were singly housed in
a5 climate-controlled conditions with 12-hour light /dark cycles. Monkeys were provided wa-
we  ter ad libitum and fed Teklad Global 20% Protein Primate Diet. Spermatid isolation and
a7 sorting was preformed at the University of Kentucky with two male monkeys. Monkeys
s were euthanized, testes were promptly removed and placed in Hanks’ Balanced Salt Solu-
w9 tion (HBSS) on ice, prior to proceeding to tissue digestion and subsequent preparation of
0 a single cell suspension for cell sorting. All animal care, procedures, and experiments were

i1 based on approved institutional protocols from the University of Kentucky Institutional

s2  Animal Care and Use Committee IACUC (protocol #2015-2294).

« 6.3 Single-cell RNA sequencing

s Single cells meant for RNA processing were sorted into 96-well full-skirted Eppendorf
w5 plates that were pre-chilled at 4°C and were prefilled with 10pL of lysis buffer consisting
s of TCL buffer (Qiagen) supplemented with 1% beta-mercaptoethanol. Sorted plates with
w7 single-cell lysates were subsequently sealed, vortexed, spun down at 300g at 4°C for 1
s minute, immediately placed on dry ice to flash-freeze the lysates, and then moved to -80°C

0 for storage. The Smart-Seq2 protocol was performed on single sorted cells as previously
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w0 described (1-3), with some modifications described below.

w1 Reverse transcription Single-cells lysates were thawed on ice for 2 minutes, then
w2 centrifuged at 3,000rpm at 4°C for 1 minute. 20pL of Agencourt RNAClean XP SPRI
w3 beads (Beckman-Coulter) was added to lysates, mixed slowly, to not introduce bub-
s bles and subsequently incubated at room temperature for 10 minutes. The 96-well
w5 plate was then placed onto a magnet (DynaMag-96 Side Skirted Magnet, Life Tech-
w6 nologies) for 5 minutes while covered. The supernatant was removed, and the SPRI
w7 beads were washed three times with 100pL of freshly prepared 80% ethanol, careful to
w8 avoid loss of beads during the washes. Upon completely removing ethanol after the last
w0 wash, SPRI beads were left to dry at room temperature for up to 10 minutes. Beads
so0  were resuspended in using 4pL of the following Elution Mix: 0.1pL 10pM RT primer
s (AAGCAGTGGTATCAACGCAGAGTACTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN-
s 3, IDT), 1pL 10 mM dNTP (Life Technologies), 0.1pL. Recombinant RNase-Inhibitor (40
03 U/pL, Clontech), and 2.8uLi nuclease-free water. The plates were sealed and then spun
soa down briefly, 5 seconds max to get up to 150rpm. The samples were denatured at 72°C
sos for 3 minutes and placed immediately on ice afterwards. 7pl of the Reverse Transcription
ss  Mix was subsequently added in every well, consisting of: 2L 5x RT buffer (Thermo Fisher
sor  Scientific), 2ul. 5 M Betaine (Sigma-Aldrich), 0.09pL 1M MgCl2 (Sigma-Aldrich), 0.1uL
s 100pM TSO (5- AAGCAGTGGTATCAACGCAGAGTACATrGrG+G-3', Exiqon), 0.25
so0 1L Recombinant RNase-Inhibitor (40 U/uL, Clontech), 0.1uL. Maxima H Minus Reverse
si0 Transcriptase (200U/pL, Thermo Fisher Scientific), and 2.46uL nuclease-free water. Ev-
su ery well was mixed with the resuspended beads. Reverse transcription was carried out by
sz incubating the plate at 50°C for 90 minutes, followed by heat inactivation at 85°C for 5

513 minutes.

su PCR amplification and cDNA purification 14uL of PCR Mix was added in each
si5 well: 0.05pL 100pM PCR primer (5- AAGCAGTGGTATCAACGCAGAGT-3', IDT),
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sis 12.5uL 2x KAPA HiFi HotStart ReadyMix (KAPA Biosystems), 1.45pL nuclease-free
si7 water. The reaction was carried out with an initial incubation at 98°C for 3 minutes,
sis followed by 22 cycles at (98°C for 15 seconds, 67°C for 20 seconds, and 72°C for 6 minutes)
s.9 and a final extension at 72°C for 5 minutes. PCR products were purified by mixing them
s0 with 20pL (0.8X) of Agencourt AMPureXP SPRI beads (Beckman-Coulter), followed by
s a b minutes incubation period at room temperature. The plate was then placed onto a
s2 magnet for 6 minutes prior to removing the supernatant. SPRI beads were washed twice
23 with 100pL of freshly prepared 70% ethanol, carefully to avoid loss of beads during the
s« washes. Upon removing all residual ethanol traces, SPRI beads were left to dry at room
25 temperature for up to 10 minutes. The beads were then resuspended in 20nL of TE buffer
s (Teknova) and incubated at room temperature for 5 minutes. The plate was placed on
s27  the magnet for 5 minutes prior to transferring the supernatant containing the amplified
2. CDNA to a new 96-well plate. This cDNA SPRI clean-up procedure was repeated a second
s20 time to remove all residual primer dimers and resuspended in a final volume of 15uL of
s 'TE buffer. The concentration of amplified cDNA was measured using the Qubit dsDNA
sn  High Sensitivity Assay Kit (Life 7 Technologies/Thermo Fisher Scientific). The ¢cDNA
s size distribution of few selected wells was assessed on a High-Sensitivity Bioanalyzer Chip
13 (Agilent). Expected single cell cDNA quantification was around 0.5-2 ng/pL with size
s distribution sharply peaking around 2kb.

