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Abstract
Case-control genetic association study is an efficient tool to search for the dele-

terious genetic variants predispose to human complex diseases, where the additive
mode of inheritance is commonly assumed. However, how the genetic variants in-
fluence the occurrence of a certain disease is impossible to know beforehand. We
show numerically that the existing procedures using the Hardy-Weinberg equilib-
rium test to choose the genetic model might be inconsistent. Then we propose
a new consistent method to choose the genetic model. The extensive computer
simulation results demonstrate the superiorities of the new method. Applications
to six single nucleotide polymorphisms(SNPs) for breast cancer and eight SNPs for
Type 2 Diabetes further show the performances of the proposed method.

Key words: Case-control study, Genetic model, Consistency,Genetic inheritance,
Parameter estimating.

1 Introduction

The case-control design is an efficient tool for collecting the information of covari-
ate being assumed and tested whether they are associated with human complex
diseases in epidemiologic studies. Although it is a retrospective design, the logis-
tic regression model by taking the data as enrolled prospectively is still valid to
estimate the coefficients for covariate (Prentice & Pyke, 1979) since the maximum
likelihood estimator is consistent and has the asymptotic normality property. A-
mong many covariate such as body mass index, age and blood pressure etc, the
genetic variant is one of the most important one. Comparing with insertion, dele-
tion and copy number variation etc, the single-nucleotide polymorphism (SNP),
which is a genetic variation that occurs at a specific position in the genome, is a
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more common form. By now, more than ten thousand SNPs have been identified
to be associated with hundreds of human diseases.

When doing an association study, a genetic model needs to be assumed in ad-
vance, which refers to a genetic mode of inheritance. Specifying a genetic model
means specifying an alternative hypothesis. There are often three commonly used
genetic models including recessive, additive and dominant ones. In reality, it is
rarely to know the real genetic models. The additive mode of inheritance has been
used in many genetic studies (Klein et al., 2005; Hunter et al., 2007; Zheng, Li
and Yuan, 2014). However, there are also some other SNPs conferring risk to dis-
ease at other modes. For example, Moltke et al. (2014) found a genetic variant
p.Arg684Ter associated with 2-h plasma glucose levels and type 2 diabetes at a
recessive mode; Nik-Zainal et al. (2016) reported five genes with MED23, FOXP1,
MLLT4, XBP1, and ZFP36L1, acting in breast cancer also in a recessive fashion.
Mis-specifying the genetic model will result in loss of statistical power. Especially,
the genetic model is recessive and the dominant model is adopted and vice visa.
So, the Wellcome Trust Case Control Consortium (2007) used the minimum of
p-values for score test under the additive model and Pearson Chi-square with 2
degrees of freedom to search for the genetic variant associated with seven com-
mon diseases including bipolar disorder, coronary artery disease, crohn disease,
hypertension, rheumatoid arthritis, type 1 diabetes, and type 2 diabetes. Sladek
et al. (2007) proposed to use MAX (the maximum values of score tests derived
under three genetic models) to search for the evidence of SNPs associated with
type 2 diabetes. Identifying the genetic model is an challenge problem. As far
as we know, there is only work on the basis of Hardy-Weinberg equilibrium test
(HWET) to choose the genetic model (Ng and Zheng, 2008; Zheng et al., 2016;
Hu et al., 2017). The Hardy-Weinberg equilibrium principle is an important law
in population genetics and holds in health individuals of human populations. We
will show numerically later that using HWET to discovery the genetic model is
inconsistent when the genetic model is additive. This motivates us to develop a
new statistical methodology to fill this gap.

In this work, we develop a general framework to infer the genetic model. Our
procedure has four merits. Firstly, the methodology is developed in a general
setting where a parameter θ ∈ [0, 1] is used to represent a genetic model, which
not only includes the recessive, additive and dominant models, but also contains
other models. It is very suitable for the situation where the imperfect surrogate of
the causal SNP is genotyped and the genetic model of the surrogate is derived from
the true model of the causal SNP. Secondly, the proposed estimate of genetic model
is consistent, which makes up for the shortcoming of using HWET to choose the
model. Thirdly, the proposed procedure allows for handling the confounder factors,
however, the existing method can not deal with it. Fourthly, we use a binary
variable to replace the original genotype values. It can segregate the coefficient of
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genotype out and make the estimation of parameters feasible.

