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Abstract 

Living organisms are an intelligent system consisting of sensors, transducers and actuators to 

perform precisely-controlled metabolic functions. With a better understanding of cellular 

regulation, metabolic engineers have been able to engineer both the chemistry modules (the mass 

flow) and the control modules (the information flow) inside the cell to design intelligent cell 

factories with improved performance. Biophysical models are important tools to understand 

genetic circuit dynamics, metabolic network constraints, and microbial consortia interactions. 

Based on a previously engineered malonyl-CoA switch (Xu et al, PNAS 2014), we have 

formulated nine differential equations to unravel the design principles underlying an ideal 

metabolic switch. By interrogating the physiologically accessible parameter space, we have 

determined the optimal control architecture to configure both the metabolic source pathway and 

metabolic sink pathway. We identified a number of biological parameters that strongly impact the 

system dynamics. We determined that low protein degradation rate, medium strength of metabolic 

inhibitory constant, high metabolic source pathway induction rate, strong TF-UAS (transcriptional 

factor-upstream activation sequence) binding affinity for the metabolic source pathway, weak TF-

operator binding affinity for the metabolic sink pathway, and a strong cooperative repression of 

metabolic sink pathway by TF benefit the accumulation of the target molecule. The target molecule 

production is increased from 50% to 10-folds upon application of the metabolic switch. With 

strong metabolic inhibitory constant, the system displays hysteresis and multiplicity of steady 

states. Stable oscillation of metabolic intermediate is the driving force to allow the system deviate 

from its equilibrium state and permits alternating ON-OFF gene expression control of both the 

metabolic source and metabolic sink pathways. The computational framework may facilitate us to 

design and engineer predictable genetic-metabolic switches, quest for the optimal controller 

architecture of the metabolic source/sink pathways, as well as reshape metabolic function for 

diverse biotechnological and medical applications. 

Key words: malonyl-CoA, metabolic switches, biophysical models, controller architecture, 

metabolic engineering, synthetic biology 
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Introduction 

In recent years, there is an influx of applying dynamic control theory to optimize metabolic 

pathways for production of various chemicals (Venayak, Anesiadis et al. 2015, Xu 2018, Xia, Ling 

et al. 2019). The marriage of intelligent control with synthetic biology have fruited a large volume 

of experimental and computational works that allow us to embrace a “dynamic” perspective to 

understand cell metabolism (Zhang, Carothers et al. 2012, Xu, Li et al. 2014, Gupta, Reizman et 

al. 2017). The notion of “metabolic homeostasis” is a result of the dynamic interplay of the various 

biomolecules inside the cell (Xu 2018, Lv, Qian et al. 2019). Take the glycolytic pathway as an 

example, oscillating metabolic flux could arise due to the feedback inhibition of the 

phosphofructokinase by cellular energy levels (specifically, ATP, ADP and AMP) (Sel'kov 1968, 

Bier, Bakker et al. 2000, Chandra, Buzi et al. 2011, Gustavsson, van Niekerk et al. 2014). Another 

classical example is the Lac operon, hysteresis and multiplicity of steady states could arise due to 

the positive feedback loop of the intake of the inducer (IPTG or lactose) by lactose permease 

encoded by LacY (Yildirim and Mackey 2003, Santillán, Mackey et al. 2007, Stamatakis and 

Mantzaris 2009). Inspired by this phenomena, early synthetic biology effort is spent extensively 

on constructing artificial genetic circuits by mimicking the electrical counterparts of the physical 

word (Andrianantoandro, Basu et al. 2006). Combing with mathematical modeling, a collection of 

classical work has emerged in the early 2000s, including the well-known toggle switch (CHEN 

and BAILEY 1994, Gardner, Cantor et al. 2000), repressilator (Elowitz and Leibler 2000) and 

metabolator (Fung, Wong et al. 2005) et al. These seminal works have encouraged us to employ 

biophysical models to quantitatively unravel and test the complicated molecular mechanisms 

underlying many perplexing biological problems, which marks the birth of synthetic biology. 

With about one decade, the post-term impact of synthetic biology starts yielding fruits in the 

metabolic engineering field (Keasling 2010). From a control perspective, metabolic enzyme could 

be the “actuator” that performs chemical conversion (i.e. kinase phosphorylation, chromatin 

deacetylation) or the “transducer” that generates secondary messenger (i.e. cAMP or acetyl-CoA) 

(Smolke and Silver 2011, Michener, Thodey et al. 2012). Moving beyond the logic circuits 

engineering (AND, OR, NOT, NOR gates et al) (Tamsir, Tabor et al. 2011, Wang, Kitney et al. 

