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Improved identification of structural variants (SVs) in cancer can lead to more targeted 
and effective treatment options as well as advance our basic understanding of disease 
progression. We performed whole genome sequencing of the SKBR3 breast cancer cell-
line and patient-derived tumor and normal organoids from two breast cancer patients 
using 10X/Illumina, PacBio, and Oxford Nanopore sequencing. We then inferred SVs and 
large-scale allele-specific copy number variants (CNVs) using an ensemble of methods. 
Our findings demonstrate that long-read sequencing allows for substantially more 
accurate and sensitive SV detection, with between 90% and 95% of variants supported by 
each long-read technology also supported by the other. We also report high accuracy for 
long-reads even at relatively low coverage (25x-30x). Furthermore, we inferred 
karyotypes from these data using our enhanced RCK algorithm to present a more 
accurate representation of the mutated cancer genomes, and find hundreds of variants 
affecting known cancer-related genes detectable only through long-read sequencing. 
These findings highlight the need for long-read sequencing of cancer genomes for the 
precise analysis of their genetic instability. 
  
Somatic mutations that drive cancer development range across all genomic scales, from single 
nucleotide mutations through large-scale genome rearrangements, and have been observed in 
nearly all types of cancer at every stage of the disease progression1. Better detection, 
quantification, and reconciliation of mutation types in cancer samples can lead to a better 
understanding of disease progression and help improve existing and develop new, often patient-
specific, therapeutic approaches for the disease2. Furthermore, improvements in detecting 
germline genetic variants in healthy cells can allow for better risk assessment of both hereditary 
and de novo mutations of various cancer types, leading to a more proactive rather than reactive 
cancer treatment approach3. 

Our ability to detect genetic alterations has evolved over the last several decades of cancer 
genetics research. Prior to the completion of the human genome project, only a small handful of 
oncogenes or tumor suppressors were known4,5. Large-scale detection of cancer mutations 
began in around the year 2000 after the initial sequencing of the human genome using either 
microarrays6,7 or PCR amplification of known cancer-related genes from tumor and normal 
tissue and sequenced on low-throughput ABI capillary instruments8. In the late-2000s, the 
advent of Solexa, which later became Illumina, next-generation sequencing instruments 
dramatically accelerated the pace of discovery so that whole cancer genomes could be 
sequenced for the first time9,10. Since then, the dramatic improvements in the throughput and 
cost of whole-genome sequencing (WGS) and whole-exome sequencing (WES) over the past 
decade have made these technologies increasingly important in cancer studies, opening the 
door to widespread sequencing of patients, and the advancement of precision & personalized 
medicine. Within the Cancer Genome Atlas Project11 (TCGA), the International Cancer Genome 
Consortium12 (ICGC), and other large-scale efforts, several thousands of tumors have been 
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sequenced using short-read Illumina sequencing across dozens of major cancer types. These 
studies have had a tremendous impact in cancer genomics, leading to the discovery, for 
example, of different signatures and mutation rates across cancer types, and new insights into 
the clonal structural and evolution of tumors13–15.  

These results have substantially advanced our understanding of cancer susceptibility and 
progression, although the identification and understanding of the genetic alterations in cancer 
remains incomplete. A major contributor to our incomplete knowledge is that the known 
mutations have chiefly been detected using short-read Illumina sequencing16. This technology is 
very effective for identifying single nucleotide variants (SNVs) and large copy number variants 
(CNVs, especially those 100kb or larger), however, several studies have found it has poor 
accuracy for structural variant (SV) detection17. SVs are larger mutations, 50 bp or larger, where 
sequence is added, removed, or rearranged in the genome. Because of the short-read lengths, 
Illumina sequencing is difficult to map across SV breakpoints, especially insertions that are not 
present in the reference genome. Furthermore, SVs are frequently flanked by repetitive 
sequences so that the short-read sequence data frequently can not be unambiguously mapped 
back to its correct genomic position and de novo assembly techniques also fail to capture the 
novel sequences18. Consequently, short-read analysis approaches systematically fail to detect 
SVs, with false negative and false positive rates above 50%19. As a result, we are facing a major 
limitation with short-read sequencing studies of cancer where the field has systematically 
missed many important variants, potentially making it blind to entire classes of inherited genetic 
risk factors and blind to how SVs may mediate cancer progression and patient survival.   