2 Methods

2.1 Notations and genetic models

Denote by Y the disease status with Y = 1 being an individual having a disease
and Y = 0 being healthy control. Let X and G be the m-dimensional covariate
and genotype value, respectively. To detect the relationship between Y and G with
adjusting for the effect of X, a typical model is the logistic regression as

P (Y = 1|X, G) =
exp(α + X>γ +Gβ)

1 + exp(α + X>γ +Gβ)
,

where α, γ and β are the parameters, and > denotes the transpose of a matrix or
a vector. We consider a diallelic SNP locus and let the two alleles at a SNP locus
be A and a, and A is assumed to be the risk allele or minor allele. Then there are
three genotypes as aa, Aa and AA and the corresponding genotype values are 0, θ
and 1, respectively, 0 ≤ θ ≤ 1. Here θ denotes the genetic model. For example, we
can set θ be 0, 0.5 and 1 for the commonly used recessive, additive and dominant
models, respectively.

Suppose that there are n subjects including r cases and s controls randomly
drawn from case population and control population, respectively. Let (yi,x

>
i , gi)

>

be the observation of the ith subject for (Y,X>, G)>, i = 1, 2, · · · , n. For the sake
of simplicity, we assume that the first r subjects are cases and the last s subjects
are controls.

2.2 Using HWE Test to choose the model

Denote the genotype frequencies of (aa,Aa,AA) in cases and controls by (p0, p1, p2)
and (q0, q1, q2), respectively, and let the number of subjects with genotypes (aa,Aa,AA)
be (r0, r1, r2) in r cases and that in s controls be (s0, s1, s2). Denote (p̂0, p̂1, p̂2) =
(r0/r, r1/r, r2/r), (q̂0, q̂1, q̂2) = (s0/s, s1/s, s2), ∆̂1 = p̂2 − (p̂2 + p̂1/2)2, ∆̂2 =
q̂2− (q̂2 + q̂1/2)2, the HWET derived in the whole sample and only in cases can be
written as, respectively

HWET-CC =

√
rs/n(∆̂1 − ∆̂2)

[1− n2/n− n1/(2n)][n2/n+ n1/(2n)]

and

HWET-C =

√
r∆̂1

[1− n2/n− n1/(2n)][n2/n+ n1/(2n)]
,
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where n1 = r1 + s1, and n2 = r2 + s2. Using the Hardy-Weinberg Equilibrium
test to select the genetic model (song et al., 2006; Ng and Zheng, 2008; Zheng et
al.,2016) can be summarized as follows: set a positive threshold c, for example,
c = 1.645, the genetic model is determined as: if Z > c, the recessive model is
selected; if Z < −c, the dominant model is determined; otherwise, we choose the
additive model, Z can be HWET-CC or HWET-C. We let the estimate of θ be
θ̃CC and θ̃C using HWET-CC and HWET-C, repectively. We find numerically that
both θ̃CC and θ̃C might not be consistent to θ.

2.3 The proposed procedure

To develop a new method, we decompose the genotype data as

(G1, G2) =


(0, 0), if G = 0
(1, 0), if G = θ
(0, 1), if G = 1

Then, the logistic regression model becomes as follows,

P (Y = 1|X, G) =
exp(α + X>γ +G1β1 +G2β2)

1 + exp(α + X>γ +G1β1 +G2β2)
.

Under rare disease assumption with α << 0, we can obtain that,

1 + exp(α + X>γ) ' 1,

1 + exp(α + X>γ + θβ1) ' 1,

and
1 + exp(α + X>γ + β2) ' 1.

