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Abstract.

Introduction: Understanding how transcranial magnetic stimulation (TMS)

interacts with cortical circuits is enhanced by application of biophysical models.

Population-based models of cortical activity have captured plasticity responses due

to TMS, but these have not calculated changes in motor-evoked potentials (MEPs),

standard electromyographic measures inferring the cortical response to TMS.

Objectives: To develop a population-based biophysical model of MEPs following

TMS.

Methods: We use an existing MEP model in conjunction with population-based

modeling of the cortex. We consider populations of layer 2/3 excitatory and inhibitory

neurons, stimulated by TMS pulses. These populations feed a population of layer 5

corticospinal neurons, with both excitatory and inhibitory connections. The layer 5

population also couples directly but weakly to the TMS pulses. The layer 5 output

controls the mean motoneuron response, and from that a series of single motounit

action potentials are generated and summed to give a MEP.

Results: A realistic MEP waveform was generated by the model comparable

to those observed in real experiments. The model captured TMS phenomena

including a sigmoidal shaped input-output curve with increasing stimulation intensity,

common paired-pulse effects (SICI, ICF, LICI) including responses to pharmacological

interventions, and a cortical silent period. Changes in MEP amplitude following theta

burst paradigms were also observed including variability in outcome direction.

Conclusions: The model enables better interpretation of population-based TMS

modeling approaches by interpreting output in terms of MEPs, thus providing a

quantitative link between the cortical circuits activated by TMS and functional

outcomes.

PACS numbers:

Submitted to: Brain Stimulation
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Transcranial Magnetic Stimulation (TMS) is a non-invasive form of brain

stimulation used for the study of brain function and for clinical treatments of brain

disorders such as depression [1, 2, 3, 4]. Applying a single TMS pulse at sufficient

intensity over the primary motor cortex results in firing of layer 5 corticospinal neurons

due to both transsynaptic activation from layer 2/3 interneurons and horizontal fibres,

and direct activation of the neurons by the pulse. The descending volley of activity gives

a measurable motor response in peripheral muscles targeted by the stimulated region,

known as a motor-evoked potential (MEP). MEPs have been widely used as a measure

of the excitability of the corticomotor system in TMS studies, and have revealed several

well known neural phenomena related to TMS, such as periods of net inhibition and

excitation following paired pulse protocols (i.e. short and long interval intracortical

inhibition [SICI; LICI], and intracortical facilitation [ICF]), and a cortical silent period

observed when TMS is given during a voluntary contraction. Furthermore, MEPs are

used to assess changes in cortical excitability resulting from repetitive TMS (rTMS)

protocols, which are thought to induce plasticity in cortical circuits through mechanisms

similar to long-term potentiation and depression (LTP/D). However, despite nearly 30

years of research, it remains unclear how microscale mechanisms underlying plasticity

occurring at synaptic level (e.g. LTP/D) manifest when large populations of neurons

are activated as with TMS [5, 6].

Biophysically-informed models provide a mathematical description of TMS

and other neurostimulation effects that can be used to better understand TMS

phenomena [7]. Models typically describe biophysical processes with equations. Existing

models include descriptions of the shape and timecourse of the magnetic and induced

electric fields due to TMS, including realistic human head geometries [8, 9, 10, 11, 12],

descriptions of spiking of single neurons and small networks of neurons, for example I-

waves [13, 14], population-based descriptions of neural firing rates [15, 16] and plasticity

effects [17, 18].

While the formation of a MEP involves highly nonlinear processes, including

electrical propagation along nerve pathways and motounit responses, the modeling of

these need not be complicated. Li et al [19] have described a MEP amplitude and shape

in terms of a sum of individual motor unit responses, with thresholds for the motor units

distributed exponentially. Rusu et al [13] and then Moezzi et al [14] have developed

this further; they have modeled I-wave and MEP formation following TMS using a

population of layer 2/3 excitatory and inhibitory neurons, feeding layer 5 cortical cells

and motoneurons. They reproduced I-waves and MEP-responses that matched closely

those measured experimentally. In contrast, Goetz have used a statistical model based

on experimental data to compile a MEP model [20].