New long-read, single molecule sequencing technologies from Pacific Biosciences (PacBio) and 
Oxford Nanopore Technologies (ONT) have been shown to more reliably identify SVs with 
substantial improvements to both sensitivity and specificity. Reports by several groups have 
found a typical healthy human genome contains approximately twenty thousand SVs, and that 
they can be detected with 95% or greater sensitivity and specificity with long-reads17,20,21. These 
variants are especially important to accurately identify for somatic mutations that are not in 
linkage disequilibrium with any nearby SNVs. Long-reads can also improve the detection of 
SNVs and smaller insertion/deletion (indel) variants, especially in repetitive sequences and 
other sequences that are poorly resolved by short-reads22,23. Notably, 748 genes have been 
identified that are inaccessible to short-read sequencing22, including 193 medically-relevant 
genes with at least 1 exon that cannot be sequenced with short-reads, but are accessible to 
long-reads24,25.  Long-reads also have improved power to resolve complex regions of the human 
genome, such as the highly variable major histocompatibility complex (MHC) or the 
lipoprotein(a) (LPA) gene sequence; and in some cases identified causative SVs underlying 
genetic disease that had been missed by short-reads26,27. Within cancer genetics, we previously 
published one of the first reports using PacBio long-read sequencing to study SVs in a cancer 
cell line genome and found that long-reads could detect tens of thousands of variants that had 
been missed by short-reads17,28. This included variants in known cancer genes such as HER2, 
APOBEC3B and CDH1, as well as dozens of novel gene fusions and other complex 
rearrangements that had substantially altered the expression and regulation of genes in the cell. 
Since this work, the cost and quality of 3rd-generation sequencing platforms make them more 
suitable than ever before in both academic and medical settings21,29, and thus require the 
improvement of existing and the development of new methods for mutation detection and 
analysis.   

Addressing these questions, here we provide a comprehensive analysis of the SKBR3 breast 
cancer cell line and patient-derived organoids representing tumor and matching normal cells 
from two breast cancer patients sequenced with ONT, PacBio, and Illumina/10X 3rd-generation 
sequencing technologies. We identify and reconcile different types of large-scale genomic 
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mutations in observed samples with an ensemble of methods, and highlight concordance and 
differences observed across different mutation inference methods and sequencing technologies. 
We demonstrate that long-read sequencing technologies outperform short-reads in SV detection 
with strong concordance between ONT and PacBio. Further, our integration of large-scale 
allele-specific CNVs and SVs into cancer genome karyotypes provides a more accurate 
representation of the observed mutated genomes. Notably, we observe hundreds of SVs, 
inferred exclusively with long-reads, that affect known cancer-related COSMIC30 census genes, 
and argue that long-read analysis of genetic variants plays a critically important in the area of 
cancer genomic instability. These results outline the advantages and limitations of various 
sequencing technologies when deployed for large-scale mutation detection in cancer genomes 
and provide a comprehensive biological and bioinformatics pipeline aimed at a more precise 
analysis of both patient-specific as well as overall genetic instability in cancer. 

Results 
 
Sample Identification and sequencing 
 
Building on our previous work, we first evaluated the widely studied SKBR3 breast cancer cell 
line. SKBR3 is one of the most widely studied HER2+ breast cancer cell lines, with applications 
ranging from basic to preclinical research31–34. SKBR3 was chosen for this study due to its 
importance as a basic research model for cancer and because the SKBR3 genome contains 
many of the common features of cancer alterations including a number of gene fusions, 
oncogene amplifications, and extensive rearrangements. Notably, we previously sequenced this 
cell line using short-read paired-end Illumina and long-read PacBio sequencing35 allowing us to 
focus on 10X Genomics Linked Reads and Oxford Nanopore sequencing for this sample (Figure 
1 and Online Methods). 
 
In addition, we sequenced tumor and normal patient-derived organoids from two breast cancer 
patients, here identified as patient 51 and patient 48, treated at Northwell Health and recruited in 
accordance with their Institutional Review Board Protocol (Online Methods). Patient-derived 
organoids are three-dimensional cultures of normal and cancer cells, propagated inside a 
basement-membrane extract matrix, overlaid with a growth-factor-rich growth medium tailored 
towards the origin of the individual tissue36. The organoids were generated from cells harvested 
from surgical specimens from the patients, and hence share the same genetic composition as 
the patient normal and tumor cells. Crucially, this allows for us to propagate the cells in a stable 
environment so that ample quantities of DNA were available for our three sequencing platforms 
(Figure 1). Furthermore, several studies have shown organoids are superior to standard 2D cell 
culture for recapitulating the molecular characteristics, physiology and treatment response of 
patient tissues37, allowing us to perform methylation analysis, RNAseq and other assays on the 
samples. 
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Figure 1. | Sample collection, sequencing, and alignment pipeline and statistics overview. a) Biological data samples 
collection, sequencing, and alignment workflow for SKBR3 breast cancer cell line and 3D Matrigel-grown organoids for solid 
breast cancer tumor tissues obtained from 2 female patients 51 and 48. b) Yield and alignment coverage statistics for observed 
samples across WGS experiments various sequencing platforms. Suffixes T and N next to patients’ identifiers indicate tumor or 
matching normal tissue. Alignment values x (y) represent average read-depth x for aligned reads with (y) representing average 
read-depth when all unresolved Ns in the reference are also taken into consideration.  c) Lengths distribution for reads of 
length 1.5+Kbp from PacBio and ONT sequencing runs for patient 51. raw-yield corresponds to lengths of raw sequenced reads, 
raw-aligned corresponds to lengths of raw read that had any alignment inferred for them and aligned corresponds to lengths of 
aligned parts of sequenced reads.  