2011, Moon, Lou et al. 2012), metabolic engineers have been able to harness various regulatory 

mechanisms, including repression (Liu, Xiao et al. 2015), activation (Doong, Gupta et al. 2018), 

attenuation (Benzinger and Khammash 2018) or RNA silencing (Yang, Lin et al. 2018), to rewire 

carbon flux and dynamically control cell metabolism. A number of control architectures (Oyarzún 

and Stan 2013, Liu, Xiao et al. 2015, Oyarzún and Chaves 2015, Venayak, Anesiadis et al. 2015, 

Chaves and Oyarzún 2019) have emerged and been applied to relieve metabolic burden (Ceroni, 

Boo et al. 2018), eliminate intermediate toxicity (Xu, Li et al. 2014), decouple cell growth from 

metabolite production (Bothfeld, Kapov et al. 2017, Doong, Gupta et al. 2018), enforce social 

reward-punishment rules (Xiao, Bowen et al. 2016, Rugbjerg, Myling-Petersen et al. 2018, 

Rugbjerg, Sarup-Lytzen et al. 2018, Wang and Dunlop 2019) to homogenize cell population et al. 

The interdisciplinary connection among control theory, genetic principles, ecological and 

evolutional rules open a new venue for us to design and engineer precisely controlled genetic-
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metabolic circuits to reprogram biological functions. Engineering such decision-making functions 

to rewire the genetic (information) flow so as to redirect/optimize metabolic flux will enable us to 

deliver intelligent microbes for a broad range of applications, ranging from bioremediation, 

biosensing, biosynthesis to therapeutics (Gao, Xu et al. 2019) et al. 

One of the essential tasks for metabolic engineers is to dynamically allocate carbon flux, so that 

the limited cellular resources could be harnessed to maximize the production of the target 

molecules (Xu, Bhan et al. 2013, Wan, Marsafari et al. 2019). Considering that the cell’s goal is 

to proliferate, there is always a tradeoff or conflicts to meet the requirement for optimal cell growth 

and metabolite overproduction. This will require us to equip the cells with various sensors to detect 

a broad range of environmental cues, cellular stimuli or metabolite intermediates (Zhang, Jensen 

et al. 2015), in such a way the cell can autonomously adjust gene expression or cell metabolism to 

compensate the loss or eliminate the surplus of enzyme activity. To achieve this, a number of 

control architectures, including the incoherent feedforward loop (Dunlop, Keasling et al. 2010, 

Harrison and Dunlop 2012), the invertor gate (Liu, Xiao et al. 2015), the metabolic toggle switch 

(Soma, Tsuruno et al. 2014) and the metabolic valve (Solomon and Prather 2011), have been 

implemented to improve the cellular tolerance to biofuels, or improve chemical production. 

One of the highly studied dynamic control system is centering around the malonyl-CoA node (Xu, 

Li et al. 2014, Fehér, Libis et al. 2015, Albanesi and de Mendoza 2016, David, Nielsen et al. 2016). 

Malonyl-CoA is the essential metabolic building blocks for synthesizing advanced biofuels (Xu, 

Gu et al. 2013), lipids (Qiao, Wasylenko et al. 2017, Xu, Qiao et al. 2017), polyketides (Zhou, 

Qiao et al. 2010, Liu, Marsafari et al. 2019), oleochemicals (Xu, Qiao et al. 2016), flavonoids (Xiu, 

Jang et al. 2017) and cannabinoids (Luo, Reiter et al. 2019) et al. High level of malonyl-CoA 

benefits the production of these metabolites (Yang, Kim et al. 2018) but also inhibits cell growth 

(Xu, Li et al. 2014, Liu, Xiao et al. 2015). Up to date, the FapR-derived malonyl-CoA sensor has 

been successfully applied to mammalian cell (Ellis and Wolfgang 2012), E. coli (Xu, Wang et al. 

2014, Yang, Kim et al. 2018) and yeast (Li, Si et al. 2015, David, Nielsen et al. 2016). In particular, 

a recent development of the malonyl-CoA oscillator (Xu, Li et al. 2014) (Fig. 1) has garnered 

significant attractions to study the optimal configurations of the controller architecture. One 

essential question is how to effectively compose the regulatory architecture of the metabolic source 

pathway and the metabolic sink pathway. To unravel the design principles underlying the malonyl-

CoA switch, we set about to establish a biophysical model (system of ODE equations) and 

interrogated a broad range of parameter spaces, including the protein degradation rate (D), 

malonyl-CoA inhibitory constant (1/K1) and malonyl-CoA source pathway induction rate (β2). We 

also specifically investigated the optimal regulatory architecture for both the malonyl-CoA source 

pathway (ACCase) and the malonyl-CoA sink pathway (FAS), defined by the FapR-UAS 

dissociation constant (K4), FapR-fapO dissociation constant (K3) as well as the FapR-fapO Hill 

cooperativity coefficient (n). The computational framework present here should guide us to design 

and engineer genetic-metabolic switches, determine the optimal control architecture of the 

metabolic source pathways and metabolic sink pathways, as well as predict the complex dynamics 

of cell metabolism. 
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Fig. 1. A malonyl-CoA switch to dynamically control fatty acids biosynthesis. FapR activates 

pGAP promoter and upregulates the transcription of the malonyl-CoA source pathway (ACC) 

which generates malonyl-CoA; FapR represses T7 promoter and shuts down the transcription of 

the malonyl-CoA sink pathway (FAS) which consumes malonyl-CoA. The FapR bindings sites on 

the ACC operon is an upstream activation sequence (UAS). The FapR binding sites on the FAS 

operon is the fapO operator. Malonyl-CoA is the effector molecule (ligand) for FapR. 