Cortical plasticity, a lasting change in strengths of connections between neurons,

has been modeled using population-based measures of activity [21, 17, 22, 18]. In these

works, plasticity has been included using rules which capture either phenomenological

descriptions of plasticity (e.g. spike timing dependent plasticity), or physiological

theories (e.g. calcium dependent plasticity). Population-based modeling [15, 16],
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including neural mass or neural field approaches, is well suited to TMS because a TMS

pulse excites many thousands of neurons over an area of several centimeters-squared.

However, population-based cortical modeling of TMS has been hard to interpret in

relation to human experiments. For example, most models have evaluated changes in

synaptic weights between excitatory neural populations following rTMS but it remains

unclear how these changes would impact the amplitude of MEPs.

We have simplified the approach of Moezzi et al [14] by modeling the layer 2/3

and layer 5 populations with population-based dynamics. Firing rates of motoneurons

are described as functions of the layer 5 firing rate, and a train of motoneuron firings is

reconstructed. Thus MEP activity is determined. This approach provides a much-

needed link between population-based models of cortical dynamics, and models of

MEP activity, thereby allowing a direct comparison between model outputs and human

experiments. To test the generalisability of our MEP model, we first assess whether

we can capture well known single and paired-pulse MEP phenomena. We then evaluate

how sensitive our MEP model is to changes in synaptic weights predicted by population-

based rTMS models of plasticity.

1. Methods

We have combined a neural field approach [22, 18] with existing models of MEP

formation [19, 14]. The scheme is shown schematically in Fig. 1.

1.1. Neural Field components

Neural Field Theory (NFT) provides a nonlinear, statistical model for the dynamics

of populations of neuronal cells and their interactions via dendrites and axons [15, 16,

25, 26, 27]. Population-averaged properties such as mean firing rate and axonal pulse

rate are modeled as a function of time t. We have used the NFTsim model [23]. The

mathematical description and parameter values are summarized in the Supplementary

Material.

Specifically, a population of layer 2/3 excitatory neurons (labeled ‘e), a population

of layer 2/3 inhibitory neurons (i), and a population of layer 5 excitatory cortical neurons

(v) are modeled with NFTSim. These populations couple together as indicated by the

arrows in Fig. 1. They are also coupled to an external driving population (labeled x)

describing the TMS application. Coupling strengths to population a from population a

are denoted in this paper by νab, where a and b can take the labels e, i, x or v. Synaptic

responses include both fast-acting GABAA and slower-acting GABAB effects [18, 7].

Simulating pulse lengths are chosen to be 0.5 ms. In NFTsim, stimulation is applied

with an ‘external’ rate φx(t) [17], which can be interpreted as average number of action

potentials per second that are introduced along each axon in the cortical populations.

For example, a stimulus intensity of 1000 s−1 for 0.5 ms introduces on average 0.5 action

potential onto each axon.

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/847830doi: bioRxiv preprint 

https://doi.org/10.1101/847830
http://creativecommons.org/licenses/by-nd/4.0/


MEP modeling with Neural Fields 4

external
simulation

Layer 5

layer 2/3

e i

motoneurons muscle fibres

Cortex,

Neural Field

Model

Motor

model

direct,

instant

fast

slow

medium

Figure 1. A schematic of the modeling approach. TMS stimulates populations of

layer 2/3 excitatory and inhibitory neurons. The layer 2/3 populations stimulate each

other. They have multiple projections to a population of layer 5 excitatory which also

receive low-intensity direct stimulation from the TMS pulses. These three are modeled

with NFTsim [23]. The axonal flux from the layer 5 cells stimulates a population

of motoneurons within the spinal cord; each motoneuron firing produces a response

from the muscle fibres. The sum of these fibre responses produces a MEP. The latter

components are modeled with the approach of Li et al [24].
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The strength of this drive depends upon the TMS intensity — low intensities

preferentially stimulate the inhibitory neurons over the excitatory neurons, but at higher

intensities, the excitatory neurons are strongly stimulated [28]. To achieve this, we keep

constant the external TMS to inhibitory cell coupling, at νix = −1.15× 10−4 V s. The

external TMS to layer 2/3 excitatory coupling is changed as a function of stimulus

intensity φx with a sigmoid relationship:

νex =
νmax
ex

e(A−φx)/B + 1
(1)

where νmax
ex = 1.92×10−4 V s is the maximum external to layer 2/3 excitatory coupling,

with A = 500 s−1 and B = 100 s−1 describing the threshold and width of the curve

respectively.