 
 
Improved sensitivity and high concordance in structural variation inference with ONT 
and PacBio long-reads.  
 
Using these data, we then utilized an ensemble of methods to infer all types of SVs at least 
50bp in size, including insertions, deletions, inversions, translocations, and duplications. For 
both ONT and PacBio datasets we used two state-of the art methods Sniffles17 and PBSV 
(https://github.com/PacificBiosciences/pbsv), and for Illumina/10X dataset we used 6 SV 
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inference methods, with 3 (Lumpy38, Manta39, and SvABA40) designed for regular paired-end 
short Illumina reads, and 3 (NAIBR41, GrocSVS42, and LongRanger43) which also utilize the 
single-molecule 10X Genomics barcode information. We then iteratively merged SVs using the 
SURVIVOR44 package, first merging calls from all SV detection methods for each sequencing 
technology separately, and then merging across sequencing technologies to obtain sample-
specific SV callsets (Figure 2a).  
 
Since SVs inferred from paired-end short-reads are notorious for high rates of false 
positives17,45,46, for the Illumina/10X dataset we only considered SVs supported by at least 2 
methods. To mitigate false positives in the long-read SV calls we only report SVs that were 
supported by at least one quarter of the average alignment read-depth in either ONT or PacBio 
datasets (also see Coverage requirements below). During the merging, we optimize 
parameters to minimize the effects of small thresholding issues, such as a variant present in 10 
reads in one sample, and hence called as a variant, but only 9 reads in other, and hence not 
called (see Online Methods for details). Our results indicate a very strong concordance between 
SVs inferred with ONT and PacBio. Between 90% and 95% of variants called in at least one of 
the long-read data types were supported by both, with slightly lower concordance between 
PacBio-only calls (Figure 2b and Supplementary Figure 2a,c). We observe that while more than 
50% of SVs inferred from short-read data were also identified by long-reads, the total quantity of 
SVs inferred from short-reads is approximately 4 times less than for either of the long-read-
based inferences. We also demonstrate that across all SVs sizes, long-read based SV inference 
outperforms that of short-reads (Figure 2c and Supplementary Figure 2b). 
 
For patient 51 for which we sequenced both the tumor and the matching normal cells we 
observed that 77% (20,388/26,148) of the SVs identified in the tumor sample were also 
identified in the matching normal sample (Figure 2b). A high fraction of SVs present both in the 
cancer and in the normal cells is expected since the cancer cells originate from normal tissue. 
Cancer cells, however, will generally acquire new mutations resulting in the addition of nearly 
6,000 variants, although large deletions and loss-of-heterozygosity can potentially decrease the 
count of inherited SVs47. We also observe that for SVs called exclusively by short-reads only 
~11% (291/2,683) of SVs inferred in the tumor were also present in the matching normal cells. 
This is severalfold less than for SVs inferred both exclusively with long-reads (88%), and with 
both long and short-reads (97%), and we attribute this discrepancy to a high false positive rate 
in short-read SV inference.  
 
To better understand the level of patient-specific and shared germline SVs, both in observed 
patients and the SKBR3 cancer cell-line, we compared SVs inferred with multiple sequencing 
technologies in the presented study to SVs identified in 15 healthy human genomes sequenced 
with PacBio long-reads presented in the recent study by Audano et al20. We find a high level of 
agreement between the SVs themselves and the distributions of their breakends locations 
identified in the cancer samples and the healthy samples (Supplementary Figure 3). We 
observe that 2,577 of the tumor-only SVs in patient 51 are present in other observed healthy 
samples and we thus hypothesize that many of them are actually present in the normal cells of 
patient 51, and the inability to infer them in normal cells stems from the lack of coverage in the 
ONT and the absence of PacBio long-read sequencing of the normal sample. This conjecture is 
supported by the comparison of SV types exclusively inferred with different long-read 
sequencing technologies, since the vast majority (1,806/2,577) are insertions, with ~70% having 
lengths of 50-200 bp. More accurate basecalling and better SV-genotyping algorithms can help 
address such limitation in the future. 
 
We further examined the distribution of SVs signature-based types across technology-specific 
subsets of inferred SVs in the analyzed cancer samples as well as in the healthy SV set 
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(Supplementary Figure 4). We observe that in SVs identified exclusively with long-reads 
insertions and deletions comprise the largest fractions of ~0.5 and ~0.36 respectively. 
Duplications comprise only ~0.06 of the long-read exclusive SVs callsets, while the inclusion of 
SVs inferred with even 2+ short-read SV callers increases that value severalfold to ~0.13-0.16 
in the multi-technology SVs callset, and we further observe that duplications constitute ~0.71-
0.93 of the 10X/Illumina-exclusive SVs. We further observe that both inversion and translocation 
SV signatures constitute similar fractions in both cancer and healthy SV sets in either short, 
long, or multi-technology SV sets.  
 