Computational method and system equations 

Assumptions to develop the system equations 

To simplify the biochemical and genetic events, we made eight assumptions to extract the basics 

of the genetic-metabolic circuits (Fig. 1): (a) We assume the number of DNA binding sites, 

specifically, FapO and UAS, far exceeds the number of transcriptional factor FapR in the system. 

Therefore, the repression rate of FAS or the activation rate of ACC are independent of the number 

of FapO and UAS in the system. (b) Glycolytic pathway (9 reactions) could be lumped into one 

single reaction to forming acetyl-CoA from glucose by PDH. (c) Fatty acids biosynthesis could be 

lumped into one single reaction to forming fatty acids (FA) from malonyl-CoA by FAS. (d) 

Malonyl-CoA depletion rate due to the formation of malonyl-CoA-FapR complex is negligible in 

the mass balance equation of malonyl-CoA (Eqn. 7). (e) The total enzyme or FapR concentration 

are approximately equivalent to the free enzyme or free FapR concentrations. (f) For non-regulated 

protein production (i.e. FapR and PDH), the production rate is cell growth-associated, therefor the 

production rate is proportional to the cell growth rate. (g) For regulated protein production (i.e. 

FAS and ACC), the production rate consists of both leaky expression (which is growth-associated) 

and regulated expression (which is non growth-associated) in the mass balance equations.  (h) The 

cytosol is a homogenous and well-mixed system without mass transfer or diffusion limitations, 

where D could be interpreted as the dilution rate for CSTR or degradation constant for batch culture. 

Formulation of the kinetic rate and mass balance equations 

MalCoA

UAS   pGAP fapO ACC

T7   fapO    FAS

AcCoA

Fatty acids

glucose

PDH
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We formulated the kinetic rate models (Table 1) on the basis of Michaelis-Mention equation for 

enzyme-substrate equations, Monod kinetics with metabolite (Malonyl-CoA) inhibition for cell 

growth, Hill-type equations for enzyme kinetics and metabolite-TF binding. Specifically,  Eqn. 1 

describes the specific growth rate, which follows Monod growth with glucose as limiting nutrients 

and malonyl-CoA as inhibitory factor; Eqn. 2 describes the mass balance for cell growth; Eqn. 3 

describes the growth-associated production of FapR and the depletion of FapR due to the formation 

of FapR-Malonyl-CoA complex; Eqn. 4 describes the growth-associated production (leaky 

expression) of FAS and the regulated expression of FAS repressed by FapR; Eqn. 5 describes the 

growth-associated production (leaky expression) of ACC and the regulated expression of ACC 

activated by FapR; Eqn. 6 describes the production rate of fatty acids (FA) from malonyl-CoA; 

Eqn. 7 describes the mass balance for malonyl-CoA, accounting for both the malonyl-CoA source 

(ACC) pathway and the malonyl-CoA sink (FAS) pathway; Eqn. 8 describes the mass balance for 

acetyl-CoA, accounting for both the acetyl-CoA source (PDH) pathway and the acetyl-CoA sink 

(ACC) pathway; Eqn. 9 describes the PDH production rate which is proportional to the cell growth 

rate; and Eqn. 10 describes the mass balance for glucose, accounting for the consumption rate due 

to cell growth and acetyl-CoA production. For all the mass balance equations (Eqn. 2 to Eqn. 10), 

we also considered the dilution or degradation terms. Biomass and cell concentration in the feeding 

stream of the system were designated as S0 and X0.  

Table 1. Equations used to define the adaptive genetic-metabolic circuits 

Equation No. Equations used in this work 

1 
𝜇 =

𝜇max 𝑆 

(
𝐶MalCoA

𝐾1
+ 1) (𝐾𝑆 + 𝑆)

 

 

2 ∂

∂𝑡
𝑋(𝑡) = 𝐷 (𝑋0 − 𝑋(𝑡)) + 𝜇 𝑋(𝑡) 

 

3 ∂

∂𝑡
𝐶FapR(𝑡) = 𝛼1 𝜇 𝑋(𝑡) − 𝐷 𝐶FapR(𝑡) −

𝑘1 𝐶FapR(𝑡) 𝐶MalCoA(𝑡)𝑚

𝐾2
𝑚 + 𝐶MalCoA(𝑡)𝑚

 

 

4 ∂

∂𝑡
𝐶FAS(𝑡) =

𝛽1

(
𝐶FapR(𝑡)

𝐾3
)

𝑛

+ 1

− 𝐷 𝐶FAS(𝑡) + 𝛼2 𝜇 𝑋(𝑡) 

 

5 ∂

∂𝑡
𝐶ACC(𝑡) =

𝛽2

(
𝐾4

𝐶FapR(𝑡)
)

𝑝

+ 1

− 𝐷 𝐶ACC(𝑡) + 𝛼3 𝜇 𝑋(𝑡) 

 