The layer 2/3 populations project to a population of layer 5 excitatory cortical

neurons (v). There are multiple projections to different parts of the dendritic tree.

Excitatory connections are made with short and long propagation delays (specifically

1 ms and 5 ms respectively), to model connections far from and close to the soma.

Inhibitory connections are made with a medium time delay (specifically 3 ms) [13, 14].

Additionally, the layer 5 population is excited directly from the TMS stimulation at

a low strength of νvx = 0.1νex to account for the layer 5 cells receiving a much lower

electromagnetic field intensity than the layer 2 and 3 cells [14].

The layer 2/3 excitatory, layer 2/3 inhibitory and layer 5 populations plus the

external stimulation are modeled with NFTsim [23]. Although there are many

parameters, many have physical constraints placed on them [29]. Parameters for the

layer 2 and 3 cells have been chosen to be consistent with previous modeling [18, 30]; for

the layer 5 cells the firing response to synaptic input has been tuned to give plausible

responses to stimulation, broadly consistent with Moezzi et al [14], including maximum

population firing rate of 300 s−1 and a rapid climb in output once threshold has been

reached at a mid-range stimulation intensity.

The NFT modeling gives the mean axonal flux rate of the layer 5 neural population

as a function of time. This firing rate is then used as an input (dotted arrow in Fig. 1)

to the next stage of modeling, summarized by the lower gray box in the figure.

TMS stimulation of the cortex can lead to both direct (D-) and indirect (I-) waves

of descending activity, recorded in the epidural space [1, 31]. Often several indirect

waves are recorded, at several hundred hertz frequency. While their origin has not been

precisely established, they are likely to be a result of TMS-induced activity within the

cortex propagating down nerve pathways. Rusu et al presented a simple model of I-wave

formation by projecting populations of layer 2 and 3 cells onto a compartmentalized layer

5 neuron [13]. Averaged responses of many cases showed synchrony in layer 5 firings,

resulting in I-waves of activity. Moezzi et al. has demonstrated similar synchrony by

modeling explicitly many layer 5 cells simultaneously [14]. In our model it is not possible

to capture I-waves in a similar way, since neural synchrony is not explicitly captured

when only population-averaged rates are considered because exact timings of firings are

not explicitly modeled [7, 32]. That is, a mean firing rate of a population does not tell
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us about the synchrony of firings within the population. While the population approach

is not well-suited to capturing firing events such as those generating I-waves, it is well

suited for capturing the slower shifts in net excitation and inhibition which are thought

to underlie paired-pulse phenomena such as SICI and ICF.

1.2. MEP model components

Population-averaged cortical responses are often linear or nearly-linear, making NFT

appropriate [15, 32]. However, motor responses are challenging to describe in a linear

way; for example 20 motoneurons firing at 100 s−1 produces a very different MEP to 10

motoneurons firing at 200 s−1.

Instead, we use a model of Li et al [19] to describe MEP formation. Here, the layer

5 axonal pulse rate φv is used to determine the rate of firing of N = 100 motoneurons.

Each motoneuron, indexed by k, has an instantaneous firing rate Qk (k = 1 · · ·N) that

is a function of the axonal flux rate from the layer 5 cells [19], that is Qk = fk(φv).

All motoneurons have a threshold input below which they do not fire. Thresholds

are distributed exponentially:

Tk = Tmine
αk (2)

where Tk is the threshold of the k-th unit and Tmin is a minimum threshold (set to

14 s−1 [19]). The parameter α dictates the range R of possible thresholds, through

α = lnR/N . When the axonal flux rate φv from the layer 5 neurons exceeds a unit’s

threshold Tk, the unit fires with a rate given by the following function of axonal flux:

Qk(t) = fk(φv(t)) = q + κk(φv(t)− Tk) (3)

where q is the minimum firing rate (which we set at 8 Hz for all units) and κk is a constant

for each k. The gradient κk is chosen separately for each k so that all motoneurons reach

the same Qk when φv is equal to Qmax
v , the maximum firing rate of the layer 5 neurons.