s35 Library preparation Library preparation was carried out using the Nextera XT DNA
s3  Sample Kit (Illumina) with indexing adapters that allow 96 single cell libraries to be
s37 - simultaneously sequenced. For each library, the amplified ¢cDNA was normalized to a
s33  0.12-0.20ng/uL concentration range. The tagmentation reaction consisted of mixing 1.25
s30 1L of normalized cDNA with 2.5 nL of Tagmentation DNA Buffer and 1.25 pL. of Amplicon
ss0 ' Tagment enzyme Mix. The 5 pL reaction was mixed well, spun at 3,000 rpm for 3 minutes,
s incubated at 55°C for 10 minutes and then immediately placed on ice upon completing this

se2 incubation step. The reaction was quenched with 1.25 ul. of Neutralize Tagment Buffer

30


https://doi.org/10.1101/846253

bioRxiv preprint doi: https://doi.org/10.1101/846253; this version posted November 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

23 and incubated at room temperature for 10 minutes. The libraries were amplified by adding
sae 3.75 1L of Nextera PCR Master Mix, 2.5 pL of mixed indices (Nextera XT Index Kit). The
sss PCR was carried out at an initial incubation at 72°C for 3 minutes, 95°C for 30 seconds,
s followed by 12 cycles of (95°C for 10 seconds, 55°C for 30 seconds, 72°C for 1 minute),
sev and a final extension at 72°C for 5 minutes. Following PCR amplification, 2.5 nL of each
s library were pooled together in a 2.0 mL. Eppendorf tube. The pool was mixed with 216
se0 1L (0.9X ratio for 2.5 nl of 96 cells pooled together) of Agencourt AMPureXP SPRI beads
ss0  (Beckman-Coulter) and incubated at room temperature for 5 minutes. The pool was then
ss1 placed on a magnet (DynaMag-2, Life Technologies) and incubated for 5 minutes. The
s> supernatant was removed and the SPRI beads were washed twice with 1 mL of freshly
53 prepared 70% ethanol. Upon removing all residual ethanol traces, the SPRI beads were
s« left to dry at room temperature for 10 minutes. The beads were resuspended in 100 pL of
sss |'E buffer and incubated at room temperature for 5 minutes. The tube was then placed
sss  back on the magnet for 3 minutes prior to transferring the supernatant to a new 1.5 mL
ss7 Eppendorf tube. This SPRI clean-up procedure of the library was repeated a second time
sss to remove all residual primer dimers, using the same approach and the final resuspension
sso - was done in 30 pL of TE buffer. The concentration of the pooled libraries was measured
seo using the Qubit dsDNA High Sensitivity Assay Kit (Life Technologies/Thermo Fisher
s Scientific), and the library size distribution measured on a High-Sensitivity Bioanalyzer
2 Chip (Agilent). Expected concentration of the pooled libraries was 30-50 ng/pL with size
ss3  distribution of 300-700 bp.

s 6.4 Single-cell DNA sequencing

ses  oingle haploid cells meant for DNA processing were sorted into 96-well full-skirted Ep-
ses pendorf plates either in (1) 5 pL of Cell Extraction Buffer (4.8 pL of Extraction Enzyme
se7  Dilution Buffer, 0.2 pL Cell Extraction enzyme, New England BioLabs) and processed
ses  using the PicoPlex kit, or (2) 5pL of Cell Lysis Reaction Mix (4.9 pL of Cell Lysis Buffer,
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seo 0.1 pL Cell Lysis enzyme, Yikon Genomics). Sorted plates with single-cell lysates were
st subsequently sealed, vortexed, spun down at 300g at 4°C for 1 minute, immediately placed
s on dry ice to flash-freeze the lysates, and then moved to -80°C for storage. All single-cells
s plates were thawed on ice for 2 minutes, then centrifuged at 3,000 rpm at 4°C for 1 minute

573 prior to processing.

