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Single-cell  and  bulk  genomics  assays  have  complementary  strengths  and  weaknesses,           
and  alone  neither  strategy  can  fully  capture  regulatory  elements  across  the  diversity  of              
cells  in  complex  tissues.  We  present  CellWalker,  a  method  that  integrates  single-cell             
open  chromatin  (scATAC-seq)  data  with  gene  expression  (RNA-seq)  and  other  data  types             
using  a  network  model  that  simultaneously  improves  cell  labeling  in  noisy  scATAC-seq             
and  annotates  cell-type  specific  regulatory  elements  in  bulk  data.  We  demonstrate            
CellWalker’s  robustness  to  sparse  annotations  and  noise  using  simulations  and           
combined  RNA-seq  and  ATAC-seq  in  individual  cells.  We  then  apply  CellWalker  to  the              
developing  brain.  We  identify  cells  transitioning  between  transcriptional  states,  resolve           
enhancers  to  specific  cell  types,  and  observe  that  autism  and  other  neurological  traits              
can   be   mapped   to   specific   cell   types   through   their   enhancers.   
 
Gene  regulatory  elements  are  critical  determinants  of  tissue  and  cell-type  specific  gene             
expression 1,2 .  Annotation  of  putative  enhancers,  promoters,  and  insulators  has  rapidly  improved            
through  large-scale  projects  such  as  ENCODE 3 ,  PsychENCODE 4 ,  B2B 5 ,  and  Roadmap           
Epigenomics 6 .  However,  both  predictions  and  validations  of  regulatory  elements  have  been            
made  largely  in  cell  lines  or  bulk  tissues  lacking  anatomical  and  cellular  specificity 7 .  Bulk               
measurements  miss  regulatory  elements  specific  to  one  cell  type,  especially  minority  ones 8 .             
This  lack  of  specificity  limits  our  ability  to  determine  how  genes  are  differentially  regulated               
across  cells  and  to  discover  the  molecular  and  cellular  mechanisms  through  which  regulatory              
variants   affect   phenotypes.  
 
Single-cell  genomics  is  an  exciting  avenue  to  overcoming  limitations  of  bulk  tissue  studies 8,9 .              
However,  these  technologies  struggle  with  low-resolution  measurements  featuring  high  rates  of            
dropout  and  few  reads  per  cell 8,9 .  Many  methods  have  been  developed  to  address  these               
problems  in  single-cell  expression  data  (scRNA-seq) 8,9 .  However,  these  strategies  generally  fail            
on  scATAC-seq  data  because  there  are  fewer  reads  per  cell,  and  the  portion  of  the  genome                 
being  sequenced  is  typically  much  larger  than  the  transcriptome 10 .  Consequently,  scATAC-seq            
has   much   lower   coverage   and   worse   signal-to-noise   than   scRNA-seq.   
 
Several  scATAC-seq  analysis  methods  have  been  developed  to  increase  the  number  of             
informative  reads  used  per  cell.  These  include  CICERO 11 ,  which  aggregates  reads  from  peaks              
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that  are  co-accessible  with  gene  promoters  to  emulate  gene-focused  scRNA-seq  data,  and             
SnapATAC 12 ,  which  computes  cell  similarity  based  on  genome-wide  binning  of  reads.  Other             
methods  search  for  informative  reads  based  on  known  or  predicted  regulatory  regions 13,14 .             
However,  these  approaches  often  miss  rare  but  known  cell  types 10 .  Other  methods  attempt  to               
detect  cell  types  in  scATAC-seq  data  by  either  mapping  the  data  into  the  same  low-dimensional                
space  as  scRNA-seq  data  or  by  labeling  cells  in  scATAC-seq  to  known  cell-type  expression               
profiles 15,16 .  While  these  provide  a  promising  avenue  towards  adding  labels  to  clusters  of  cells               
observed   in   scATAC-seq   data,   they   do   not   help   to   increase   the   resolution   of   cell   type   detection.  
 
We  present  CellWalker,  a  generalizable  network  model  that  improves  the  resolution  of  cell              
populations  in  scATAC-seq  data,  determines  cell  label  similarity,  and  generates  cell-type  specific             
labels  for  bulk  data  by  integrating  information  from  scRNA-seq  and  a  variety  of  bulk  data.  These                 
labels  can  be  generated  concurrently  from  the  same  tissue,  but  could  also  be  from  cell  lines,                 
sorted  cells,  or  related  tissues.  Our  method  goes  beyond  co-embedding  or  directly  labeling  cells               
with  this  prior  knowledge  about  cell  types,  instead  propagating  cell-type  signatures  over  a              
network  of  cells  and  cell  types  so  that  they  are  weighted  with  evidence  of  cell  types  in                  
scATAC-seq.  Diffusion  through  this  network  allows  labeling  information  to  indirectly  influence            
cells  with  similar  genome-wide  open  chromatin  profiles  even  if  they  could  not  be  initially  labeled.                
A  major  benefit  of  our  model  is  that  it  allows  us  to  compute  the  level  of  influence  of  each  label                     
and  cell  on  every  other  label  and  cell,  thus  providing  an  avenue  for  additional  inferences.  These                 
include  deconvoluting  bulk  measurements  and  assessing  their  relevance  to  specific  cell            
populations,  as  well  as  quantifying  similarity  between  known  cell  types  in  the  tissue  where               
scATAC-seq   was   performed.  
 