We set Qmax
v , to 300 s−1, to broadly align with previous simulations at high (150%

resting motor threshold, RMT) pulse intensity [14].

We next determine the times at which the motoneurons fire. For the k-th

motoneuron, we find firing times τ jk , where the superscript j denotes the j-th firing

event of the k-th unit, by time-integrating Qk(t) [32]; when it passes an integer, j, we

identify a firing event. That is, the τ jk obey:∫ τ j
k

t=t0
Qk(t)dt = j, (4)

where t0 is the time that the firing rate of the neuron crosses its threshold value.

We produce a MEP by summing individual motounit action potentials (MUAPs).

Each motoneuron leads to a MUAP whose size Mk is proportional to its threshold —

that is, the units recruited latest fire the strongest. Thus Mk = M0e
αk, where M0 is a

constant set to be 42 mV s−1 so that the MEP’s amplitude is around 2 mV for pulses
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at 150% RMT at a low background activation rate [33, 1, 34]. The shape of the MUAP

is described by a first order Hermite-Rodriguez function H(t) [19, 14, 35]:

H(t) = −te−( tλ)
2

, (5)

where λ is a constant timescale which we set at 2.0 ms [19]. Thus, an electromyogram

(EMG) response, M(t), is given by the sum of the contributions from the various

MUAPs:

M(t) =
∑
jk

MkH(t− τ jk) (6)

We define a MEP as the maximum positive deflection plus the maximum negative

deflection.

We mostly used standard parameter values to match Li et al [19], but have

adjusted slightly the MUAP amplitude M0 and the minimum threshold Tmin to give

very limited EMG activity with no voluntary contraction. In simulating response curves

we used a range of parameters. We vary the following by 15% upwards and downwards:

motoneuron threshold Tmin to account for motounit variation; layer 5 threshold θv to

account for variations in layer 5 cells; excitatory-to-excitatory coupling in layer 2/3, νee,

to account for inter-individual variation in cortical connectivity; and TMS-to-excitatory

coupling νex to account for variable stimulation strength at the cortical surface.

1.3. Application to single- and paired-pulse protocols

To evaluate how well our model captures TMS-evoked activation of the corticomotor

system, we assessed the models capacity to generate TMS-related phenomena. First

we assessed how the modeled MEP changed with increasing TMS intensities (i.e. an

input-output curve). Typically, MEPs increase in sigmoid shape, reaching a plateau

above ∼180% RMT.

Second, we assessed how the MEP was modulated following paired pulse paradigms.

A sub- or suprathreshold conditioning TMS pulse was delivered followed by a test

TMS pulse after a given inter-stimulus interval. The peak-to-peak amplitude of the

conditioned MEP is then compared against a MEP following a test TMS pulse alone

(i.e. an unconditioned MEP). Subthreshold conditioning pulses are followed by a period

of inhibition lasting 1-6 ms (short-interval intracortical inhibition, SICI) and then a

period of facilitation lasting 10–15 ms (intracortical facilitation, ICF). Suprathreshold

conditioning pulses are followed by strong facilitation which peaks at ∼20 ms, and then a

long period of inhibition lasting 50–200 ms (long-interval intracortical inhibition, LICI).

SICI and ICF are modulated by drugs which target GABAA and NMDA receptors,

whereas LICI is modulated by drugs targeting GABAB receptors. To test this, we

modulated the parameters governing GABAA, GABAB and excitatory (time constant

equivalent to NMDA receptors) synaptic coupling and assessed their impact on SICI,

ICF and LICI.

Finally, we assessed how the modeled MEP was altered with a tonic muscle

contraction. MEPs increase in amplitude with increasing voluntary muscle activation,
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and are followed by a cessation in muscle activity which last for 200-300 ms and is known

as the cortical silent period (CSP). To model a tonic contraction, we introduced a small

constant rate of 0.5 s−1 for each %MVC [14] to the external stimulation population.