Nanopore sequencing has the unique ability to identify cytosine methylation changes from DNA 
sequencing data without any additional library preparation63. Using this capability, we also 
examined methylation characteristics for the observed cancer and normal genomes (see Online 
Methods). As previously reported48, we observed genome-wide hypomethylation in the tumor 
samples relative to normal (Supplementary Figure 10a,b). While this hypomethylation occurs 
genome-wide in the cancer genomes, when genetic contexts are considered promoter regions 
stand out as an exception to this trend (Supplementary Figure 10c,d). Furthermore, promoter 
regions that had SVs in them showed a slight enrichment for hypomethylation when compared 
to promoter regions without SVs (Supplementary Figure 10e). We also observed similar 
averaged methylation frequencies’ trends around transcription start sites (TSS) both in cancer 
and normal samples (Supplementary Figure 10f). We also identified several notable examples 
where SVs located within promoter regions of known COSMIC genes coincide with methylation 
changes between samples normal and tumor cells in patient 51: (i) insertion in PRDM1 gene 
coincides with hypomethylation of the respective promoter region in the tumor (Supplementary 
Figure 10g); (ii) duplication in the promoter region of the ZEB1 gene coincides with the 
increased methylation of the affected area in the tumor (Supplementary Figure 10h); (iii) 
insertion in the promoter region of USP6 gene coincides with the blocking of the TSS 
demethylation in tumor (Supplementary Figure 10i). These findings demonstrate that long-read 
ONT sequencing of DNA obtained from patient-derived organoids can allow for an integrative 
analysis of both SVs and methylation, both of which play an important role in cancer studies. 
 
Additionally, RNA-seq gene expression data obtained from the tumor 51T and the matching 
normal 51N samples to investigate the impact of SVs on transcription. For this, we focused on 
differences in expression levels of those genes affected by SVs present in 51T but not present 
in 51N or fifteen other healthy samples sequenced with long-reads (see Online Methods for 
details). Overall, we see that duplications and deletions generally increase and decrease gene 
expression, respectively, especially when more than 50% of the gene sequence is impacted by 
an SV (Supplementary Figure 9a). While in some examples (Supplementary Figure 9b) we 
observe SVs’ link to gene expression change more clearly, there is a considerable range in the 
fold change of the expression levels so that we cannot conclude that the magnitude of 
expression changes is solely explained by the considered SVs. We note that SVs of different 
types that span genes do not always uniquely determine the copy number changes of the 
affected genomic regions due to the rearranged nature of underlying cancer chromosomes. For 
example, localized deletions within larger highly amplified regions can still show an overall 
increase in genomic copy number and increase in expression. These examples highlight an 
important, yet evidently non-exclusive, role that somatic SVs can play in tumor cells 
development and progression, and thus the importance of SV detection in cancer studies. 
 
Overall, our results demonstrate that for comprehensive SV inference single-molecule long-read 
sequencing is essential, with ONT and PacBio producing highly similar results, thus providing 
validation of the long read variant calls. We also observe that a majority of SVs detected in 
tumor samples are also present in both matching normal cells as well as in the union set of SVs 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 19, 2019. ; https://doi.org/10.1101/847855doi: bioRxiv preprint 

https://doi.org/10.1101/847855
http://creativecommons.org/licenses/by/4.0/


 7 

from healthy samples. These observations also underscore the need for patient-specific 
reference genome approach in the analysis of structural variants and their role in cancer 
origination and progression. 

 
Figure 2. | Structural variantions inference across Illumina/10X, ONT, and PacBio sequencing platforms for sample 51. a) 
Ensemble worfklow for SV inference, with multiple methods and technologies used to infer SVs, subsequent merging of, first 
method-specific results, and then technology-specific results, with size and support restrictions applied. b) SV inference 
comparison across SVs inferred from Platform (x) sequencing exeriments, where Platform corresponds to sequencing 
technology, and (x) determines the average alignment read-depth coverage in the tumor sample. Methods-specific breakdown 
is provided for every sequencing technology. SVs detected in the normal sample are in parentheses. c) Size distribution for SVs 
in sample 51T with SVs being either exclusively inferred from either long-reads (either ONT, or PacBio, or both), or exclusively 
from Illumina/10x short-reads, or supported by both long and short-reads. 
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Coverage requirements for accurate structural variation inference with long-reads  
 
As the limitations for SV inference with long-read technologies are largely cost driven, we have 
measured how robust the SV inference with either ONT or PacBio reads is to lower sequencing 
coverage. For this, we downsampled our full coverage datasets to various coverage levels, with 
the lowest one set to 5x, and then compared SVs inferred on the downsampled datasets to the 
ground truth SV callsets from the original full coverage datasets. As with all variant callers, long-
read variant callers report variants supported by a certain minimum number of reads although 
the higher error rate for long read potentially makes this analysis more challenging. We 
measured this effect by adjusting the minimum number of long-reads required to span (i.e., 
support) an SV for it to be classified as present from !