The  developing  human  brain  presents  a  complex  landscape  of  cell  types  each  with  unique               
regulatory  programs 17–19 .  Using  CellWalker  we  mapped  cell  types  derived  from  scRNA-seq  data             
to  a  large  set  of  scATAC-seq  data.  The  derived  influence  matrix  made  it  possible  to  examine                 
changes  in  regulation  across  neuronal  development  and  map  enhancers  to  specific  cell  types.              
Using  this  cell-type  specific  atlas  of  enhancers  we  found  that  autism  spectrum  disorder  (ASD)               
genes  are  enriched  for  enhancers  specifically  active  in  inhibitory  interneurons,  while            
developmental  delay  genes  are  enriched  for  enhancers  specifically  active  in  radial  glia.  The              
ability  to  map  psychiatric  traits  to  cell  types  is  a  crucial  step  towards  understanding  the                
mechanisms  through  which  disease  develops  and  responds  to  treatment.  As  more  large-scale             
single  cell  studies  are  released,  generalizable  methods  such  as  CellWalker  will  be  fundamental              
toward  integrating  them  with  existing  bulk  data  to  increase  our  understanding  of  cell-type              
specific   regulatory   programs.  
 
Results  
Overview  of  method. CellWalker  resolves  cell  types  and  differentially  accessible  regions  in             
scATAC-seq  data  by  integrating  information  from  scRNA-seq  and  bulk  data.  This  integration             
relies  on  building  a  combined  network  featuring  nodes  representing  cells  in  scATAC  and  nodes               
for  external  labeling  data,  e.g.  cell  types  derived  from  scRNA-seq  data  (Figure  1a).  Briefly,  cells                
from  scATAC-seq  are  nodes  in  the  network,  and  edges  between  them  encode  information  about               
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cell  similarity.  A  second  set  of  nodes  represents  labeling  datasets  connected  to  cell  nodes  by                
edges  that  encode  the  similarity  between  a  label  and  a  cell.  Using  a  graph  diffusion                
implemented  via  a  random  walk  with  restarts,  CellWalker  computes  a  global  influence  matrix              
that  defines  the  influence  of  every  cell  and  label  on  every  other  cell  and  label  (Figure  1b).  In  this                    
matrix,  each  column  represents  where  walks  starting  from  that  node  end.  Different  portions  of               
this  matrix  can  be  used  to  map  information  between  and  within  domains:  cell-to-cell  for               
clustering  cells,  label-to-label  for  exploring  label  similarity,  label-to-cell  for  cell  type  labeling,  and              
cell-to-label   for   distributing   bulk   signatures   to   labels.  
 
Method  validation  and  evaluation. To  assess  the  ability  of  CellWalker  to  distribute  labeling              
information  across  cells  we  first  tested  it  on  simulated  data.  For  each  simulated  scenario  we                
tuned  a  single  label  edge  weight  parameter  defining  the  ratio  of  label-to-cell  edges  versus               
cell-to-cell  edges  (Figure  2a).  This  parameter  represents  a  trade-off  between  information  about             
cell  labels  versus  scATAC-seq-based  cell  similarities.  When  edge  weight  is  low  the  output  is               
similar  to  de-novo  cell  clustering  using  only  scATAC-seq,  and  when  it  is  high  the  output                
converges  towards  directly  assigning  labels  to  each  cell.  To  quantify  performance,  we             
developed  a  measure  called  cell  homogeneity  which  is  computed  directly  from  the  influence              
matrix  as  the  median  ratio  of  information  between  cells  within  the  same  cell  type  to  information                 
between  cells  of  different  cell  types.  A  higher  cell  homogeneity  indicates  a  greater  ability  to                
differentiate  between  different  cell  types.  We  found  that  as  few  as  10%  of  cells  being  labeled  is                  
sufficient  for  CellWalker  to  improve  cell  labeling  as  measured  by  cell  homogeneity  and  that  there                
is  no  further  improvement  after  ~30%  of  cells  are  labeled  (Figure  2b).  As  expected,  performance                
degrades  as  more  cells  are  initially  mislabeled  and  improves  when  cells  of  different  types  are                
more  distinct  from  each  other  in  the  scATAC-seq  data  (Figure  2c  and  Supplemental  Figure  1a).                
Furthermore,  CellWalker  performs  well  with  noisy  data,  even  when  up  to  50%  of  reads  are                
dropped  or  random  reads  are  added  (Supplemental  Figure  1b).  Finally,  we  observe  that              
CellWalker  is  able  to  distribute  labels  to  novel  cell  populations  (Supplemental  Figure  1c).              
Importantly,  CellWalker  achieves  this  efficiently  in  terms  of  both  time  and  computer  memory              
usage  (Supplemental  Figure  2).  These  results  establish  the  network  diffusion  strategy            
implemented  in  CellWalker  as  a  robust  approach  to  integrate  scATAC-seq  with  scRNA-seq  or              
other   labeling   data.  
 