su - PicoPlex Amplification For PicoPlex amplification, the plates were incubated at 75°C
s7s for 10 minutes, followed by 95°C for 4 minutes and held at 22°C until ready for the next
sts  steps. The pre-amplification Master Mix, consisting of 4.8 uL. of Pre-Amp Buffer and 0.2
sz L of Pre-Amp Enzyme Mix was added to each cell, the reaction was mixed well, spun
sts at 3,000 rpm for 1 minute. The PCR was carried out at an initial incubation at 95°C
s for 2 minutes, followed by 12 cycles of (95°C for 15 seconds, 15°C for 50 seconds, 25°C
so0 for 40 seconds, 35°C for 30 seconds, 65°C for 40 seconds, 75°C for 40 seconds), and a
ss1 hold at 4°C. Following the pre-amplification reaction, each well was mixed well with the
se2  Amplification Master mix, consisting of 25l of Amplification Buffer; 34.2 uL. of nuclease-
ss3  free water and 0.8 plu of Amplification Enzyme Mix. The reactions were mixed well, spun
s« at 3,000 rpm for 1 minute and incubated at 95°C for 2 minutes, followed by 16 cycles
sss of (95°C for 15 seconds, 65°C for 1 minute, 75°C for 1 minute) and a hold at 4°C. The
sss  concentration of each cell was measured using the Qubit dsDNA High Sensitivity Assay
se7 Kit (Life Technologies/Thermo Fisher Scientific). Expected concentration of the single
sss cell lysates was 20-50 ng/uL with size distribution of 300-1000 bp.

ss9s. MALBAC Amplification For MALBAC amplification, the plates were incubated at
so0  50°C for 50 minutes, followed by 80°C for 10 minutes and held at 4°C until ready for the
s next steps. The pre-amplification Reaction Mix, consisting of 29 pL. of Pre-Amp Buffer
so and 1 pul of Pre-Amp Enzyme Mix was added to each cell, the reaction was mixed well,

s03 spun at 3,000 rpm for 1 minute. The PCR was carried out at an initial incubation at

soe. 94°C for 3 minutes, followed by 8 cycles of (20°C for 40 seconds, 30°C for 40 seconds,
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sos 40°C for 30 seconds, 50°C for 30 seconds, 60°C for 30 seconds, 70°C for 4 minutes, 95°C
ss for 20 seconds, 58°C for 10 seconds), and a hold at 4°C. Following the pre-amplification
so7 reaction, each well was mixed well with the Amplification Reaction mix, consisting of 29.2
sos 1L of Amp Buffer and 0.8 pLamp Enzyme Mix. The reactions were mixed well, spun at
so0 3,000 rpm for 1 minute and incubated at 94°C for 30 seconds, followed by 21 cycles of
o0 (94°C for 20 seconds, 58°C for 30 seconds, 72°C for 3 minutes) and a hold at 4°C. The
s1 concentration of each cell was measured using the Qubit dsDNA High Sensitivity Assay
o2 Kit (Life Technologies/Thermo Fisher Scientific). Expected concentration of the single
sz cell lysates was 20-60 ng/nl with size distribution of 300-2000 bp.

o 6.5 Haplotype Phasing
605 6.5.1 Mouse

s0s  We downloaded the combined VCF of laboratory mouse strains from The Mouse Genome
v project (Keane et al. 2011) and defined maternal and paternal haplotypes utilizing SNPs
08 unique to either C57BL/6J or PWK/PHJ, respectively. For all analyses, we disregarded
s00 indels and only considered SNPs. This resulted in a total of 20,986,995 heterozygous

s10  SNPs, which overlapped 28,497 expressed genes in mouse round spermatids.

s1 10X Chromium Alignment and Haplotype Calling We created maternal and pa-
sz ternal haplotypes of the two non-human primates using a combination of 10X Chromium
13 linked read sequencing on diploid cells and sparse single cell DNA sequencing on haploid
s1a  spermatid cells. We aligned the 10X Chromium reads to the Macaca fascicularis genome
615 Macaca fascicularis MacFac_ 5.0 from Ensembl, herein referred to as Ensembl-MF5-G,
616 Dy first creating a custom reference using the longranger mkref command , and then run-
sz ning longranger using this reference and default parameters to generate 10X Chromium
sz alignment data.