By some algebras, we can obtain that,

P (Y = 1|X, G = 0) =
exp(α + X>γ)

1 + exp(α + X>γ)
' exp(α + X>γ),

P (Y = 1|X, G = θ) =
exp(α + X>γ + θβ1)

1 + exp(α + X>γ + θβ1)
' exp(α + X>γ + θβ1),

and

P (Y = 1|X, G = 1) =
exp(α + X>γ + β2)

1 + exp(α + X>γ + β2)
' exp(α + X>γ + β2).

If real genetic model is additive satisfying to

P (Y = 1|X, G = 1)

P (Y = 1|X, G = 0)
'
[
P (Y = 1|X, G = θ)

P (Y = 1|X, G = 0)

]2
,
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namely,

exp(α + X>γ + β2)

exp(α + X>γ)
'
[

exp(α + X>γ + θβ1)

exp(α + X>γ)

]2
.

By some algebras, we can obtain that, θ = β2
β1
' 0.5. If real genetic model is

dominant satisfying to

P (Y = 1|X, G = 1)

P (Y = 1|X, G = 0)
' P (Y = 1|X, G = θ)

P (Y = 1|X, G = 0)
,

namely,
exp(α + X>γ + β2)

exp(α + X>γ)
' exp(α + X>γ + θβ1)

exp(α + X>γ)
.

By some algebra, we can obtain that, θ = β2
β1
' 1. On the basis of above derivation,

we can see that, β2
β1

represent genetic inheritance in case-control studies under

common recessive, dominant, and additive genetic model. So β2
β1

can measure
genetic inheritance to some extent in case-control studies.

For i = 1, · · · , n, denote observation x>i for X>, and (gi1, gi1) for G. The
likelihood function is

L(α, β1, β2) =
n∏
i=1

[
exp(α + X>γ + gi1β1 + gi2β2)

1 + exp(α + X>γ + gi1β1 + gi2β2)

]yi [ 1

1 + exp(α + X>γ + gi1β1 + gi2β2)

]1−yi
and the log-likelihood function is

l(α, β1, β2) =
n∑
i=1

{[
yi(α + x>i γ + gi1β1 + gi2β2)

]
− ln

(
1 + exp(α + x>i γ + gi1β1 + gi2β2)

)}
Then the estimate of β1 and β2 (denote them by β̂1 and β̂2, respectively) can be
obtained by solving the constrain optimization problem

(β̂1, β̂2) = argmax
β1,β2≥0,β1 6=0

l(α, β1, β2)

So, the estimate of θ, denoted it by θ̂, is θ̂ = β̂2/β̂1. Since (β̂1, β̂2)
> is the consistent

estimate of (β1, β2)
> under a general logistic regression setting, so the θ̂ is consistent

to θ. Or, we can obtain estimate of θ directly based on following log-likelihood
function,

l̃(α, β1, θ) =
n∑
i=1

{[
yi(α + x>i γ + gi1β1 + gi2θβ1)

]
− ln

(
1 + exp(α + x>i γ + gi1β1 + gi2θβ1)

)}
and following constrain optimization problem,

(β̂1, θ̂) = argmax
θ≥0,β1 6=0

l̃(α, β1, θ)
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3 Results

3.1 Simulation Results

To illustrate the performance of the proposed method (denote it by PROPOSED),
we conduct simulation studies and compare the mean squared error (MSE) with
the existing HWET-CC (Ng and Zheng, 2008) and HWET-C (Zheng et al., 2016)
selection procedures. We assume the Hardy-Weinberg equilibrium holds in the
general population, that is, the genotype frequencies satisfy to P (aa) = (1 − p)2,
P (Aa) = 2p(1 − p) and P (AA) = p2, where p = P (A) and p is chosen from
{0.05, 0.15, 0.30, 0.45}. Consider two disease prevalences K = 0.02 and 0.05, which
results in α = ln(K/(1−K)) = −3.89 and −2.94, respectively, when γ = 0m and
β = 0, where 0m is a m-dimensional vector with all the elements being 0. For a
fixed α, we let m = 1 and assume that X, independent of G, follows the standard
normal distribution, γ = ln 1.1 and β = ln 1.5. r = s ∈ {500, 1000, 1500, 2000} and
θ is chosen from {0, 0.25, 0.5, 0.75, 1}. 1000 replicates are conducted to calculate
the empirical mean squared error (MSE).