Next,  we  tested  CellWalker  on  mouse  cortex  SNARE-seq  data  which  includes  both  scRNA-seq              
and  scATAC-seq  reads  for  each  cell 20 .  We  analyzed  the  scATAC-seq  portion  of  the  data  with                
CellWalker.  For  cell  type  labeling,  we  integrated  the  scATAC-seq  data  with  differentially             
expressed  marker  genes  previously  derived  from  clustering  the  scRNA-seq  portion  of  the             
SNARE-seq  data.  Performance  was  evaluated  using  the  held-out  scRNA-seq  label  for  each  cell              
that  was  identified  in  the  original  publication.  We  tuned  the  edge  weight  parameter  to  optimize                
cell  homogeneity  (as  in  our  simulations)  and  observed  that  this  closely  mirrors  optimization  of               
the  fraction  of  cells  labeled  correctly,  validating  cell  homogeneity  as  a  measure  of  how  well  cell                 
types  are  resolved  (Supplemental  Figure  3).  We  compared  CellWalker  to  label  transfer,  as              
implemented  in  Seurat 15 ,  and  found  that  CellWalker  labels  more  cells  correctly  (Figure  2d).  This               
advantage  is  greater  when  considering  only  rare  cell  types  and  very  rare  cell  types  (Figure  2d,                 
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bottom). Taken  together,  these  analyses  of  SNARE-seq  data  indicate  that  integration  of  label              
data   provides   a   substantial   advantage   towards   resolving   cell   types   in   scATAC-seq   data.  
 
Identification  of  cell  types  in  the  developing  brain.  Given  the  ability  of  CellWalker  to  identify                
rare  cell  types  in  brain  SNARE-seq  data,  we  next  applied  it  to  a  scATAC-seq  study  of  the  human                   
telencephalon  with  multiple  biological  replicates  spanning  mid-gestation 19 .  Previous  work          
generated  a  cell  type  atlas  in  similar  samples  based  on  extensive  analysis  of  scRNA-seq  data 17 .                
Using  this  atlas  as  external  labeling  data,  we  used  CellWalker  to  compute  a  full  influence  matrix                 
across  all  these  labels  and  30,000  scATAC-seq  cells.  First,  using  the  label-to-label  portion  of  the                
influence  matrix,  we  hierarchically  clustered  all  labels  and  observed  high  agreement  with             
clustering  based  on  scRNA-data  (Figure  3a).  Next,  using  label-to-cell  influence  we  scored  each              
cell  assigning  it  the  highest  scoring  label.  This  produces  a  “fuzzy”  labeling  of  cells,  representing                
the  fact  that  a  scATAC-seq  cell  may  be  strongly  connected  through  the  network  to  multiple  cell                 
types.  Nonetheless,  we  observed  that  most  cells  belong  strongly  to  one  type,  indicating  that               
most  transcriptional  states  observed  in  scRNA-seq  are  associated  with  a  distinct  open             
chromatin   signature   in   scATAC-seq   (Figure   3b).  
 
In  a  few  cases  we  observed  groups  of  cells  with  multiple  nearly  equally  scoring  labels,  indicating                 
intermediate  membership  in  multiple  cell  types  and  revealing  transcriptional  states  that            
correspond  to  highly  similar  open  chromatin  profiles.  Some  of  these  relationships,  such  as              
visual  cortex  (V1)  and  prefrontal  cortex  (PFC)  excitatory  neurons,  represent  similar  types  of              
maturing  neurons  that  are  present  in  two  brain  regions  (Figure  3b,  group  1).  Others  correspond                
to  progressions  of  neuronal  development.  For  example,  the  newborn  interneuron  and  caudal             
ganglionic  eminence  (CGE)  cortical  interneuron  cell  types  have  shared  influence  on  a  large              
group  of  scATAC-seq  cells  (Figure  3b,  group  2).  Similarly,  we  observe  cells  that  score  highly  as                 
combinations  of  intermediate  progenitor  cells,  early  newborn  excitatory  neurons,  late  newborn            
excitatory  neurons,  and  maturing  excitatory  neurons  (Figure  3b,  group  3),  suggesting  that  these              
transcriptional   states   cannot   be   resolved   in   scATAC-seq.  
 
To  explore  whether  these  indeterminate  cell  types  represent  limitations  of  scATAC-seq  data,             
failures  of  the  CellWalker  model,  or  cases  where  transcription  changes  without  large  changes  in               
open  chromatin,  we  took  a  closer  look  at  early  and  late  newborn  excitatory  neurons.  These  are                 
fairly  large,  identifiable  cell  types  in  scRNA-seq 17 .  We  assigned  each  scATAC-seq  cell  an              
excitatory  neuron  progression  score  based  on  the  difference  between  the  influence  of  the  early               
and  late  newborn  excitatory  neuron  labels.  Therefore,  a  higher  excitatory  neuron  progression             
score  indicates  a  later  newborn  excitatory  neuron.  Using  this  score,  we  observe  that  while  there                
is  a  small  distinct  set  of  early  newborn  excitatory  neurons,  the  majority  of  newborn  excitatory                
neurons  fall  evenly  between  the  two  types  with  many  scores  near  zero  (Supplemental  Figure               
4a).  This  indicates  that  there  is  a  continuous  gradient  of  changes  in  chromatin  accessibility               
rather  than  large-scale  difference  between  transitioning  cell  types.  This  appears  to  be  a              
biological  difference  between  the  dynamics  of  gene  expression  versus  open  chromatin  during             
developmental  transitions,  though  higher  coverage  scATAC-seq  data  could  potentially  alter  this            
conclusion.  
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Cell-type  specific  annotation  of  loci.  We  next  sought  to  determine  if  cell  type  annotations               
could  be  used  to  characterize  the  biology  of  loci  based  on  chromatin  accessibility  at  distal                
regulatory  elements.  Because  most  distal  regulation  occurs  within  Topologically  Associated           
Domains  (TADs) 21 ,  we  sought  to  determine  if  the  transition  from  early  to  late  excitatory  neurons                
could  be  attributed  to  differences  in  TADs  between  cell  types.  It  is  generally  believed  that  Hi-C                 
contact  maps  derived  from  bulk  data  represent  the  average  of  a  mixture  of  cells 22 .  We  correlated                 
the  distal  accessibility  (defined  as  outside  a  gene  body  or  promoter)  of  TADs  derived  from  the                 
germinal  zone  (GZ)  of  the  mid-gestation  developing  human  cerebral  cortex 21  with  excitatory             
newborn  progression  score  and  found  that  the  distribution  of  correlations  is  significantly  bimodal              
(empirical p -value  =  0.021).  This  means  that  the  accessibility  of  GZ  TADs  distinctly  either               
correlates  or  anti-correlates  with  cell  state  progression  from  early  to  late  excitatory  neuron.  As  a                
control,  we  find  that  the  median  distance  of  peaks  to  genes  and  the  number  of  peaks  per  TAD                   
do  not  correlate  with  excitatory  neuron  progression  (Supplemental  Figures  4b  and  4c).  We              
therefore  classified  GZ  TADs  as  early  or  late  depending  on  their  correlation  with  excitatory               
neuron  progression.  As  a  validation  of  the  classification  of  these  TADs,  we  find  that  the                
expression  of  genes  in  early  TADs  negatively  correlates  with  excitatory  neuron  progression             
score,  while  the  expression  genes  in  late  TADs  correlates  positively  (median  correlations  of              
-0.62  and  0.22  respectively).  Thus,  subtle  changes  in  chromatin  accessibility  between  early  and              
late  newborn  excitatory  neurons  may  be  associated  with  cell-type  specific  TADs.  The  ability  to               
separate  TADs  by  cell  type  enables  a  greater  understanding  of  gene  regulation  in  complex               
tissues  such  as  the  human  brain.  A  similar  strategy  could  be  applied  to  other  annotations  of  loci,                  
such   as   linkage   disequilibrium   (LD)   blocks   or   expression   quantitative   trait   loci   (eQTLs).  
 