619 For Cynomolgus 1, the instrument generated 1,850,208 Gel Beads in Emulsion (GEMs)
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s20 and the software mapped 819,440,960 reads for 37.2x average coverage across the genome.
e21 This resulted in 361,465 haplotype blocks with N50 length of 1.6 MB. Each block contained
e2 an average of 36 SNPs for a total of 12,758,999 heterozygous SNPs. Cynomolgus 2 10x
¢23  Chromium data featured 1,889,596 GEMs that led to 812,899,614 reads mapping at an
s average coverage of 37.4X. It had 318,516 blocks with N50 length of 1.8 MB and an
s average of 40 heterozygous SNPs per block, for a total of 12,744,826 heterozygous SNPs.

e Mature Sperm scWGS Alignment and Processing We genotyped the haploid
e27  sperm scWGS samples using a custom pipeline. First, the paired-end reads were aligned
26 to Ensembl-MF5 using BWA v0.7.5 (Li and Durbin 2009) using the mem option with
20 default parameters. The resulting bam files were sorted using samtools v1.4.1 sort (Li,
s0 Handsaker, et al. 2009) and duplicates were removed using sambamba v0.6.6 (Tarasov
en et al. 2015). samtools mpileup with a bed file of the 10X Chromium identified variant
622 positions calculated the allelic depths per heterozygous site. We then filtered the file to
633 only include allelic depths of variant alleles. For Cynomolgus 1, this resulted in an average
s of 1.2M heterozygous sites per spermatid sample, for a total overlap of 3.3M sites across
635 the 17 spermatid samples. With the 8 spermatid samples for Cynomolgus 2, we covered

e 3.0M total sites with an average 1.2M sites per sample at roughly 1X coverage.

s7  Creating Chromosome-Length Haplotype Blocks The final step involved stitching
638 the the haplotype blocks generated by 10X Chromium sequencing into chromosome-length
630 haplotypes using the haploid cell haplotypes as a guide. In the case of no recombination,
s0 the stitching is trivial and requires only a single sperm sample. Due to recombination, we
61 used multiple sperm single cell WGS samples, and utilized a dynamic programming frame-
62 work tuned to minimizing the number of recombination events to assign the chromium

&3 blocks to maternal and paternal haplotypes.
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s 6.6 Allele-specific Expression Quantification

es  StringTie Transcriptome Assembly Due to unavailability of a publicly available
a6 testes transcriptome of Cynomolgus, we created a custom cynomolgus transcriptome us-
s7 ing single cell RNA-seq samples of round spermatid and elongating spermatid cells from
s the two individuals. First, we aligned the samples to Ensembl-MF5-G using STAR v2.5.3
a0 with default parameters, and merged and sorted the bams using samtools. This resulted
s0 in 3.7 billion total reads aligned across the corpus of 480 samples. We fed the merged
61 bam into StringTie v1.3.3 with default options except for -p 39 to indicate a large number
62 of available threads. We compared the StringTie generated transcriptome to MacFas_5.0,
63 a Ensembl-generated transcriptome of Macaca fascicularis using Cufflinks v.2.2.1 gffcom-
e pare, and created a dictionary to map the StringTie annotation ids back to known gene

655 symbols.

s RINA-Seq Processing and Alignment To reduce allelic bias in read mapping, we
es7  used bcftools consensus to generate masked genomes, in which all bases in heterozygous
s positions were modified to the [IUPAC character N in the reference genomes. We used
0 STAR v2.5.3 to align the round and elongating spermatid single cell RNAseq reads, but
o created custom STAR genomes with either Ensembl GRCm38 or the previously described
e1  StringTie-generated transcriptomes. We utilized STAR options —outFilterMultimapNmax
s2 1 to eliminate multi-mapping reads, —alignSJBoverhangMin 4 to force large overlap be-
e3 tween RNA-seq reads and the genome, and —outSAMattributes NH HI NM nM MD XS
sea attributes, and removed duplicated reads using sambamba. featureCounts (Liao, Smyth,
s and Shi 2014) was used to generate gene transcripts per million (TPM) values with op-
s tions -s 0 for unstranded reads, -p for paired end reads, and -B to require both ends of

e7 the read to be mapped.

os (Generating Allele-specific Counts To quantify allele specific expression of genes,

e0  we first assigned each heterozygous SNP to a gene using the snpEff Cingolani et al. 2012
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e0 annotate tool using custom snpEff databases. Then, after splitting the aligned RNA-
o1 seq bams into chromosome-specific BAMs, we generated the allele counts for each gene
o2 and spermatid sample combination. To avoid double-counting of reads that overlapped
o3 multiple sites, each read was only counted once in favor of either allele, and if a read
e« matched variants on both alleles, we tagged it as a discordant read and did not utilize it
s for further analysis. For mouse, we average 145 allele-specific reads per gene per sample
o6 across 11,542 phaseable genes in 95 spermatid samples.

