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15 Abstract

16 Recent rise of microarray and next-generation sequencing in genome-related fields has 

17 simplified obtaining gene expression data at whole gene level, and biological interpretation of 

18 gene signatures related to life phenomena and diseases has become very important. However, 

19 the conventional method is numerical comparison of gene signature, pathway, and gene 

20 ontology (GO) overlap and distribution bias, and it is not possible to compare the specificity 

21 and importance of genes contained in gene signatures as humans do.

22 This study proposes the gene signature vector (GsVec), a unique method for interpreting 

23 gene signatures that clarifies the semantic relationship between gene signatures by 

24 incorporating a method of distributed document representation from natural language 

25 processing (NLP). In proposed algorithm, a gene-topic vector is created by multiplying the 

26 feature vector based on the gene's distributed representation by the probability of the gene 

27 signature topic and the low frequency of occurrence of the corresponding gene in all gene 

28 signatures. These vectors are concatenated for genes included in each gene signature to create 

29 a signature vector. The degrees of similarity between signature vectors are obtained from the 

30 cosine distances, and the levels of relevance between gene signatures are quantified.

31 Using the above algorithm, GsVec learned approximately 5,000 types of canonical 

32 pathway and GO biological process gene signatures published in the Molecular Signatures 

33 Database (MSigDB). Then, validation of the pathway database BioCarta with known 
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34 biological significance and validation using actual gene expression data (differentially 

35 expressed genes) were performed, and both were able to obtain biologically valid results. In 

36 addition, the results compared with the pathway enrichment analysis in Fisher's exact test 

37 used in the conventional method resulted in equivalent or more biologically valid signatures. 

38 Furthermore, although NLP is generally developed in Python, GsVec can execute the entire 

39 process in only the R language, the main language of bioinformatics.

40

41 Introduction

42 The recent rise of microarray and next-generation sequencing (NGS) in genome-related 

43 fields has made it possible to easily acquire gene expression data at the whole gene level. As a 

44 result, interpretation of life phenomena and diseases is advancing [1].

45 To identify the gene population involved in a phenotype, gene expression data for 

46 comparison between healthy subjects and subjects with diseases as well as treated and 

47 untreated groups can be obtained. Based on the correlation between the representative 

48 expression value of the gene signature and the phenotype, the gene signature of genes related 

49 to the phenotype can be identified, and the biological interpretation of gene signatures can be 

50 performed.

51 To interpret a gene signature identified in this data-driven manner, it is necessary to 

52 avoid bias due to the large number of genes that must be interpreted and comprehensiveness 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 18, 2019. ; https://doi.org/10.1101/846691doi: bioRxiv preprint 

https://doi.org/10.1101/846691
http://creativecommons.org/licenses/by/4.0/


4

53 and completeness of human knowledge. Therefore, interpretation is commonly performed by 

54 comparing the gene signature, such as differentially expressed genes and gene modules, 

55 against a biological gene signature database (such as pathway and GO) and identifying an 

56 objective association from a biological perspective [2].

57 Numerous methodologies for association with pathways have been proposed. Common 

58 examples include Fisher's exact test, which is a classical statistical test for the specific overlap 

59 of genes; over-representation analysis and gene set enrichment analysis [3], which statistically 

60 process the number of overlapping genes and ranking bias by incorporating randomization; 

61 and modular enrichment analysis and EnrichNet with graph-based statistics of biological 

62 networks [4, 5].

63 However, these comparisons are numerical, and it is thus not possible to compare the 

64 semantic nuances of the included genes as humans do. After performing the aforementioned 

65 analyses, to interpret the gene signature it is necessary to perform a number of comprehensive 

66 judgments to identify whether the genes overlapped by humans are specific to the pathway, 

67 determine their biological importance, and establish whether they contain genes that have 

68 similar meaning without direct overlap.

69 In this study, we propose a novel method for associating biological gene signatures by 

70 applying a distributed representation model [6] of documents to facilitate the interpretation of 

71 gene signatures (see Fig 1). The distributed representation of documents is a technology for 
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72 vectorizing documents of any length that was developed in the field of natural language 

73 processing (NLP). Words (that are included in documents) and documents (that are sets of 

74 words) are vectorized to convert a semantic expression of the words and documents into a 

75 mathematical expression that can be easily processed by a computer. As the first step, feature 

76 extraction is performed at the word level, and as the second step, feature extraction is 

77 performed at the document level as a set of words. Because feature vectors can be 

78 semantically compared by performing mathematical comparisons, they are used in a variety 

79 of real-world situations, such as sentence classification, content recommendation, sentiment 

80 analysis, and spam filtering [7].