"
 to !

#
 of the average read-depth coverage 

(Figure 3a). We found that for both ONT and PacBio reads the recall reaches a robust value of 
>0.8 and the precision reaches >0.9 with 24x to 30x coverage available (Figure 3b and 
Supplementary Figure 5). Both ONT and PacBio datasets also showed generally high 
consistency for minimum read supports, except for very low coverage datasets (<10x). These 
observations allow us to conclude that robust SV detection with single-molecule long-read 
sequencing is possible even at relatively low coverage levels of 25-30x average read-depth, 
with very similar results achievable with either ONT or PacBio long-reads. 
  

 
Figure 3. | Structural variantions inference on downsampled long-read datasets. a) Workflow for downsampling full long-read 
dataset, and computing concordance between downsampled and full coverage datasets with distinct minimum fractional x/y 
read support for an SV to be considered. b) Precision and Recall for SVs inferred on downsampeld ONT and PacBio data for 
sample 51T.  SVs inferred on the full coverage dataset at the matching read support threshold are used as the ground truth.  
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 Cancer karyotype reconstruction.  
 
With the consensus SV callsets available, we then reconstructed the rearranged structure of the 
observed cancer genome for patient 51, for whom both tumor and matching normal both short- 
and long-read sequencing are available. We utilized short-reads to infer large-scale allele-
specific CNVs and inferred the homogeneous sample composition by using state-of-the-art 
methods TitanCNA49 and HATCHet50. These methods infer segment copy number profiles by 
observing changes in short-read coverage levels across large fragments and by using the 
germline Single Nucleotide Polymorphisms (SNPs) to infer copy numbers in the allele-specific 
fashion. While these methods provide a genome-wide view of large CNVs, the allele/haplotype 
information is lost across both adjacent and distant fragments, and smaller (<50Kbp) CNVs are 
also often missed.  
 
To mitigate these limitations and to incorporate SV information into the analysis of rearranged 
cancer genomes we extended our recently proposed method RCK51 and utilized it to reconstruct 
haplotype-specific cancer karyotypes for patient 51 (see Online Methods). Briefly, RCK 
reconciles rearranged genomic segments, reference adjacencies, novel adjacencies (i.e., SVs) 
between segments’ extremities, and their copy numbers, and infers a haplotype-specific 
karyotype graph – or karyotype – which describes an alignment between the cancer and a 
healthy genome. RCK ensures that there exists a biologically plausible rearranged cancer 
genome with segment and adjacency copy number profiles determined by the inferred 
karyotype. RCK takes into account non-haploid nature of both normal and mutated genomes and 
also additionally supports long-read-informed haplotype constraints on the groups SVs 
breakends in the recovered karyotype (Figure 4b). In the new RCK v. 1.1 we added the support 
for long-read based haplotype constraints information for groups of SVs breakends, which helps 
to resolve ambiguities arising from equally plausible solutions in haplotype assignment for 
breakends during the karyotype inference process. 
 
We utilized both ONT and PacBio long-reads that spanned multiple SVs to introduce reference-
haplotype-of-origin constraints, or haplotype constraint groups, (i.e., ensuring that grouped SVs 
breakends are assigned to the same haplotype) for the RCK karyotype inference (see Online 
Methods). Both ONT and PacBio demonstrated similar results in terms of grouping together 
multiple SVs breakends. We observed the expected prevalence of 2-breakend (i.e., single SV) 
haplotype constraint groups, but also identifying several hundreds of 6+-breakend groups (i.e., 
3+ SVs), as well as few 20+ breakend groups where constraint information was obtained from 
multiple consecutively aligned long-reads and respective constraint groups joining via long-read 
overlaps (Figure 4a). The incorporation of haplotype constraint groups for SVs’ breakends 
reduces ambiguity in the cancer karyotype inference process and also helps to better assign 
haplotypes to allele-specific mutations, which have been shown to be important in previous 
cancer studies52. 
 
We ran RCK with distinct input CNVs from both TitanCNA and HATCHet and with the same 
comprehensive SV callset, and obtained highly similar haplotype-specific karyotypes of the 
considered rearranged cancer genome (Figure 4c and Supplementary Figure 6a). We also 
observed that even though the CNV profiles of the inferred karyotypes were normalized by RCK 
to incorporate the input SVs, the resulting copy number profiles remained very similar to the 
input ones. This suggests that the initial large-scale CNV inference was compatible with the 
overall rearranged structure of the observed cancer genome and most of the alteration were 
necessary to refine the input CNV profiles in order to incorporate SV information and ensure the 
existence of the tenable rearranged chromosomes (Supplementary Figure 5b). We note that 
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while up to a 10% of input SVs were allowed to be dismissed by RCK as either erroneous or not 
concurring with the input CNVs during the karyotype inference, we see very similar SVs 
breakend distribution across both the input SV callset, as well as in SVs utilized in the inferred 
karyotypes (Supplementary Figure 7). Overall, these results allowed us to study the impact of 
structural genetic variants on genes and other genomic features in much greater detail. 