Several  key  genes  involved  in  neuronal  development  lie  in  early  or  late  TADs  indicating  their                
expression  may  be  distally  regulated.  Notably,  the  neurogenic  differentiation  gene NEUROD1            
lies  in  a  late  TAD  with  higher  levels  of  accessibility  late  than  early  throughout  the  TAD  but  similar                   
accessibility  in  the  gene  body  and  promoter  (Figure  3d).  Correspondingly, NEUROD1 has             
two-fold  higher  mean  transcripts  in  late  than  early  newborn  excitatory  neurons  (mean  73  TPM               
early  vs  131  late).  This  indicates  that  the  gene  expression  differences  of NEUROD1  are               
potentially  driven  by  distal  enhancers.  Conversely, TENM4 ,  which  is  involved  in  establishing             
neuronal  connectivity  during  development 23 ,  lies  in  an  early  TAD  and  is  less  expressed  in  late                
newborn  excitatory  neurons  ( mean  350  TPM  early  vs  249  late).  Deciphering  the  cell-type              
specific  regulation  of  these  genes  is  an  important  step  towards  understanding  how  differences              
in   genotype   lead   to   their   misexpression   and   linked   diseases.  
 
Cell-type  specific  annotation  of  enhancers. It  is  generally  believed  that  many  enhancers             
involved  in  brain  development  function  in  a  cell  type  specific  manner 19 .  CellWalker  provides  a               
way  to  explore  this  idea.  We  mapped  enhancers  derived  from  bulk  ATAC-seq  on  microdissected               
tissue  across  the  mid-gestation  human  telencephalon 18  to  cell  types  based  on  cell-to-label             
influence  (Figure  4a).  As  expected,  we  find  that  the  many  enhancers  specific  to  the  ganglionic                
eminence  map  to  intermediate  progenitor  cell  types,  while  enhancers  in  other  regions  primarily              
map  to  types  of  excitatory  neurons 17 .  As  further  validation,  we  also  observe  that  enhancers  from                
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cell  types  labeled  to  specific  regions  such  as  the  medial  ganglionic  eminence  (MGE)  map  to                
regions  sampled  from  the  ganglionic  eminence  (Supplemental  Figure  5a).  These  findings            
demonstrate  that  cell  types  resolved  in  scATAC-seq  data  with  CellWalker  can  be  used  to               
annotate  enhancers  discovered  in  bulk  ATAC-seq.  This  strategy  combines  the  benefits  of  high              
coverage   in   bulk   data   with   the   cell-type   information   in   scATAC-seq.   
 