81

82 Fig 1. Research concept.

83

84 Beginning with Doc2Vec [8], which used a distributed representation of words, 

85 innovative techniques related to the distributed expression of a large number of sentences 

86 have been proposed in the past several years, and the accuracy of document interpretation has 

87 improved [9]. Typical methods of distributed representation of documents include statistical 

88 semantic extraction methods [10], methods that combine distributed representations of words 

89 [11] into document representations [12], methods that directly compress word and document 

90 IDs [8], methods of summing word vectors by multiplying the topics and specificities in the 
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91 documents [9].

92 There are other NLP methods for the distributed representation of documents; however, 

93 the methods applicable to bioinformatics are limited, as there are differences in assumptions 

94 between NLP and bioinformatics. A meaningful component in bioinformatics is a gene, which 

95 corresponds to a word in NLP. In addition, a gene signature, which is a set of genes, 

96 corresponds to a document, which is a set of words. However, in NLP, the order and context 

97 of words are important, whereas the order of gene signatures compiled in a general pathway 

98 database often has no meaning.

99 In this study, we developed an original method for the interpretation of gene signatures 

100 by applying a distributed expression algorithm. The algorithm extracts semantic features of 

101 genes and their biological gene signatures and reveals specific relationships by comparing the 

102 abovementioned signatures with the gene signatures to be interpreted (e.g., differentially 

103 expressed genes, gene modules). As training data, a gene signature was used, which has a 

104 clear biological meaning in the molecular signatures database (MSigDB) [13] used in the 

105 conventional pathway enrichment analysis. Furthermore, Python is the primary programming 

106 language used for machine learning and NLP analysis; however, our proposed method can 

107 execute the entire process in R, which is the primary language in the analysis domain of 

108 bioinformatics. Therefore, the proposed method can be immediately used without further 

109 modification for bioinformatics analysis. Combining our proposed method of biological gene 
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110 signature vectorization with conventional enrichment analysis can allow for more intuitive 

111 and reliable interpretation of gene signatures.

112

113 Results

114 Construction of gene and gene signature feature vectors by distributed representation

115 In this study, we developed a method for creating gene signature feature vectors and 

116 clarifying semantic similarity by applying methodology from the field of NLP (Fig 2). We 

117 defined proprietary functions using the packages published on the Comprehensive R Archive 

118 Network that can be used in the R language. In addition, we executed an original algorithm 

119 for creating a unique gene signature feature vector based on the sparse composite document 

120 vectors (SCDV) [9] method from NLP using only R language operations.

121

122 Fig 2. Algorithm and workflow of GsVec. GsVec is divided into preparation and analysis 

123 parts. In the preparation part, gene vectors are created from training data with a clear 

124 biological meaning (e.g., GO, Pathway, and Hallmark genes) using BOW and Word2Vec, and 

125 the probability of each cluster calculated by GMM is multiplied. Furthermore, gene-topic 

126 vectors are created by multiplying the inverse signature factor and averaging for each gene 

127 included in the gene signature. In the analysis part, validation data, which are not biologically 

128 interpreted gene signatures (e.g., differentially expressed genes and gene modules) are 
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129 converted into signature vectors from the gene-topic vector created using training data. The 

130 cosine similarity between the validation and training data is calculated to obtain the 

131 association with biological meaning.  represents the vector of an arbitrary gene ,  𝑔𝑣𝑖 𝑔𝑖 𝑐

132 represents the cluster,  represents the number of clusters,  represents the total number 𝐾 𝑆𝑁

133 of gene signatures, represents the number of gene signatures including gene , and 𝑆𝑓(𝑔𝑖) 𝑔𝑖

134  represents the concatenation.⊕

135

136 The training data used 5,456 gene signatures (i.e., C2: Canonical pathway and C5: GO 

137 biological process), which were used in conventional pathway/GO enrichment.

138 A gene × gene signature matrix was created for the gene signature (equivalent to the 

139 Bags of Word step in NLP), and gene features were expressed using a distributed word 

140 representation algorithm [14] to create gene vectors (equivalent to Word2Vec processing in 

141 NLP). The clusters corresponding to the topics present in these gene signatures were extracted 

142 by soft clustering of the gene vectors with a Gaussian mixture model (GMM) [15, 16]. The 

143 probabilities that each word contributes to each cluster were multiplied for each cluster to 

144 obtain the abovementioned gene vectors, and those vectors were combined for each gene to 

145 obtain gene-cluster vectors.

146 Simultaneously, by dividing the total number of gene signatures by the number of gene 

147 signatures for each gene that contain that gene, the scores for reducing the weight of the gene 
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148 appearing in various signatures were calculated. Hereinafter, this is referred to as the inverse 

149 signature factor, which is equivalent to IDF in NLP [17]. Gene-topic vectors were obtained by 

150 multiplying the abovementioned gene-cluster vectors by those scores. The signature vectors 

151 were obtained by averaging the gene-topic vectors for the genes included in each individual 

152 gene signature. The signature vectors which were feature vectors in the genes and the 

153 abovementioned gene signatures were used as training data in the subsequent analysis.