1.4. Application to repetitive TMS protocols

A central motivation for developing a MEP model of TMS was to provide a more

realistic output measure for neural field models of plasticity induced by repetitive TMS

(rTMS) protocols. As a proof-of-concept, we assessed how modeled MEPs were altered

following either intermittent or continuous theta burst stimulation (iTBS, cTBS). We

included features of calcium-dependent plasticity with a Bienenstock-Cooper-Munro

(BCM) rule for metaplasticity [22, 18, 7], see Supplementary Material. We and others

have previously demonstrated that this plasticity model captures several key features of

TBS-induced plasticity by assessing changes in synaptic weights following stimulation

(e.g. synaptic weights are increased following iTBS and decreased following cTBS).

However, it remains unclear how these changes in synaptic weights would impact MEP

amplitude.

We simulated canonical cTBS and iTBS protocols with three pulses per burst at

50 Hz intraburst rate, five bursts per second, for a total of 600 pulses. For cTBS pulses

were applied continuously; for iTBS pulses were applied for 2 s then were absent for 8 s,

before repeating. Stimulation was applied at 80% of RMT. MEPs were modeled before

and after TBS at a stimulation intensity of 120% of the pre-TBS RMT.

Although initial experimental studies suggested that iTBS increased, whereas cTBS

decreased, MEP amplitude, more recent studies have suggested that response to TBS

is variable across individuals. The variability likely arises from both methodological

and biological factors. For instance, Hamada et al [36] found that the manner of

interaction of TMS with cortical circuits was associated with the direction of change in

MEPs following iTBS and cTBS. In contrast, Mori et al [37] found that single nucleotide

polymorphisms in genes associated with glutamatergic NMDA receptors impacted iTBS

outcomes. To assess the impact of methodological and biological variability on TBS-

induced changes in MEPs, we altered the synaptic coupling of TMS to the layer 2/3

excitatory population to mimic variability in how TMS interacts with cortical circuits,

and the parameter governing synaptic coupling between layer 2/3 excitatory populations

to mimic variability in glutamatergic receptors.

2. Results

2.1. Motor evoked potential at rest

A simulated EMG at rest is shown in Fig. 2. A stimulation intensity of 780 s−1 (120%

RMT) has been used with a pulse length of 0.5 ms [18]. Part (a) gives a plot of the EMG

as a function of time (stimulation is at 0 s); the MEP is indicated. The corresponding

layer 5 pulse rate is shown in part (b), and the firings of motoneurons are shown in part
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Figure 2. (a) A typical EMG produced by the model as a function of time. The

MEP is indicated. The TMS pulse occurs at 0 s. (b) The mean rate of firing of the

layer 5 population as a function of time, for various intensities of stimulation, plotted

relative to the baseline rate. The inset shows an enlarged version at early times. (c)

Motoneuron firings as a function of time.

(c). Each dot corresponds to a firing of a unit arranged such that the lowest threshold

firings correspond to the lowest-indexed units. The MEP demonstrates a realistic shape,

with a rapid positive rise about 25 ms after the TMS pulse, followed by rapid fall to a
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maximum negative deflection about 10 ms later. Small amplitude activity follows the

pulse.

Figure 2(b) shows the mean pulse rate, relative to the baseline of 17.8 s−1. Initially,

around 2 ms after the initial TMS pulse, there is a small (40 s−1) peak in the response.

This time delay for layer 5 response compares reasonably with the 2 to 3 ms of Moezzi et

al [14] and is similar to experiment (1.5–2 ms) [1].

There are further peaks of activity. A peak of 80 s−1 occurs at 5 ms after stimulation,

and a peak of nearly 300 s−1 at 15 ms. Examination of the modeled cortical responses

shows that these peaks are a result of indirect stimulation of the layer 5 cells, via the

excitatory layer 2/3 cells. There is a strong dip before the final peak, due to build-up

of GABAA inhibitory effects after the initial rise, but it is short-lived. After about

15 ms, the layer 5 neurons reach a maximum firing rate. Beyond this time, there is a

drop-off in activity as the longer timescale GABAB inhibitory neurotransmitter effects

become prevalent. Since Fig. 2(b) shows mean activity across a population, the peaks

and troughs of the plot should not be considered as the I-waves per se; rather we may

expect such waves to be possible during the times where the activity is large. Changes

in layer 5 firing rate are consistent with recent invasive recordings in rodents [24] and

non-human primates [38].