We  next  examined  whether  cell-type  specific  enhancers  are  associated  with  disease  genes.             
First,  we  considered  sets  of  genes  near  significant  variants  detected  in  a  collection  of               
Genome-Wide  Association  Studies  (GWAS) 24 .  Testing  for  associations  with  enhancers  active  in            
four  broad  cell  types,  among  these  gene  sets  we  found  significant  enrichment  for  enhancers               
near  genes  associated  with  a  collection  of  neurological  diseases  as  well  as  many  measures  for                
developmental  delay  (significant  at  FDR  <  0.1,  Supplemental  Table  1).  We  therefore  decided  to               
take  a  closer  look  at  curated  lists  of  genes  linked  to  Autism  Spectrum  Disorders  (ASD)  and                 
developmental  delay 25 .  We  found  that  enhancers  specific  to  radial  glia  are  significantly             
associated  with  genes  linked  to  developmental  delay  (Figure  4b,  right),  among  which  enhancers              
specific  to  early  radial  glia  are  significant  (Figure  4c,  right).  Enhancers  specific  to  inhibitory               
interneurons  are  significantly  associated  with  genes  linked  to  ASD,  in  agreement  with  previous              
studies 26,27  (Figure  4b,  left).  Among  these,  enrichment  was  significant  for  newborn  interneurons             
(Figure  4c,  left).  Recently,  an  enhancer  of SLC6A1  which  is  accessible  in  cells  in  the  ganglionic                 
eminence  has  been  linked  to  ASD 18 .  We  found  that  this  enhancer  maps  to  both  intermediate                
progenitor  cells  located  in  the  ganglionic  eminence  as  well  as  to  newborn  interneurons,  and  is                
accessible  in  cells  predicted  to  belong  to  these  cell  types  (Figure  4d).  As  validation,  we  find  that                  
this  peak  is  accessible  in  intermediate  progenitors  and  interneurons  but  not  excitatory  neurons              
in  ATAC-seq  data  on  FACS  sorted  cells 28  (Supplemental  Figure  5c).  Interestingly,  while  the              
enhancer  is  most  strongly  linked  to  early  stages  of  interneuron  development,  expression  of              
SLC6A1  increases  throughout  the  course  of  interneuron  development  (Supplemental  Figure           
5b).  It  is  possible  therefore  that de  novo  mutations  observed  in  this  enhancer  in  ASD  individuals                 
contribute  to  changes  in  the  initiation  of SLC6A1  expression,  which  could  influence  the  timing  of                
interneuron  development.  This  strategy  for  determining  cell-type  specific  effects  can  be  applied             
to   other   loci   to   better   understand   their   potential   roles   in   disease   and   cell   differentiation.  
 
Discussion  
The  development  of  high-throughput  sequencing  technologies  has  enabled  an  explosion  of  data             
generation,  necessitating  techniques  to  integrate  these  data  into  knowledge  and  testable            
hypotheses.  Using  CellWalker,  we  were  able  to  uncover  cell-type  specific  signals  based  on  a               
combination  of  bulk  and  single  cell  data.  This  was  made  possible  with  external  data  about                
known  cell  types  which  helped  overcome  the  low  signal-to-noise  ratio  present  in  scATAC-seq              
data.  This  strategy  is  broadly  applicable  as  there  are  already  vast  amounts  of  bulk  RNA-seq,                
bulk  epigenomics,  scRNA-seq,  and  other  cell  atlas  data  for  tissues,  organoids,  and  cell  lines               
related  to  samples  where  scATAC-seq  is  being  performed.  Here,  we  applied  CellWalker  to              
neurodevelopment.  In  another  study,  we  used  CellWalker  to  map  transcriptional  disease  states             
from  mouse  heart  data  to  scATAC-seq  data  in  matched  tissues  and  uncovered  cell-type  specific               
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enhancers  activated  by  stress.  CellWalker  is  computationally  efficient  enough  to  enable  even             
larger   scale   integrations   of   such   data   (Supplemental   Figure   5).  
 
CellWalker  extends  naturally  to  incorporate  multiple  cell  atlases  simultaneously.  This  presents  a             
myriad  of  possible  opportunities  such  as  measuring  the  influence  between  disease  and             
non-disease  labels  for  similar  cells.  For  example,  an  atlas  of  the  developing  brain  could  be  used                 
together  with  cell  types  derived  from  post-mortem  brains  of  individuals  with  ASD  to  directly               
measure  the  relationships  between  those  sources  of  labeling  data.  An  alternative  possibility  is  to               
use  CellWalker  to  transfer  labels  across  species.  Alternative  integrations  of  data  are  possible  by,               
for  example,  using  the  each  labeled  multiple  times,  but  weighing  edges  differently  based  on  bulk                
measurements  of  histone  markers.  Much  of  the  power  of  CellWalker  lies  in  its  generalizable               
network   model.  
 
The  cellular  complexity  of  the  developing  human  brain  presented  an  ideal  testbed  for              
CellWalker.  We  were  able  to  detect  rare  cell  types  and  tease  out  distal  regulatory  programs  by                 
integrating  bulk  data  with  scATAC-seq  data.  However,  as  more  single-cell  data  is  generated  with               
higher  read  depths  and  greater  cell  coverage  it  may  turn  out  that  our  data  simply  did  not  have                   
the  power  to  uncover  the  true  underlying  regulatory  landscape.  Rare  intermediate  cell  types  that               
correspond  better  with  identified  transcriptional  states  may  exist.  Furthermore,  new  data  that             
simultaneously  measures  multiple  epigenetic  and  transcriptional  attributes  in  the  same  cell  will             
soon  begin  to  enable  the  detection  of  cell-specific  links  between  regulation  and  expression 29 .              
However,  while  these  technologies  continue  to  be  developed  and  improved,  exploiting  existing             
troves  of  bulk  data  provides  a  powerful  avenue  towards  understanding  cell-type  specific             
regulation.   
 