6 ∂

∂𝑡
𝐶FA(𝑡) =

𝑘2 𝐶FAS(𝑡) 𝐶MalCoA(𝑡)𝑞

𝐾𝑚
𝑞 + 𝐶MalCoA(𝑡)𝑞

− 𝐷 𝐶FA(𝑡) 
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7 ∂

∂𝑡
𝐶MalCoA(𝑡) =

𝑘3 𝐶ACC(𝑡) 𝐶AcCoA(𝑡)𝑟

𝐾5
𝑟 + 𝐶AcCoA(𝑡)𝑟

− 𝐷 𝐶MalCoA(𝑡) −
𝑘2 𝐶FAS(𝑡) 𝐶MalCoA(𝑡)𝑞

𝑌PS1 (𝐾𝑚
𝑞 + 𝐶MalCoA(𝑡)𝑞)

 

 

8 ∂

∂𝑡
𝐶AcCoA(𝑡) =

𝑘4 𝐶PDH(𝑡) 𝑆(𝑡)𝑢

𝐾6
𝑢 + 𝑆(𝑡)𝑢

−
𝑘3 𝐶ACC(𝑡) 𝐶AcCoA(𝑡)𝑟

𝐾5
𝑟 + 𝐶AcCoA(𝑡)𝑟

− 𝐷 𝐶AcCoA(𝑡) 

 

9 ∂

∂𝑡
𝐶PDH(𝑡) = 𝛼4 𝜇 𝑋(𝑡) − 𝐷 𝐶PDH(𝑡) 

 

10 ∂

∂𝑡
𝑆(𝑡) = 𝐷 (𝑆0 − 𝑆(𝑡)) −

𝜇 𝑋(𝑡)

𝑌XS

−
𝑘4 𝐶PDH(𝑡) 𝑆(𝑡)𝑢

𝑌PS2 (𝐾6
𝑢 + 𝑆(𝑡)𝑢)

 

 

Computational methods 

Matlab R2017b was used as the computational package on a Windows 7 professional operation 

system. The CPU processor is Intel Core i3-6100 with 3.70 GHz. The installed memory (RAM) is 

4.0 GHz. Matlab symbolic language package coupled with LaTex makeup language were used to 

compile the equations (Table 1). ODE45 solver was used to simulate and predict the system 

behavior. Matlab plot function was used to output the solutions and graphs. Matlab codes will be 

shared upon request. Biological parameters for Fig. 2 to Fig. 10 could be found in the 

supplementary files. Most of the parameters were assigned on the basis of BioNumbers database 

(Milo, Jorgensen et al. 2009). 

Results and Discussion 

Effect of protein/metabolite degradation rate on system dynamic behavior 

To understand the system dynamics, we probed a number of parameter space to generate the 

dynamic pattern that meets our design and control criteria. A list of parameters could be found in 

the supplementary files. We first investigated how protein/metabolite degradation rate impacts the 

system dynamics (Fig. 2). For all the simulations, we used six species, including regulator protein 

FapR, fatty acid synthase (FAS), acetyl-CoA carboxylase (ACCase), target product fatty acids 

(FA), intermediates malonyl-CoA (MalCoA) and acetyl-CoA (AcCoA), to represent the system. 

Under the prescribed parameter conditions (supplementary files) with protein degradation rates 

ranging from 0.15 to 0.60 (the unit is inverse of time), we evaluated the trajectory of the numerical 

solutions of the system ODE equations (Table 1). For relatively high degradation rate (D ≥ 0.2), 

we observed that the system solutions are approximately behaving like a damped oscillator (Fig. 

2). On the other hand, the low degradation rate (or longer residence time, i.e. D = 0.15 in Fig. 2) 

allows the system to oscillate stably with fixed frequency and amplitude, leading to the highest 

fatty acids production (Fig. 2). For example, fatty acids production at low protein degradation rate 

(D = 0.15) is about 10-folds higher than the fatty acids production at high protein degradation rate 

(D = 0.6). This is not counterintuitive as low degradation rate allows the protein catalysts stay 

longer in the system (Gao, Hou et al. 2019). And the stable oscillation indicates that the designed 
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control scheme could perform alternating ON-OFF control of the malonyl-CoA source pathway 

and malonyl-CoA sink pathway. Interestingly, the fatty acids production pattern is closely related 

with the malonyl-CoA sink pathway (FAS), but doesn’t correlate well with the activity of the 

malonyl-CoA source pathway (ACC). This is rooted in our initial assumptions that sufficient 

malonyl-CoA will inhibit cell growth. As a result, the intermediate acetyl-CoA and malonyl-CoA 

displays distinct oscillating pattern, with the stable oscillation (D = 0.15) leading to better control. 

 

Fig. 2. Effect of protein/metabolite degradation rate on system dynamic behavior. Protein 

degradation rates have been labelled with different color. Low degradation rate (D = 0.15) leads 

to relatively stable oscillation. High degradation rate (D ≥ 0.2) leads to damped oscillation. The 

units are arbitrary units. Parameters could be found in the supplementary file. 

We also explored whether we could further improve fatty acids production by using even smaller 

degradation rate (i.e. D = 0.1, Fig. 3). Interestingly, decreasing the degradation rate to 0.1 allows 

FapR to quickly accumulate in the system from t = 20. We could notice that a spike of fatty acids 

production at t = 20, but the entire control system collapses (D = 0.1, Fig. 3) at t > 20, due to the 

overdosed FapR repressing the expression of the malonyl-CoA sink pathway (FAS). 