154

155 Evaluation of gene signature vector (GsVec) performance using gene signatures with 

156 known biological interpretation

157 In this study, 5,242 gene signatures, excluding gene signatures derived from the 

158 BioCarta database from the C2 canonical pathway and C5 GO biological process, were used 

159 as training data. BioCarta's 214-gene signatures were used as validation data with a known 

160 biological meaning. Furthermore, in both the training and validation data, we selected gene 

161 signatures related to immune function by human selection and tagged them. The number of 

162 applicable gene signatures was 405.

163 Signature vectors of the validation data were created from the gene-topic vectors created 

164 during learning in the same way as the training data, and the degrees of relevance with the 

165 training data were evaluated by the cosine similarity score with the learning set (hereinafter, 

166 the result of the cosine similarity calculated by a series of operations is referred to as GsVec). 
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167 First, the GsVec results (i.e., similarity relationship between signature vectors) were 

168 visualized by two-dimensionally projecting them using t-distributed Stochastic Neighbor 

169 Embedding (t-SNE) [18] (Fig 3[A]). There was a tendency for immune-related signatures to 

170 be consolidated in one location. The abovementioned tendency was observed not only in the 

171 training data, but also in the validation data, and the meaning of the validation data was 

172 correctly predicted by GsVec. These results demonstrate that although GsVec using NLP is an 

173 entirely different approach from conventional methods, it can identify groups with similar 

174 meanings.

175

176 Fig 3. GsVec accuracy evaluation and comparison with Fisher. A) Matrix of the cosine 

177 distance between signature vectors of training and validation data projected in two dimensions 

178 with t-SNE. The size of the circle represents the number of genes included in each signature. 

179 Green color refers to training data related to immunity, purple to training data not related to 

180 immunity, blue to validation data related to immunity, and red to validation data not related to 

181 immunity. B) Scatter plot by the -log10 P-value of Fisher and the cosine distance between the 

182 signature vectors of the training and validation data. A histogram of the distribution of each 

183 value is also illustrated. The R in the upper right of the scatter plot indicates the Pearson 

184 correlation coefficient between GsVec and Fisher.

185

186 Next, the P-value of the overlap between Fisher's exact test training data and validation 
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187 data was converted to a -log10 value (hereinafter, −log10 (P-value) obtained by Fisher's exact 

188 test is referred to as Fisher) and compared with the GsVec results. The correlation by Pearson 

189 coefficient score between GsVec and Fisher was 0.453, and the relationship with a score of 

190 0.75 or higher in GsVec was a significant score less than 0.001 (-log10 (4)) in Fisher. In 

191 addition, the degree of relevance was concentrated in the Fisher distribution near 0, which 

192 was not significant, whereas in GsVec, the distribution had a long tail. These results suggest 

193 that GsVec was able to reflect robust results that were significant in Fisher, and could also 

194 associate gene signatures with interpretation that were difficult to interpret in Fisher (Fig 

195 3[B]).

196 　　In addition, the relationship between the gene signatures of individual validation data 

197 and training data was compared between GsVec and Fisher. The top 10 results were the same 

198 for GsVec and Fisher for gene signatures, with a large number of genes included in the gene 

199 signature in the training data and a large number of overlaps. Furthermore, in GsVec, even if 

200 a gene included in the gene signature in the training data was small and the number of 

201 overlapped genes was small, if the overlapped genes were characteristic genes in the signature 

202 vector space, there was a tendency to display high relevance. Typical results are presented in 

203 Fig 4.

204
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205 Fig 4. Comparison between GsVec and Fisher on top 15 results with high relevance 

206 between training data and validation data. Each top 15 result that was highly correlated 

207 with the gene signature and GsVec of the validation data or that was highly significant with 

208 Fisher is presented in the left and right tables. The column Training gene signature name 

209 indicates the name of the corresponding training data, and the biological data that directly 

210 match the validation data are highlighted in yellow. The genes column contains the total 

211 number of genes included in the gene signature of the corresponding training data, the overlap 

212 column contains the number of genes overlapped between the corresponding validation data 

213 and training data, and the Fisher's column represents the -log10 (P-value) of the significance 

214 of the corresponding training data and validation data by Fisher's exact test. The GsVec 

215 column exhibits similarities according to the cosine distance of the signature vectors of the 

216 corresponding training and validation data.