Figures 1 and 2 shows the empirical MSEs of the HWET-CC, HWET-C and
PROPOSED for K = 0.05. It can be shown that the MSEs of the PROPOSED are
decreasing with the sample size increasing. For example, when r = s = 500 and
p = 0.15 and the genetic model is recessive, the empirical MSEs of the PROPOSED
is 0.18 and that is 0.11 for r = s = 1000. The empirical MSEs of the HWET-CC
and HWET-C under the additive model is almost unchanged for different sample
sizes. For example, when r = s = 500 and p = 0.30, the empirical MSEs of the
HWET-CC and HWET-C are 0.025 and 0.066, respectively, and those are 0.028 and
0.064, respectively, for r = s = 1500. As expected, when the sample size is large,
the MSEs of the PROPOSED is smaller than those of HWET-CC and HWET-C
under the dominant model. For example, when the sample size r = s = 800 and
p = 0.45, the empirical MSEs of the PROPOSED, HWET-CC and HWET-C are
0.032, 0.094 and 0.048, respectively.

Figures 3 and 4 shows the empirical MSEs of the HWET-CC, HWET-C and
PROPOSED for K = 0.02. We have similar finds with K = 0.05. For instance,
when the genetic model is dominant and p = 0.30, when r = s = 1000 and r = s =
1500, the empirical MSEs of the PROPOSED is 0.081 and 0.040, respectively, and
it can be shown that the MSEs of the PROPOSED are decreasing with the sample
size increasing. The empirical MSEs of the HWET-CC and HWET-C under the
additive model is almost unchanged for different sample sizes. For instance, when
r = s = 500 and p = 0.15, the empirical MSEs of the HWET-CC and HWET-
C are 0.023 and 0.060, respectively, and those are 0.022 and 0.059, respectively,
for r = s = 2000. Again, as expected, the MSEs of the PROPOSED is smaller
than those of HWET-CC and HWET-C when the sample size is large under the
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recessive model. For example, when the sample size r = s = 1000 and p = 0.45, the
empirical MSEs of the PROPOSED, HWET-CC and HWET-C are 0.027, 0.065
and 0.035, respectively.

3.2 Two Real Applications

Breast cancer is the common cancer for women. Almost 15 percent of women
with breast cancer have family members diagnosed with it, which means that
the genetic variants might confer some risk of developing breast cancer. Hunter
et al. (2007) conducted a genome-wide association study and have identified 6
SNPs including rs10510126, rs12505080, rs17157903, rs1219648, rs7696175, and
rs2420946, associated with breast cancer. The genotype value summaries are shown
in Table 1. Type 2 diabetes is a lifelong disease. Typically, the genetic factor
confer risk to the type 2 diabetes. Sladek et al. (2007) conducted a genome-wide
association study and identified 8 SNPS associated with Type 2 diabetes. The
summarized data are given also in Table 1.

We apply the HWET-CC and HWET-C and PROPOSED to these 14 SNPs to
search for their genetic models. The results are given in Table 1. We find that, for
the breast cancer, half of them are dominant model and the others are dominant
models if the HWET-C or HWET-CC is used. Using the PROPOSED can give
the detailed value of the genetic model. For example, for SNP rs10510126, the
estimated genetic model is θ̂ = 2.36× 10−11, which is recessive model, while using
HWET-C gives the additive model. Otherwise, the PROPOSED can give some
other model beyond three commonly employed three genetic models. For instance,
for SNP rs2420946, using the PROPOSED give a genetic model of 0.38.