 
Figure 4. | Cancer karyotype reconstruction. a) Haplotype constraint groups determined via uninterrupted SVs (uSVs) and long 
ONT and/or PacBio reads spanning multiple SVs. Statistics over the number of haplotype constraint groups inferred with only 
uSVs, and various combinations of uSVs and short/long-reads in patient 51. b) Workflow of the RCK method for reconstruction 
of haplotype-specific cancer karyotypes with allele-specific copy number profiles on large fragments, resolved SV callset, and 
inferred haplotype constraint groups. c) Circos plot of the karyotype inferred by RCK for patient 51 with HATCHet segment copy 
number (CN) input. Top two tracks corresponding to fractions x/y of the total length x of either amplified (CN ≥ 1) or deleted 
(CN = 0) fragments over the y=5x106 long windows. Breakend track shows the total number (with 590 being the maximum value 
shown) of breakends inferred by RCK as being present. Translocation track shows inter-chromosomal SVs inferred by RCK as 
being present in the reconstructed katyorype. 
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Figure 5. | Structural and Copy Number Variants in COSMIC census genes. a) Comparison of the the number of COSMIC census 
genes being affected by SVs, as well as the number of SVs affecting COSMIC census genes, across inferred SV callset in 51T and 
N (parenthetical), SKBR3, and 48T, and SVs reported by RCK as being present in the karyptopes reconstructed with either 
HATCHet or TitanCNA copy number profiles in 51T. b) Comparison of the number of COSMIC census genes affected by either 
allele-specific deletions or amplifications between copy number profiles from HATCHet, RCK+HATCHet, TitanCNA, and 
RCK+TitanCNA in 51T. 

 
Structural and copy number variants in COSMIC census genes.  
 
Using the reconstructed cancer karyotypes for 51T and inferred SVs for samples 48T and 
SKBR3 we considered how many of the reconciled structural and copy number variants affect 
known cancer-related genes cataloged in the COSMIC census gene set53. On average, more 
than twice as many SVs (622) affect COSMIC census genes as the genes being affected (237) 
in 51T (Figure 5a). This result held for both the initial SV callset and the refined SV set produced 
by RCK during the karyotype reconstructions. The majority (199/237) of the SV-affected 
COSMIC census genes in patient 51 were affected both the tumor and matching normal cells, 
and furthermore, a majority (466/622 in the initial SV callset and 428/568 in reconstructed 
karyotypes) of SVs affecting COSMIC census genes were also present in both the tumor and 
the matching normal cells. Long-read based SV inference identified five times as many 
COSMIC census genes affected by SVs and SVs affecting COSMIC census genes than was 
possible to infer with short-reads. Furthermore, the lack of concordance between SVs inferred 
exclusively with short-reads between the tumor and normal samples (6/79) provides additional 
evidence that the short-read SV calling is error-prone. In both patient 48 and the SKBR3 cell line 
we observed similar results (Figure 5a) with long-read SV inference outperforming short-read 
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SV inference in both the number of COSMIC census genes affected, as well as the number of 
SVs affecting them.  
 
To assess the population frequency of these variants, we genotyped identified SVs affecting 
COSMIC genes from the three analyzed cancer samples with Paragraph54 in the dataset of 
2,504 short-read WGS samples from the recent re-sequencing of the 1000 genomes project 
(1KGP) samples46. Paragraph genotypes SVs by constructing localized sequence graphs 
containing the reference allele and the candidate SV allele and performs a localized realignment 
of paired-end short reads to the graph. The genotype is then determined based on the coverage 
of reads uniquely supporting the reference or variant allele breakpoints. Not all variants can be 
genotyped by Paragraph in all samples, resulting in no genotype call when support is 
ambiguous, so we consider only SVs that Paragraph was capable of genotyping in at least 1000 
samples. We then summarize rare variants identified in <5% ,<1%, and <0.1% of the overall 
observed samples (Table 1). We note that Paragraph v2.1 cannot genotype inversions, 
translocations, and large duplications, and thus we exclude such SVs from the genotyping 
analysis. SVs that were rarely present in 1KGP individuals (i.e., <0.01% frequency) were further 
filtered for variants which were not present in any of the 15 healthy genomes from the Audano 
et al study. We show that around 1 5⁄   to 1 4⁄   of the SVs we identified in COSMIC genes are 
genotyped at low frequency in the 1KGP individuals, and about half of these rarely genotyped 
SVs are also absent across all of the 15 healthy long-read genomes. These cancer variants 
found at low-frequency in a healthy population are thus the most likely candidates for cancer 
risk-factor-type mutations (Supplementary Table 1). These variants of interest are identified 
almost exclusively with long-reads, and although short-read genotyping can help determine 
population frequency, the ability of 15 long-read samples to additionally narrow the variants of 
interest further underscores the need for long-read sequenced genomes, both with healthy and 
disease phenotypes. 
 