217

218 　　Here, we examined whether GsVec was able to produce biologically meaningful insights 

219 using three representative examples of immune-related pathways. In the Interleukin-1 receptor 

220 (IL1R) pathway, the direct gene signature name IL1 or Interleukin 1 could be identified in 

221 both GsVec and Fisher. Similar results were observed in the B cell receptor and Toll 

222 pathways, including Toll-like receptor. In addition, gene signature names indicating broader 

223 concepts, such as cytokine signaling and pattern recognition receptor, were observed in the 
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224 IL1R and Toll pathways, respectively. These were extracted by GsVec and are associated 

225 with biologically relevant gene signatures.

226

227 Association of biological meaning with GsVec using differentially expressed genes 

228 (DEGs) from real data

229 　　Data-driven gene signatures, such as DEGs in the affected tissues and normal tissues of 

230 diseases published in the Expression Atlas [19] and DEGs extracted from The Cancer 

231 Genome Atlas (TCGA) [20] data, were analyzed with GsVec and Fisher (Fig 5). In all 

232 datasets, DEGs were used; they were upregulated in the affected tissue compared to the 

233 normal tissue. However, because in cancer there were too many DEGs (approximately 1,000–

234 2,000) for the pathway enrichment analysis, only the results of other diseases were 

235 interpreted. Additionally, only in multiple sclerosis (MS), the number of DEGs was low; thus, 

236 we analyzed not only upregulated (up) but also downregulated (down) DEGs. The individual 

237 analysis results are presented below.

238

239 Fig 5. List of DEGs used for verification. The table illustrates the DEG data of affected 

240 tissues and control tissues of the major public diseases used as data-driven signatures, not 

241 signatures compiled in terms of biological meaning. The up column contains the number of 

242 DEGs that were higher than the control for the disease, while the down column contains the 

243 DEG numbers that were lower than the control for the disease. The red frames represent 
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244 subsequent interpretations.

245

246 Multiple sclerosis (MS) cerebrospinal fluid (CSF; E-MTAB-69). In MS (up), 

247 B-cell-related signatures were identified in GsVec and Fisher (Fig 6). Although the 

248 involvement of T cells in the pathology of MS is well known, the participation of B cells has 

249 also attracted attention in recent years, and the possibility of therapeutic drugs targeting B 

250 cells has also been investigated [21, 22]. In contrast, in MS (down), the gene signature names 

251 locomotion, taxis, or migration, reminiscent of cell migration, were highly ranked. In this 

252 study, the dataset consisted of CSF-derived samples. The results indicated that the 

253 involvement of immune cells in the peripheral and central nervous system (CNS) was 

254 captured. Notably, the gene signature name, nervous system development, was highly ranked 

255 only in GsVec. In other words, when considering the pathological condition of MS, GsVec 

256 captured not only immunological but also neuronal aspects and was able to extract more 

257 biologically valid signatures.

258

259 Fig 6. Comparison between GsVec and Fisher of top 15 results with high relevance in 

260 DEGs of multiple sclerosis (MS). Using the DEGs of MS cerebrospinal fluid (E-MTAB-69) 

261 as validation data, each top 15 result that was highly correlated with GsVec or highly 

262 significant with Fisher is presented in the left and right tables. The genes column contains the 
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263 total number of genes included in the gene signature of the corresponding training data, the 

264 overlap column contains the number of genes overlapped between the corresponding 

265 validation and training data, and the Fisher's column represents -log10 (P-value) of the 

266 significance of the corresponding training data and validation data by Fisher's exact test. The 

267 GsVec column exhibits similarities according to the cosine distance of the signature vectors of 

268 the corresponding training and validation data.

269

270 Crohn's disease (CD) colon (E-MEXP-2083, E-GEOD-59071). We examined a dataset of 

271 fresh frozen ileum mucosal tissue from CD patients, and gene signatures, such as interferon 

272 gamma, cell adhesion, and leukocyte migration were highly ranked in GsVec (see Fig 7). For 

273 inflammatory bowel diseases, such as CD and ulcerative colitis, it has been reported that 

274 intestinal immune cell trafficking has been identified as a central event in the pathogenesis of 

275 diseases. Additionally, cell adhesion is a pivotal step in several aspects of immune cell 

276 trafficking [23]. In Fisher, interferon gamma was highly ranked, and the broader concept 

277 cytokine was also highly ranked. However, the gene signature asthma, which may not be 

278 directly related to CD, was also highly ranked in Fisher. It has been reported that there are 

279 many common risk factors for the association between asthma and CD, including genetic and 

280 environmental factors [24]. Thus, GsVec and Fisher in CD displayed a similar trend but 

281 identified different characteristics on the whole. GsVec can extract more biologically 
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282 meaningful signatures.