677 We performed an additional step to quantify allele specific counts in the non-human
es  primate samples. Due to limited coverage across the length of an entire gene, StringTie
oo Often splits a single Ensembl gene annotation into multiple gene annotations. As such,
s0 we summed reads from separate StringTie genes overlapping known annotations. The
ee1 resulting allele counts files for the monkeys are a combination of known genes annotated
sz by Ensembl and novel genes identified by StringTie only. For Cynomolgus 1, in 187
63 spermatid samples, we average 122 reads per gene per sample for 8956 phased genes. For
sea  Cynomolgus 2, in 185 spermatid samples, we average 131 reads per gene per sample in

65 3216 genes.

o 0.7 Haplotype and Genoinformativity Inference

es7 1o study haploid-biased gene expression, we require knowledge of the underlying haplo-
es  type. We reasoned that if there was true haploid biased expression, it would be possible
s0 to infer the haplotype from the allele specific expression data. As such, we derived a
s0 Model to perform both haplotype and genoinformativity inference simulataneously. Here,
so1  we first describe a model for transcript sharing across a syncytium and then extend it to
s2 a probability model for observing allele specific reads from round spermatids in a single

3 cell RNA-seq assay.
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ss Model of Genoinformative Transcripts We begin by describing a simple model
ss for the number of transcripts of a single gene g in a single cell ¢. The total number of
sos transcripts 7' in the haploid cell is the combination of external transcripts E and retained

o7 transcripts R.

T=E+R (1)

698 Here, external transcripts indicates transcripts that were not transcribed by the hap-
0 loid cell, but rather were transported into the cell through the cytoplasmic bridge. Re-
00 tained transcripts are the transcripts that were transcribed by the cell and not shared
71 through the cytoplasmic bridge.

72 We can also write down the total transcripts T as the combination of transcripts from

703 the maternal allele of the gene M or the paternal allele of the gene P.

T=M+P (2)
704 Note that we can marginalize the maternal and paternal transcripts in terms of external
705 and retained transcripts.
M = Ey + Ry
P=FEp+ Rp

T =FEy+ Ep+ Ry + Rp

706 Before deriving a model for genoinformativity, we introduce two last definitions in the
77 form of ratios. The ratio of Ey; to E, or the skew of transcripts towards the maternal

s allele S, and the ratio of R to T, or the genoinformativity of the transcript.
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En
S = 3
= 3)
R
G=— 4
- (1)
700 Assuming no eQTL effects, genome imprinting, technical bias, or other mechanisms

no for differential allelic expression, this allelic skew S is 0.5, i.e. the number of haploid cells
m that contain maternal and paternal genotype are equal and the number of transcripts

72 transferring into the cell is equal from either allele.

73 Haploid Cell with Maternal Allele Given the previous system and definitions, we
72 now derive the empirical genoinformativity for a single haploid cell. Consider the case
75 of a cell ¢ having the maternal allele for the gene or haplotype Hjy;. Then, we further
76 deconvolve the total transcripts by the transcripts from the maternal allele M and the
77 transcripts from the paternal allele P. Note that this classification is only relevant for

ns  autosomes, where it is possible to have transcripts from either chromosome in the haploid

1o cell.
M|Hy = Ey|Hy + Ry|Hy )
= Ey + Ry |Hu
P|Hy = Ep|Hy + Rp|Hy
(6)
= Ep
720 Since the cell has a maternal allele only for the gene of interest, there are no retained

=1 reads from the paternal allele. Finally, let’s express the total transcripts T in terms of

72 the maternal and paternal transcripts.
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T|HM:EM+EP+RM
=FE+ Ry

723 Given equation 3, 4, and 7, we can restate equation 5 as

M|Hy = ES + Ry = (T — Ry)S + Ry
=TS+ (1—S)Ry
=TS+(1-95TG
= (S+(1-8)G)T

724 We can derive similar equations for P|Hy;, M|Hp and P|Hp.

PlHy = ((1—8)— (1 - S)G)T
M|Hp = (S — SG)T (9)
P|Hp = ((1 - S) + SG)T

s Probability Model for Allele-Specific Reads We now focus our attention on devel-
26 oping a model for observing allele-specific reads using single cell RNA-Seq from haploid
727 round spermatids. We derive a probability model for observing counts of alleles from the
722 maternal allele C™ and paternal allele C* for N individuals and G genes. Given param-
29 eters 6, each cell ¢ and gene j is independent of each other and the collective probability

70 can be written as:

P(D|0) = HHP (e eA) (10)

731 For simplicity, we will write the set of counts C’M and C’P as D;; where applicable.
7 The main reason we are able to treat each set of counts independently is because we

73 marginalize the probability over the haplotype H;; of cell ¢ at gene j.
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P(Dij|Hy;,0) = P(Dij|Hy; = Hyy, 0)P(Hy; = Hyl6) )
734 Using the above formulation, it is possible to split the inference goal into two separate

735 sub-tasks: haplotype inference and genoinformativity inference.

16 Haplotype Inference We use a Markov chain across a single chromosome to estimate

737 the haplotype given a recombination rate r.