Methods  
CellWalker  
The  network  constructed  by  CellWalker  consists  of  two  types  of  edges:  cell-to-cell  and              
label-to-cell.  The  former  has  an  edge  weight  corresponding  to  the  similarity  between  pairs  of               
cells  in  scATAC-seq  data.  The  latter  has  an  edge  weight  corresponding  to  the  similarity  between                
the  given  labeling  feature  and  each  cell.  With  this  general  approach,  it  is  possible  to  add  a  large                   
variety  of  external  data  to  the  model.  Although  these  edges  may  be  sparsely  connected  to  cells,                 
the  edges  between  cells  distribute  information.  CellWalker  includes  a  single  parameter,  label             
edge  weight,  which  determines  the  ratio  of  the  weight  of  label-to-cell  edges  relative  to  the  weight                 
of  cell-to-cell  edges.  To  diffuse  the  information  from  all  data  sources  across  the  network,  we                
implemented  a  random  walk  with  restarts.  A  unit  amount  of  information  is  initialized  at  each                
node.  Then  at  each  time  step,  a  fixed  portion  restarts  and  the  remainder  propagates  across                
each  edge  connected  to  the  node,  proportionally  to  edge  weights.  Even  cells  poorly  annotated               
with  external  data  will  receive  information  about  those  annotations  via  cells  that  are  similar.  This                
algorithm  is  equivalent  to  an  insulated  heat  diffusion  graph  kernel.  To  implement  diffusion,  we               
first  compute  a  q-by-q  walk  matrix W  encoding  the  fraction  of  information  that  must  move  to                 
each  neighboring  node  in  each  time  step,  where  q  is  equal  to  the  total  number  of  nodes  in  the                    
graph.  This  is  0  if  the  nodes  have  no  edge  between  them  and  the  fraction  of  total  weight  of                    
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edges  for  each  node  otherwise.  In  matrix  notation  the  computation  is W=D -1 A ,  where D  is  a                 
diagonal  matrix  of  the  sums  of  edge  weights  for  each  node  and A  is  the  adjacency  matrix                  
representing  the  graph.  Given  this  formulation  of  the  walk  matrix W  and  a  non-zero  restart                
probability  ⍺,  the  walk  always  converges  to  a  stationary  distribution.  Due  to  this  property,  there                
is  a  closed  form  solution  for  the  q-by-q  influence  matrix F ,  which  defines  the  amount  of                 
information  that  reaches  each  node  from  each  other  node  and  is  computed  as              

.  Prior  work  has  examined  how  different  settings  of  alpha  distribute   α(I 1 )W )  F =   ­ ( ­ α ­1            
information  to  neighboring  nodes  and  found  that  a  restart  probability  between  0.4  and  0.6               
encodes  graph  structure  well  with  only  minor  variance  in  information  in  that  range 30 .  Based  on                
this,   we   set   our   restart   probability   to   0.5.   
 
Simulations  
We  generated  artificial  cells  that  emulate  high  quality  scATAC-seq  processed  by  the             
SnapATAC 12  pipeline  as  follows.  For  each  of  n  cells  we  sampled  the  number  of  total  reads  for                  
that  cell  from  the  distribution  of  reads  per  cell  we  observed  in  real  data  (median  5,500  reads  per                   
cell).  We  then  distributed  those  reads  across  p  bins  proportionally  to  the  distribution  of  reads  per                 
bin  observed  in  real  data.  This  resulted  in  a  p-by-n  count  matrix  of  n  cells  and  p  bins.  We  split                     
the  pool  of  generated  cells  into  two  cell  types  and  gave  the  cells  low,  medium,  or  high                  
within-type  distinctness  by  splitting  bins  evenly  across  cell  types  and  adding  a  fixed  percent  (1,                
5  or  10  respectively)  of  additional  reads  across  those  bins  to  each  cell.  In  order  to  label  cells,  we                    
generated  two  label  nodes  and  created  edges  from  these  nodes  to  cells  with  a  weight  of  1                  
depending  on  the  simulation  scenario.  Cell-cell  edges  were  given  a  weight  of  the  Jaccard               
similarity  of  each  cell's  bins.  For  each  simulation  we  ran  CellWalker  10  different  assignments  of                
cell-label  edges  for  each  of  a  range  of  label  edge  weights  between  10 -4  and  10 -1  for  400  cells  of                    
each  cell  type.  We  evaluated  the  ability  of  CellWalker  to  seperate  the  two  cell  types  using  cell                  
homogeneity  which  we  computed  directly  from  the  influence  matrix F  as  the  log  of  median  ratio                 
of  information  between  cells  within  the  same  cell  type  to  information  between  cells  of  different                
cell  types.  To  test  the  importance  of  label-to-cell  edges  we  tested  labeling  between  a  single  cell                 
in  each  cell  type  up  to  labeling  40%  of  cells  using  medium  cell  distinctness.  We  tested  the                  
importance  of  cell  mis-labeling  by  labeling  15%  of  cells  correctly  and  adjusting  the  number  of                
mislabeled  cells  between  a  single  cell  and  15%  of  cells  (not  necessarily  mutually  exclusively).  In                
tests  for  robustness  to  noisy  reads  we  randomly  added  or  removed  a  fixed  percentage  of  all                 
reads  in  each  cell.  Finally,  to  test  if  CellWalker  is  able  to  distribute  labels  to  cell  populations  even                   
without  any  initial  labeling,  we  generated  an  additional  set  of  400  cells  with  no  labeling  edges.                 
Rather  than  give  these  cells  medium,  low,  or  high  within  group  distinctness,  they  were  made                
more  similar  to  one  of  the  previous  cell  types  by  being  generated  by  randomly  sampling  reads                 
proportionally  to  bins  from  either  of  the  other  two  cell  types,  with  the  proportion  of  bins  from  the                   
cell  type  adjusted  between  10  and  50  percent.  We  additionally  used  simulated  data  to  determine                
how  CellWalker’s  runtime  and  memory  usage  scales  with  the  number  of  non-zero  bins  in  the                
cell-by-bin   matrix   and   found   that   both   relationships   are   linear   (Supplemental   Figure   2).   
 