Accompanying with increased FapR, the malonyl-CoA source pathway (ACCase) was also 

overdosed (D = 0.1, Fig. 3) due to the activating action of FapR toward the expression of ACCase. 

However, malonyl-CoA was not accumulated in the system due to the antagonist effect of FapR 

toward malonyl-CoA. Taken together, the low degradation rate (D = 0.1) allows the cell to only 

build biomass, but generates little final products (Fatty acids or FA in this study). In summary, the 
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range of degradation rate of the sensor protein (FapR) and the malonyl-CoA source pathway 

(ACCase) determines whether the designed control scheme will work or fail. 

 

Fig. 3. Effect of protein/metabolite degradation rate on system dynamic behavior. Protein 

degradation rates have been labelled with different color. Low degradation rate (D = 0.10) leads 

to a collapsed system: too much FapR represses the expression of FAS, activates the expression 

of ACC and quickly antagonize the resulting malonyl-CoA at t > 20. 

We further performed a phase-plane analysis to interrogate the solutions of above ODEs (Fig. 4). 

The phase plane represents the trajectory of the solution motion. On the FAS-FapR phase plane, 

the system is attracted to periodic limit cycle of clockwise motion. The horizontal (x-axis) 

projection of the elliptic cycle forms a negative slope with FapR (x-axis), indicating that FapR 

represses the expression of FAS. On the ACCase-FapR phase planes (Fig. 4), the system is 

attracted to periodic limit cycle of counterclockwise motion. The horizontal (x-axis) projection of 

the elliptic cycle forms a positive slope with FapR, indicating that FapR activates the expression 

of ACCase. Similarly, on the MalCoA-FapR phase plane (Fig. 4), the system is attracted to 

periodic limit cycle of counterclockwise motion. The horizontal (x-axis) projection of the elliptic 

cycle forms a negative slope with FapR, indicating that FapR acts as an antagonist for malonyl-

CoA. The phase portraits allow us to understand the motion of system dynamic behavior, it may 

also serve as diagnosis for debottlenecking and troubleshooting as well as accelerating the design-

build-test engineering cycle. 
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Fig. 4. The phase-plane correlations for FAS-FapR, ACCase-FapR and MalCoA-FapR. FAS-FapR 

phase plane shows periodic limit cycle of clockwise motion. ACCase-FapR and MalCoA-FapR 

phase planes show periodic limit cycle of counterclockwise motions.  

Effect of malonyl-CoA dissociation constant (K1) on system dynamic behavior 

We next investigated how the malonyl-CoA dissociation constant (K1) impacts the system 

dynamics (Fig. 5). The malonyl-CoA dissociation constant (K1) describes the inhibitory strength 

of malonyl-CoA to cell growth: small dissociation constant (K1) indicates a high binding affinity 

and high inhibitory strength. A number of dissociation constants ranging from 0.10 to 4.0 (in the 

units of concentration) were investigated (Fig. 5). As expected, strong inhibition (K1 = 0.10) will 

sequestrate the cell at a low growth rate and lead to constant expression of FapR, FAS and ACCase 

(Fig. 5), indicating that the expression of FAS and ACCase are independent of the control scheme. 

As the inhibition becomes weaker (K1 = 0.50 and 1.00), the solution of the system ODEs oscillates 

with increased amplitude, albeit the frequency of the oscillation remains unchanged. A perfect ON 

and OFF control of FAS and ACCase expression is taking place when a medium strength of 

inhibition (K1 = 2.0) is used. This medium strength of inhibition confers the system to oscillate 

stably with improved fatty acids production (Fig. 5), albeit the fatty acids increase is less than 50%. 

When the dissociation constant takes a larger number (K1 = 4.0), the systems behave like a damped 

oscillation that is approximately approaching to the optimal design scheme (K1 = 2.0). This 

analysis indicates that a medium strength of dissociation constant (K1) should be used. In practice, 

one can always use adaptive lab evolution to screen conditionally tolerant phenotype that meets 

the K1 selection criteria. 

Similarly, we could perform a phase-plane analysis (Fig. 6). The phase-planes suggest that the 

optimal control scheme (K1 = 2.0, the purple cycles) only permits a very narrowed space of FAS, 

ACCase and MaloCoA solutions. Interestingly, for low malonyl-CoA dissociation constant (K1= 

0.5), the system exhibits a looping behavior on the FAS-FA and MalCoA-FA phase plane, which 

is known as the “hysteresis” of dynamic systems (Aris, Borhani et al. 2019). It simply means that 

strong malonyl-CoA inhibition (K1= 0.5) will lead to multiplicity of steady states (Fig. 6). 
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Fig. 5. Effect of malonyl-CoA dissociation constant (K1) on system dynamic behavior. Malonyl-

CoA dissociation constants (K1) have been labelled with different color. Low dissociation 

constants (K1 = 0.5, 1.0 and 2.0) lead to stable oscillation. High dissociation constant (K1 = 4.0) 

leads to damped oscillation. Medium strength of malonyl-CoA inhibition (K1 = 2.0) favors fatty 

acids production. 