sample # of SVs [l|s] 

# SVs in 
COSMIC 
genes [l|s] 

1KGP genotyping [l|s] Not in Audano et al 
union SV callset & 

<0.1% in 1KGP <5% < 1% <0.1% 

51T 26,148  
[23,465 | 5,941] 

622 
 [542 | 161] 

186  
[185 | 25] 

144 
 [143 | 17] 

112 
 [111 | 13] 

30 
[29 | 9] 

48T 21,333  
[21,333 | NA]  

467  
[467 | NA] 

188  
[188 | NA] 

156  
[156 | NA] 

124  
[124 | NA] 

45 
[45 | NA] 

SKBR3 20,783  
[19,316 | 4,799] 

564  
[521 | 137] 

216  
[213 |31] 

194  
[192 | 25] 

185  
[183 | 23] 

121 
[119 | 19] 

 
Table 1. | Genotyping of COSMIC genes’ affecting SVs in 1KGP and Audano et al datasets. For every observed tumor sample, 
we report the total number of identified SVs, the number of SVs directly affecting known COSMIC census genes, and the 
number of COSMIC genes’ affecting SVs that were successfully genotyped (i.e., called in at least 1000 samples) in 1KGP WGS 
short-read dataset with frequencies of <5%, <1%, and <0.1 % respectively. For the rarest (i.e., <0.1% in 1KGP) SVs report the 
number of such SVs that missing in the Audano et al union SV set. For every reported SVs count x we also show the numbers 
[l|s] of how many of SVs in x were inferred by long (l) or short (s) reads, respectively.  

We also observed in sample 51T a great concordance across COSMIC genes being affected by 
allele-specific CNVs as determined by copy number profiles in the inferred karyotypes as well 
as a strong overlap with the input large-scale CNVs (Figure 5b). The strong overlap between 
COSMIC genes affected by either of the two inferred karyotypes obtained from distinct CNV 
inputs, suggests that reconciliation of SVs an CNVs during the karyotype reconstruction process 
provides a way to mitigate possible noise and ambiguity that CNV-only inference methods may 
be faced with. This conjecture is also supported by a relatively low overlap over the subsets of 
the COSMIC genes that did not have CNVs affecting them in the RCK inferred karyotypes but 
were affected by CNVs in either TitanCNA or HATCHet CNV datasets. 
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Besides individual mutations affecting particular genes, the somatic evolution of cancer 
genomes is also known to be propagated by various complex rearrangements presence of 
which has been observed to have strong influence on the recovery prognosis of the patient55,56. 
In contrast with most often observed and studied rearrangements (e.g., deletions, insertions, 
tandem duplications, translocations) that require at most 2 double-stranded breakages, complex 
structural alterations may require 3+ breakages happening simultaneously. We identified, 
almost exclusively via SVs inferred with long-reads, several hundred complex rearrangements’ 
signatures in the initial SV calls set for samples 51T, SKBR3, and 48T, and in the reconstructed 
karyotypes for 51T, ranging from most frequently observed 3-breaks to a 7-break 
(Supplementary Figure 8). We note that not all complex k-breaks (k ≥ 3) produce reciprocal 
SVs, but without observing or reconstructing the actual somatic evolutionary history, reciprocal 
SVs breakends remain one of the best ways of identifying complex rearrangement events in 
cancer.  
 

 
 
Figure 6. | SVs identified in cancer-related COSMIC census genes in patient 51. All presented SVs are identified with both ONT 
and PacBio reads. Superscript marks *, +, and s indicate that marked SVs affect known exons, found as rare in 1KGP samples, 
and identified by short-read SV inference methods respectively.  a) An insertion in the BRCA1 gene identified in <1% of samples 
in 1KGP samples. b) An insertion in the CHEK2 gene. c) An insertion/duplication, deletion, and two duplications in the NOTCH1 
gene, with deletion also found with short-reads. All 4 SVs belong to the same haplotype as indicated by multiple long (both ONT 
and PACBIO) reads spanning all of them at the same time. d) An insertion, and a deletion in the ZNF331 gene, with the later 
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deletion affecting an exon in the NM_001317121 transcript, and gentyped in < 1% of 1KGP project samples. Both SVs belong to 
the same haplotype as indicated by long-reads spanning all of them at the same time. 