Data   Processing   and   Analysis  
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We  downloaded  the  cell-by-peak  matrix  for  the  scATAC-seq  portion  and  the  cell-by-gene  matrix              
for  the  scRNA-seq  portion  of  the  SNARE-seq  data  for  the  adult  mouse  cerebral  cortex 20 .  We                
additionally  downloaded  the  cell  type  labels  assigned  to  each  cell  as  well  as  marker  genes  for                 
each  cell  type,  which  includes  the  log  fold  change  of  expression  for  each  marker  in  the  given                  
cell  type  compared  to  other  cells.  We  ran  CellWalker  on  this  data  by  computing  the  Jaccard                 
similarity  between  binarized  peak  accessibility  vectors  for  cells  for  cell-to-cell  edges  and  the              
fraction  of  each  cells  peaks  that  are  in  marker’s  gene  body  or  promoter  (2kb  upstream  of  TSS)                  
for  a  given  cell  type  scaled  by  the  log-fold  change  in  expression  of  each  marker  for  label-to-cell                  
edges.  We  tested  label  edge  weights  between  10 -2  and  10 4  and  computed  both  the  cell                
homogeneity  and  the  fraction  of  exact  label  matches  at  each  weight  (Supplemental  Figure  3).               
We  found  that  the  two  follow  nearly  identical  trends  implying  that  cell  homogeneity  is  a  good                 
proxy  for  correct  labeling.  For  comparison,  we  ran  Seurat3 15  on  the  cell-by-peak  and              
cell-by-gene  matrices  and  assigned  labels  using  default  parameters  for  anchor  transfer  between             
the   two   datasets.   
 
Multi-sample  mid-gestation  human  telencephalon  scATAC-seq  data  from  psychENCODE  was          
previously  processed  using  SnapATAC  to  generate  a  large  cell-by-bin  matrix 19  and  a  previously              
derived  set  of  marker  genes  was  used  for  labeling 17 .  As  before,  cell-to-cell  edge  weights  were                
computed  using  Jaccard  similarity  and  label-to-cell  edge  weights  were  computed  as  the  sum  of               
normalized  SnapATAC  generated  gene  accessibility  score  for  each  marker  scaled  by  that             
marker  genes  log-fold  change  in  expression.  We  tested  label  edge  weights  between  10 -2  and               
10 4  and  selected  a  weight  of  1  as  optimal.  We  hierarchically  clustered  labelling  nodes  using  the                 
euclidean  distance  between  label-to-label  vectors  and  “hclust”  with  default  parameters  in  R 31 .  To              
compute  cell  label  scores  from  label-to-cell  influence  we  compute  z-scores  for  each  column  and               
then  rescale  to  a  maximum  score  of  1.  We  considered  a  cell  to  have  two  nearly  identical                  
labeling  scores  if  the  top  two  highest  scoring  labels  were  within  the  bottom  10%  of  all                 
differences   between   the   two   highest   scoring   labels   for   all   cells.  
 
To  compute  an  excitatory  neuron  progression  score  for  each  cell  we  took  the  difference  between                
the  nEN-early2  and  nEN-late  score  for  each  cell.  For  our  analysis  we  only  considered  the                
subset  of  cells  with  nEN-early2  or  nEN-late  as  their  top  label  scores.  1,367  GZ  TADS  were                 
previously  generated 32  based  on  HiC  data  taken  from  Won  et  al 21 .  For  each  TAD  we  computed                 
the  fraction  of  each  cell’s  distal  (non-promoter,  not  in  gene  body)  peaks  that  were  accessible  in                 
that  TAD.  Then  for  each  TAD  we  correlated  excitatory  neuron  progression  scores  for  each  cell                
with  the  distal  accessibility  of  each  cell.  Negative  correlations  imply  early  active  TADs  and               
positive  correlations  imply  late  active  TADs.  To  determine  if  this  distribution  of  correlations  is               
significantly  bimodal  we  permuted  TAD  locations  1,000  times  using  the  randomizeRegions            
function  in  regioneR 33  (restricted  to  exclude  blacklisted  locations)  and  compared  the  median             
absolute  values  of  correlations.  Of  the  full  set  of  TADs,  we  classified  290  as  early  TADs  with                  
correlation  less  than  -0.5  and  247  as  late  TADs  with  correlation  >  0.5.  Mean  transcripts  (TPM)                 
were   computed   from   the   same   scRNA   data   that   cell   type   marker   genes   were   derived   from 17 .  
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 13, 2020. ; https://doi.org/10.1101/847657doi: bioRxiv preprint 

https://doi.org/10.1101/847657


 