 

 

Fig. 6. The phase-plane portraits for FA-FAS, FA-ACCase and FA-MalCoA. Low malonyl-CoA 

dissociation constant (K1= 0.5, orange line), which corresponds to strong malonyl-CoA inhibition, 

leads to multiplicity of steady states and hysteresis pattern of FAS-FA and MalCoA-FA input-

output relationships. 

Effects of FapR-UAS interaction on system dynamics 

We next explored how the gene expression of the malonyl-CoA source pathway (ACCase) impacts 

the system dynamics. According to the original design and Eqn.5, expression of ACCase is 
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governed by the FapR-UAS interactions. The system equation for ACCase (Eqn. 5) accounts for 

both the growth-associated leaky expression (α3) and the FapR-activated regulatory expression (β2, 

p and K4). In all our simulations, we assume stringent regulation and the leaky expression is 

negligible (α2 = α3 = 0.05). We will specifically investigate how the ACCase induction rate (β2) 

and the FapR-UAS dissociation constant (K4) impact the system dynamics (Fig. 7 and Fig. 8).  

 

Fig. 7. Effect of ACCase induction rate (β2) on system dynamics. ACCase induction rates (β2) 

have been labelled with different color. High ACCase induction rate (i.e. β2 = 4.0) leads to a 

quickly damped oscillation and favors fatty acid accumulation. 

We investigated a number of ACCase induction rates (β2, in the units of concentration per time), 

ranging from 0.50 to 4.0 (Fig. 7). As the ACCase induction rate increases (β2) from 0.50 to 4.0, 

the expression of malonyl-CoA source pathway (ACCase) is upregulated, leading to improved 

fatty acids production (Fig. 7). For example, the fatty acids production is increased up to 2-fold 

when the ACCase induction rate (β2) increases from 0.5 (blue line, Fig. 7) to 4.0 (purple line, Fig. 

7). On the other hand, the amount of regulator protein FapR decreases with increasing ACCase 

induction rate (β2) (Fig. 7), possibly due to the antagonist effect of malonyl-CoA. However, this 

monotonic correlation was not found for the species MalCoA and AcCoA, due to the complicated 

autoregulation of malonyl-CoA in the control system. Furthermore, under low ACCase induction 

rates (i.e. β2 = 0.5, 1.0 and 2.0), the oscillation damped periodically with decreasing amplitude. 

Under high ACCase induction rate (i.e. β2 = 4.0), the oscillation damped quickly to reach its steady 

state (Fig. 7). This result indicates that a high ACCase induction rate (β2) is essential for the proper 

function of the control scheme. 

As FapR is the activator for the ACC operon, and the DNA binding site for FapR is a UAS 

(upstream activation sequence). We next investigated how the FapR-UAS dissociation constant 
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(K4) impacts the system dynamics (Fig. 8). A smaller FapR-UAS dissociation constant (K4) 

indicates a tighter binding between FapR and UAS (the inverse of the dissociation constant 

quantifies the binding affinity). As the binding between FapR and UAS becomes tighter (K4 

decreases from 8.0 to 1.0), the expression of the malonyl-CoA source pathway (ACCase) is 

strongly activated, leading to increased fatty acids production (Fig. 8). For example, the fatty acids 

production is increased up to 2.2-fold when the FapR-UAS dissociation constant (K4) decreases 

from 8.0 (purple line, Fig. 8) to 1.0 (blue line, Fig. 8). Under high FapR-UAS binding affinity (K4 

= 1.0), the oscillation damped quickly to reach its steady state; under low FapR-UAS binding 

affinity (K4 = 4.0 or 8.0), the oscillation retains periodic pattern with fixed frequency and amplitude. 

This result indicates that a tighter FapR-UAS binding is the critical factor to achieve the desired 

control scheme. 

 

Fig. 8. Effect of FapR-UAS dissociation constant (K4) on system dynamics. Tighter FapR-UAS 

binding is advantageous to fatty acids production. 

Effect of FapR-fapO interaction on system dynamics 

We also attempted to understand how the gene expression of the malonyl-CoA sink pathway (FAS) 

impacts the system dynamics. By design, FapR is the repressor that is specifically bound to fapO 

and represses the expression of the malonyl-CoA sink pathway (FAS). The system equation for 

FAS (Eqn. 4) accounts for both the growth-associated leaky expression (α2) and the FapR-

repressed regulatory expression (β1, n and K3). Transcriptional factor (FapR) and DNA binding 

site (fapO) interactions are typically defined by the binding affinity (inverse of the dissociation 

constant) and the Hill cooperativity coefficient. By probing the physiologically accessible 
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parameter space, we will investigate how the FapR-fapO dissociation constant (K3) and the Hill 

cooperativity coefficient (n) impact the system dynamics (Fig. 9 and Fig. 10). 

We investigated a number of FapR-fapO dissociation constant (K3), spanning from 0.50 to 8.0 (Fig. 

9). A smaller FapR-fapO dissociation constant indicates a tighter binding between FapR and fapO, 

thus the FapR-fapO complex will function as a stronger roadblock to prevent FAS transcription. 