P(H;j|0) = P(Hij|H;j—1)P(Hij-1]0) (12)

s where

(1 — ’T‘) Hz = ij—1
P(Hij|Hij—1) - (13)
r Hij # Hij

730 We set the initial probability of each cell’s haplotype to be equal at 0.5.

0 Genoinformativity Inference Given the haplotype H;; of cell i at gene j, the counts
1 of the maternal and paternal allele follows from the generative model described above.
u2  Due to overdispersion in RNA-seq data, we model the counts using a beta-binomial dis-
n3  tribution, which is specified by shape parameters o and . In fitting the model, we only
na  fit the shape parameter § and reparameterize « in terms of skew S and genoinformativity
us  G. More explicitly, we can model the system as

S;+G;(1-S;) Hij;=Huy

@

sHt0 s —ays)  H, = Hp
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P(Di;|Hij,0)P(0) = P(Di;|Hij, Sj, Gy, ;) P(58;) P(G;) P(S]) (15)
P(Di;|Hi;, Sj,Gj, Bj) = Beta-Binomial(a, 55, D;;) (16)
746 In addition to overdispersion, single cell RNA-seq data also contains high amount of

=7 allelic dropout and amplification of a single molecule. To alleviate the impact of allelic
nus  dropout on estimates of genoinformativity, we introduce a Zero-and-N-inflated Beta Bino-
740 mial distribution parameterized by an additional variable ¢; which defines the probability

0 of allelic dropout for the gene.

;

OZJTC%J + (1 — ¢;)Beta-Binomial (o, 8;, Dy;)  Clf =0
P(C O Hijy S5, Gy, B3 ) = 4 S22 4 (1 — ¢;)Beta-Binomial(ay, 3, Dij)  Cf =0
Beta—Binomial(aj, Bja DU) otherwise

(17)

1 6.7.1 Implementation

2 Haplotype Inference Unfortunately due to inherent noise in the system and the cost
73 of sampling the aforementioned Markov chain, we do not compute the Markov chain for
7 each gene independently. Instead, we bin the genes into buckets B and perform a similar

s inference task with each bucket k. Each bucket on average contained 10 genes in our fits.

P(Hi|0) = P(Hy.|Hip—1) P(Hir—1(0) (18)

756 We also used a fixed recombination rate r for each cell and each chromosome with the

77 assumption that a cell would have on average 0.5 recombination events per chromosome.
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76 Genoinformativity Inference Instead of learning the parameter S; for each gene, we
70 use a empirical estimate of S; derived from dividing the number of Hj; reads for a gene j
w0 by the total number of reads for that gene across all cells. We also tested using the mean
761 of the empirical S;; derived from each cell separately, and did not notice large differences

72 1n the model fits.

Priors
P(Hy) = (19)
0.5 Hy;=Hp
P(G;) = Uniform(0, 1) (20)
P(B;) = Uniform(3, 30) (21)
P(¢;) = Uniform(0.005, 1) (22)

w3 Two-stage Fitting For computational efficiency, we split the inference task into two
s stages. In the first stage, we fit both the haplotype and genoinformativity inference steps
75 for highly expressed genes (TPM > 20). Then, in the second stage, we only performed
w6 genoinformativity inference using fixed haplotype probabilities. We used the mean pos-
w7 terior of the haplotypes from the first stage, and interpolated the probability for genes
78 that were unique to the second stage. There was 99% correlation between the posterior
w0 Mmean of the genoinformativity values, indicating low variance in the posterior haplotype

o distributions and high confidence in haplotype inference.

m Samplers We used PyMC3 (Salvatier, Wiecki, and Fonnesbeck 2016) as the frame-

72 work for sampling the model. For the haplotype sampling, we used a Categorical Gibbs
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73 Metropolis sampler. All the other parameters were sampled using the No U-turn Sampler
e (NUTS) with a target accept probability of 0.8. We sampled the model for 5000 steps with
75 two separate chains and used the last 500 steps for estimating the posterior distribution

76 across the 2 chains.

7 6.7.2 Sex chromosome GIMs

7 Mouse gene-level transcripts per million (TPM) values were collected for all genes in all
o spermatids using all RNAseq reads, not only allele-informative reads. For each gene, a
70 loess regression was used to fit its log2 expression across the diffusion pseudotime with a
7 pseudocount of 1 TPM, using the R loess function with a gaussian function family and
72 0.75 span. The residuals from this fit were then used to calculate pairwise Spearman
73 correlations between all sex chromosome genes. Pairwise correlations were hierarchically
7 clustered using the complete linkage method, with the results visualized in heatmaps. A
s cutoff height of 6 was empirically found to split the data into three clusters: a distinct X
76 cluster, an anti-correlated distinct Y cluster, and a mixed X and Y cluster with no strong
77 correlation patterns. Genes in the first two clusters were considered potential GIMs. We
s calculated the mean pairwise Spearman correlation between pairs of potential GIMs, with
70 the sign reversed for genes in opposite clusters. Genes with a mean pairwise correlation
70 of greater than 0.05 (roughly the median value over potential GIMs) were selected as

1 putative sex chromosome GIMs.