283

284 Fig 7. Comparison between GsVec and Fisher of top 15 results with high relevance in 

285 DEGs of Crohn's disease (CD). Using the DEGs of CD colon (E-MEXP-2083, 

286 E-GEOD-59071) as validation data, each top 15 result that was highly correlated with GsVec 

287 or highly significant with Fisher is presented in the left and right tables. The details of each 

288 column are identical to those in Fig 6.

289

290 Type 2 diabetes (T2D) islet of Langerhans (E-MTAB-5060). In this study, we used a 

291 dataset consisting of islet of Langerhans tissue from healthy donors and T2D patients. In both 

292 GsVec and Fisher, gene signatures related to inflammation such as inflammatory response, 

293 migration, and wound were highly ranked and demonstrated a similar trend (see Fig 8). 

294 Insulin resistance and beta cell dysfunction are well known in T2D pathologies, and 

295 inflammation is related to the pathogenesis of these conditions [25]. In addition, injury and 

296 wound healing processes associated with the term wounding are known to alter responses to 

297 growth factors and cytokines in addition to tissue remodeling through cell migration and 

298 proliferation [26, 27]. These scientific reports examined the effect of macrophages on 

299 T2D-related ulcers and skin wounds, but not the islets themselves. The direct cause-and-effect 

300 relationship is unknown; however, based on the GO term definition, the relationship was 
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301 linked to a gene signature involved in damaged tissue and tissue repair.

302

303 Fig 8. Comparison between GsVec and Fisher of top 15 results with high relevance in 

304 DEGs of Type 2 diabetes (T2D). Using the DEGs of T2D islet of Langerhans 

305 (E-MTAB-5060) as validation data, each top 15 result that had high correlation with GsVec 

306 or high significance with Fisher is presented in the left and right tables.

307

308 Duchenne muscular dystrophy (DMD) skeletal muscle (E-GEOD-3307). We then 

309 examined DMD, and the results demonstrated that GsVec and Fisher displayed similar trends 

310 (Fig 9). Specifically, gene signatures such as extracellular structure organization related to 

311 the extracellular matrix and ossification related to the bone were highly ranked. DMD is an 

312 inherited muscular disorder known to be caused by an abnormality in dystrophin, a 

313 cytoskeletal protein, and has been linked to extracellular matrix-related molecules [28]. In 

314 addition, a relationship between bone morphogenetic proteins signals and this disease has 

315 been reported, and several biological features have been extracted [29].

316

317 Fig 9. Comparison between GsVec and Fisher of top 15 results with high relevance in 

318 DEGs of Duchenne muscular dystrophy (DMD). Using the DEGs of DMD skeletal muscle 

319 (E-GEOD-3307) as validation data, each top 15 result that was highly correlated with GsVec 
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320 or highly significant with Fisher is presented in the left and right tables.

321

322 Systemic lupus erythematosus (SLE) whole blood (E-GSEOD-72509). A whole blood 

323 dataset from SLE patients was analyzed as representative of autoimmune disease. The data 

324 were extracted from a heterogeneous population, including those with high and low interferon 

325 signature values. However, both GsVec and Fisher fully identified the signatures of 

326 immune-related genes with similar results (see Fig 10).

327

328 Fig 10. Comparison between GsVec and Fisher of top 15 results with high relevance in 

329 DEGs of systemic lupus erythematosus (SLE). Using SLE whole blood (E-GSEOD-72509) 

330 DEGs as validation data, each top 15 result that was highly correlated with GsVec or highly 

331 significant with Fisher is presented in the left and right tables.

332

333 Sarcoidosis lung tissue (E-GEOD-16538). We analyzed a dataset derived from lung tissue 

334 from sarcoidosis patients. The results indicated that the features of the gene signatures 

335 identified by GsVec and Fisher were partially different (Fig 11). In GsVec, gene signatures 

336 related to kinase activity, including MAPK (mitogen-activated protein kinase), were highly 

337 ranked, whereas Fisher identified several gene signatures related to chemokine. The original 

338 dataset was intended for the investigation of gene regulation of granulomatous sarcoidosis, 
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339 and it was reported that the gene network associated with the Th1-type response was 

340 overexpressed mainly in lung tissue derived from sarcoidosis [30]. In another paper, not only 

341 were Th1 cytokines increased in sarcoidosis, but MAPK, especially p38 activation, was found 

342 in cells of bronchoalveolar lavage fluid from patients with sarcoidosis [31]. Chemokines were 

343 also reported [32]. In summary, sarcoidosis-related gene signatures were identified; however, 

344 the two algorithms GsVec and Fisher exhibited different characteristics.

345

346 Fig 11. Comparison between GsVec and Fisher of top 15 results with high relevance in 

347 DEGs of sarcoidosis. Using the DEGs of sarcoidosis lung tissue (E-GEOD-16538) as 

348 validation data, each top 15 result that was highly correlated with GsVec or highly significant 

349 with Fisher is presented in the left and right tables.