The firings of the motoneurons are shown in Fig. 2(c).

The effect of TMS intensity on MEP amplitude is shown in Fig. 3. From this

plot we identify a resting motothreshold of about 650 s−1 input intensity, as being

the amplitude that gives a MEP of around 0.1 mV. There is considerable variation in

maximum output intensity, from about 1 – 7 mV. However, there is more consistency in

threshold; all responses are very low at 600 /s and then climb rapidly with stimulation

intensity. By 1200 s−1 stimulation (approx 180% RMT) most responses have flattened.

2.2. Paired-pulse protocols

To model SICI and ICF we have applied a conditioning stimulus at 70% RMT and a test

stimulus at 120% RMT. The interstimulus interval (ISI) has been varied up to 20 ms.

Results are shown in Fig. 4(a). For short ISI (5 ms or less) there is substantial inhibition

of the pulse; at very short ISI the response to the test pulse is almost abolished. This

broadly agrees with experiment (shown for comparison) which demonstrates that SICI

at subthreshold conditioning intensities persists up to approximately 7 ms ISI [39].

At longer ISI (7 ms and greater) the model shows facilitation of the test pulse. This

facilitation peaks at about 10 ms, in agreement with experiment [40, 39, 33].

Modeling of LICI is achieved by pairing two suprathreshold pulses at 120% RMT.

Results are shown in Fig. 4(b) and the experimental plot of [40] is shown for comparison.

At ISI less than 50 ms there is substantial facilitation of the test pulse, but at longer

ISI (50 ms to 300 ms) there is considerable inhibition. While broadly consistent with

experiment there are some differences. First, the extent of the ICF is higher than usually
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Figure 3. The size of the MEP as a function of the stimulation intensity at rest. The

black line denotes the standard parameter set; the eight gray lines show the responses

for ±15% changes in each of the following parameters νex, νee, θv and Tmin. The

dashed lines indicate RMT and 120%RMT.

seen, and the period of LICI lasts to longer ISI (about 300 ms) than is typically seen

experimentally (about 200 ms). Also, the modeled LICI is not as strong; MEPs are

reduced in the model to around 40% of their baseline whereas in experiment they can

be almost eliminated.

Next, we simulated the effect of GABAergic and anti-glutamatergic drugs on

SICI, ICF, and LICI by modulating the coupling strengths between layer 2/3 cortical

populations. Fig. 5(a) shows the effect of increasing the coupling strength due to

GABAA receptors from the inhibitory to the excitatory population on SICI and

ICF (equivalent to applying a GABAA agonist). The plot shows that increasing

neurotransmission of GABAA receptors on excitatory populations increases SICI but

reduces ICF. This agrees with experiment [41] which shows that a GABAA receptor

agonist such as Diazepam increased SICI [42, 43, 44] but reduced ICF [45, 46].

Fig. 5(b) shows the effect of decreasing excitatory to excitatory coupling strength

(equivalent to applying an anti-glutamatergic drug) on SICI and ICF. The plot

shows that SICI is increased, whereas ICF is reduced by decreasing excitatory

coupling, largely in agreement with studies applying anti-glutamatergic drugs such as
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Figure 4. The MEP changes as a result of paired-pulse protocols. MEPs are

normalized in terms of the amplitude for a single test pulse and are plotted against the

time between the two pulses, that is the ISI. (a) A 70% RMT conditioning pulse with

a 120% test pulse demonstrates SICI and ICF. The results of [39] are shown in the

right hand panel with permission. (b) A 120% RMT conditioning pulse with a 120%

RMT test pulse shows LICI. The dashed lines indicate no change in MEP; a response

above the line indicates facilitation, a response below indicated inhibition. The results

of [40] are shown in the right hand panel with permission.