» 6.8 GIM classification

73 To classify each gene as a “Confident GIM”, “Confident Non-GIM”, or “Remaining Gene”,
s we fit the Bayesian model to shuffled data, and compared the posterior distributions for
75 H;k, G;, and §; between real and shuffled data. We utilized two main shuffling methods:
6 complete shuffle and cell-label shuffle for each chromosome independently. The complete

77 shuffle shuffled the allele counts randomly across the population of cells and genes. For the
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s cell-label shuffle, the allele counts were randomized across the cells, but the distribution
70 of counts in a gene remained the same. We trained our Bayesian HMM using the same
so default parameters and priors as the real data, and compared the model fits. Since 3; can
son  capture both the variance of single cell rna-seq as well as the variance in genoinformativity,
sz We created a new measure 7; as an alternative measure of genoinformativity that combines

s3 both posterior mean estimates of G; and ;.

v; = CDF of Beta(a, 5;) == 0.05

804 To reflect the confidence of the haplotype fits H;; across all n samples, we also created

SN SR T[(Hi<0.95)|Hik>0.05)
NK )

sos an aggregated measure, fraction of poor haplotypes (; =
sos  which reflected the proportion of haplotypes that a posterior mean haplotype probability
o7 less than 0.95 for either the maternal or paternal haplotypes.

808 We performed a grid search across thresholds for highest posterior density (hpd) eval-
soo uated at 5% and 95% for genoinformativity GG; and ~;and(;, which controlled the eFDR
so at 10% for confident and non-confident gims compared to the shuffled control. For a
su particular gene, the thresholds for a ”Confident GIM” are: hpd 5% of genoinformativity
sz > 0.025, hpd 95% of genoinformativity > 0.2, v; > 0.025, fraction of poor haplotypes
sz < 0.4 For ”Confident Non-GIMs” are restricted to hpd 95% of genoinformativity < 0.2 .

sia Genes that fall outside these bounds were considered ”Remaining Genes”.

as 6.9 GIM characterization

sis  Expression-matched control selection The expression trajectory across spermiogen-
a7 esis was first tabulated for each gene by cross-referencing the log2 of the TPM expression

as  level (with a pseudocount of 1 and complete dropout considered a zero) against the diffu-
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g0 sion map pseudotime value for each cell (i.e. the first dimension of the map). To reduce
s20 Toise at the single cell level, a smoothed loess fit was used as the expression trajectory
e (fit using default parameters for the R loess function).

822 Next, all confident non-GIMs expressed in spermatids were considered as controls for
g3 all GIMs. Pools of controls were first reduced for each GIM based on two hard filters:
s2s  first, all genes were equally distributed into 5 bins based on their dropout rates; second,
&5 the slope of a linear fit to the expression trajectory was required to differ by no more than
226 0.2. This helped to control for any confounders resulting in oversampling, as well as large
g7 expression changes in a small number of cells, generally in the extreme early or late part
a8 of the trajectory.

829 For each GIM, all non-GIMs remaining in its pool were ranked by their mean squared
s30 difference in log2 expression level, and the top 20 were selected as mock GIM controls,
g1 whose ranks were then scrambled. This resulted in 20 control sets of mock GIMs having
g2 similar dropout rates, slope of expression trajectory, and low difference in expression
g3 trajectory. For analyses limited to protein coding genes, control selection was performed
s« again with both the GIMs and the control pools limited to protein coding genes.

835 For the cynomolgus samples, the expression trajectories were averaged across the two
s3s individuals. Where stringtie genes overlapped with Ensembl annotations, the aggregated
sz7 expression for the Ensembl annotation was used for both GIMs and controls. A gene
a3 was considered a GIM if it was called as a confident GIM in either individual, and was
g0 considered as a non-GIM if it was called as a confident non-GIM in either indivdual. The
g0 rare genes having conflicting calls in each individual were excluded from these analyses.
s Human GIMs and non-GIMs were inferred from homologous cynomolgus annotations with
sz homology defined as having the same Ensembl gene symbol (i.e. standard gene name).
843 For spermatid-expressed non-GIM controls, control sets were selected from all confi-

sas  dent non-GIMs randomly, without filtering for dropout bin or expression trajectory fit.
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ss Gene Ontology Mouse gene ontology annotations were downloaded from Ensembl
s Biomart with the Ensembl Genes 93 / GRCm38.p6 annotation dataset. The mean and
a7 standard deviation of number of GIMs expected with each annotation was calculated
ss  based on the 20 control sets. Nominal probabilities were then calculated using the normal
sao  distribution, and multiple testing was corrected using the Benjamini-Hochberg method to
so result in false discovery rates. GO terms were considered significant if they had at least
ss1 20 GIMs, an FDR < 0.001 and a moderated log2 enrichment (using a pseudocount of 5)
2 of at least 0.5.