As the binding between FapR and fapO becomes tighter (K3 decreases from 8.0 to 0.5), the 

expression of the malonyl-CoA sink pathway (FAS) is strongly repressed (Fig. 9), leading to 

decreased fatty acid accumulation. For example, the fatty acids production at low FapR-fapO 

dissociation constant (K3 = 0.50, blue curve) is less than 1/7 of the fatty acid production at high 

FapR-fapO dissociation constant (K3 = 8.0, green curve) (Fig. 9). With weaker FapR-fapO binding 

(K3 = 4.0 and 8.0), the ODE solutions for ACCase, MalCoA and AcCoA oscillate with fixed 

frequency and amplitude, indicating the functionality of the ON-OFF control toward both the 

malonyl-CoA source pathway (ACCase) and the malonyl-CoA sink pathway (FAS). However, 

with tighter FapR-fapO binding (K3 = 0.5 and 1.0), the oscillation collapses at relatively short 

period of time, indicating a faulted control scheme. This result suggests that a weak binding 

between FapR and fapO (or a large FapR-fapO dissociation constant) is the most important design 

criteria to achieve the derisred ON-OFF control scheme. 

 

Fig. 9. Effect of FapR-fapO dissociation constant (K3) on system dynamics. A weak binding 

between FapR and fapO (or a large FapR-fapO dissociation constant, i.e. K3 = 8.0) significantly 

improves fatty acid production, up to 7-fold. 

The Hill cooperativity coefficient is a critical factor determining the input-output relationship of 

biological signal transduction. Recent studies demonstrate that lots of nonlinear and complicated 
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biological functions are arising from the cooperative assembly of biological molecules (Bashor, 

Patel et al. 2019, Shaw, Yamauchi et al. 2019), including DNA, RNA and proteins. As such, we 

will investigate how the FapR-FapO Hill cooperativity coefficient (n) impacts the system 

dynamics (Fig. 10). We choose a number of FapR-fapO Hill cooperativity coefficients, ranging 

from -4 to 4. It should be noted that, our original mass balance equation for the malonyl-CoA sink 

pathway (FAS, Eqn. 4) only accounts for the fact that FapR represses the expression of FAS, which 

corresponds to a positive Hill coefficient (n > 0). Here we consider both positive Hill coefficients 

(n = 2.0 and 4.0) and negative Hill coefficients (n = -2.0 and -4.0) as well as no cooperation (n = 

0), where negative Hill coefficient means that FapR activates the expression of malonyl-CoA sink 

pathway (FAS). By comparing either the activating or repressing effect of FapR, we could further 

interrogate the topology of the control scheme and test whether our original circuit configuration 

meets the control criteria. 

 

Fig. 10. Effect of FapR-fapO Hill cooperativity coefficient (n) on system dynamics. Strong 

repression (n = 4) leads to stable oscillation and drives the cell to make more fatty acids. 

As the FapR-fapO Hill cooperativity coefficient (n) increases from -4.0 to 4.0, the regulatory action 

of FapR towards the malonyl-CoA sink pathway (FAS) shifts from activation to repression. As a 

result, a significant increase in the FAS, ACCase expression and fatty acids production are 

observed (Fig. 10). For example, almost 5-fold increase of fatty acids is obtained when the FapR-

fapO Hill cooperativity coefficient (n) increases from -4.0 (blue line, strong activation) to 4.0 

(green line, strong repression). Under strong FapR activation (n = -4.0), counterintuitively, the 

expression of FAS is instead downregulated (Fig. 10). This could be linked to the unbalanced 

induction rate (β) between the malonyl-CoA source pathway (ACCase, β2 = 2.0) and the malonyl-

CoA sink pathway (FAS, β1 = 0.5). Even with highly cooperative activation of FAS by FapR (n = 
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-4.0, blue line), the low induction rate of the malonyl-CoA sink pathway (FAS) makes the 

expression of FAS unable to catch up with the expression of ACCase (malonyl-CoA source 

pathway). As a result, malonyl-CoA will build up but stay unchanged in the system (blue line in 

Fig. 10) to inhibit cell growth, which will result in even lower level of FapR (activator for FAS 

expression when n = -4, blue line) and therefore exacerbate the expression of FAS. On the contrary, 

highly cooperative repression of FAS by FapR (n = 4, green line) will make malonyl-CoA level 

oscillate, which forms the driving force to dynamically link and control the expression of the 

malonyl-CoA source pathway (ACCase) and the malonyl-CoA sink pathway (FAS). This analysis 

indicates that a control architecture consisting of upregulated metabolic source and downregulated 

metabolic sink is an essential design criterion to build adaptive genetic-metabolic circuits. In 

addition, the stable oscillation of the metabolic intermediate (i.e., malonyl-CoA) forms the driving 

force to exert the ON-OFF dynamic control toward complex metabolic function in the cell. 