350

351 Schizophrenia (SCZ) brain Brodmann area 24 (GEOD-78936). In examining SCZ, we 

352 used a dataset derived from postmortem brain tissue. In SCZ GsVec, gene signatures related 

353 to hormone were highly ranked (Fig 12). Hormone was a common but a unique result, which 

354 only ranked in GsVec, which suggests the involvement of dopamine in the limbic system 

355 [33]. Further, a gene signature, nervous, was also highly ranked. In contrast, in Fisher, gene 

356 signatures that suggested the involvement of other CNS cells, such as glia cell and astrocyte, 

357 were highly ranked and had different features.  
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358

359 Fig 12. Comparison between GsVec and Fisher of top 15 results with high relevance in 

360 DEGs of schizophrenia (SCZ). Using the DEGs of SCZ brain Brodmann area 24 

361 (GEOD-78936) as validation data, each top 15 result that was highly correlated with GsVec 

362 or highly significant with Fisher is presented in the left and right tables.

363

364 Discussion

365 In this paper, we propose a method for associating gene signatures by feature extraction 

366 using an NLP method. This method is entirely different from traditional pathway enrichment 

367 analysis for gene signature interpretation. Biologically reasonable results were obtained both 

368 in the verification of the pathway database (BioCarta) with known biological significance and 

369 in the verification using DEGs extracted from the actual gene expression. Compared to 

370 conventional pathway enrichment analysis by Fisher's exact test (Fisher), the proposed 

371 algorithm (GsVec) can identify a signature that is equivalent or more biologically relevant 

372 than Fisher.

373 Among diseases known to be related to immunity, GsVec tends to differentiate well 

374 between the biological features of autoimmune diseases. In MS, GsVec extracted more 

375 biologically valid signatures from immunological and neuronal aspects. Additionally, in CD, 

376 the signature called interferon gamma and other characteristics (e.g., cell trafficking) can be 
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377 extracted in GsVec. Moreover, in SCZ, a unique signature, hormone, was highly ranked only 

378 in GsVec. Thus, GsVec captured the signatures related to periphery and CNS more 

379 specifically than Fisher.

380 In this study, there were many reasons for selecting the SCDV-based method among the 

381 many methods related to distributed representation of documents in NLP. In the advance 

382 analysis, in comparing multiple methods, BOW and TFIDF did not consider gene similarity 

383 that was not directly overlapping, resulting in a high correlation with Fisher; thus, the 

384 advantage of using NLP methods was low. In the averaging of word2vec (gene vector), the 

385 specificity of a gene signature was not taken into account, and thus did not meet our purpose. 

386 In addition, as a result of assuming a general bioinformatics analysis environment (e.g., R 

387 language, PC specifications) as the potential of this research development, methods with a 

388 large amount of computation using deep learning were excluded from the candidates, as well 

389 as methods that were difficult to implement in the R language. Based on these considerations, 

390 the SCDV method was considered to be an optimal method that could be executed in a 

391 general bioinformatics analysis environment while capturing the characteristics of gene 

392 signatures.

393 However, there are several problems with this approach. First, it is difficult to determine 

394 whether approximately 5,000 gene signatures are sufficient as training data. In NLP, tens of 

395 thousands of data are generally used as training data. However, inadvertently mixing different 
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396 gene signatures to increase training data (e.g., other non-curation-based collections published 

397 in MSigDB) can adversely affect the quality of the signature vector. Further enhancement of 

398 pathway data with clear biological meaning is thus necessary.

399 　　Second, NLP can identify many words that appear in a specific document as important, 

400 but gene signatures do not duplicate genes in signatures; thus, the weight of important genes 

401 may be insufficient. This may create a discrepancy with human intuition regarding the key 

402 gene in the gene signature (pathway).

403 　　The third problem is a general problem in machine learning and artificial intelligence　

404 [34]. The relationship between signatures indicated by GsVec has strong elements that cannot 

405 be expressed by direct gene duplication; thus, it may be difficult to specify the rationale. 

406 Therefore, it may be desirable to combine GsVec with a well-grounded Fisher or other 

407 statistical method instead of using it on its own.

408 Despite the aforementioned problems, the proposed method demonstrates results that are 

409 equivalent or superior to those of conventional methods, and has high potential. Training data 

410 improvements, feature vectorization and topicalization methods, and identification of 

411 important genes are examples of potential improvements.