853 For COMPARTMENTS comparisons, fewer controls had at least one annotation than
ssa GIMs, which could artificially inflate significance for individual categories. Therefore,
sss. we performed an additional normalization for the expected number of GIMs with an
sss annotation. The number of controls in a set having a GO annotation was converted
ss7 to a fraction out of those have any annotation, and then multiplied by the number of
g8 GIMs to yield the total number expected with each annotation specifically. Otherwise

sso the enrichment analysis was the same as for the GO analysis above.

s0 3 UTR motifs Only protein-coding genes were considered. The 3 UTR annotations
g1 of GIMs and their controls were taken from the highest expressed Ensembl transcript in
g2 spermatids. UTRs annotated as less than 7 nucleotides in length were discarded. All 20
g3 sets of control UTRs were combined into a single background set, allowing duplicates.
sss AME, a tool from the MEME suite, was run with default parameters using a motif
ss database comprised of the CISBP-RNA and Ray2013 mouse and human sets provided
ss by MEME. The enrichment search was performed using GIMs as foreground and the
g7 combined control set as background, with foreground and background switched for the
ss  depletion analysis.

869 For candidate RNA-binding proteins, only those with a maximum TPM of 10 at any
g0 point in the loess-smoothed expression trajectory were considered. Enrichments were con-

sn  sidered significant at an E-value cutoff of 0.01. Motifs having the same I[UPAC consensus
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sz were merged into a single result.

sz Selective sweeps Candidates for mouse selective sweeps were taken from Staubach et
sra al. 2012. Sweep regions in any population were considered. All candidate genes within
a5 600kb of each other were collapsed into a single region. For GIMs or each control set,
ere  the number of regions having at least one overlapping gene was counted. For a p-value of
gz this difference, the mean and standard deviation of the control sets was used to generate
sz a one-sample t-test.

879 Candidates for human selective sweeps were taken from Refoyo-Martinez et al. 2019;
gso Ochrider and Kern 2016; Ferrer-Admetlla et al. 2014; Cheng, Racimo, and Nielsen 2019;
s Munch et al. 2016, with selective sweep regions as in each paper. In cases in which
sz the paper predicted selective sweep regions but did not annotate associated genes, all
sz genes overlapping the regions were considered selective sweep candidates. Otherwise this
ssa analysis was as in the mouse.

885 Direct testing for human selective sweeps was performed using statistics from Pybus et
sss  al. 2014 based on analysis of the 1000 genomes project data. To help control for differences
se7 in gene length, the median score overlapping the 3’ UTR was used to represent the gene.
sss ' 1'he “best” score for each gene was taken across each population, where “best” signifies
so  the raw score most in favor of a selective sweep for that score. Selective sweep candidates
g0 were defined as any where the score was at least 3 standard deviations beyond the mean
o1 in this direction. The number of GIM sweep candidates was compared to background

sz expectation of the mean and standard deviation among the 20 control sets.

23 Testis-specific paralogs Paralog and tissue-specificity data were taken from Guschan-
soa  ski, Warnefors, and Kaessmann 2017. Testis-specific paralogs were defined as those with

sos a “Tissue specificity” (as defined by the paper) of at least 0.90.

47


https://doi.org/10.1101/846253

bioRxiv preprint doi: https://doi.org/10.1101/846253; this version posted November 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

ss Alternative splicing Mouse alternative splicing was taken from events in VastDB with

so7 quality greater than zero and testis specific was defined as a difference in PSI of at least

s D0 between testis and the median PSI across all other tissues.

899 Human isoform expression was taken from the GTEX consortium (file GTEx_Analysis_2016-01-15_v7_
wo Since individual isoform estimates can be unstable, we considred subsets of isoforms that

o1 are expressed higher in testis. Each transcript was ranked by the difference between testis

o2 isoform usage (i.e. ratio of transcript TPM to gene TPM in that tissue) to the median

w3 tissue isoform usage across other tissues. The maximum of the cumulative sum of excess

o4 isoform usage in testis was counted as the testis specificity (testis isoform usage minus

os other tissue isoform usage). A cutoff of 0.5 was considered testis-specific (equivalent to

w5 50 PSI).

o7 Late translation Translation data was taken from Iguchi, Tobias, and Hecht 2006
ws (GSE4711 on GEO). Translation efficiencies were calculated as the median across repli-
w0 cates of the fold change from polysome to RNP samples. Genes were defined as having
a0 specific late translation if they were in the bottom quartile of this score at day 22 (which
a1 is depleted for late spermiogenesis), and the top quartile with respect to fold-change in-
o2 crease in translation efficiency between day 22 and adult mice. For each of the functional
a3 readouts of GIMs (e.g. selective sweeps), we compared the fraction of GIMs in that cat-
ae egory that were specifically late translated to those that were not in that category (i.e.

a5 not functional candidates by that measure).
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