Mematine [47] or Riluzole [48, 49], and NMDA-antagonists such as Amantadine [50] or

Dextromethorphan.

Finally, we simulated the effect of increasing the inhibitory to excitatory coupling

due to GABAB receptors (equivalent to applying a GABAB receptor agonist) on

LICI. Figure 5(c) demonstrates a significant increase in LICI (ISI of 100 ms;

two suprathreshold pulses) with increased GABAB receptor coupling to excitatory

populations, again in agreement with experiments using GABAB receptor agonists

such as baclofen [51]. Taken together, these findings demonstrate that our MEP

model is able to capture a large range of paired-pulse TMS phenomena that are

observed experimentally, including the effects of altering excitatory and inhibitory

neurotransmission using different drugs.
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Figure 5. The effect of modulating couplings between populations on SICI (3 ms ISI),

ICF (15 ms ISI) and LICI (100 ms ISI ). (a) Modulating the GABAA inhibitory coupling

to the excitatory population on SICI. The fractional change in MEP (compared with

a single test pulse) is plotted for two cases of the strength of the GABAAto-excitatory

coupling, νAei; specifically a ‘control’ value of (−0.72 × 10−4 V s) and a 30% increase

(that is, 30% more negative) in this value. The dashed line indicates no change in

MEP. (b) The same modulation as (a), but on ICF. (c) Modulating the excitatory to

excitatory coupling on SICI. The ‘control’ corresponds to a coupling strength νee of

1.92× 10−4 V s, a 30% reduction in this value is also shown. (d) As (c), but for ICF.

(e) Modulating the GABAB inhibitory coupling to the excitatory population on LICI.

The ‘control’ corresponds to a relative coupling strength νBie of −0.72× 10−4 V s; also

shown is a 30% increase (i.e. 30% more negative) in this value.
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2.3. Motor evoked potential during contraction

Figure 6(a) show the EMG response following a single pulse at 120% RMT and10%

MVC. The background activity has resulted in a 10% increase in the amplitude of the

MEP during a contraction. Also, a silent period is evident after the pulse during which

there is no EMG, with background EMG returning after 300 ms. Further increasing the

strength of the muscle contraction resulted in increased MEP amplitude, as shown in

Fig. 6(b), in line with experimental findings.

Figure 6(c)shows the CSP against the time constant of the decay of GABAB. As

decay constant increases, the silent period also increases. This agrees with experimental

results, but overall the modeled CSP is somewhat longer than typical measured

CSPs [24]. The CSP reflects the long period in which the layer 5 pulse rate (Fig. 2(b))

drops below its equilibrium value due to build-up of GABAB and its length is strongly

related to the timescale of GABAB decay [14].

2.4. Theta-burst stimulation

Having established that our model captures a wide range of single and paired pulse

TMS phenomena, we next assessed whether modeled MEPs were sensitive to changes in

synaptic weights induced following iTBS and cTBS predicted by a model of CaDP

with metaplasticity. We searched across a range of parameter values mimicking

variability in how TMS interacts with cortical circuits (TMS-e coupling) and variability

in glutamatergic neurotransmission (e-e coupling). Figure 7 shows the predicted changes

in MEPs following both cTBS and iTBS. There are several notable features to these

outcomes. First, there are several areas within the parameter space that predict the

‘canonical response to TBS (i.e. cTBS decreases MEPs, iTBS increases MEPs, e.g.

the point ◦). Second, a wide variability in response profile can also be generated by

altering how TMS interacts with cortical circuits (TMS-e coupling) and how excitatory

populations interact with each other (e-e coupling). For instance, the point ∗ shows

an opposite to canonical response, the point 5 a parameter set where both paradigms

decrease MEP amplitude, and4 a parameter set where both paradigms increase MEPs.