412 In the future, if the pathway database is generalized considering the direction of the 

413 regulatory relationship of genes, NLP methods that focus on context and learn to sequence 

414 from the beginning of sentences can also be applied in this field. Several NLP platforms are 
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415 already able to graph regulatory relationships between genes (e.g., IBM Watson for Drug 

416 Discovery). Improvements in the accuracy of these platforms will increase the value of 

417 methods that use NLP and are capable of biological interpretation close to human 

418 performance.

419

420 Methods

421 Preparation of training and validation data

422 　　A total of 5,254 gene signatures were used as a learning set whose genes fell within the 

423 range of 10 to 500 genes from KEGG and REACTOME in the C2 canonical pathway and C5 

424 GO biological process sets in MSigDB. Similarly, 214 gene signatures of BioCarta in the C2 

425 curated gene set were used as the validation set. For these signatures, only relevant gene 

426 signatures were extracted from the gtm file provided by MSigDB and saved in the same gtm 

427 format as MSigDB.

428 The following operations were performed using the R language integrated environment 

429 Microsoft R version 3.5 and R studio version 1.1.463. The created gtm file was converted to 

430 data.frame listing each gene signature's unique ID, name, description, number of genes, and 

431 gene symbol, and was output as a text file. The above operations can be executed in one step 

432 as the original R functions make_train.data (for training data) and make_validation.data (for 

433 validation data).
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434

435 Creation of gene vectors

436 Gene feature vectors (gene vectors) were created using the R fastText package [35]. The 

437 number of characters used for subwording and the number of preceding and following words 

438 analyzed as related words was set to 10,000, and gene vectors were created by the 

439 co-occurrence of the entire gene signature without using functions for subwording, preceding 

440 and following words. First, a 1/0 matrix (one-hot vector) of genes × gene signatures based on 

441 the presence/absence of corresponding genes was created. Then, a large 0/1 matrix of 

442 combinations of the number of genes and gene signatures was formed. The matrix was 

443 compressed to a low dimension by the skip-gram model using negative sampling for the 

444 co-occurrence probability of genes that appeared simultaneously in the gene signature. It was 

445 then designated as a gene vector. Fig 2 presents , a vector of an arbitrary gene .𝑔𝑣𝑖 𝑔𝑖

446 The number of dimensions to be compressed (i.e., gene vector length) and the number of 

447 learning iterations (epoch number) had to be adjusted according to the number of vocabularies 

448 in the NLP analysis. Because of the advanced analysis, the number of dimensions was set to 

449 150 and the number of epochs to 100 (see S1 and S2 Figs). The above operations can be 

450 executed in one step as an original R function, gs.train_genevec.

451

452 Creation of gene-topic vectors
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453 　　Topics (clusters) included in these gene signatures were extracted from the created gene 

454 vector by soft clustering using the Gaussian mixture model (GMM). For the GMM analysis, 

455 mclust of the R mclust package [16] was used, and the number of clusters was estimated using 

456 the mclustBIC function. The GMM analysis was performed by the mclust function with the 

457 number of clusters determined by the Bayesian information criterion (BIC), and the 

458 probability that each gene contributed to each cluster was calculated. This probability was 

459 multiplied for each cluster by the previous gene vector to obtain a gene-cluster vector. Fig 2 

460 demonstrates , where  represents a cluster and  represents the 𝑔𝑐𝑣𝑖𝑘 = 𝑔𝑣𝑖 × 𝑃(𝑐𝑘│𝑔𝑖) 𝑐 𝐾

461 number of clusters.

462 Separately, a score to reduce the weight of genes that appeared in various signatures was 

463 calculated by determining the value obtained by dividing the total number of signatures for 

464 each gene by the number of signatures that contained the gene from the one-hot vector of the 

465 genes × gene signatures (hereinafter referred to as the inverse signature factor). The following 

466 equation was expressed as a function of R as a countermeasure to infiniteness; when the gene 

467 was 0, the weights were normalized.

468 𝑖𝑠𝑓(𝑔𝑖) = 𝑙𝑜𝑔
𝑠𝑁

𝑠𝑓(𝑔𝑖)
+ 1

469 Here,  represents the total number of gene signatures, while represents the 𝑆𝑁 𝑆𝑓(𝑔𝑖) 

470 number of gene signatures including the gene .𝑔𝑖

471 By multiplying this value by the previous gene-cluster vector, gene-topic vectors 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 18, 2019. ; https://doi.org/10.1101/846691doi: bioRxiv preprint 

https://doi.org/10.1101/846691
http://creativecommons.org/licenses/by/4.0/


26

472 reflecting the height of gene contribution to each topic and the gene specificity weight were 

473 calculated. Fig 2 displays , where  represents 𝑔𝑡𝑣𝑖 = 𝑖𝑠𝑓(𝑔𝑖) ×  ⊕ 𝐾
𝑘 = 1𝑔𝑐𝑣𝑖𝑘 ⊕

474 concatenation.