Conclusions 

With the better understanding of cellular regulation, metabolic engineers have been able to 

engineer both the chemistry (the mass flow) and the control modules (the information flow) inside 

the cell to design intelligent cell factories with improved performance. Moving beyond 

thermodynamic and stoichiometric constraints, living organisms could be viewed as a smart 

system consisting of sensor (ligand binding domain of transcriptional factors), transducers (DNA-

binding domain of transcriptional factors, kinase or enzyme et al) and actuators (RNA 

polymerases). Along this direction, cellular regulation and feedback control mechanisms have 

been exploited to construct genetic/metabolic circuits that could sense/respond to environment, 

achieve adaptive metabolic function and reshape cell fate for diverse biotechnological and medical 

applications. As chemical engineers have done to program machine language and control the mass 

and energy flow in a chemical plant, a synthetic biologist could rewrite the genetic software and 

encode logic functions in living cells to control cellular activity.  

Biophysical and biochemical models are important tools to quantitatively understand genetic 

circuit dynamics, metabolic network constraints, cell-cell communications (Dai, Lee et al. 2019) 

and microbial consortia interactions (Kong, Meldgin et al. 2018, Tsoi, Wu et al. 2018). Based on 

a previously engineered malonyl-CoA switch, nine differential equations were formulated (Table 

1) and employed to unravel the design principles underlying a perfect metabolite switch. By 

interrogating the physiologically accessible parameter space, we have determined the optimal 

control architecture to configure both the malonyl-CoA source pathway and the malonyl-CoA sink 

pathway. We also investigated a number of biological parameters that strongly impact the system 

dynamics, including the protein degradation rate (D), malonyl-CoA inhibitory constant (1/K1), 

malonyl-CoA source pathway induction rate (β2), FapR-UAS dissociation constant (K4), FapR-

fapO dissociation constant (K3) as well as the FapR-fapO Hill cooperativity coefficient (n). We 

identified that low protein degradation rate (D), medium strength of malonyl-CoA inhibitory 

constant (1/K1), high malonyl-CoA source pathway induction rate (β2), strong FapR-UAS binding 

affinity (1/K4), weak FapR-fapO binding affinity (1/K3) and a strong cooperative repression of 

malonyl-CoA sink pathway (FAS) by FapR (n) benefits the accumulation of the target molecule 
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(fatty acids). The fatty acids production could be increased from 50% to 10-folds with the different 

set of parameters. Under certain conditions (i.e. strong malonyl-CoA inhibitory constant 1/K1), the 

system will display hysteresis and multiplicity of steady states. Stable oscillation of malonyl-CoA 

is the driving force to make the system perform the ON-OFF control and automatically adjust the 

expression of both the malonyl-CoA source (ACCase) and malonyl-CoA sink (FAS) pathways. 

The computational framework present here may facilitate us to design and engineer predictable 

genetic-metabolic switches, configure the optimal controller architecture of the metabolic 

source/sink pathways, as well as reprogram metabolic function for various applications. 
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Appendix: Symbols and variables used in this work 

𝜇 specific growth rate 

𝜇max maximum specific growth rate 

𝛼1 cell growth-associated FapR production rate constant (constitutive expression) 

𝛼2 cell growth-associated FAS production rate constant (leaky expression) 

𝛼3 cell growth-associated ACC production rate constant (leaky expression) 

𝛼4 cell growth-associated PDH production rate constant (constitutive expression) 

𝛽1 non cell growth-associated FAS production rate (regulated expression) 

𝛽2 non cell growth-associated ACC production rate (regulated expression) 

𝐾1 Malonyl-CoA inhibitory (dissociation) constant 

𝐾2 Mal-CoA and FapR saturation constant 

𝐾3 dissociation rate constant of free FapR toward fapO in the FAS operon (to repress FAS transcription) 

𝐾4 dissociation rate constant of free FapR toward UAS in the ACC operon (to activate ACC transcription) 

𝐾5 acetyl-CoA saturation (Michaelis) constant toward ACC 

𝐾6 glucose saturation (Michaelis) constant toward glycolytic pathway 

𝐾𝑆 Monod constant for glucose 

𝐾𝑚 Malonyl-CoA saturation (Michaelis) constant toward FAS 
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𝑘1 FapR-inactivating rate constant due to the formation of MalCoA-FapR complex 

𝑘2 FA (fatty acids) production rate constant from Mal-CoA catalyzed by FAS 

𝑘3 malonyl-CoA production rate constant from acetyl-CoA catalzyed by ACC 

𝑘4 acetyl-CoA production rate constant from glycolysis catalzyed by PDH 

S glucose concentration 

𝑆0 glucose concentration in the feeding stream 

𝐷 dilution rate or degradation rate 

𝑋0 biomass concentration in the feeding stream 

𝑌PS1 malonyl-CoA to fatty acids conversion yield 

𝑌XS glucose to biomass conversion yield 

𝑌PS2 glucose to acetyl-CoA conversion yield 

m malonyl-CoA-FapR (ligand-TF) Hill cooperativity coefficient 

n FapR-FapO nucleoprotein complex Hill cooperativity coefficient 

p FapR-UAS  nucleoprotein complex Hill cooperativity coefficient 

q malonyl-CoA-FAS (substrate-enzyme) Hill cooperativity coefficient 

r acetyl-CoA-ACC (substrate-enzyme) Hill cooperativity coefficient 

u glucose-PDH (substrate-enzyme, artificial reaction) Hill cooperativity coefficient 
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