Furthermore, there are parameter spaces where neither paradigm has a strong effect on

MEP amplitude (e.g. ‘non-responders’). The maximum predicted increase in MEPs

(∼1.15) is smaller in magnitude than the maximum predicted decrease (∼0.7), and

is also smaller than the maximum often observed in experiment (∼1.8). Third, the

response to TBS becomes unstable (i.e. locks in to a high firing rate similar to a seizure)

at high values of both TMS-e coupling, but particularly e-e coupling, shown by the

white space on Fig. 7. Interestingly, disorders associated with abnormal glutamatergic

receptor function, such as anti-NMDA receptor encephalitis, are often accompanied by

seizures. Fourth, the predicted changes in MEP amplitude following TBS across the

parameter space are nonlinear — suggesting these relationships would not be evident

with simple correlations often used in human TMS experiments. Taken together, these

findings demonstrate that our MEP model is sensitive to changes in synaptic weight
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Figure 6. MEPs with muscle contraction. (a) The timecourse of the EMG at 120%

RMT intensity and 10% MVC. The silent period is indicated. (b) The amplitude of

the MEP as a function of muscle contraction (%MVC). (c) The duration of the silent

period as a function of GABAB decay time constant.
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Figure 7. The MEP changes as a result of (a) cTBS and (b) iTBS protocols against

the relative strength of the TMS-to-excitatory coupling and excitatory-to-excitatory

coupling strengths. The dashed lines show no change in synaptic weight. The weight

changes at four points are indicated in the lower panels. A canonical response is

indicated by ©, an opposite-to-canonical response is indicated by ∗, both responses

positive is indicated by 4, and both responses negative by 5.

following TBS predicted by a model including rules for CaDP and metaplasticity, and is

able to capture a variety of response profiles often observed in human TBS experiments.

3. Discussion

We have developed a biophysical model of MEPs following TMS to the motor cortex

by combining a population-based model of cortical activity and an individual neuron

model of motor output. The model captures many common features of MEPs
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including input-output characteristics, responses to paired-pulse paradigms, a silent

period with voluntary contraction and changes in MEPs following plasticity-inducing

TBS paradigms. It provide unique insights into how micro/mesoscale mechanisms, such

as differences in synaptic weightings between excitatory/inhibitory neural populations,

can impact TMS-evoked motor output and TMS-induced plasticity.

A limitation of our model is that it does not predict I-wave activity in layer

5 corticospinal neurons [13, 14]. Population-based models are not well suited for

capturing highly synchronised events, such as I-waves, as mean population firing-rates

are modeled instead of individual firing events. However, modeling at the population

level is well suited for TMS [7], which simultaneously activates large neural populations,

and captures the slower excitatory and inhibitory postsynaptic potentials that are likely

involved in paired pulse phenomena. Indeed, our model is successful at capturing a wide

range of single-pulse, paired-pulse and rTMS phenomena without explicitly modeling

I-waves.

We have not considered trial-to-trial variability in MEP amplitude. MEP variability

is likely driven by fluctuations in both cortical and spinal excitability [52]. An

important next step will involve incorporating existing population-based models of

cortical oscillations including cortico-thalamic loops [29] and more detailed models of

spinal circuits. This approach will allow exploration of MEP variability, and allow

modeling of TMS-evoked EEG activity [53].

Finally, we only qualitatively compared model predictions to real data. Future work

assessing the capacity to predict unseen experimental data (e.g. following changes to a

given parameter such as intensity or inter-stimulus interval) will help further define the

predictive value of such models.

4. Conclusions

We have demonstrated how a biophysically plausible nonlinear model of MEPs can be

combined with the output of a population-based model of cortical neurons in order

to produce a description of MEPs due to TMS. The final MEP activity is realistic

in terms of variation with intensity and muscle contraction, and demonstrates the

known amplitude and interval-dependent effects in paired-pulse stimulation. The MEP

model is also sensitive to changes in synaptic weight predicted by a model of TBS-

induced plasticity including rules for CaDP and metaplasticity, demonstrating complex

relationships between variability in methodological and biological factors and MEP

changes following TBS. Overall, the approach allows population-based modeling of

cortical plasticity using neural field theory to be better-interpreted, by providing a

route by which the effect on the MEP can be evaluated. Continued development of

such models in combination with human experiments will enable a unified theoretical

understanding of how TMS interacts with and modifies cortical circuits.
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