 
Four examples of genome rearrangements affecting COSMIC census genes in patient 51 are 
shown in Figure 6. We identified two insertions, which were missed by short-read SV inference, 
but were identified in both the ONT and PacBio datasets, in BRCA1 and CHEK2 breast cancer 
genes (Figure 6a, b). Both insertions have also been found exclusively with long-reads in the 
matching normal tissue, with the insertion in the BRCA1 gene genotyped in <1% of 1KGP 
samples and present only in a single sample in the Audano et al dataset, suggesting a possible 
cancer-risk SV mutation, which would have been missed with widely-used next-generation 
whole genome sequencing analysis. In another example, we found multiple SVs present in 
NOTCH1 and ZNF331 COSMIC census genes (Figure 6c, d), which have been previously 
observed to play a significant role in tumor development57,58. Only one deletion in NOTCH1 
gene out of 6 observed SVs affecting NOTCH1 and ZNF331, has been inferred from short-read 
data, while all 6 of the considered SVs were identified in both ONT and PacBio long-read 
datasets. The exon-spanning deletion in ZNF331 present in both 51T and 51N samples was 
found in <1% of 1KGP samples but was identified in 3/15 samples in the Audano et al dataset. 
By utilizing long-reads that span multiple SVs at the same time we were able to assign all of the 
considered SVs in both NOTCH1 and ZNF331 genes to the respective reference haplotypes, 
with long-reads from both ONT and PacBio providing similar long-range haplotype constraint 
information. Assignment of multiple SVs to either the same or different haplotypes helps to 
better understand relationships between allele-specific genetic alterations, which has been 
observed52 to provide important information in determining the possible effects on the functional 
activity of the affected genes. 
 
Our utilization of inferred karyotypes with reconciled comprehensive SV and CNV callsets 
highlights the importance of incorporating various large-scale genomic variants in the 
comprehensive analysis of cancer genomes’ instability. We note that the abundance of long-
read-exclusive SVs affecting COSMIC census genes both in the tumor and matching normal 
cells with some of them being genotyped only in a small number of samples from the 1KGP, 
and an even smaller subset being also absent across the union of long-read SVs in 15 healthy 
genomes from the Audano et al dataset, demonstrates the importance and utility of long-read 
sequencing as an avenue for cancer risk-factor analysis in healthy individuals as well as in the 
analysis of cancer drivers and its progression when studying rearranged tumor genomes.  
 
Discussion 
 
In this study we presented a comprehensive analysis of three cancer genomes which we 
sequenced with Illumina/10X, ONT and PacBio sequencing technologies, and subsequently 
analyzed for large-scale (≥ 50bp) structural genomic mutations with an ensemble of methods. 
We observed how various SV and CNV inference methods compare to one another, and how 
SV inference results differ across considered sequencing technologies. We also demonstrated 
how SV and CNV mutations can be utilized together, reconciled, and integrated to infer a 
haplotype-specific cancer genome karyotype, which provides a refined view into the rearranged 
structure of observed cancer genomes. 
 
Our findings demonstrate that current long-read sequencing technologies can be utilized in 
clinical settings to greatly improve genome-informed cancer risk assessment, analysis and 
treatment. We observe that while long-reads provide previously unprecedented resolution for 
SV detection, the sample preparation, sequencing, and analysis is on-par with that of similar 
short-read genome sequencing assays both in terms of complexity, time, and computational 
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requirements. While costs are a major consideration for a technology to become widely 
applicable for patient care, we show that robust SV detection is possible at relatively low ~30x 
average read-depth coverage with either ONT or PacBio long-read sequencing platforms. When 
applied at scale, costs for 30x coverage is below $1000 per sample for ONT PromethION and 
below $2,000 for PacBio Sequel II, which is highly comparable to ~$800/$1,000 (Illumina/10X) 
for short-read sequencing. 
 
In the presented study we observe the importance and power of integrating both SV and CNV 
signals into a comprehensive karyotype, which better describes the structural alterations in the 
observed mutated cancer genomes. As both SV and CNV callsets describe complementary 
measurements of the true underlying rearranged chromosomes, their integration allows for 
refinement of both large-scale CNVs as well as identification of spurious SV calls. We note that 
long-reads provide both unprecedented resolution in SVs inference as well as haplotype of 
origin constraints for groups of SVs and their breakends, which can be important when 
determining effects of multiple closely located SVs on the underlying functional sequences. 
Furthermore, while these cancer samples were homogeneous due to their cell-line/organoid-
grown nature, direct patient cancer samples are often heterogeneous and comprised of multiple 
cancer clones with possibly distinct karyotypes50,59. For such samples, long-reads can provide 
valuable insight in assigning groups of SVs to particular clones and future long-read powered 
cancer studies can illuminate previously unseen aspects of clonal evolution in cancer.  
 
We also note that as long-read sequencing technologies become more and more advanced it 
becomes possible to move away from a generic haploid human genome reference into an era of 
patient-specific reference sequences. We believe that future extension of the presented 
methodology can benefit from incorporating patient-specific diploid healthy genome structure as 
a starting point for mutation inference. We further underscore the importance of extending 
existing and developing new methods for multi-sample, time-series, and even multi-patient (in 
hereditary cases), integrative analysis of genetic instability that drives and propagates cancer 
development. 
 
Data and Code Availability 
 
Sequencing data are in submission to dbGAP. The SV inference and comparison workflow is 
implemented with Snakemake60 v 5.5.4 and is available at github.com/aganezov/EnsembleSV.  
RCK v 1.1 utilized for cancer genome karyotype inference is available at 
github.com/aganezov/RCK. 
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