4 Discussion

Case-control genetic association study has been proved to be an efficient tool to
identify the deleterious variants by scanning the human genome. There are several
genetic variants including insertion, deletion, copy number variation, and SNP etc.
Among them, the SNP is the most common one. There are 2.96 billion base pairs
in human genome and the number of SNPs is about 30 million. By now, more
than ten thousand of SNPs have been identified to be associated with hundreds of
diseases or traits. To evaluate the significance of a SNP, one has to specify a genetic
model. Among three genetic models including recessive, additive and dominant
model, the additive model is more frequently to be assumed when conducting an
association study. However, in practice, the real genetic model is impossible to
know. Especially the causal SNP cannot be genotyped and the SNP locus is its
surrogate. Thus the genetic model between the causal SNP and surrogate might
be different (Hormozdiari et al., 2015). Misspecifying a genetic model might result
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in a loss of statistical power.
In this work, we use θ to denote the genetic model and θ varies range from 0

to 1. The existing work only make the inference for θ = 0, 0.5 and 1. It cannot
estimate other values of θ. By decomposing the genotype score, we proposed a new
procedure to estimate θ, which is shown to have consistency, while the existing
procedures are not consistent based on the numerical results. On the hand hand,
we obtained the consistent estimate of the genetic model, the next step should be
construct the association test based on the chosen model. There is existing the
correlation between choosing the genetic model and the association test, which is
the future topic.
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Table 1. The estimated genetic models for 6 SNPs associated with breast cancer
and 8 SNPs associated with Type 2 diabetes.

r0 r1 r2 s0 s1 s2 θ̂ θ̃C θ̃CC
6 SNPs associated with breast cancer

rs10510126 955 180 10 854 272 14 2.36×10−11 0.5 0.5
rs12505080 608 477 50 628 408 99 0.99 1 1
rs17157903 777 316 18 862 220 26 0.99 1 1
rs1219648 352 543 250 433 538 170 0.36 0.5 0.5
rs7696175 353 605 187 396 496 249 0.99 1 1
rs2420946 357 546 242 440 537 165 0.38 0.5 0.5

8 SNPs associated with Type 2 diabetes.
rs7903146 197 348 149 335 254 65 0.62 0.5 0.5
rs13266634 54 229 411 53 293 307 1.62×10−8 0 0
rs1111875 77 302 315 119 308 227 0.54 0.5 0.5
rs7923837 66 300 328 116 296 242 0.66 0.5 0.5
rs7480010 301 327 66 363 246 353 0.82 1 0.5
rs3740878 25 273 386 65 249 353 1 1 1
rs11037909 25 274 387 65 251 353 0.99 1 1
rs1113132 25 271 390 63 251 355 0.98 1 1
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Figure 1: The MSEs of the PROPOSED (square), HWET-CC (triangle) and
HWET-C (dot) when k = 0.05, p ∈ {0.05, 0.15, 0.30, 0.45} and θ ∈ {0, 0.5, 1},
where the first row is for θ = 0, the second row is for θ = 0.5 and the third row is
for θ = 1. The horizontal axis is the sample size, and the vertical axis is the value
of MSEs.
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Figure 2: The MSEs of the PROPOSED when k = 0.05, p ∈ {0.05, 0.15, 0.30, 0.45}
and θ ∈ {0.25, 0.75}, where the first row is for θ = 0.25 and the second row is for
θ = 0.75. The horizontal axis is the sample size, and the vertical axis is the value
of MSEs.
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Figure 3: The MSEs of the PROPOSED (square), HWET-CC (triangle) and
HWET-C (dot) when k = 0.02, p ∈ {0.05, 0.15, 0.30, 0.45} and θ ∈ {0, 0.5, 1},
where the first row is for θ = 0, the second row is for θ = 0.5 and the third row is
for θ = 1. The horizontal axis is the sample size, and the vertical axis is the value
of MSEs.
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Figure 4: The MSEs of the PROPOSED when k = 0.02, p ∈ {0.05, 0.15, 0.30, 0.45}
and θ ∈ {0.25, 0.75}, where the first row is for θ = 0.25 and the second row is for
θ = 0.75. The horizontal axis is the sample size, and the vertical axis is the value
of MSEs.
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