475 In addition, the estimate_cluster_size function for estimating the number of clusters from 

476 the gene vector and the gs.train_topicvec function for creating the gene-cluster and gene-topic 

477 vectors were created, making executable in one step. The validation results of the parameters 

478 for estimating the number of clusters are presented in Supplemental Fig 3.

479

480 Creation of signature vector

481 Training data or validation data were input to the generated gene-topic vectors, and the 

482 gene-topic vectors were averaged for the genes included in each gene signature. As a result, 

483 each signature-specific feature vector (hereinafter referred to as the signature vector) was 

484 created, taking into account the gene specificity and the relevance of the gene to the topic in 

485 the training data. Fig 2 demonstrates . The above operation can be performed 𝑠𝑣 = ∑𝑗
𝑖 = 0𝑔𝑡𝑣𝑖

486 with an original function, predict_GsVec_from.TopicVec.

487 It should be noted that the original SCDV method of NLP, which is the basis of this 

488 method, can increase the speed and accuracy using the sparse method [9]. However, in gene 

489 signature analysis, the number of genes corresponding to the number of vocabularies is 

490 overwhelmingly small compared to natural language; thus, this step was excluded because the 
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491 above procedure neither increased speed nor improved accuracy.

492

493 Association between signature vectors by GsVec

494 　　The association between the signature data of the training and validation data was 

495 calculated based on the cosine similarity score of the signature vector. Depending on the 

496 combination of training and validation data, a large amount of computation is required; thus, 

497 the existing cosine distance function of the R package was not used, and high-speed program 

498 code was created by original matrix computation.

499 　　This operation can be performed with the original functions similarity_vectors and 

500 GSVEC. However, while the former outputs minimal results, the latter is a comprehensive 

501 function with various options, such as adding annotations of the original signature and 

502 simultaneously outputting the results of Fisher.

503

504 Conventional pathway enrichment analysis by Fisher's exact test

505 　　Fisher's exact test created and implemented its own function, gs.enrich_fisher, to 

506 perform comprehensive processing between gene signatures using the fisher.test function of 

507 the R stats package.

508

509 Visualization of GsVec results with tSNE
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510 　　To visualize the similarity by the cosine distance between the signature vectors of 

511 GsVec, the cosine distance matrix was first linearly compressed with principal component 

512 analysis (PCA) using the prcomp function of the R stats package. The top 95% of the 

513 principal components were projected in two dimensions using the Rtsne function in the R 

514 Rtsne package [36] and visualized using the R ggplot2 package [37]. This series of operations 

515 can be executed with the original function pca.tsne_GsVec.

516

517 Extraction of DEGs from public gene expression data

518 　The DEGs of representative diseases were selected from several datasets in which the gene 

519 expression of the appropriate disease site was used, and which was a representative disease 

520 from various disease areas among the already calculated DEGs published in the Expression 

521 Atlas [19]. With regard to cancer, the Expression Atlas did not provide an appropriate dataset; 

522 therefore, cancer tissue and matched normal tissue datasets of major cancer types were taken 

523 from the TCGA database [20]. TCGA data were normalized from the RNA-seq count data 

524 using the voom method in the R limma package, and statistically tested by the experimental 

525 Bayes method. DEGs with a false discovery rate -adjusted P-value of 0.001 or less and a fold 

526 change of ±2 or more were extracted.

527

528 Publishing program codes
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529 　The program code for the GsVec analysis developed in this study is freely available 

530 from https://github.com/yuumio/GsVec

531
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641 S1 Fig. Examination of dimensionality condition in gene vectors. Gene vectors were 

642 created for five vector sizes of the gene vectors: 50, 100, 150, 200, and 250. A) Similarity 
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643 with the validation data was calculated. The distribution is illustrated in a violin plot, while 

644 the Fisher result is presented in a scatter plot. B) The Pearson correlation coefficient with 

645 Fisher for each vector size is presented as a bar graph.

646

647 S2 Fig. Examination of epoch number in gene vectors. Gene vectors were created for 16 

648 levels: 1, 5, 10, 15, 20, 30, 40, 50, 75, 100, 250, 500, 1,000, 1,500, and 2,000. A) Similarity 

649 with the validation data was calculated. The distribution is presented in a violin plot, while the 

650 Fisher result is presented in a scatter plot. B) The Pearson correlation coefficient with Fisher 

651 for each vector size is illustrated as a bar graph.

652

653 S3 Fig. Validation of parameters for estimating the number of clusters as topics in gene 

654 signatures. The output of the mclustBIC function of the R mclust package was visualized by 

655 the plot function.　The Bayesian information criterion in the mclust package is 2 × log 

656 likelihood. Thus, the largest value was selected as the optimal cluster.

657
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