Regionally  microdissected  developmental  brain  enhancers  were  downloaded  from         
Markenscoff-Papadimitriou  et  al 18 .  To  score  each  label  for  each  enhancer  we  calculated  the  sum               
of  cell-to-label  influence  across  all  cells  which  had  a  peak  in  the  given  enhancer.  We  split  cell                  
types  into  four  primary  labels  following  the  groupings  in  Nowakowski  et  al 17 .  GWAS  data  was                
downloaded  from  the  NHGRI-EBI  GWAS  catalog 24 .  A  list  of  genes  was  generated  for  each               
disease  or  trait  using  all  mapped  or  reported  genes  for  each  significant  variant  as  annotated  in                 
the  catalog.  We  omitted  diseases  and  traits  that  had  fewer  than  100  associated  genes.  Disease                
gene  sets  were  downloaded  from  Werling  et  al 25 .  To  estimate  disease  gene  set  enrichment,  we                
computed  an  empirical p -value  by  comparing  the  fraction  of  enhancers  that  were  closest  to               
disease  genes  to  the  fraction  closest  to  an  equal  size  random  sample  of  brain  expressed  genes,                 
resampling  10,000  times.  FDRs  were  computed  using  the  Benjamini-Hochberg  procedure.  Cell            
tracks  were  generated  using  SnapATAC 12 .  Peaks  from  FACS  sorted  cells  were  taken  from  Song               
et   al 28 .  
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Figure  1. Overview  of  CellWalker.  a. Cells  (circles)  are  connected  based  on  similarity  of  their                
scATAC-seq  profiles  (purple  edges).  The  network  is  extended  using  external  data  labels  (e.g.  expression               
levels  of  marker  genes  for  a  cell  type,  rectangles).  These  labels  are  connected  to  cells  based  on  how  well                    
they  correspond  to  each  cell  (e.g.  fraction  of  cell’s  promoters  accessible  in  marker  genes,  red  edges).                 
Information  is  propagated  across  the  combined  network  using  global  diffusion. b. Diffusion  results  in  an                
influence  matrix  that  describes  the  information  passed  from  each  label  and  cell  to  every  other  label  and                  
cell.  Label-to-label  influence  (purple)  encodes  label  similarity,  label-to-cell  influence  (teal)  encodes  which             
labels  best  describe  each  cell,  cell-label  influence  (blue)  can  be  used  to  map  information  encoded  in                 
accessibility  back  to  labels,  and  cell-to-cell  influence  represents  a  label-influenced  clustering  of  cells  (light               
blue).   
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Figure  2. CellWalker  Correctly  Labels  Cells  in  Simulations  and  Validation  Data.  a. Label-edge              
weight,  defined  as  the  ratio  of  label-to-cell  edges  versus  cell-to-cell  edges,  (x-axis)  is  tuned  in  order  to                  
optimize  cell  homogeneity,  a  measure  of  the  separability  of  cells  of  different  types  (y-axis).  When  edge                 
weight  is  low  the  output  is  more  similar  to  de-novo  cell  clustering  (purple  area)  and  when  it  is  high  the                     
output  becomes  more  similar  to  directly  assigning  labels  to  each  cell  (red  area).  Higher  values  of  cell                  
homogeneity  indicate  improved  ability  to  distinguish  between  cells  of  different  types,  while  a  cell               
homogeneity  of  0  is  equivalent  to  no  difference  between  within-cell-type  and  between-cell-type  influence              
(dashed  line).  Black  dots  indicate  mean  performance  across  ten  simulations  (gray  lines) b.  As  the  percent                 
of  cells  with  labeling  edges  increases  (x-axis)  optimal  cell  homogeneity  does  as  well,  up  to  30%  labeled                  
(purple  line). c. The  distribution  of  peak  cell  homogeneity  scores  across  simulations  when  cell               
distinctness  in  scATAC-seq  is  low,  medium,  and  high.  As  a  higher  percent  of  labels  is  incorrect  (x-axis)                  
performance  begins  to  decline,  particularly  when  initial  cell  distinctness  is  low. d. CellWalker  correctly               
labels  cells  from  the  ATAC  portion  SNARE-seq  data  (number  of  cells  of  each  type  in  parenthesis)  with  no                   
dropoff   for   rare   (max   500   cells)   and   very   rare   (max   100   cells)   cell   types.    

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 13, 2020. ; https://doi.org/10.1101/847657doi: bioRxiv preprint 

https://doi.org/10.1101/847657


 

 
Figure  3. CellWalker  Identifies  Cell  Types  in  the  Developing  Brain.  a. Hierarchical  clustering  of               
label-to-label  influence  identifies  cell  types  similar  in  scATAC-seq. b.  A  portion  of  cells  has  two  nearly                 
equal  labels.  Some  are  very  similar  mature  lineages  (group  1)  while  others  correspond  to  progressions  of                 
neuronal  development  (groups  2  and  3) .  c. The  region  surrounding  the  late  TAD  containing  the                
neurodevelopment  transcription  factor NEUROD1 .  Throughout  this  TAD  accessibility  outside  the  gene            
body  and  promoter  increases  between  early  and  late  newborn  excitatory  neurons  and  is  highly  correlated                
with   excitatory   neuron   progression   score   (spearman   correlation   coefficient   0.56).    
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Figure  4.  Cell-type  Specific  Annotation  of  Enhancers.  a. CellWalker  maps  enhancers  generated  from              
microdissected  brain  regions  to  cell  types  using  cell-to-label  influence. b. A  significant  fraction  of  inhibitory                
interneuron  specific  enhancers  are  closest  to  ASD  related  genes  (left)  and  a  significant  fraction  of  radial                 
glia  specific  enhancers  are  closest  to  developmental  delay  related  genes  (left). c.  For  ASD  of  the                 
interneuron  subtypes,  newborn  interneurons  (nIN)  and  cortical  interneurons  (IN-CTX)  are  enriched,  but             
there  are  only  enough  newborn  interneuron  specific  enhancers  to  achieve  statistical  significance  (left).              
For  developmental  delay  genes,  early  radial  glia  (RG-early)  are  enriched  (left). d. The  region  surrounding                
an  intronic  SLC6A1  enhancer  (yellow  highlight).  The  enhancer  is  accessible  throughout  interneurons,  but              
not   in   excitatory   neurons.   
(*   represents   significance   at   FDR   <   0.1,   **   at   FDR   <   0.05,   and   ***   at   FDR   <   0.01)   
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